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AVERAGED TIME-OPTIMAL CONTROL PROBLEM IN THE SPACE

OF POSITIVE BOREL MEASURES ∗, ∗∗

Giulia Cavagnari1,a, Antonio Marigonda2 and Benedetto Piccoli1

Abstract. We introduce a time-optimal control theory in the space M+(Rd) of positive and finite
Borel measures. We prove some natural results, such as a dynamic programming principle, the existence
of optimal trajectories, regularity results and an HJB equation for the value function in this infinite-
dimensional setting. The main tool used is the superposition principle (by Ambrosio–Gigli–Savaré)
which allows to represent the trajectory in the space of measures as weighted superposition of classical
characteristic curves in Rd.
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1. Introduction

The study of control problems is often times closely linked to applications and other disciplines, such as
finance, engineering, biology, logistic among others. Thinking of real world problems, the modeling of uncertainty
features naturally arises as a strong need. In many cases uncertainty can affect the state of the system as well
as the dynamics.

Control problems with uncertainty have been analyzed by various researchers via different techniques and
approaches. For instance, in [19] the authors modeled “plant uncertainty” in a deterministic way, [28] is based
on the analysis of randomized algorithms and robustness, [5, 30] study stochastic control problems, while [23]
focuses on applying the stochastic control approach to finance, and [6] to quantum control.

Referring to stochastic approaches, in [22] the uncertainty is considered both in the state variable and in the
dynamics. The state is thus represented by a random variable or, alternatively, by a probability distribution,
while the equation modeling the dynamics involves Brownian motion and the solutions are considered in the
sense of Ito or Stratonovich integral.
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The stochastic approach proved to be successful, nevertheless, many problems can be described in a natural
way with a different approach. The idea is to consider a deterministic evolution of probability measures as in
transport theory [29]. This approach is applicable potentially to all control problems involving uncertainty, also
when uncertainty may fail to be well represented by the stochastic approach, for instance to avoid unbounded
perturbations. On one hand it can be used to model situations in which the knowledge of the initial state
comes with some noise, or, on the other hand, to model the evolution of the statistical distribution of a mass of
particles/agents as in the so-called multi-agent systems [26]. In such problems many factors must be taken into
account to accuratly describe the evolution of the system, both in the case of interacting particles and in the case
in which we assume no-interaction among them. There is a rich literature on the subject, for example [27] used
the concept of discrete-time evolving measures, in [7] concentration and congestion effects are studied and [17]
is a recent survey analyzing the relations between individual and collective behaviours in crowd dynamics in a
unified description based on measure theory. In crowd dynamics, a critical issue is the efficient regulation of a
crowd exiting a structured environment also called the evacuation problem. More precisely, the latter asks for a
mass of agents to be driven outside a given area while optimizing the time needed for the exit of last agent. A
natural way to describe these kind of situations is to remove pedestrians from the system once they have reached
the target, hence considering a continuity equation with sink. We recall that in a mass-preserving situation,
the natural metric to consider is the usual Wasserstein distance between probability measures. In [24, 25] a
generalized notion of Wasserstein distance between positive finite Borel measures with possibly different total
mass is given to deal with non-homogeneous continuity equations with a source/sink term.

A first attempt for the study of a time-optimal control problem in the space of probability measures endowed
with the topology induced by the Wasserstein distance is developed in [11–14], where a mass-preserving situation
is addressed. Here, the initial state is described by a Borel probability measure µ0 ∈P(Rd) and the trajectories
are time-dependent probability measures on Rd, denoted with µ := {µt}t∈[0,T ], where µt is a solution of a
controlled homogeneous continuity equation{

∂tµt + div(vtµt) = 0, 0 < t ≤ T

µ|t=0 = µ0,
(1.1)

and vt(·) is the control parameter to be chosen among the L1
µt-selections of a given set-valued map F : Rd ⇒ Rd

for µt-a.e. x and L 1-a.e. t. Here, the multifunction F is governing the underlying finite-dimensional dynamics
given in terms of a differential inclusion{

γ̇(t) ∈ F (γ(t)), for L 1−a.e. t ∈ (0, T )

γ(0) = x ∈ Rd.
(1.2)

A connection between the Caratheodory solutions of the finite-dimension characteristic system (1.2) and the
distributional solutions of (1.1) is possible even in the case in which the vector field vt driving both systems is
not locally Lipschitz continuous in the space variable uniformly w.r.t. t, hence we do not have uniqueness of the
solutions of the characteristic system nor of the solutions of (1.1). For this powerful result, called Superposition
Principle, we refer the reader to Theorem 8.2.1 in [1]. This represents also the main tool used in the present
paper.

The model studied in this paper shares the same underlying idea of the one studied in [13], but here we
consider a case with mass loss as follows. In an optimal logistic/equipment interpretation of this problem, the
initial state µ0 ∈ P(Rd) represents as before the initial statistical distribution of the agents, the function
f0 : Rd → [0,+∞], called clock-function, is the initial amount of goods (ex. time) that has to be assigned at
the beginning to each agent in the support of µ0 in order to reach the given target set S ⊆ Rd following an
admissible mass-preserving trajectory µ ⊆P(Rd) starting from µ0, coupled with f0. The definition of µ is the
same as in [11–14], but here we associate to it a density, ft := f0−t, representing the time-linear consumption of
the provided supplies, hence here the couple (f0,µ) is said to be admissible if furthermore f0 keeps nonnegative
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the associated density untill the agents have reached the target. Note that we ask a strong invariance property
on S in order to remove the agents once they have achieved their own goal. Here, differently from [13], we are
interested in minimizing an averaged cost function

∫
Rd f0(x) dµ0(x), among all the admissible couples (f0,µ).

This problems leads naturally to the definition of a new concept of trajectory in the space of positive finite
Borel measures, called clock-trajectory, which is modeled on µ and ft and hence it looses its mass linearly in
time.

We stress the fact that we consider the case in which f0 depends only on the initial position of each agent
and we have non-renewable resources and non-interacting particles. An applicative example for this situation
in a fluid depuration problem has been provided in Example 1 in [15], where other results on the same problem
has been investigated as the construction of an optimal clock-trajectory by approximation techniques.

In this paper we show that the optimal clock-function is given by the classical minimum time function T (·),
that is the minimum amount of time/supplies that has to be assigned at the beginning to each agent in order to
reach the target, even in the case in which T (·) is not continuous but it satisfies only the natural integrability
property w.r.t. µ0.

The paper is organized as follows: in Section 2 we recall some preliminary definitions and fix the notation;
in Section 3 we give a formal description of the problem and state the existence of an optimal clock-trajectory
for the system, showing that the optimal clock-function turns out to be the classical minimum time function.
This justifies the name of averaged time-optimal problem, and implies a Dynamic Programming Principle and
some regularity results on the value function; finally Section 4 provides an Hamilton-Jacobi-Bellman equation,
solved in a suitable viscosity sense by the value function, in analogy with the problem discussed in [13, 14]. In
Appendix A we state and prove some technical results used in the paper.

2. Preliminaries and notation

For preliminaries on measure theory, we refer to Chapter 5 in [1].
Given a separable metric space X, we denote by P(X) the set of Borel probability measures on X endowed

with narrow convergence, by M +(X) the set of positive and finite Radon measures on X and with M (X,Rd) the
set of vector-valued Radon measures on X. We recall that P(X) can be identified with a convex subset of the
unitary ball of the dual space (C0

b(X))′, and narrow convergence is induced by the weak∗-topology on (C0
b(X))′.

If ν ∈M (Rd;Rd), we denote with |ν| its total variation, while for a pair of measures σ, µ defined on Rd, we
denote with σ � µ the relation of absolute continuity of σ w.r.t. µ.

If X, Y are separable metric spaces, µ ∈M (X), and r : X → Y is a Borel (or, more generally, µ-measurable)
map, we denote by r]µ ∈M (Y ) the push-forward of µ through r, defined by r]µ(B) := µ(r−1(B)), for all Borel
sets B ⊆ Y . Equivalently, it is defined by∫

X

f(r(x)) dµ(x) =

∫
Y

f(y) dr]µ(y),

for every bounded (or r]µ-integrable) Borel function f : Y → R.
Let µ ∈P(Rd), p ≥ 1. We say that µ has finite p-moment if

mp(µ) :=

∫
Rd
|x|p dµ(x) < +∞.

