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Abstract. Industrial facilities and critical infrastructures are transform-
ing into “smart” environments that dynamically adapt to external events.
The result is an ecosystem of heterogeneous physical and cyber com-
ponents integrated in cyber-physical systems which are more and more
exposed to cyber-physical attacks, i.e., security breaches in cyberspace
that adversely affect the physical processes at the core of the systems.

We provide a formal compositional metric to estimate the impact of cyber-
physical attacks targeting sensor devices of IoT systems formalised in a
simple extension of Hennessy and Regan’s Timed Process Language. Our
impact metric relies on a discrete-time generalisation of Desharnais et al.’s
weak bisimulation metric for concurrent systems. We show the adequacy
of our definition on two different attacks on a simple surveillance system.

Keywords: IoT system · Cyber-physical attack · Impact metric · Prob-
abilistic metric semantics

1 Introduction

The Internet of Things (IoT) is heavily affecting our daily lives in many domains,
ranging from tiny wearable devices to large industrial systems with thousands of
heterogeneous cyber and physical components that interact with each other.

Cyber-Physical Systems (CPSs) are integrations of networking and distributed
computing systems with physical processes, where feedback loops allow the latter
to affect the computations of the former and vice versa. Historically, CPSs relied
on proprietary technologies and were implemented as stand-alone networks in
physically protected locations. However, the growing connectivity and integration
of these systems has triggered a dramatic increase in the number of cyber-physical
attacks [14], i.e., security breaches in cyberspace that adversely affect the physical
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processes, e.g., manipulating sensor readings and, in general, influencing physical
processes to bring the system into a state desired by the attacker.

Cyber-physical attacks are complex and challenging as they usually cross the
boundary between cyberspace and the physical world, possibly more than once [11].
Some notorious examples are: (i) the STUXnet worm, which reprogrammed PLCs
of nuclear centrifuges in Iran [6], (ii) the attack on a sewage treatment facility in
Queensland, Australia, which manipulated the SCADA system to release raw
sewage into local rivers [32], or the (iii) the recent BlackEnergy cyber-attack on
the Ukrainian power grid, again compromising the SCADA system [15].

The points in common of these systems is that they are all safety critical and
failures may cause catastrophic consequences. Thus, the concern for consequences
at the physical level puts CPS security apart from standard IT security.

Timing is particularly relevant in CPS security because the physical state of
a system changes continuously over time and, as the system evolves in time, some
states might be more vulnerable to attacks than others. For example, an attack
launched when the target state variable reaches a local maximum (or minimum)
may have a great impact on the whole system behaviour [17]. Also the duration
of the attack is an important parameter to be taken into consideration in order
to achieve a successful attack. For example, it may take minutes for a chemical
reactor to rupture, hours to heat a tank of water or burn out a motor, and days
to destroy centrifuges.

The estimation of the impact of cyber-physical attacks on physical components
of the target system is a crucial task when protecting CPSs [10]. For instance, in
industrial CPSs, before taking any countermeasure against an attack, engineers
first try to estimate the impact of the attack on the system functioning (e.g.,
performance and security) and weight it against the cost of stopping the plant.
If this cost is higher than the damage caused by the attack (as is sometimes
the case), then engineers might actually decide to let the system continue its
activities even under attack. Thus, once an attack is detected, impact metrics
are necessary to quantify the perturbation introduced in the physical behaviour
of the system under attack.

The goal of this paper is to lay theoretical foundations to provide formal
instruments to precisely define the notion of impact of cyber-physical attack
targeting physical devices, such as sensor devices of IoT systems. For that we
rely on a timed generalisation of weak bisimulation metrics [5] to compare the
behaviour of two systems up to a given tolerance, for time-bounded executions.

Weak bisimulation metric allows us to compare two systems M and N , writing
M 'p N , if the weak bisimilarity holds with a distance or tolerance p ∈ [0, 1],
i.e., if M and N exhibit a different behaviour with probability p, and the same
behaviour with probability 1− p. A useful generalisation is the n-bisimulation
metric [3] that takes into account bounded computations. Intuitively, the distance
p is ensured only for the first n computational steps, for some n ∈ N. However,
in timed systems it is desirable to focus on the passage of time rather than the
number of computational steps. This would allow us to deal with situations where
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it is not necessary (or it simply does not make sense) to compare two systems
“ad infinitum” but only for a limited amount of time.

Contribution. In this paper, we first introduce a general notion of timed
bisimulation metric for concurrent probabilistic systems equipped with a discrete
notion of time. Intuitively, this kind of metric allows us to derive a timed weak
bisimulation with tolerance, denoted with ≈kp, for k ∈ N+ ∪{∞} and p ∈ [0, 1], to
express that the tolerance p between two timed systems is ensured only for the
first k time instants (tick-actions). Then, we use our timed bisimulation metric
to set up a formal compositional theory to study and measure the impact of
cyber-physical attacks on IoT systems specified in a simple probabilistic timed
process calculus which extends Hennessy and Regan’s Timed Process Language
(TPL) [12]. IoT systems in our calculus are modelled by specifying: (i) a physical
environment , containing informations on the physical state variables and the
sensor measurements, and (ii) a logics that governs both accesses to sensors and
channel-based communications with other cyber components.

We focus on attacks on sensors that may eavesdrop and possibly modify the
sensor measurements provided to the controllers of sensors, affecting both the
integrity and the availability of the system under attack.

In order to make security assessments of our IoT systems, we adapt a well-
know approach called Generalized Non Deducibility on Composition (GNDC) [7]
to compare the behaviour of an IoT system M with the behaviour of the same
system under attack, written M ‖ A, for some arbitrary cyber-physical attack A.
This comparison makes use of our timed bisimulation metric to evaluate not only
the tolerance and the vulnerability of a system M with respect to a certain attack
A, but also the impact of a successful attack in terms of the deviation introduced
in the behaviour of the target system. In particular, we say that a system M
tolerates an attack A if M ‖ A ≈∞0 M , i.e., the presence of A does not affect the
behaviour of M ; whereas M is said to be vulnerable to A in the time interval
m..n with impact p if m..n is the smallest interval such that M ‖ A ≈m−10 M
and M ‖ A ≈kp M , for any k ≥ n, i.e., if the perturbation introduced by the
attack A becomes observable in the m-th time slot and yields the maximum
impact p in the n-th time slot. In the concluding discussion we will show that
the temporal vulnerability window m..n provides several informations about the
corresponding attack, such as stealthiness capability, duration of the physical
effects of the attack, and consequent room for possible run-time countermeasures.