Given p ≥ 1, we define the set Pp(Rd) := {µ ∈P(Rd) : mp(µ) < +∞}.

Definition 2.1 (Wasserstein distance). Given µ1, µ2 ∈ P(Rd), p ≥ 1, we define the p-Wasserstein distance
between µ1 and µ2 by setting

Wp(µ1, µ2) :=

(
inf

{∫∫
Rd×Rd

|x1 − x2|p dπ(x1, x2) : π ∈ Π(µ1, µ2)

})1/p

, (2.1)
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where the set of admissible transport plans Π(µ1, µ2) is defined by

Π(µ1, µ2) :=

{
π ∈P(Rd × Rd) :

π(A1 × Rd) = µ1(A1),
π(Rd ×A2) = µ2(A2),

for all µi-measurable sets Ai, i = 1, 2

}
.

Proposition 2.2. Pp(Rd) endowed with the p-Wasserstein metric Wp(·, ·) is a complete separable metric space.
Moreover, given a sequence {µn}n∈N ⊆Pp(Rd) and µ ∈Pp(Rd), we have that the following are equivalent

(1) lim
n→∞

Wp(µn, µ) = 0,

(2) µn ⇀
∗ µ and {µn}n∈N has uniformly integrable p-moments.

Given µ1, µ2 ∈P(Rd), p ≥ 1, the following dual representation (called Monge–Kantorovich duality) holds

W p
p (µ1, µ2) = (2.2)

= sup


∫
Rd
ϕ(x1) dµ1(x1) +

∫
Rd
ψ(x2) dµ2(x2) :

ϕ,ψ ∈ C0
b(Rd)

ϕ(x1) + ψ(x2) ≤ |x1 − x2|p
for µi–a.e. xi ∈ Rd

 .

Proof. See Theorem 6.1.1 and Proposition 7.1.5 in [1]. �

In the following we mention some concepts regarding the classical optimal control problem with dynamics in
the form of a differential inclusion in Rd.

Definition 2.3 (Standing Assumptions). We will say that a set-valued function F : Rd ⇒ Rd satisfies the
assumption (Fj), j = 0, 1, 2 if the following hold true

(F0) F (x) 6= ∅ is compact and convex for every x ∈ Rd, moreover F (·) is continuous with respect to the
Hausdorff metric, i.e. given x ∈ X, for every ε > 0 there exists δ > 0 such that |y − x| ≤ δ implies
F (y) ⊆ F (x) +B(0, ε) and F (x) ⊆ F (y) +B(0, ε).

(F1) F (·) has linear growth, i.e. there exists a constant C > 0 such that F (x) ⊆ B(0, C(|x|+ 1)) for every
x ∈ Rd.

(F2) F (·) is Lipschitz continuous with respect to the Hausdorff metric, i.e., there exists L > 0, L ∈ R, such
that for all x, y ∈ Rd it holds

F (x) ⊆ F (y) + L|y − x|B(0, 1).

An admissible trajectory of the differential inclusion

ẋ(t) ∈ F (x(t)), (2.3)

is, by definition, an absolutely continuous function γ : [0, T ]→ Rd satisfying (2.3) for a.e. 0 < t ≤ T .
We recall that given x ∈ Rd, the classical minimum time function T : Rd → [0,+∞] evaluated at x is defined

to be the minimum time needed to steer such a point to the target S along admissible trajectories starting from
x at t = 0. Let S ⊆ Rd be a closed and nonempty target set, an admissible trajectory γ̄ is called optimal for
x ∈ Rd if γ̄(0) = x, γ̄(T (x)) ∈ S.

We say that a target set S ⊆ Rd is strongly invariant for F if for any admissible trajectory for F such that
there exists t > 0 with γ(t) ∈ S, we have also γ(s) ∈ S for all s ≥ t.

Given T ∈ [0,+∞[, for the following we set

ΓT := C0([0, T ];Rd), Γ xT := {γ ∈ ΓT : γ(0) = x ∈ Rd}.

We endow all the above spaces with the usual sup-norm, recalling that ΓT is a complete separable metric space
for every 0 < T < +∞. The evaluation operator will be the map et : Rd × ΓT → Rd defined by et(x, γ) = γ(t)
for all 0 ≤ t ≤ T .

Let X be a set, A ⊆ X. The indicator function of A is the function IA : X → {0,+∞} defined as IA(x) = 0
for all x ∈ A and IA(x) = +∞ for all x /∈ A. The characteristic function of A is the function χA : X → {0, 1}
defined as χA(x) = 1 for all x ∈ A and χA(x) = 0 for all x /∈ A.
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3. A time-optimal control problem with mass loss

We are going to define now the concepts of trajectories on which our work is modeled. Let us first recall the
definition of admissible mass-preserving trajectory defined in [11–14].

Definition 3.1. Let F : Rd ⇒ Rd be a set-valued map, µ̄ ∈P(Rd).

(1) Let T > 0. We say that µ = {µt}t∈[0,T ] ⊆ P(Rd) is an admissible mass-preserving trajectory defined on
[0, T ] and starting from µ̄ if there exists ν = {νt}t∈[0,T ] ⊆M (Rd;Rd) such that |νt| � µt for a.e. t ∈ [0, T ],

µ0 = µ̄, ∂tµt + div νt = 0 in the sense of distributions and vt(x) :=
νt
µt

(x) ∈ F (x) for a.e. t ∈ [0, T ] and

µt-a.e. x ∈ Rd. In this case, we will say also that the admissible mass-preserving trajectory µ is driven by
ν.

(2) Let T > 0, µ be an admissible mass-preserving trajectory defined on [0, T ] starting from µ̄ and driven by
ν = {νt}t∈[0,T ]. We will say that µ is represented by η ∈P(Rd × ΓT ) if we have et]η = µt for all t ∈ [0, T ]
and η is concentrated on the pairs (x, γ) ∈ Rd × ΓT where γ is an absolutely continuous solution of the
underlying characteristic system{

γ̇(t) = vt(γ(t)), for a.e. 0 < t ≤ T

γ(0) = x,
(3.1)

where vt(x) =
νt
µt

(x) is the density of the vector-valued measure νt w.r.t. µt.

Remark 3.2. Notice that, by definition, µ is an admissible mass-preserving trajectory starting from µ̄ if it is
a distributional solution of an homogeneous (controlled) continuity equation, ∂tµt + div(vtµt) = 0, where vt is
a Borel velocity field ranging among L1

µt-selections of the given set-valued function F : Rd ⇒ Rd, ruling the
underlying finite-dimensional differential inclusion.

Remark 3.3. We recall that the existence of a probabilistic representation η ∈ P(Rd × ΓT ) for a mass-
preserving trajectory µ = {µt}t∈[0,T ] ⊆ P(Rd) is guaranteed by the Superposition Principle (see for example
Thm. 8.2.1 in [1]) under mild integrability assumptions on the time-dependent vector field vt. We also point out
that generally, a probabilistic representation η for the same trajectory µ is not unique.

Now, we are going to give the definition of admissible clock-trajectory for an initial state µ̄, which is associated
with a pair (f0,µ). In an optimal equipment interpretation of the problem, the function f0 represents the amount
of resources given at the beginning to each agent in supp µ̄ in order to reach the given target S following an
admissible mass-preserving trajetory µ. We consider the case in which f0 depends only on the initial positions
of the agents and we deal with the case of time-linear decrease of the provided items (ex. time), thus the
admissibility requires that the density ft := f0 − t is kept positive through the whole time evolution.

Notice that, since we want to define the admissible clock-trajectory for possible infinite times, we need to
have a sequence of mass-preserving trajectories, each extending the previous one, defined in increasing finite
time intervals. In this way, we can use results valid for separable metric spaces as ΓT for every 0 < T < +∞.

Definition 3.4. Let F : Rd ⇒ Rd be a set-valued map, S ⊆ Rd be closed, nonempty and strongly invariant for
F , µ̄ ∈P(Rd) with supp(µ̄) ⊆ Rd \ S.
A Borel family of positive and finite measures µ̃ = {µ̃t}t∈[0,+∞[ ⊆ M +(Rd) is an admissible clock-trajectory
(curve) for µ̄ with target S if there exist a Borel map f0 : Rdto[0,+∞] called clock-function, and sequences
{Tn}n∈N ⊆ [0,+∞[, {µn}n∈N, {νn}n∈N, and {ηn}n∈N such that

(1) Tn → +∞;
(2) for any n ∈ N we have that µn = {µnt }t∈[0,Tn] is an admissible mass-preserving trajectory defined on [0, Tn],

starting from µ̄, driven by νn := {νnt }t∈[0,Tn], and represented by ηn;
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(3) given n1, n2 ∈ N with Tn1 ≤ Tn2 , we have (IdRd×rn2,n1)]ηn2
= ηn1

, where rn2,n1 : ΓTn2
→ ΓTn1

is the linear
and continuous operator defined by setting rn2,n1

γ(t) = γ(t) for all t ∈ [0, Tn1
]. Clearly, rn2,n1

γ ∈ ΓTn1
for

all γ ∈ ΓTn2
. In particular, this implies µn1

t = µn2
t for all t ∈ [0, Tn1

].

(4) for any n ∈ N, t ∈ [0, Tn], ϕ ∈ C0
C(Rd), we have∫

Rd
ϕ(x) dµ̃t =

∫∫
Rd×ΓTn

ϕ(γ(t))χSc(γ(t))(f0(x)− t) dηn(x, γ)

In this case we will say that µ̃ follows the family of mass-preserving trajectories {µn}n∈N. Notice that, since we

ask µ̃0(Rd) < +∞, then we can identify f0 with
µ̃0

µ̄
∈ L1

µ̄.

Remark 3.5. Let µ0 ∈P(Rd), µ̃ = {µ̃t}t∈[0,+∞[ be an admissible clock-trajectory for µ0 with clock-function
f0. Then we have f0(x) ≥ T (x) for µ0-a.e. x ∈ Rd, where T : Rd → [0,+∞] is the classical minimum time
function for the same target set S ⊆ Rd. This follows necessarily, since by Definition 3.4 µ̃t is a positive measure,
hence we must have f0(x) ≥ t for ηn-a.e. (x, γ) such that γ(t) /∈ S.

Proposition 3.6 (Clock trajectory and mass-preserving trajectory). Let µ0 ∈P(Rd) and µ̃ = {µ̃t}t∈[0,+∞[ ⊆
M +(Rd) be an admissible clock-trajectory for µ0 with clock-function f0, following the family of mass-preserving
trajectories {µn}n∈N := {{µnt }t∈[0,Tn]}n driven by {νn}n∈N := {{νnt }t∈[0,Tn]}n and represented by {ηn}n∈N.
Then for all n ∈ N we have µ̃t � µnt for all t ∈ [0, Tn].

Proof. Let us consider any n ∈ N and any t ∈ [0, Tn]. We disintegrate ηn with respect to the continuous map
et : Rd × ΓTn → Rd. This yields a family of probability measures {ηny }y∈Rd which is uniquely defined et]ηn-a.e.
such that ∫

Rd
ϕ(x) dµ̃t(x) =

∫
Rd

∫
e−1
t (y)

ϕ(y)χSc(y)(f0(γ(0))− t) dηny (x, γ) dµnt (y)

=

∫
Rd
ϕ(y)χSc(y)

(∫
e−1
t (y)

f0(γ(0)) dηny (x, γ)− t

)
dµnt (y),

hence µ̃t � µnt for all t ∈ [0, Tn] and for all n ∈ N. �

Definition 3.7 (Clock-generalized minimum time). Let F : Rd ⇒ Rd be a set-valued function, S ⊆ Rd be
a target set for F . In analogy with the classical case, we define the clock-generalized minimum time function
τ : P(Rd)→ [0,+∞] by setting

τ(µ0) := inf
{
µ̃0(Rd) : µ̃ := {µ̃t}t∈[0,+∞[ ⊆M +(Rd) is an admissible clock- (3.2)

-trajectory for the measure µ0, µ̃|t=0 = µ̃0

}
,

where, by convention, inf ∅ = +∞.
Given µ0 ∈ P(Rd) with τ(µ0) < +∞, an admissible clock-curve µ̃ = {µ̃t}t∈[0,+∞[ ⊆ M +(Rd) for µ0 is

optimal for µ0 if
τ(µ0) = µ̃|t=0(Rd).

Given p ≥ 1, we define also a clock-generalized minimum time function τp : Pp(Rd)→ [0,+∞] by replacing in
the above definitions P(Rd) by Pp(Rd) and M +(Rd) by M +

p (Rd). Since M +
p (Rd) ⊆M +(Rd), it is clear that

τp(µ0) ≥ τ(µ0).

In order to prove a Dynamic Programming Principle for our minimization problem, which is the main task
of this section, we will first provide a representation result expressing τp(µ) as an average of the classical
minimum-time function T (·), and then applying the well-known classical Dynamic Programming Principle (see
for example Chap. I, Sect. 2 of [3]) holding for T (·). The main tools used for the proof of the following corollary
are selection and disintegration results.
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Corollary 3.8 (Optimal clock). Assume hypothesis (F0) and (F1). Let S ⊆ Rd be a target set for F . Let p > 1
and µ0 ∈Pp(Rd) be such that ‖T (·)‖L1

µ0
< +∞. Then T (·) is the optimal clock function for µ0.

The proof of Corollary 3.8 can be found in Appendix A at page 737.
It is possible to notice that we can actually construct such optimal trajectories by approximation techniques

as done in [15] for the case ‖T (·)‖L∞µ0
< +∞.

Now we can deduce the following dynamic programming principle.

Corollary 3.9 (DPP for the clock problem). Assume hypothesis (F0) and (F1). Let S ⊆ Rd be a target set for
F . Let p > 1 and µ0 ∈Pp(Rd), with suppµ0 ⊆ Rd \ S, be such that ‖T (·)‖L1

µ0
< +∞. We have

τp(µ0) =

∫
Rd
T (x) dµ0(x).

Let µ̃ = {µ̃t}t∈[0,+∞[ be an admissible clock-trajectory for µ0 following a family of admissible mass-preserving
trajectories {µn}n∈N starting from µ0. For any s ≥ 0 we choose n > 0 such that µn is defined on an interval
[0, Tn] containing s and it is represented by ηn ∈P(Rd × ΓTn). Then we have

τp(µ0) =

∫∫
Rd×ΓTn

T (γ(0)) dηn ≤
∫∫

Rd×ΓTn
[T (γ(s)) + s] dηn ≤ s+ τp(µ

n
s ).

Moreover, if ηn is concentrated on (restriction to [0, Tn] of) time-optimal trajectories, then for all s ≥ 0 such
that suppµns ⊆ Rd \ S, we have

τp(µ0) = s+ τp(µ
n
s ),

and so for such s ≥ 0 we have
τp(µ0) = inf

µ
{s+ τp(µs)} ,

where the infimum is taken on admissible mass-preserving trajectories µ = {µt}t∈[0,s] satisfying µt=0 = µ0.

The proof is a direct consequence of Corollary 3.8, of the classical Dynamic Programming Principle holding for
T (·) and Remark 3.5.

Remark 3.10. We notice that, in the same hypothesis of Corollary 3.8, if µ ∈ Pp(Rd) we have that τp(µ) =
‖T (·)‖L1

µ
≤ ‖T (·)‖L∞µ = T̃p(µ), where T̃p(·) is the generalized minimum time function studied in [13] for the

mass-preserving case, with generalized target set S̃ := {σ ∈ P(Rd) : suppσ ⊆ S}, i.e. T̃p(µ) is the minimum
of the final times t̄ for which supp(µ|t=t̄) ⊆ S, for an admissible trajectory starting from µ. In particular, we
refer to [13] for the last equivalence holding in this situation.

3.1. Regularity results

Thanks to Corollary 3.8, under suitable assumptions, the clock-generalized minimum time function inherits
regularity results from the classical one as shown in the next corollaries. For the following result, we refer to [18]
for conditions under which the classical minimum time function T (·) is l.s.c.

Corollary 3.11 (L.s.c. of the clock-generalized minimum time function). Assume that T (·) is l.s.c. Assume
hypothesis (F0) and (F1). Let S ⊆ Rd be a target set for F . Let p > 1 and µ0 ∈Pp(Rd), with suppµ0 ⊆ Rd \ S,
be such that ‖T (·)‖L1

µ0
< +∞. Then τp : Pp(Rd)→ [0,+∞] is l.s.c.

Proof. Taken a sequence {µn0}n∈N ⊆Pp(Rd) s.t. Wp(µ
n
0 , µ0)→ 0 for n→ +∞, we want to prove that τp(µ0) ≤

lim inf
n→+∞

τp(µ
n
0 ).