As a case study, we use our timed bisimulation metric to measure the impact
of two different attacks injecting false positives and false negative, respectively,
into a simple surveillance system expressed in our process calculus.

Outline. Section 2 formalises our timed bisimulation metrics in a general setting.
Section 3 provides a simple calculus of IoT systems. Section 4 defines cyber-
physical attacks together with the notions of tolerance and vulnerability w.r.t. an
attack. In Section 5 we use our metrics to evaluate the impact of two attacks on
a simple surveillance system. Section 6 draws conclusions and discusses related



4 R. Lanotte et al.

and future work. In this extended abstract proofs are omitted, full details of the
proofs can be found in the technical report [23].

2 Timed Bisimulation Metrics

In this section, we introduce timed bisimulation metrics as a general instrument to
derive a notion of timed and approximate weak bisimulation between probabilistic
systems equipped with a discrete notion of time. In Section 2.1, we recall the
semantic model of nondeterministic probabilistic labelled transition systems; in
Section 2.2, we present our metric semantics.

2.1 Nondeterministic Probabilistic Labelled Transition Systems

Nondeterministic probabilistic labelled transition systems (pLTS) [30] combine
classic LTSs [16] and discrete-time Markov chains [34] to model, at the same
time, reactive behaviour, nondeterminism and probability. We first provide the
mathematical machinery required to define a pLTS.

The state space in a pLTS is given by a set T , whose elements are called
processes, or terms. We use t, t′, .. to range over T . A (discrete) probability sub-
distribution over T is a mapping ∆ : T → [0, 1], with

∑
t∈T ∆(t) ∈ (0, 1]. We

denote
∑
t∈T ∆(t) by |∆ |, and we say that ∆ is a probability distribution if

|∆|= 1. The support of ∆ is given by d∆e = {t ∈ T : ∆(t) > 0}. The set of all
sub-distributions (resp. distributions) over T with finite support will be denoted
with Dsub(T ) (resp. D(T )). We use ∆, Θ, Φ to range over Dsub(T ) and D(T ).

Definition 1 (pLTS [30]). A pLTS is a triple (T ,A,−→), where: (i) T is
a countable set of terms, (ii) A is a countable set of actions, and (iii) −→⊆
T ×A×D(T ) is a transition relation.

In Definition 1, we assume the presence of a special deadlocked term Dead ∈ T .
Furthermore, we assume that the set of actions A contains at least two actions:
τ and tick. The former to model internal computations that cannot be externally
observed, while the latter denotes the passage of one time unit in a setting with
a discrete notion of time [12]. In particular, tick is the only timed action in A.

We write t
α−→ ∆ for (t, α,∆)∈−→, t

α−→ if there is a distribution ∆ ∈ D(T )

with t
α−→ ∆, and t

α−→6 otherwise. Let der(t, α) = {∆ ∈ D(T ) | t α−→ ∆} denote
the set of the derivatives (i.e. distributions) reachable from term t through action
α. We say that a pLTS is image-finite if der(t, α) is finite for all t ∈ T and α ∈ A.
In this paper, we will always work with image-finite pLTSs.

Weak transitions. As we are interested in developing a weak bisimulation metric,
we need a definition of weak transition which abstracts away from τ -actions. In a
probabilistic setting, the definition of weak transition is somewhat complicated
by the fact that (strong) transitions take terms to distributions; consequently
if we are to use weak transitions then we need to generalise transitions, so that
they take (sub-)distributions to (sub-)distributions.
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To this end, we need some extra notation on distributions. For a term t ∈ T ,
the point (Dirac) distribution at t, denoted t, is defined by t(t) = 1 and t(t′) = 0
for all t′ 6= t. Then, the convex combination

∑
i∈I pi ·∆i of a family {∆i}i∈I of

(sub-)distributions, with I a finite set of indexes, pi ∈ (0, 1] and
∑
i∈I pi ≤ 1,

is the (sub-)distribution defined by (
∑
i∈I pi ·∆i)(t)

def
=
∑
i∈I pi ·∆i(t) for all

t ∈ T . We write
∑
i∈I pi ·∆i as p1 ·∆1 + . . .+ pn ·∆n when I = {1, . . . , n}.

Thus, we write t
τ̂−→ ∆, for some term t and some distribution ∆, if either

t
τ−→ ∆ or ∆ = t. Then, for α 6= τ , we write t

α̂−→ ∆ if t
α−→ ∆. Relation

α̂−→ is
extended to model transitions from sub-distributions to sub-distributions. For a
sub-distribution ∆ =

∑
i∈I pi · ti, we write ∆

α̂−→ Θ if there is a non-empty set of

indexes J ⊆ I such that: (i) tj
α̂−→ Θj for all j ∈ J , (ii) ti

α̂−→6 , for all i ∈ I \ J ,
and (iii) Θ =

∑
j∈J pj ·Θj . Note that if α 6= τ then this definition admits that

only some terms in the support of ∆ make the
α̂−→ transition. Then, we define

the weak transition relation
τ̂

=⇒ as the transitive and reflexive closure of
τ̂−→, i.e.,

τ̂
=⇒= (

τ̂−→)∗, while for α 6= τ we let
α̂

=⇒ denote
τ̂

=⇒ α̂−→ τ̂
=⇒.

2.2 Timed Weak Bisimulation with Tolerance

In this section, we define a family of relations ≈kp over T , with p ∈ [0, 1] and

k ∈ N+∪{∞}, where, intuitively, t ≈kp t′ means that t and t′ can weakly bisimulate
each other with a tolerance p accumulated in k timed steps. This is done by
introducing a family of pseudometrics mk : T ×T → [0, 1] and defining t ≈kp t′ iff

mk(t, t′) = p. The pseudometrics mk will have the following properties for any
t, t′ ∈ T : (i) mk1(t, t′) ≤mk2(t, t′) whenever k1 < k2 (tolerance monotonicity);
(ii) m∞(t, t′) = p iff p is the distance between t and t′ as given by the weak
bisimilarity metric in [5] in an untimed setting; (iii) m∞(t, t′) = 0 iff t and t′ are
related by the standard weak probabilistic bisimilarity [27].

Let us recall the standard definition of pseudometric.

Definition 2 (Pseudometric). A function d : T × T → [0, 1] is a 1-bounded
pseudometric over T if

– d(t, t) = 0 for all t ∈ T ,
– d(t, t′) = d(t′, t) for all t, t′ ∈ T (symmetry),
– d(t, t′) ≤ d(t, t′′) + d(t′′, t′) for all t, t′, t′′ ∈ T (triangle inequality).

In order to define the family of functions mk, we define an auxiliary family
of functions mk,h : T × T → [0, 1], with k, h ∈ N, quantifying the tolerance of
the weak bisimulation after a sequence of computation steps such that: (i) the
sequence contains exactly k tick-actions, (ii) the sequence terminates with a
tick-action, (iii) any term performs exactly h untimed actions before the first
tick-action, (iv) between any i-th and (i+1)-th tick-action, with 1 ≤ i < k, there
are an arbitrary number of untimed actions.

The definition of mk,h relies on a timed and quantitative version of the classic
bisimulation game: The tolerance between t and t′ as given by mk,h(t, t′) can be
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below a threshold ε ∈ [0, 1] only if each transition t
α−→ ∆ is mimicked by a weak

transition t′
α̂

=⇒ Θ such that the bisimulation tolerance between ∆ and Θ is, in
turn, below ε. This requires to lift pseudometrics over T to pseudometrics over
(sub-)distributions in Dsub(T ). To this end, we adopt the notions of matching [37]
(also called coupling) and Kantorovich lifting [4].

Definition 3 (Matching). A matching for a pair of distributions (∆,Θ) ∈
D(T )×D(T ) is a distribution ω in the state product space D(T × T ) such that:

–
∑
t′∈T ω(t, t′) = ∆(t), for all t ∈ T , and

–
∑
t∈T ω(t, t′) = Θ(t′), for all t′ ∈ T .

We write Ω(∆,Θ) to denote the set of all matchings for (∆,Θ).

A matching for (∆,Θ) may be understood as a transportation schedule for the
shipment of probability mass from ∆ to Θ [37].

Definition 4 (Kantorovich lifting). Assume a pseudometric d : T × T →
[0, 1]. The Kantorovich lifting of d is the function K(d) : D(T )×D(T )→ [0, 1]
defined for distributions ∆ and Θ as:

K(d)(∆,Θ)
def
= minω∈Ω(∆,Θ)

∑
s,t∈T ω(s, t) · d(s, t).

Note that since we are considering only distributions with finite support, the
minimum over the set of matchings Ω(∆,Θ) used in Definition 4 is well defined.

Pseudometrics mk,h are inductively defined on k and h by means of suitable
functionals over the complete lattice ([0, 1]T ×T ,v) of functions of type T ×T →
[0, 1], ordered by d1 v d2 iff d1(t, t′) ≤ d2(t, t′) for all t, t′ ∈ T . Notice that in this
lattice, for each set D ⊆ [0, 1]T ×T , the supremum and infimum are defined as
sup(D)(t, t′) = supd∈D d(t, t′) and inf(D)(t, t′) = infd∈D d(t, t′), for all t, t′ ∈ T .
The infimum of the lattice is the constant function zero, denoted by 0, and the
supremum is the constant function one, denoted by 1.

Definition 5 (Functionals for mk,h). The functionals B,Btick : [0, 1]T ×T →
[0, 1]T ×T are defined for any function d ∈ [0, 1]T ×T and terms t, t′ ∈ T as:

B(d)(t, t′) = max{ d(t, t′),

sup
α∈A\{tick}

max
t
α−→∆

inf
t′

α̂
=⇒Θ

K(d)
(
∆,Θ + (1− |Θ|)Dead

)
,

sup
α∈A\{tick}

max
t′

α−→Θ

inf
t
α̂

=⇒∆

K(d)
(
∆+ (1− |∆|)Dead, Θ

)
}

Btick(d)(t, t′) = max{ d(t, t′),

max
t

tick−−→∆

inf

t′
t̂ick

==⇒Θ

K(d)
(
∆,Θ + (1− |Θ|)Dead

)
,

max
t′

tick−−→Θ

inf

t
t̂ick

==⇒∆

K(d)
(
∆+ (1− |∆|)Dead, Θ

)
}

where inf ∅ = 1 and max ∅ = 0.

Notice that all max in Definition 5 are well defined since the pLTS is image-
finite. Notice also that any strong transitions from t to a distribution ∆ is mim-
icked by a weak transition from t′, which, in general, takes to a sub-distribution
Θ. Thus, process t′ may not simulate t with probability 1− |Θ|.
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Definition 6 (Timed weak bisimilarity metrics). The family of the timed
weak bisimilarity metrics mk : (T × T ) → [0, 1] is defined for all k ∈ N by

mk =

{
0 if k = 0

suph∈N mk,h if k > 0

while the functions mk,h : (T ×T )→ [0, 1] are defined for all k ∈ N+ and h ∈ N by

mk,h =

{
Btick(m

k−1) if h = 0

B(mk,h−1) if h > 0.

Then, we define m∞ : (T × T )→ [0, 1] as m∞ = supk∈N mk.