By Remark 3.5, Lemma 5.1.7. in [1] and Corollary 3.8, we conclude immediately that

lim inf
n→+∞

τp(µ
n
0 ) ≥ lim inf

n→+∞

∫
Rd
T (x) dµn0 (x) ≥

∫
Rd
T (x) dµ0(x) = τp(µ0). �
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We are now intersted in proving sufficient conditions on the set-valued function F (·) in order to have control-
lability of the generalized control system, i.e. to steer a probability measure on the target set by an admissible
trajectory in finite time.

Representation formula for the generalized minimum time provided in Corollary 3.8 allows us to recover
many results valid for the classical minimum time function also in the framework of the generalized systems.
We refer the reader to Chapter 2, Section 4.2 in [3], to Chapter 2 in [9] and to Sections 2 and 3 in [8] for a
definition and classical results about semiconcave functions, in particular regarding the classical minimum time
function. In the space Pp(Rd) we will use the following definition which is a strong formulation of the concept
of λ-semiconcavity along geodesics outlined in Definition 9.1.1 in [1]. We refer the reader to Definition 2.4.2,
Section 7.2 and Theorem 7.2.2 in [1] for a characterization of (constant speed) geodesics in Pp(Rd).

Definition 3.12 (Strong semiconcavity along W2-geodesics). Let p ≥ 2 and g : Pp(Rd) →] − ∞,+∞]. We
say that g is strongly W2-geodesically semiconcave in Pp(Rd) if there exists D > 0 such that for every couple
µ1, µ2 ∈Pp(Rd) and for any optimal transport plan π ∈ Π(µ1, µ2) for the 2-Wasserstein distance, we have

g(µt) ≥ tg(µ1) + (1− t)g(µ2)−Dt(1− t)W 2
2 (µ1, µ2), ∀t ∈ [0, 1],

where µ = {µt}t∈[0,1] ⊆Pp(Rd), µt :=
(
tpr1+(1−t)pr2

)
]π, i.e. µ is a (constant speed) W2-geodesic connecting µ1

and µ2 through π, and pri : Rd×Rd → Rd, i = 1, 2, is the projection on the i–th component, i.e., pri(x1, x2) = xi.

Corollary 3.13 (Controllability). Assume (F0), (F1), (F2). Let S ⊆ Rd be a target set for F . Assume further-
more that for every R > 0 there exist ηR, σR > 0 such that for a.e. x ∈ B(0, R) \S with dS(x) ≤ σR there holds

sup
v∈F (x)

〈−∇dS(x), v〉 > ηR , (3.3)

where dS : Rd → R denotes the distance function from S. Then, if we set for p > 1

Pp(Rd)|R :=
{
µ ∈Pp(Rd) : ‖T (·)‖L1

µ
< +∞ and suppµ ⊆ B(0, R) ∩ {x : dS(x) ≤ σR}

}
,

there exists cR > 0 such that for every µ0 ∈Pp(Rd)|R the following properties hold.

(1) τp(µ0) ≤ 1

cR
‖dS‖L1

µ0
.

(2) The function τp : Pp(Rd)→ [0,+∞] is Lipschitz continuous on Pp(Rd)|R with respect to the metric Wp.
(3) If ∂S ∈ C1,1, p ≥ 2, then the function τp : Pp(Rd)→ [0,+∞] is strongly W2-geodesically semiconcave on

{µ ∈Pp(Rd)|R : suppµ ∩ S = ∅}.

Proof. According to Proposition 2.2 in [8], the present assumptions imply that there exists a constant cR > 0
such that the classical minimum time function satisfies

T (x) ≤ 1

cR
dS(x) , (3.4)

for every x ∈ B(0, R) \ S with dS(x) ≤ σR. Moreover, T (·) is Lipschitz continuous in such set. We denote by
kR > 0 its Lipschitz constant.

Now, property (1) follows from (3.4) and Corollary 3.8, since

τp(µ0) =

∫
Rd
T (x) dµ0 ≤

1

cR

∫
Rd
dS(x) dµ0 =

1

cR
‖dS‖L1

µ0
.

To prove (2), fix µ1, µ2 ∈Pp(Rd)|R. By setting

c′R :=
cR

(1 + cR)(1 + kR)
,
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we have that the function c′RT (·) is Lipschitz continuous with constant less than 1 and that c′RT (·) ≤ σR. Hence,
it can be extended to a continuous bounded function on the whole Rd, and |c′RT (x)− c′RT (y)| ≤ |x− y| for all
x, y ∈ B(0, R) \ S with dS(x), dS(y) ≤ σR. According to Kantorovich duality (2.2) and Corollary 3.8 we then
have

c′R(τp(µ1)− τp(µ2)) ≤ c′RW1(µ1, µ2) ≤ c′RWp(µ1, µ2),

using Hölder inequality. By switching the roles of µ1 and µ2, we obtain (2).
Finally, according to Theorem 3.1 in [8], when ∂S ∈ C1,1 we have that the classical minimum time function

is semiconcave in {x : T (x) < +∞} \ S. In particular, there exists DR > 0 such that

T (tx1 + (1− t)x2) ≥ tT (x1) + (1− t)T (x2)−DR t(1− t) |x1 − x2|2, (3.5)

for every x1, x2 ∈ {x : T (x) < +∞} \ S.
Let K := B(0, R) ∩ {x : dS(x) ≤ σR} and p ≥ 2. For any Borel sets A,B ⊆ Rd and π ∈ Π(µ1, µ2), we now

have

A×B ⊆ [(A×B) ∩ (K ×K)] ∪ [(A \K)× Rd] ∪ [Rd × (B \K)],

so that

π(A×B) ≤ π((A×B) ∩ (K ×K)) + µ1(A \K) + µ2(B \K)

= π((A×B) ∩ (K ×K)),

because µ1 and µ2 are concentrated on K. In particular, supp(π) ⊆ K ×K.
Let π ∈ Π(µ1, µ2) be any optimal transport plan realizing the 2-Wasserstein distance between µ1 and µ2, so

that µ = {µt}t∈[0,1] ⊆ Pp(Rd), µt :=
(
tpr1 + (1 − t)pr2

)
]π. We integrate the estimate (3.5) to find that, by

using Remark 3.5 and Corollary 3.8,

τp(µt) ≥
∫
Rd
T (x) dµt(x)

=

∫∫
Rd×Rd

T (tx1 + (1− t)x2) dπ(x1, x2)

≥ t
∫
Rd
T (x1) dµ1 + (1− t)

∫
Rd
T (x2) dµ2

−DR t (1− t)
∫∫

Rd×Rd
|x1 − x2|2 dπ(x1, x2)

= tτp(µ1) + (1− t)τp(µ2)−DR t(1− t)W 2
2 (µ1, µ2). �

Remark 3.14. For other controllability conditions generalizing (3.3), the reader may refer e.g. to [16] or [20].

4. Hamilton-Jacobi-Bellman equation

In this section we will prove that under the assumptions granting the validity of the Dynamic Programming
Principle and of a result which aims to recover the initial velocity of admissible trajectories, the clock-generalized
minimum time function solves a natural Hamilton–acobi–Bellman equation on P2(Rd) in a suitable viscosity
sense. We observe also that once we have the Dynamic Programming Principle and once the problem is modeled
on the same notion of admissible mass-preserving trajectories, then the Hamilton-Jacobi-Bellman equation
related to the present problem is the same considered in [13,14]. We then follow a very similar approach as the
one discussed in Section 4 of [13] or in Section 3 of [14] in which a more regular case is treated.

We point out that, if we restrict the study to the class of absolutely continuous curves in (Pp(Rd),Wp) with
a Lipschitz continuous value function, then a Comparison Principle is provided in [10]. However in general, even
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if a more general Comparison Principle, still restricted to Lispchitz continuous value functions, is expected in
the forthcoming paper [21], the uniqueness problem for such kind of HJB equations is still largely open.

The following proposition allows to construct an admissible mass-preserving trajectory concentrated on char-
acteristics of class C1 with initial velocity the given one.

Proposition 4.1. Assume hypothesis (F0), (F1). Let µ ∈ P2(Rd), and x 7→ vx be a Borel selection of F
belonging to L2

µ. Then for any T > 0 there exists an admissible mass-preserving curve µ defined on [0, T ]

starting from µ and represented by η such that for η-a.e. (x, γ) ∈ Rd × ΓT we have that γ ∈ C1([0, T ]),
γ̇(t) ∈ F (γ(t)) for all t ∈ [0, T ], γ(0) = x and γ̇(0) = vx.

Proof. Let T > 0 be fixed. Consider the set-valued map G : Rd ⇒ C0(Rd;Rd) defined by

G(x) :=
{
v ∈ C0(Rd;Rd) : v(x) = vx, v(y) ∈ F (y) for all y ∈ Rd

}
,

and notice that, recalling the assumptions on F , we have that G(x) is nonempty, convex and closed. Indeed, for
every x ∈ Rd and vx ∈ F (x) there exists by Michael’s continuous selection Theorem a continuous selection v of
F such that v(x) = vx.

Define the map g : Rd × C0(Rd;Rd)→ [0,+∞] by setting

g(x, v) := sup
q,y∈Rd

{
IF (y)(v(y)) + 〈q, vx − v(x)〉

}
,

noticing that v ∈ G(x) if and only if g(x, v) = 0.

To prove that g is a Borel map, it is enough to show that (v, y) 7→ IF (y)(v(y)) is a Borel map from C0(Rd;Rd)×
Rd to {0,+∞}.

Indeed, consider any sequence {vn}n∈N ⊆ C0(Rd;Rd) uniformly convergent to v ∈ C0(Rd;Rd), and {yn}n∈N ⊆
Rd converging to y.

Then, vn(yn)→ v(y), n→ +∞. Indeed, denoted with ωy(·) a modulus of continuity for v at the point y, we
have

|vn(yn)− v(y)| ≤ |vn(yn)− v(yn)|+ |v(yn)− v(y)|
≤ ‖vn − v‖L∞ + ωy(|yn − y|),

for a suitable s > 0. Hence, we deduce that

lim inf
n→+∞

IF (yn)(vn(yn)) ≥ IF (y)(v(y)),

where we used the fact that the map f : Rd × Rd → {0,+∞}, f(z, w) := IF (z)(w), is l.s.c. due to u.s.c. of F .

Thus we have just proved that (v, y) 7→ IF (y)(v(y)) is l.s.c. and hence a Borel map. Hence GraphG = g−1(0)
is a Borel set. By Theorem 8.1.4 p. 310 in [2], we have that the set-valued map G : Rd ⇒ C0(Rd;Rd) is Borel
measurable, and so by Theorem 8.1.3 p. 308 in [2] it admits a Borel selection V : Rd → C0(Rd;Rd). We denote
V (x) ∈ C0(Rd;Rd) by Vx.

We fix a family of smooth mollifiers {ρε}ε>0 ⊆ C∞C (Rd) such that supp ρε ⊆ B(0, ε), and denote by HT
x,ε the

(unique) γ ∈ ΓT satisfying γ̇(t) = (Vx ∗ ρε) ◦ γ(t), γ(0) = x. We want to prove that HT
x,ε is a Borel map in x.
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For any x ∈ Rd and W ∈ Lip(Rd;Rd) denote by hx,W (t) the solution of ẋ(t) = W ◦ x(t), x(0) = x. The map
h : Rd × Lip(Rd;Rd)→ ΓT is continuous, hence Borel, since for all x, y ∈ Rd, W1,W2 ∈ Lip(Rd;Rd), we have

|hx,W1(t)− hy,W2(t)| ≤ |x− y|+
∫ t

0

|W1(hx,W1(s))−W2(hy,W2(s))|ds

≤ |x− y|+
∫ t

0

|W1(hx,W1
(s))−W1(hy,W2

(s))|ds

+

∫ t

0

|W1(hy,W2
(s))−W2(hy,W2

(s))|ds

≤ |x− y|+ Lip(W1)

∫ t

0

|hx,W1
(s))− hy,W2

(s)|ds+ t‖W1 −W2‖∞

and so by Gronwall’s inequality

|hx,W1(t)− hy,W2(t)| ≤ (|x− y|+ t‖W1 −W2‖∞)etLip(W1),

which implies

‖hx,W1
− hy,W2

‖∞ ≤ (|x− y|+ T‖W1 −W2‖∞)eTLip(W1).

Since HT
x,ε can be written as the composition of the Borel maps x 7→ (x, Vx), (x, Z) 7→ (x, Z ∗ ρε), and

(x,W ) 7→ hx,W , we have that it is a Borel map.

Finally, we define the Kuratowski upper limit of HT
x,ε by

HT (x) := {γ ∈ ΓT : there exists {εn}n∈N s.t. εn → 0+, HT
x,εn → γ, as n→ +∞}.

Thanks to Theorem 8.2.5 in [2], this is a Borel set-valued map from Rd to ΓT , thus possesses a Borel selection
ψ : Rd → ΓT .

Given x ∈ Rd, let {εn}n∈N be such that εn → 0+ and HT
x,εn → γx := ψ(x). In particular, we have that

HT
x,εn(0) = x for all n ∈ N, and so γx(0) = x. Since there exists a compact K containing HT

x,εn(τ) for all n ∈ N
sufficiently large and all τ ∈ [0, T ], and moreover Vx ∗ ρεn converges to Vx in C0(Rd) on all the compact sets of
Rd, we can pass to the limit by Dominated Convergence Theorem in

HT
x,εn(s)−HT

x,εn(t)

s− t
=

1

s− t

∫ s

t

Vx ∗ ρεn(HT
x,εn(τ)) dτ,

obtaining
γx(s)− γx(t)

s− t
=

1

s− t

∫ s

t

Vx(γx(τ)) dτ, (4.1)

thus γx ∈ C1 is an admissible curve satisfying γ̇x(0) = vx.

We define the probability measure

η := µ⊗ δγx ∈P(Rd × ΓT ),

which, as seen in the last part of the proof of Lemma A.3, induces an admissible trajectory µ = {µt =
et]η}t∈[0,T ]. Moreover, we prove that

lim
t→0

∥∥∥∥et − e0

t
− vx

∥∥∥∥
L2
η

= 0.
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Indeed, ∥∥∥∥et − e0

t
− vx

∥∥∥∥2

L2
η

=

∫
Rd

∫
ΓxT

∣∣∣∣γ(t)− γ(0)

t
− vx

∣∣∣∣2 dδγx(γ) dµ(x)

=

∫
Rd

∣∣∣∣γx(t)− γx(0)

t
− vx

∣∣∣∣2 dµ(x),

and for µ-a.e. x ∈ Rd, recalling (4.1), continuity of Vx(·) and that γ ∈ C1 and γ̇(0) = vx, we have∣∣∣∣γx(t)− γx(0)

t
− vx

∣∣∣∣ =

∣∣∣∣1t
∫ t

0

Vx(γx(τ)) dτ − vx
∣∣∣∣

≤ 1

t

∫ t

0

|Vx(γx(τ))|dτ + |vx|

≤ max
t∈[0,T ]

|Vx(γx(t))|+ |vx|,

lim
t→0+

∣∣∣∣γx(t)− γx(0)

t
− vx

∣∣∣∣ = 0.

Thus we conclude applying Lebesgue’s Dominated Convergence Theorem. �

Corollary 4.2. Assume hypothesis (F0), (F1). Let µ ∈ P2(Rd), T > 0. Define the set AT (µ) of the maps
wη ∈ L2

η satisfying the following

(1) there exists an admissible mass-preserving trajectory µ defined on [0, T ] and represented by η ∈P(Rd×ΓT )
with e0]η = µ,

(2) there exists a sequence {ti}i∈N ⊆]0, T ] such that ti → 0 and

lim
i→+∞

1

ti

∫∫
Rd×ΓT

〈p ◦ e0(x, γ), eti(x, γ)− e0(x, γ)〉dη =

∫∫
Rd×ΓT

〈p ◦ e0(x, γ), wη(x, γ)〉dη,

for all p ∈ L2
µ(Rd;Rd).

Then AT (µ) = {v ◦ e0 : v ∈ L2
µ, v(x) ∈ F (x) for µ-a.e. x ∈ Rd}.

Proof. It is trivial that AT (µ) is contained in the right hand side. The opposite inclusion follows from the
previous Proposition with v(x) = vx, noticing also that since v ∈ L2

µ, then v ◦ e0 ∈ L2
η with η as in (4.2) by

Lemma A.1.