Note that any mk,h is obtained from mk−1 by one application of the functional
Btick, in order to take into account the distance between terms introduced by the
k-th tick-action, and h applications of the functional B, in order to lift such a
distance to terms that take h untimed actions to be able to perform a tick-action.
By taking suph∈N mk,h we consider an arbitrary number of untimed steps.

The pseudometric property of mk is necessary to conclude that the tolerance
between terms as given by mk is a reasonable notion of behavioural distance.

Theorem 1. For any k ≥ 1, mk is a 1-bounded pseudometric.

Finally, everything is in place to define our timed weak bisimilarity ≈kp with
tolerance p ∈ [0, 1] accumulated after k time units, for k ∈ N ∪ {∞}.
Definition 7 (Timed weak bisimilarity with tolerance). Let t, t′ ∈ T ,
k ∈ N and p ∈ [0, 1]. We say that t and t′ are weakly bisimilar with a tolerance p,
which accumulates in k timed actions, written t ≈kp t′, if and only if mk(t, t′) = p.
Then, we write t ≈∞p t′ if and only if m∞(t, t′) = p.

Since the Kantorovich lifting K is monotone [26], it follows that both func-
tionals B and Btick are monotone. This implies that, for any k ≥ 1, (mk,h)h≥0 is
a non-decreasing chain and, analogously, also (mk)k≥0 is a non-decreasing chain,
thus giving the following expected result saying that the distance between terms
grows when we consider a higher number of tick computation steps.

Proposition 1 (Tolerance monotonicity). For all terms t, t′ ∈ T and k1, k2 ∈
N+ with k1 < k2, t ≈k1p1 t

′ and t ≈k2p2 t
′ entail p1 ≤ p2.

We conclude this section by comparing our behavioural distance with the
behavioural relations known in the literature.

We recall that in [5] a family of relations 'p for untimed process calculi
are defined such that t 'p t′ if and only if t and t′ weakly bisimulate each
other with tolerance p. Of course, one can apply these relations also to timed
process calculi, the effect being that timed actions are treated in exactly the
same manner as untimed actions. The following result compares the behavioural
metrics proposed in the present paper with those of [5], and with the classical
notions of probabilistic weak bisimilarity [27] denoted ≈.

Proposition 2. Let t, t′ ∈ T and p ∈ [0, 1]. Then,

– t ≈∞p t′ iff t 'p t′
– t ≈∞0 t′ iff t ≈ t′.
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3 A Simple Probabilistic Timed Calculus for IoT Systems

In this section, we propose a simple extension of Hennessy and Regan’s timed
process algebra TPL [12] to express IoT systems and cyber-physical attacks . The
goal is to show that timed weak bisimilarity with tolerance is a suitable notion
to estimate the impact of cyber-physical attacks on IoT systems.

Let us start with some preliminary notations.

Notation 1 We use x, xk for state variables, c, ck, for communication channels,
z,zk for communication variables, s, sk for sensors devices, while o ranges over
both channels and sensors. Values, ranged over by v, v′, belong to a finite set of
admissible values V. We use u, uk for both values and communication variables.
Given a generic set of names N , we write VN to denote the set of functions
N → V assigning a value to each name in N . For m ∈ N and n ∈ N ∪ {∞}, we
write m..n to denote an integer interval. As we will adopt a discrete notion of
time, we will use integer intervals to denote time intervals.

State variables are associated to physical properties like temperature, pressure,
etc. Sensor names are metavariables for sensor devices, such as thermometers
and barometers. Please, notice that in cyber-physical systems, state variables
cannot be directly accessed but they can only be tested via one or more sensors.

Definition 8 (IoT system). Let X be a set of state variables and S be a set of
sensors. Let range : X → 2V be a total function returning the range of admissible
values for any state variable x ∈ X . An IoT system consists of two components:

– a physical environment ξ = 〈ξx, ξm〉 where:
• ξx ∈ VX is the physical state of the system that associates a value to

each state variable in X , such that ξx(x) ∈ range(x) for any x ∈ X ,
• ξm : VX → S → D(V) is the measurement map that given a physical

state returns a function that associates to any sensor in S a discrete
probability distribution over the set of possible sensed values;

– a logical (or cyber) component P that interacts with the sensors defined in
ξ, and can communicate, via channels, with other cyber components.

We write ξonP to denote the resulting IoT system, and use M and N to range
over IoT systems.

Let us now formalise the cyber component of an IoT system. Basically, we
adapt Hennessy and Regan’s timed process algebra TPL [12].

Definition 9 (Logics). Logical components of IoT systems are defined by the
following grammar:

P,Q ::= nil
∣∣ tick.P

∣∣ P ‖ Q ∣∣ bpfx .P cQ
∣∣ H〈ũ〉 ∣∣ if (b) {P} else {Q}

∣∣ P\c
pfx ::= o!v

∣∣ o?(z)

The process tick.P sleeps for one time unit and then continues as P . We write
P ‖ Q to denote the parallel composition of concurrent processes P and Q. The
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process bpfx .P cQ denotes prefixing with timeout. We recall that o ranges over
both channel and sensor names. Thus, for instance, bc!v.P cQ sends the value v
on channel c and, after that, it continues as P ; otherwise, if no communication
partner is available within one time unit, it evolves into Q. The process bc?(z).P cQ
is the obvious counterpart for channel reception. On the other hand, the process
bs?(z).P cQ reads the sensor s, according to the measurement map of the systems,
and, after that, it continues as P . The process bs!v.P cQ writes to the sensor s
and, after that, it continues as P ; here, we wish to point out that this a malicious
activity, as controllers may only access sensors for reading sensed data. Thus,
the construct bs!v.P cQ serves to implement an integrity attack that attempts
at synchronising with the controller of sensor s to provide a fake value v. In
the following, we say that a process is honest if it never writes on sensors. The
definition of honesty naturally lifts to IoT systems. In processes of the form
tick.Q and bpfx .P cQ, the occurrence of Q is said to be time-guarded. Recursive
processes H〈ũ〉 are defined via equations H(z1, . . . , zk) = P , where (i) the tuple
z1, . . . , zk contains all the variables that appear free in P , and (ii) P contains only
time-guarded occurrences of the process identifiers, such as H itself (to avoid zeno
behaviours). The two remaining constructs are standard; they model conditionals
and channel restriction, respectively.

Finally, we define how to compose IoT systems. For simplicity, we compose
two systems only if they have the same physical environment.

Definition 10 (System composition). Let M1 = ξonP1 and M2 = ξonP2 be
two IoT systems, and Q be a process whose sensors are defined in the physical
environment ξ. We write:

– M1 ‖M2 to denote ξon (P1 ‖ P2);
– M1 ‖ Q to denote ξon (P1 ‖ Q);
– M1\c as an abbreviation for ξon (P1\c).

We conclude this section with the following abbreviations that will be used
in the rest of the paper.

Notation 2 We write P\{c1, c2, . . . , cn}, or P\c̃, to mean P\c1\c2 · · · \cn. For
simplicity, we sometimes abbreviate both H(i) and H〈i〉 with Hi. We write pfx .P
as an abbreviation for the process defined via the equation H = bpfx .P cH , where
the process name H does not occur in P . We write tickk.P as a shorthand for
tick.tick. . . . tick.P , where the prefix tick appears k ≥ 0 consecutive times. We
write Dead to denote a deadlocked IoT system that cannot perform any action.

3.1 Probabilistic Labelled Transition Semantics

As said before, sensors serve to observe the evolution of the physical state of an IoT
system. However, sensors are usually affected by an error/noise that we represent
in our measurement maps by means of discrete probability distributions. For this
reason, we equip our calculus with a probabilistic labelled transition system. In
the following, the symbol ε ranges over distributions on physical environments,
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(Write)
−

bo!v.P cQ o!v−−−→ P
(Read)

−

bo?(z).P cQ
o?(z)
−−−−−→ P

(Sync)
P

o!v−−−→ P ′ Q
o?(z)
−−−−−→ Q′

P ‖ Q τ−−→ P ′ ‖ Q′{v/z}
(Par)

P
λ−−→ P ′ λ 6= tick

P ‖ Q λ−−→ P ′ ‖ Q

(Res)
P

λ−−→ P ′ λ 6∈ {o!v, o?(z)}

P\o λ−−→ P ′\o
(Rec)

P{ṽ/̃z}
λ−−→ Q H(z̃) = P

H〈ṽ〉 λ−−→ Q

(Then)
JbK = true P

λ−−→ P ′

if (b) {P} else {Q} λ−−→ P ′
(Else)

JbK = false Q
λ−−→ Q′

if (b) {P} else {Q} λ−−→ Q′

(TimeNil)
−

nil
tick−−−→ nil

(Delay)
−

tick.P
tick−−−→ P

(Timeout)
−

bpfx .P cQ tick−−−→ Q
(TimePar)

P
tick−−−→ P ′ Q

tick−−−→ Q′

P ‖ Q tick−−−→ P ′ ‖ Q′

Table 1. Labelled transition system for processes

whereas π ranges over distributions on (logical) processes. Thus, εonπ denotes
the distribution over IoT systems defined by (εonπ)(ξonP ) = ε(ξ) · π(P ). The
symbol γ ranges over distributions on IoT systems.

In Table 1, we give a standard labelled transition system for logical components
(timed processes), whereas in Table 2 we rely on the LTS of Table 1 to define a
simple pLTS for IoT systems by lifting transition rules from processes to systems.

In Table 1, the meta-variable λ ranges over labels in the set {τ, tick, o!v, o?(z)}.
Rule (Sync) serve to model synchronisation and value passing, on some name
(for channel or sensor) o: if o is a channel then we have standard point-to-point
communication, whereas if o is a sensor then this rule models an integrity attack
on sensor s, as the controller is provided with a fake value v. The remaining rules
are standard. The symmetric counterparts of rules (Sync) and (Par) are omitted.

According to Table 2, IoT systems may fire four possible actions ranged over
by α. These actions represent: internal activities (τ), the passage of time (tick),
channel transmission (c!v) and channel reception (c?v).

Rules (Snd) and (Rcv) model transmission and reception on a channel c with
an external system, respectively. Rule (SensRead) models the reading of the value
detected at a sensor s according to the current physical environment ξ = 〈ξx, ξm〉.
In particular, this rule says that if a process P in a system ξonP reads a sensor
s defined in ξ then it will get a value that may vary according to the probability
distribution resulting by providing the state function ξx and the sensor s to the
measurement map ξm.

Rule (Tau) lifts internal actions from processes to systems. This includes com-
munications on channels and malicious accesses to sensors’ controllers. According
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(Snd)
P

c!v−−−→ P ′

ξonP c!v−−−→ ξonP ′
(Rcv)

P
c?(z)
−−−−−→ P ′

ξonP c?v−−−→ ξonP ′{v/z}

(SensRead)
P

s?(z)
−−−−−→ P ′ ξm(ξx)(s) =

∑
i∈I pi · vi

ξonP τ−−→ ξon
∑
i∈I pi · P ′{vi/z}

(Tau)
P

τ−−→ P ′

ξonP τ−−→ ξonP ′
(Time)

P
tick−−−→ P ′ ξonP τ−−→6 ξ′ ∈ next(ξ)

ξonP tick−−−→ ξ′onP ′

Table 2. Probabilistic LTS for a IoT system ξonP with ξ = 〈ξx, ξm〉

to Definition 10, rule (Tau) models also channel communication between two
parallel IoT systems sharing the same physical environment.

A second lifting occurs in rule (Time) for timed actions tick. Here, ξ′ denotes
an admissible physical environment for the next time slot, nondeterministically
chosen from the finite set next(〈ξx, ξm〉). This set is defined as {〈ξ′x, ξm〉 : ξ′x(x) ∈
range(x) for any x ∈ X}.3 As a consequence, the rules in Table 2 define an
image-finite pLTS.