Indeed, in Proposition 4.1 we proved strong convergence in L2
η of

et − e0

t
to vx for t → 0. Hence we have

weak convergence, in particular since p ◦ e0 ∈ L2
η for every p ∈ L2

µ by Lemma A.1, then there exists a sequence
{ti}i∈N ⊆]0, T ] such that ti → 0 and

lim
i→+∞

1

ti

∫∫
Rd×ΓT

〈p ◦ e0(x, γ), eti(x, γ)− e0(x, γ)〉dη =

∫∫
Rd×ΓT

〈p ◦ e0(x, γ), v ◦ e0(x, γ)〉dη,

thus item (4.2) is satisfied with wη = v ◦ e0, and item (4.2) follows directly by the previous Proposition. �

Definition 4.3 (Sub-/Super-differential in P2(Rd)). Let V : P2(Rd) → R be a function. Fix µ ∈ P2(Rd)
and δ > 0. We say that pµ ∈ L2

µ(Rd;Rd) belongs to the δ-superdifferential D+
δ V (µ) at µ if for all T > 0 and

η ∈P(Rd×ΓT ) such that t 7→ et]η is an absolutely continuous curve in P2(Rd) defined in [0, T ] with e0]η = µ
we have

lim sup
t→0+

V (et]η)− V (e0]η)−
∫∫

Rd×ΓT
〈pµ ◦ e0(x, γ), et(x, γ)− e0(x, γ)〉dη(x, γ)

‖et − e0‖L2
η

≤ δ. (4.2)

In the same way, qµ ∈ L2
µ(Rd;Rd) belongs to the δ-subdifferential D−δ V (µ) at µ if −qµ ∈ D+

δ [−V ](µ).
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Definition 4.4 (Viscosity solutions). Let V : P2(Rd) → R be a function and H : T ∗P2(Rd) → R, where
(µ, ψ) ∈ T ∗P2(Rd) iff µ ∈P2(Rd) and ψ ∈ L2

µ(Rd;Rd). We say that V is a

(1) viscosity supersolution of H (µ,DV (µ)) = 0 if V is l.s.c. and there exists C > 0 depending only on H such
that H (µ, qµ) ≥ −Cδ for all qµ ∈ D−δ V (µ), µ ∈P2(Rd), and for all δ > 0.

(2) viscosity subsolution of H (µ,DV (µ)) = 0 if V is u.s.c. and there exists C > 0 depending only on H such
that H (µ, pµ) ≤ Cδ for all pµ ∈ D+

δ V (µ), µ ∈P2(Rd), and for all δ > 0.
(3) viscosity solution of H (µ,DV (µ)) = 0 if it is both a viscosity subsolution and a viscosity supersolution.

Definition 4.5 (Hamiltonian Function). Given µ ∈ P2(Rd), we define the map HF : T ∗P2(Rd) → R by
setting

HF (µ, ψ) := −

1 + inf
v∈L2

µ(Rd;Rd)

v(x)∈F (x) for µ-a.e. x

∫
Rd
〈ψ(x), v(x)〉dµ(x)

 .
For the proof of the following theorem we used the same procedure adopted in [13,14] for the mass-preserving

case.

Theorem 4.6 (Viscosity solution). Let S ⊆ Rd be a target set for F . Let A be any open subset of P2(Rd) with
uniformly bounded 2−moments and such that if µ ∈ A then suppµ ⊆ Rd \ S. Assume hypothesis (F0), (F1).
Assume that ‖T (·)‖L1

µ
< +∞ for all µ ∈ A and that τ2 : P2(Rd) → [0,+∞] is continuous on A. Then τ2(·) is

a viscosity solution of HF (µ,Dτ2(µ)) = 0 on A, with HF defined as in Definition 4.5.

Proof. The proof is splitted in two claims.

Claim 1. τ2(·) is a subsolution of HF (µ,Dτ2(µ)) = 0 on A.

Proof of Claim 1. Let µ0 ∈ A. Let µ̃ = {µ̃t}t∈[0,+∞[ be an admissible clock-trajectory for µ0 following a
family of admissible mass-preserving trajectories {µn}n∈N starting from µ0. For any s ≥ 0 we choose n > 0
such that µn is defined on an interval [0, Tn] containing s and it is represented by ηn ∈P(Rd × ΓTn). Then by
the Dynamic Programming Principle we have τ2(µ0) ≤ τ2(µns ) + s for all s > 0. Without loss of generality, we
can assume 0 < s < 1. Given any pµ0 ∈ D+

δ τ2(µ0), and set

A(s, pµ0
,ηn) :=− s−

∫∫
Rd×ΓTn

〈pµ0
◦ e0(x, γ), es(x, γ)− e0(x, γ)〉dηn,

B(s, pµ0
,ηn) :=τ2(µns )− τ2(µ0)−

∫∫
Rd×ΓTn

〈pµ0
◦ e0(x, γ), es(x, γ)− e0(x, γ)〉dηn,

we have A(s, pµ0
,ηn) ≤ B(s, pµ0

,ηn).
We recall that since by definition pµ0 ∈ L2

µ0
, we have that pµ0 ◦ e0 ∈ L2

ηn
by Lemma A.1. Dividing by s > 0,

we obtain that

lim sup
s→0+

A(s, pµ0
,ηn)

s
≥ −1−

∫∫
Rd×ΓTn

〈pµ0
◦ e0(x, γ), wηn(x, γ)〉dηn(x, γ),

for all wηn ∈ ATn(µ0), with ATn(µ0) defined as in Corollary 4.2.
Recalling the choice of pµ0

, we have

lim sup
s→0+

B(s, pµ0 ,ηn)

s
= lim sup

s→0+

B(s, pµ0 ,ηn)

‖es − e0‖L2
ηn

·
∥∥∥∥es − e0

s

∥∥∥∥
L2
ηn

≤ Kδ,

where K > 0 is a suitable constant coming from Lemma A.1 and from hypothesis.
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We thus obtain for all ηn as above and all wηn ∈ ATn(µ0), that

1 +

∫∫
Rd×ΓTn

〈pµ0
◦ e0(x, γ), wηn(x, γ)〉dηn(x, γ) ≥ −Kδ.

By passing to the infimum on ηn and wηn ∈ ATn(µ0), and recalling Corollary 4.2, we have

−Kδ ≤ 1 + inf
v∈L2

µ0
(Rd;Rd)

v(x)∈F (x) µ0-a.e x

∫∫
Rd×ΓTn

〈pµ0
◦ e0(x, γ), v ◦ e0(x, γ)〉dηn(x, γ)

= 1 + inf
v∈L2

µ0
(Rd;Rd)

v(x)∈F (x) µ0-a.e x

∫
Rd

∫
ΓxTn

〈pµ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dηnx (γ) dµ0(x)

= 1 + inf
v∈L2

µ0
(Rd;Rd)

v(x)∈F (x) µ0-a.e x

∫
Rd
〈pµ0 , v〉dµ0 = −HF (µ0, pµ0),

so τ2(·) is a subsolution, thus confirming Claim 1. �
Claim 2. τ2(·) is a supersolution of HF (µ,Dτ2(µ)) = 0 on A.

Proof of Claim 2. Let µ0 ∈ A. Let µ̃ = {µ̃t}t∈[0,+∞[ be an admissible clock-trajectory for µ0 following a
family of admissible mass-preserving trajectories {µn}n∈N starting from µ0. For any s ≥ 0 we choose n > 0
such that µn is defined on an interval [0, Tn] containing s and it is represented by ηn ∈ P(Rd × ΓTn). Taken
qµ0
∈ D−δ τ2(µ0), there is a sequence {si}i∈N ⊆]0, Tn[, si → 0+ and wηn ∈ ATn(µ0) as in Corollary 4.2 such that

for all i ∈ N ∫∫
Rd×ΓTn

〈qµ0 ◦ e0(x, γ),
esi(x, γ)− e0(x, γ)

si
〉dηn(x, γ)

≤ 2δ

∥∥∥∥esi − e0

si

∥∥∥∥
L2
ηn

−
τ2(µ0)− τ2(µnsi)

si
.

By taking i sufficiently large we thus obtain∫∫
Rd×ΓTn

〈qµ0
◦ e0(x, γ), wηn(x, γ)〉dηn(x, γ) ≤ 3Kδ −

τ2(µ0)− τ2(µnsi)

si
.