For simplicity, we abstract from the physical process behind our IoT systems.

4 Cyber-physical Attacks on Sensor Devices

In this section, we consider attacks tampering with sensors by eavesdropping
and possibly modifying the sensor measurements provided to the corresponding
controllers. These attacks may affect both the integrity and the availability of the
system under attack. We do not represent (well-known) attacks on communication
channels as our focus is on attacks to physical devices and the consequent impact
on the physical state. However, our technique can be easily generalised to deal
with attacks on channels as well.

Definition 11 (Cyber-physical attack). A (pure) cyber-physical attack A is
a process derivable from the grammar of Definition 9 such that:

– A writes on at least one sensor;
– A never uses communication channels.

In order to make security assessments on our IoT systems, we adapt a well-
known approach called Generalized Non Deducibility on Composition (GNDC) [7].
Intuitively, an attack A affects an honest IoT system M if the execution of the
composed system M ‖ A differs from that of the original system M in an
observable manner. Basically, a cyber-physical attack can influence the system
under attack in at least two different ways:

3 The finiteness follows from the finiteness of V, and hence of range(x), for any x ∈ X .
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– The system M ‖ A might have non-genuine execution traces containing
observables that cannot be reproduced by M ; here the attack affects the
integrity of the system behaviour (integrity attack).

– The system M might have execution traces containing observables that
cannot be reproduced by the system under attack M ‖ A (because they are
prevented by the attack); this is an attack against the availability of the
system (DoS attack).

Now, everything is in place to provide a formal definition of system tolerance
and system vulnerability with respect to a given attack. Intuitively, a system M
tolerates an attack A if the presence of the attack does not affect the behaviour
of M ; on the other hand M is vulnerable to A in a certain time interval if the
attack has an impact on the behaviour of M in that time interval.

Definition 12 (Attack tolerance). Let M be a honest IoT system. We say
that M tolerates an attack A if M ‖ A ≈∞0 M .

Definition 13 (Attack vulnerability and impact). Let M be a honest IoT
system. We say that M is vulnerable to an attack A in the time interval m..n
with impact p ∈ [0, 1], for m ∈ N+ and n ∈ N+∪{∞}, if m..n is the smallest time
interval such that: (i) M ‖ A ≈m−10 M , (ii) M ‖ A ≈np M , (iii) M ‖ A ≈∞p M .4

Basically, the definition above says that if a system is vulnerable to an attack in
the time interval m..n then the perturbation introduced by the attack starts in
the m-th time slot and reaches the maximum impact in the n-th time slot.

The following result says that both notions of tolerance and vulnerability
are suitable for compositional reasonings. More precisely, we prove that they are
both preserved by parallel composition and channel restriction. Actually, channel
restriction may obviously make a system less vulnerable by hiding channels.

Theorem 2 (Compositionality). Let M1 = ξonP1 and M2 = ξonP2 be two
honest IoT systems with the same physical environment ξ, A an arbitrary attack,
and c̃ a set of channels.

– If both M1 and M2 tolerate A then (M1 ‖M2)\c̃ tolerates A.
– If M1 is vulnerable to A in the time interval m1..n1 with impact p1, and M2

is vulnerable to A in the time interval m2..n2 with impact p2, then M1 ‖M2

is vulnerable to A in a the time interval min(m1,m2)..max(n1, n2) with an
impact p′ ≤ (p1 + p2 − p1p2).

– If M1 is vulnerable to A in the interval m1..n1 with impact p1 then M1\c̃ is
vulnerable to A in a time interval m′..n′ ⊆ m1..n1 with an impact p′ ≤ p1.

Note that if an attack A is tolerated by a system M and can interact with a honest
process P then the compound system M ‖ P may be vulnerable to A. However,
if A does not write on the sensors of P then it is tolerated by M ‖ P as well.
The bound p′ ≤ (p1 + p2 − p1p2) can be explained as follows. The likelihood that

4 By Proposition 1, at all time instants greater than n the impact remains p.
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the attack does not impact on Mi is (1− pi), for i ∈ {1, 2}. Thus, the likelihood
that the attack impacts neither on M1 nor on M2 is at least (1 − p1)(1 − p2).
Summarising, the likelihood that the attack impacts on at least one of the two
systems M1 and M2 is at most 1− (1− p1)(1− p2) = p1 + p2 − p1p2.

An easy corollary of Theorem 2 allows us to lift the notions of tolerance and
vulnerability from a honest system M to the compound systems M ‖ P , for a
honest process P .

Corollary 1. Let M be a honest system, A an attack, c̃ a set of channels, and
P a honest process that reads sensors defined in M but not those written by A.

– If M tolerates A then (M ‖ P )\c̃ tolerates A.
– If M is vulnerable to A in the interval m..n with impact p, then (M ‖ P )\c̃

is vulnerable to A in a time interval m′..n′ ⊆ m..n, with an impact p′ ≤ p.

5 Attacking a Smart Surveillance System: A Case Study

Consider an alarmed ambient consisting of three rooms, ri for i ∈ {1, 2, 3}, each
of which equipped with a sensor si to detect unauthorised accesses. The alarm
goes off if at least one of the three sensors detects an intrusion.

The logics of the system can be easily specified in our language as follows:

Sys = (Mng ‖ Ctrl1 ‖ Ctrl2 ‖ Ctrl3 ) \{c1, c2, c3}
Mng = c1?(z1).c2?(z2).c3?(z3).if (

∨3
i=1 zi=on) {alarm!on.tick.Checkk} else {tick.Mng}

Check0 = Mng

Checkj = alarm!on.c1?(z1).c2?(z2).c3?(z3).if (
∨3
i=1 zi = on) {tick.Checkk}

else {tick.Checkj−1} for j > 0

Ctrli = si?(zi).if (zi=presence) {ci!on.tick.Ctrli} else {ci!off.tick.Ctrli} for i∈{1, 2, 3}.