By using Corollary 4.2 and arguing as in Claim 1, we have

inf
v∈L2

µ0
(Rd;Rd)

v(x)∈F (x) µ0-a.e x

∫∫
Rd×ΓTn

〈qµ0
◦ e0(x, γ), v ◦ e0(x, γ)〉dηn(x, γ) = −HF (µ0, qµ0

)− 1,

and so

HF (µ0, qµ0) ≥ −3Kδ +
τ2(µ0)− τ2(µnsi)

si
− 1.

By the Dynamic Programming Principle, passing to the infimum on all admissible curves and recalling that
τ2(µ0)− τ2(µns )

s
− 1 ≤ 0 with equality holding if and only if ηn is concentrated on time-optimal trajectories, we

obtain HF (µ0, qµ0) ≥ −C ′δ, which proves that τ2(·) is a supersolution, thus confirming Claim 2. �
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A. Technical results

This section contains some technical results used in the paper.

The proof of the following technical lemma can be found in [11] for the case p = 2, but it is not hard to
generalize it to p ≥ 1, recalling that (a+ b)p ≤ 2p−1(ap + bp) for any a, b ≥ 0.

Lemma A.1 (Basic estimates). Assume (F0) and (F1), and let C be the constant as in (F1). Let T > 0, p ≥ 1,
µ0 ∈ Pp(Rd) and µ = {µt}t∈[0,T ] be an admissible mass-preserving trajectory driven by ν = {νt}t∈[0,T ] and
represented by η ∈P(Rd × ΓT ). Then we have:

(i) |et(x, γ)| ≤ (|e0(x, γ)|+ CT ) eCT for all t ∈ [0, T ] and η-a.e. (x, γ) ∈ Rd × ΓT ;

(ii) et ∈ Lpη(Rd × ΓT ;Rd) for all t ∈ [0, T ];

(iii) there exists D > 0 depending only on C, T, p such that for all t ∈ [0, T ] we have∥∥∥∥et − e0

t

∥∥∥∥p
Lpη

≤ D (mp(µ0) + 1) ;

(iv) there exist D′, D′′ > 0 depending only on C, T, p such that for all t ∈ [0, T ] we have

mp(µt) ≤ D′(mp(µ0) + 1),

mp(|νt|) ≤ D′′(mp+1(µ0) + 1).

In particular, we have µ = {µt}t∈[0,T ] ⊆Pp(Rd).

Corollary A.2 (Uniform p-integrability). Assume hypothesis (F0), (F1). Let µ = {µt}t∈[0,T ] be an admissible

mass-preserving trajectory driven by ν = {νt}t∈[0,T ], p > 1, and set vt(x) =
νt
µt

(x). Assume that mp(µ0) < +∞,

then ∫ T

0

∫
Rd
|vt(x)|p dµt dt < +∞,

hence the assumptions of the Superposition Principle (see for example Thm. 8.2.1 in [1]) are satisfied.

Proof. We have ∫ T

0

∫
Rd
|vt(x)|p dµt dt ≤ TCp

∫
Rd

(|x|+ 1)p dµt ≤ 2p−1TCp(mp(µt) + 1),

≤ K(mp(µ0) + 1),

for a suitable constantK > 0 depending only on C, T, p and where the last inequality comes from Lemma A.1(iv).
�

Lemma A.3 (Borel selection of optimal trajectories). Let T > 0, R = T−1([0,+∞[), and µ ∈P(Rd) be such
that µ(Rd \R) = 0. Then there exist

(1) a Borel map ψ : R → ΓT such that γx := ψ(x) is an admissible trajectory starting from x, i.e. γx(0) = x,

(2) an optimal trajectory γ̂x : [0, T (x)]→ Rd such that γ̂x(t) = γx(t) for all t ∈ [0, T ],

(3) an admissible mass-preserving trajectory µ = {µt}t∈[0,T ] with µ0 = µ, driven by ν = {νt}t∈[0,T ], and
represented by η ∈P(Rd × ΓT ) with

η = µ⊗ δγx .
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Proof. Define the set of admissible trajectories defined in [0, T ] for the finite-dimensional system, AT ⊆ ΓT , and
the set-valued map GT : R ⇒ ΓT by

AT :={γ ∈ ΓT : γ̇ ∈ F ◦ γ(t) for a.e. 0 < t < T},

GT (x) :=


{γ ∈ AT : γ(0) = x, and T (γ(0)) = T (γ(T )) + T} , for T < T (x),

{γ ∈ AT : γ(0) = x, and γ(T (x)) ∈ S} , for T ≥ T (x).

We notice that GT (x) is closed and nonempty for every x ∈ R. Given (x, γ) ∈ R × ΓT , we have that γ ∈ G(x)
if and only if there exists an optimal trajectory γ̂ defined on [0, T (x)] starting from x such that γ̂(t) = γ(t) for
all 0 ≤ t ≤ min{T, T (x)}. Define the map

g(x, γ) :=


Ix(γ(0)) + IAT (γ) + IS(γ(T (x))), if T ≥ T (x),

Ix(γ(0)) + IAT (γ) + I{0}(T (x)− T (γ(T ))− T ), if T < T (x),

and notice that (x, γ) ∈ Graph(GT ) if and only if g(x, γ) = 0. Since we have

g(x, γ) = sup
q1,q2∈Rd
q3∈R

{
〈q1, x− γ(0)〉+ IAT (γ) + χ[0,T ](T (x))[〈q2, γ(T (x))〉 − sup

y∈S
〈y, q2〉]

+ (1− χ[0,T ](T (x))) · q3 · (T (x)− T (γ(T ))− T )
}
,

we have that g is the pointwise supremum of Borel maps, and so it is Borel (we recall that γ 7→ IAT (γ) is l.s.c.
since AT is closed, and γ 7→ T (γ(T )) is l.s.c.).

Hence GraphGT = g−1(0) is a Borel set. By Theorem 8.1.4 p. 310 in [2], we have that the set-valued map
GT : R ⇒ ΓT is Borel measurable, and so by Theorem 8.1.3 p. 308 in [2] it admits a Borel selection ψ : R → ΓT .

Since µ(Rd \R) = 0 we can define the probability measure

η = µ⊗ δψ(x) ∈P(Rd × ΓT ),

which is concentrated on (x, γ) such that γ is an admissible curve of the finite-dimensional system satisfying
γ(0) = x, and γ(T (x)) ∈ S if T ≥ T (x), or T (γ(0)) = T (γ(T )) + T , if T (x) > T , i.e., there exists an
optimal trajectory γ̂ defined on [0, T (x)] such that γ̂(t) = γ(t) on [0, T ]. This definition of η induces a curve
µ = {µt}t∈[0,T ] ⊆P(Rd) defined by∫

Rd
ϕ(x) dµt(x) =

∫∫
Rd×ΓT

ϕ(γ(t)) dη(x, γ),

for all ϕ ∈ C0
C(Rd), with µ|t=0 = µ. We want to show that µ is an admissible mass-preserving trajectory.

The set N of (t, x, γ) ∈ [0, T ] × Rd × ΓT for which γ(0) 6= x or γ̇(t) does not exists or γ̇(t) /∈ F (γ(t)) is
L ⊗ η-negligible. Indeed, by disintegrating L ⊗ η w.r.t. the map (t, x, γ) 7→ x, we have

L ⊗ η(N ) =

∫
Rd

L ⊗ δψ(y)(Ny) dµ(y),

where Ny is the set of all (t, γ) such that γ(0) 6= y or γ̇(t) does not exist or γ̇(t) /∈ F (γ(t)). Then, since
ψ(y) ∈ GT (y) and in particular it belongs to AT , we have L ⊗ δψ(y)(Ny) = 0. Thus, L ⊗ η(N ) = 0 and by
projection on the first component, we have that γ̇(t) ∈ F (γ(t)) for η-a.e. (x, γ) ∈ Rd × ΓT and a.e. t ∈ [0, T ].
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For a.e. t ∈ [0, T ] we disintegrate η w.r.t. et : Rd × ΓT → Rd, obtaining η = µt ⊗ ηt,y

d

dt

∫
Rd
ϕ(x) dµt(x) =

∫∫
Rd×ΓT

∇ϕ(γ(t)) · γ̇(t) dη(x, γ)

=

∫
Rd

∫
e−1
t (y)

∇ϕ(γ(t)) · γ̇(t) dηt,y(x, γ) dµt(y)

=

∫
Rd
∇ϕ(y) ·

∫
e−1
t (y)

γ̇(t) dηt,y(x, γ) dµt(y),

We define ν = {νt := vtµt}t∈[0,T ] by setting for a.e. t ∈ [0, T ]

vt(y) =

∫
e−1
t (y)

γ̇(t) dηt,y(x, γ).