Intuitively, the process Sys is composed by three controllers, Ctrli , one for
each sensor si, and a manager Mng that interacts with the controllers via private
channels ci. The process Mng fires an alarm if at least one of the controllers
signals an intrusion. As usual in this kind of surveillance systems, the alarm will
keep going off for k instants of time after the last detected intrusion.

As regards the physical environment, the physical state ξx : {r1, r2, r3} →
{presence, absence} is set to ξx(ri) = absence, for any i ∈ {1, 2, 3}. Further-
more, let p+i and p−i be the probabilities of having false positives (erroneously
detected intrusion) and false negatives (erroneously missed intrusion) at sen-
sor si

5, respectively, for i ∈ {1, 2, 3}, the measurement function ξm is defined
as follows: ξm(ξx)(si) = (1−p−i ) presence + p−i absence, if ξx(ri) = presence;
ξm(ξx)(si) = (1−p+i ) absence + p+i presence, otherwise.

Thus, the whole IoT system has the form ξonSys, with ξ = 〈ξx, ξm〉.
We start our analysis studying the impact of a simple cyber-physical attack

that provides fake false positives to the controller of one of the sensors si. This
attack affects the integrity of the system behaviour as the system under attack
will fire alarms without any physical intrusion.

5 These probabilities are usually very small; we assume them smaller than 1
2
.
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Example 1 (Introducing false positives). In this example, we provide an attack
that tries to increase the number of false positives detected by the controller of
some sensor si during a specific time interval m..n, with m,n ∈ N, n ≥ m > 0.
Intuitively, the attack waits for m− 1 time slots, then, during the time interval
m..n, it provides the controller of sensor si with a fake intrusion signal. Formally,

Afp(i,m, n) = tickm−1.B〈i, n−m+ 1〉
B(i, j) = if (j = 0) {nil} else {bsi!presence.tick.B〈i, j − 1〉cB〈i, j − 1〉} .

In the following proposition, we use our metric to measure the perturbation
introduced by the attack to the controller of a sensor si by varying the time of
observation of the system under attack.

Proposition 3. Let ξ be an arbitrary physical state for the systems Mi =
ξonCtrl i, for i ∈ {1, 2, 3}. Then,

– Mi ‖ Afp〈i,m, n〉 ≈j0 Mi, for j ∈ 1..m−1;

– Mi ‖ Afp〈i,m, n〉 ≈jh Mi, with h = 1− (p+i )j−m+1, for j ∈ m..n;
– Mi ‖ Afp〈i,m, n〉 ≈jr Mi, with r = 1− (p+i )n−m+1, for j > n or j =∞.

By an application of Definition 13 we can measure the impact of the attack Afp

to the (sub)systems ξonCtrli .

Corollary 2. The IoT systems ξonCtrli are vulnerable to the attack Afp〈i,m, n〉
in the time interval m..n with impact 1− (p+i )n−m+1.

Note that the vulnerability window m..n coincides with the activity period of
the attack Afp. This means that the system under attack recovers its normal
behaviour immediately after the termination of the attack. However, in general, an
attack may impact the behaviour of the target system long after its termination.

Note also that the attack Afp〈i,m, n〉 has an impact not only on the controller
Ctrl i but also on the whole system ξonSys. This because the process Mng will
surely fire the alarm as it will receive at least one intrusion detection from Ctrl i.
However, by an application of Corollary 1 we can prove that the impact on the
whole system will not get amplified.

Proposition 4 (Impact of the attack Afp). The system ξonSys is vulnerable
to the attack Afp〈i,m, n〉 in a time interval m′..n′ ⊆ m..n with impact p′ ≤
1− (p+i )n−m+1.

Now, the reader may wonder what happens if we consider a complementary
attack that provides fake false negatives to the controller of one of the sensors
si. In this case, the attack affects the availability of the system behaviour as the
system will no fire the alarm in the presence of a real intrusion. This because a
real intrusion will be somehow “hidden” by the attack.

Example 2 (Introducing false negatives). The goal of the following attack is
to increase the number of false negatives during the time interval m..n, with
n ≥ m > 0. Formally, the attack is defined as follows:

Afn(i,m, n) = tickm−1.C〈i, n−m+ 1〉
C(i, j) = if (j = 0) {nil} else {bsi!absence.tick.C〈i, j − 1〉cC〈i, j − 1〉} .
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In the following proposition, we use our metric to measure the deviation introduced
by the attack Afn to the controller of a sensor si. With no surprise we get a result
that is the symmetric version of Proposition 3.

Proposition 5. Let ξ be an arbitrary physical state for the system Mi =
ξonCtrl i, for i ∈ {1, 2, 3}. Then,

– Mi ‖ Afn〈i,m, n〉 ≈j0 Mi, for j ∈ 1..m−1;

– Mi ‖ Afn〈i,m, n〉 ≈jh Mi, with h = 1− (p−i )j−m+1, for j ∈ m..n;
– Mi ‖ Afn〈i,m, n〉 ≈jr Mi, with r = 1− (p−i )n−m+1, for j > n or j =∞.

Again, by an application of Definition 13 we can measure the impact of the
attack Afn to the (sub)systems ξonCtrli .

Corollary 3. The IoT systems ξonCtrli are vulnerable to the attack Afn〈i,m, n〉
in the time interval m..n with impact 1− (p−i )n−m+1.

As our timed metric is compositional, by an application of Corollary 1 we
can estimate the impact of the attack Afn to the whole system ξonSys.

Proposition 6 (Impact of the attack Afn). The system ξonSys is vulnerable
to the attack Afn〈i,m, n〉 in a time interval m′..n′ ⊆ m..n with impact p′ ≤
1− (p−i )n−m+1.

6 Conclusions, Related and Future Work

We have proposed a timed generalisation of the n-bisimulation metric [3], called
timed bisimulation metric, obtained by defining two functionals over the complete
lattice of the functions assigning a distance in [0, 1] to each pair of systems: the
former deals with the distance accumulated when executing untimed steps, the
latter with the distance introduced by timed actions.