In order to conclude that µ is an admissible trajectory driven by ν, it is enough to show that∫
e−1
t (y)

γ̇(t) dηt,y(x, γ) ∈ F (y)

for µt-a.e. y ∈ Rd and a.e. t ∈ [0, T ]. This follows from Jensen’s inequality, since

IF (y)

(∫
e−1
t (y)

γ̇(t) dηt,y(x, γ)

)
≤
∫
e−1
t (y)

IF (y)(γ̇(t)) dηt,y(x, γ) = 0. �

Definition A.4 (Movements along time-optimal trajectories). Let τ > 0, µ0 ∈P(Rd). We say that ({µt}t∈[0,τ [,
{νt}t∈[0,τ [) is a movement along time-optimal curves from µ0 (µ0-MATOC) if

(a) there exists η ∈P(Rd×Γτ ) such that for η-a.e. (x, γ) ∈ Rd×Γτ we have γ ∈ AC([0, τ ];Rd) and γ(0) = x,
γ̇(t) ∈ F (γ(t)) for a.e. t ∈ [0, τ ], and either γ(T (x)) ∈ S if T (x) ≤ τ or T (x) = T (γ(τ)) + τ if T (x) > τ ;

(b) µ|t=0 = µ0, µt = et]η for all t ∈ [0, τ [, and we set µτ = eτ ]η;
(c) µ = {µt}t∈[0,τ ] ⊆P(Rd) is an admissible mass-preserving trajectory driven by ν = {νt}t∈[0,τ ].

Now we can give the following.

Proof of Corollary 3.8. By assumption, we have that µ0(Rd \R) = 0, R := T−1([0,+∞[).
We consider the set (see Def. A.4)

X :=

{(
{µt}t∈[0,τ [, {νt}t∈[0,τ [

)
: τ > 0, ({µt}t∈[0,τ [, {νt}t∈[0,τ [) is a µ0-MATOC

}
.

By Lemma A.3, we have X 6= ∅. We endow X with the partial order relation defined by

(µ1,ν1) � (µ2,ν2) iff τ1 ≤ τ2, and µ1
t = µ2

t , ν
1
t = ν2

t for all t ∈ [0, τ1[,

where µi = {µit}t∈[0,τi[, ν
i = {νit}t∈[0,τi[, i = 1, 2. Consider a total ordered chain

C = {(µα = {µαt }t∈[0,τα[,ν
α = {ναt }t∈[0,τα[)}α∈A ⊆ X .

We define
(
µ = {µt}t∈[0,sup τα[,ν = {νt}t∈[0,sup τα[

)
by setting µt = µαt and νt = ναt for all α ∈ A such that

t ∈ [0, τα[. The definition is well-posed since all the elements of C agree on the set where they are defined,
moreover given 0 ≤ t < sup τα there exists t ≤ τα < sup τα, and so we can define µ and ν on the whole of
[0, sup τα[.
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Finally, we prove that µ is an admissible trajectory driven by ν. Given any ϕ ∈ C1
C([0, sup τα[×Rd) we have

that suppϕ ⊆ [0, τᾱ[×Rd for a certain ᾱ ∈ A, and, since µ agrees with an admissible trajectory on [0, τᾱ[, we
have that∫∫

[0,sup τα[×Rd
∂tϕ(t, x) dµt dt =

∫∫
[0,τᾱ[×Rd

∂tϕ(t, x) dµαt dt

= −
∫∫

[0,τᾱ[×Rd
∇ϕ(t, x) dναt dt = −

∫∫
[0,sup τα[×Rd

∇ϕ(t, x) dνt dt,

and so µ is an admissible trajectory driven by ν. In particular, we have (µ,ν) ∈ X and (µα,να) � (µ,ν) for
all α ∈ A. By Zorn’s Lemma there exist maximal elements in X .

Let (µ = {µt}t∈[0,τ [,ν = {νt}t∈[0,τ [) be one of these maximal elements. We want to prove that τ = +∞. By
contradiction, assume that τ < +∞. By Lemma A.1, there exist D′, D′′ > 0 such that for all t ∈ [0, τ ] we have

mp(µt) ≤ D′(mp(µ0) + 1),

mp−1(|νt|) ≤ D′′(mp(µ0) + 1).

Thus, according to Remark 5.1.5 in [1], there exist µτ ∈ P(Rd) and ντ ∈M (Rd;Rd) such that µt ⇀
∗ µτ and

νt ⇀
∗ ντ as t → τ−. Consider now ε > 0, by Lemma A.3 there exists a Borel selection v of F such that the

solution {µ′t}t∈[τ,τ+ε] of {
∂tµt + div vµt = 0,

µ|t=τ = µτ

is a µτ -MATOC represented by η′ = µτ ⊗ δψ(x), where ψ(x) is as in Lemma A.3. Let Eψ : Rd × Γ[0,τ ] →
Rd×Γ[0,τ+ε] be defined by Eψ(x, ξ) = (x, ξ ?ψ(ξ(τ))), where we define the concatenation [ξ ?ψ(ξ(τ))](t) := ξ(t)
if t ∈ [0, τ ], and [ξ ? ψ(ξ(τ))](t) := ψ(ξ(τ))(t) if t ∈ [τ, τ + ε]. Set η◦ = Eψ]η, where η represents µ as in
Definition A.4. By the properties of ψ(·), we have that γξ := ξ ? ψ(ξ(τ)) is a concatenation of pieces of optimal
trajectories for η-a.e. (x, ξ) ∈ Rd × Γ[0,τ ]. Thus to prove that µ◦ = {µ◦t = et]η

◦}t∈[0,τ+ε] is µ0-MATOC it
is enough to show that it is an admissible trajectory, since properties a. and b. in Definition A.4 are true by
construction, moreover µt = µ◦t for all t ∈ [0, τ ], and µ′t = µ◦t for all t ∈ [τ, τ + ε]. The argument used to prove
the admissibility follows the same line as in the second part of the proof of Lemma A.3.

Finally, by setting

ν◦t :=


νt, for 0 ≤ t < τ,

vµ′t−τ , for τ ≤ t ≤ τ + ε,

we obtain an admissibile trajectory µ◦ = {µ◦t }t driven by ν◦ = {ν◦t }t which is defined on [0, τ + ε[ and agrees
with µ on [0, τ [, thus contradicting the maximality of (µ,ν). Thus τ = +∞.

Let {Tn}n∈N be a sequence with Tn → +∞ and (µ = {µt}t∈[0,+∞[,ν = {νt}t∈[0,+∞[) be a maximal element
in X . Then {(µ = {µt}t∈[0,Tn[,ν = {νt}t∈[0,Tn[) : n ∈ N} is a totally ordered chain in X whose upper bound
is (µ = {µt}t∈[0,+∞[,ν = {νt}t∈[0,+∞[). Then, by Definition A.4, we have a sequence of probability measures
{ηn}n∈N ⊆P(Rd×ΓTn) such that {µt}t∈[0,Tn] is represented by ηn. We notice that by construction if n1 ≤ n2

then for all t ∈ [0, Tn1
] we have∫∫

Rd×ΓTn1

ϕ(γ(t))χSc(γ(t))(T (x)− t) dηn1
=

∫∫
Rd×ΓTn2

ϕ(γ(t))χSc(γ(t))(T (x)− t) dηn2
,

thus we can define µ̃ = {µ̃t}t∈[0,+∞[ by setting for all n ∈ N and for all t ∈ [0, Tn[∫
Rd
ϕ(x)µ̃t(x) =

∫∫
Rd×ΓTn

ϕ(γ(t))χSc(γ(t))(T (x)− t) dηn(x, γ).
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Since ηn is concentrated on (restriction to [0, Tn] of) optimal trajectories and S is strongly invariant, we have

that t ≥ T (x) if and only if γ(t) ∈ S, and so µ̃t ∈M +(Rd) for all t ≥ 0. Thus T (·) =
µ̃0

µ0
(·) is an admissible clock

for µ0. Moreover, since for µ0-a.e. x ∈ Rd and for every admissible clock f0(·) for µ0 we must have f0(x) ≥ T (x)
by Remark 3.5, we conclude that T (·) is the optimal clock for µ0. �
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