We have used our timed bisimulation metrics to provide a formal and com-
positional notion of impact metric for cyber-physical attacks on IoT systems
specified in a simple timed process calculus. In particular, we have focussed on
cyber-physical attacks targeting sensor devices (attack on sensors are by far
the most studied cyber-physical attacks [38]). We have used our timed weak
bisimulation with tolerance to formalise the notions of attack tolerance and
attack vulnerability with a given impact p. In particular, a system M is said to
be vulnerable to an attack A in the time interval m..n with impact p if the
perturbation introduced by A becomes observable in the m-th time slot and
yields the maximum impact p in the n-th time slot. Here, we wish to stress that
the vulnerability window m..n is quite informative. In practise, this interval says
when an attack will produce observable effects on the system under attack. Thus,
if n is finite we have an attack with temporary effects, otherwise we have an
attack with permanent effects. Furthermore, if the attack is quick enough, and
terminates well before the time instant m, then we have a stealthy attack that
affects the system late enough to allow attack camouflages [11]. On the other
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hand, if at time m the attack is far from termination, then the IoT system under
attack has good chances of undertaking countermeasures to stop the attack.

As a case study, we have estimated the impact of two cyber-physical attacks
on sensors that introduce false positives and false negatives, respectively, into
a simple surveillance system, affecting the integrity and the availability of the
IoT system. Although our attacks are quite simple, the specification language
and the corresponding metric semantics presented in the paper allow us to deal
with smarter attacks, such as periodic attacks with constant or variable period of
attack. Moreover, we can easily extend our threat model to recover (well-known)
attacks on communication channels.

Related Work. A number of papers have recently proposed different method-
ologies for assessing the direct and indirect impact of attacks on CPSs.

Bilis et al. [1] proposed a systematic approach that uses five metrics de-
rived from complex network theory to assess the impacts of cyber attacks on
electric power systems. The metrics were used to rank nodes in a graph-based
representation of an electric grid. Sgouras et al. [31] evaluated the impact of
cyber attacks on a simulated smart metering infrastructure; the denial-of-service
attacks against smart meters and utility servers caused severe communications
interruptions. Sridhar and Govindarasu [33] evaluated the impacts of attacks
on wide-area frequency control applications in power systems; their research
showed that cyber attacks can significantly impact system stability by causing
severe drops in system frequency. Genge et al. [10] introduced a methodology,
inspired by research in system dynamics and sensitivity analysis, to compute the
covariances of the observed variables before and after the execution of a specific
intervention involving the control variables. Metrics are proposed for quantifying
the significance of control variables and measuring the impact propagation of
cyber attacks. Orojloo and Azgomi [25] investigated how an attack against system
parameters can affect the values of other parameters. The system parameters
are divided into two classes of cause and effect parameters, which can be same
as or different from each other. They proposed metrics to prioritise the sensor
readings and control signals based on their sensitivity to conducted attacks.
Urbina et al. [35] defined an evaluation metric for attack-detection algorithms
that quantifies the negative impact of stealthy attacks and the inherent trade-off
with false alarms. The authors showed that the impact of such attacks can
be mitigated in several cases by the proper combination and configuration of
detection schemes. Huang et al. [13] proposed a risk assessment method that
uses a Bayesian network to model the attack propagation process and infers the
probabilities of sensors and actuators to be compromised. These probabilities
are fed into a stochastic hybrid system (SHS) model to predict the evolution of
the physical process being controlled. Then, the security risk is quantified by
evaluating the system availability with the SHS model.

Notice that only this last paper adopts formal methodologies. More generally,
we are aware of a number of works using formal methods for CPS security,
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although they apply methods, and most of the time have goals, that are quite
different from ours.

Vigo et al. [36] proposed an untimed calculus of broadcasting processes
equipped with notions of failed and unwanted communication. They focus on DoS
attacks without taking into consideration timing aspects or attack impact. Bodei
et al. [2] proposed a different untimed process calculus, IoT-LySa, supporting
a control flow analysis that safely approximates the abstract behaviour of IoT
systems. Essentially, they track how data spread from sensors to the logics of the
network, and how physical data are manipulated. Rocchetto and Tippenhaur [29]
introduced a taxonomy of the diverse attacker models proposed for CPS security
and outline requirements for generalised attacker models; in [28], the same authors
proposed an extended Dolev-Yao attacker model suitable for CPSs. Nigam et
al. [24] worked around the notion of timed Dolev-Yao intruder models for cyber-
physical security protocols by bounding the number of intruders required for the
automated verification of such protocols. Following a tradition in security protocol
analysis, they provided an answer to the question: How many intruders are enough
for verification and where should they be placed? Lanotte el al. [19] did a static
security analysis, based on model-checking, for a non-trivial engineering case
study to statically detect a variety of attacks targeting sensors and/or actuators
of the system under investigation. Finally, Lanotte et al. [20] defined a hybrid
process calculus to model both CPSs and cyber-physical attacks; they defined a
threat model for cyber-physical attacks to physical devices and provided a proof
methods to assess attack tolerance/vulnerability with respect to a timed trace
semantics (no tolerance allowed). They also advocated a timed formalisation
of the impact of an attack in terms of the deviation introduced in the runtime
behaviour of the system under attack.

Future Work. Recent works [18,8,21,22,9] have shown that bisimulation metrics
are suitable for compositional reasoning, as the distance between two complex
systems can be often derived in terms of the distance between their components.
In this respect, Theorem 2 and Corollary 1 allows us compositional reasonings
when computing the impact of attacks on a target system, in terms of the impact
on its sub-systems. We believe that this result can be generalised to estimate
the impact of parallel attacks of the form A = A1 ‖ . . . ‖ Ak in terms of the
impacts of each malicious module Ai. As future work, we also intend to adopt
our impact metric in more involved languages for cyber-physical systems and
attacks, such as the language developed in [20], with an explicit representation
of physical processes via differential equations or their discrete counterpart,
difference equations.

Acknowledgements. We thank the anonymous reviewers for valuable comments.
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