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Non-standard Confidence Sets for Ratios and Tipping

Points with Applications to Dynamic Panel Data

Jean-Thomas Bernard ∗ Ba Chu† Lynda Khalaf ‡ Marcel Voia§

Abstract

We study estimation uncertainty when the object of interest contains one or more ratios
of parameters. The ratio of parameters is a discontinuous parameter transformation; it has
been shown that traditional confidence intervals often fail to cover this true ratio with very
high probability. Constructing confidence sets for ratios using Fieller’s method is a viable solu-
tion as the method can avoid the discontinuity problem. This paper proposes an extension of
the multivariate Fieller method beyond standard estimators, focusing on asymptotically mixed
normal estimators that commonly arise in dynamic panel polynomial regression with persistent
covariates. We discuss the cases where the underlying estimators converge to various distri-
butions, depending on the persistence level of the covariates. We show that the asymptotic
distribution of the pivotal statistic used for constructing a Fieller’s confidence set remains a
standard Chi-squared distribution regardless of rates of convergence, thus the rates are being
‘self-normalized’ and can be unknown. A simulation study illustrates the finite sample prop-
erties of the proposed method in a dynamic polynomial panel. Our method is demonstrated
to work well in small samples, even when the persistence coefficient is unity.
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1 Introduction

Estimating or testing parameter ratios is an important issue in statistics and econometrics. From

a theoretical perspective, inference problems arising from non-linearity with such transformations

have attracted a great deal of interest; for references in statistics, see, for example, Zerbe, Laska,

Meisner and Kushner (1982), Read (1983), Buonaccorsi (2001), Frantz (2007), and Ulrike and Franz

(2009). From an empirical perspective, and more specifically in economics, ratios are parameters of

interest in various applications involving elasticities or tipping points, for example with familiar ”U”

or inverted ”U” shaped curves: Kuznet, Laffer, Rahn, Engel, Beveridge curves, as well as statistical

Phillips, Yield and wage curves. In this paper, we focus on parameter ratios that are obtained from

dynamic Panel data models.

In general, there are two basic approaches to estimating and assessing ratios. The first one

employs a Wald-type approach, and is known as the ”Delta” method [as explained in Appendix

D]. This method suits asymptotically normal panel data estimators, provided of course underlying

regularity conditions prevail. However, it is becoming increasingly clear from the literature that

Wald-type methods raise identification problems.1 Even when a ratio’s numerator and denominator

are well identified, the ratio is not well defined when its denominator approaches zero. Consequently,

the distribution of standard test statistics becomes irregular, so usual tests and confidence intervals

are incorrectly sized, or (said differently) usual asymptotic standard errors understate sampling

uncertainty. So even if standard errors estimated using usual methods are narrow, they still provide

a spurious assessment of the true uncertainty. In fact, Bolduc, Khalaf and Yelou (2010) document

coverage rates collapsing to zero, that is, estimated intervals missing the unknown true value in all

Monte Carlo replications, for empirically relevant scenarios.

The second approach – which may be traced back to Fieller (1954) – avoids this problem,

at least in principle, using a pivotal statistic that is robust to identification as an alternative to

1On identification problems, their consequences and possible corrections, see Dufour (2003), Staiger and Stock
(1997), Wang and Zivot (1998), Zivot, Startz and Nelson (1998), Dufour and Jasiak (2001), Kleibergen (2002, 2005),
Stock,Wright and Yogo (2002), Moreira (2003), Dufour and Taamouti (2005, 2007), Andrews, Moreira and Stock
(2006), Antoine and Lavergne (2012) Stock and Lazarus (2016).

2



a Wald-type one that requires identification. To the best of our knowledge, applications of the

Fieller method with Panel data are scarce: Bernard, Gavin, Khalaf and Voia (2015) discussed an

empirical application of the environmental Kuznet curve. Furthermore, a formal analysis of the

method with persistent data is unavailable even in univariate contexts. Bernard, Idoudi, Khalaf

and Yelou (2007) are a notable exception, as Monte Carlo evidence supporting the Fieller method

is provided in a univariate dynamic regression, even close to the unit root boundary. In the absence

of supportive theory, this result motivates further work. In time series there is work that deals

with such discontinuities: Phillips (2014), Mikusheva (2007, 2012), Gorodnichenko, Mikusheva &

Ng (2012). We thus revisit dynamic contexts including panel data, which as is well known, pose

more serious challenges than univariate regressions. In particular for dynamic panels we extend

the work of Pesaran, Shin and Smith (1999) and consider polynomial panels that span a wide

range of applications; from persistence to discontinuous limiting distributions (e.g. unit root or the

far-from-unity case).

As the stationarity property of polynomial regressors is often not modeled, or checked adequately

the analysis of polynomial panels is interesting in its own right. We propose a parsimonious set of

assumptions that preserves the stability restriction of long run equations as in Pesaran, Shin and

Smith (1999) and prove that the MLE estimators converge to mixed normality at different rates. We

effectively extend the multivariate Fieller method beyond standard estimators; and in the context

of dynamic polynomial panels, we show that the asymptotic distribution of Fieller’s statistic still

remains a standard Chi-squared distribution, regardless of the convergence rates of estimates, thus

the rates are being ‘self-normalized’ and can be unknown.

Finally, we conduct an extensive simulation study, driving persistence parameters close to bound-

aries, with various choices for N and T using a design based on a well know empirical example, the

case of an environmental Kuznet curve. Results reveal that the delta method cannot be salvaged in

dynamic Panels. The Fieller method works well with GMM methods when persistence is controlled

and N is large. Fieller’s method based on our likelihood based method works very well, even with

unit roots, and interestingly, even when N is large relative to T .
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This paper is structured as follows. Section 2 presents a general Fieller’s theorem for asymptot-

ically mixed-normal estimators. Section 3 studies the problem of constructing Fieller’s confidence

set for ratios of the parameters characterizing the long-run relationship in an error-correction repre-

sentation of a dynamic heterogeneous polynomial panel. Asymptotic theory is derived for the case

of fixed N and large T . Section 4 summarizes our simulation findings, and Section 5 concludes the

paper. Proofs of main theorems and lemmas as well as other materials of technical flavour can be

found in four appendices at the end of this paper.

1.1 Notation

The following notation is used in the paper: X denotes a scalar, X is used to represent a vector or

a matrix and C0 is a generic constant that may vary from one context to another. For two random

sequences, say aT and bT , one often writes aT � bT a.s. if and only if P (limT↑∞ |aT/bT | = const.) =

1, and aT � bT w.p. if and only if limT↑∞ P (|aT/bT | < ξ) = 1, where ξ can be some almost-sure

bounded random variable; op(·) and Op(·) are standard symbols for stochastic orders of magnitude.

p−→ denotes convergence in probability and
d−→ denotes convergence in distribution. ‖ · ‖ denotes

the Euclidean norm of matrices and λ1(X) represents the minimum eigenvalue of a square matrix,

X. In stands for the identity matrix of size n. bxc denotes the largest integer less than or equal to

x.

2 Mixed-Normality based Fieller’s Theorem

Consider a parametric model with parameters of interest defined by a vector, θ = (θ1, . . . , θp)
>. Let

θ0 ∈ Θ ⊂ Rp, where Θ is a compact parameter space, represent the true parameters; and for a given

data sample of size T , one can estimate θ0 by θ̂ = (θ̂1, . . . , θ̂p)
>. We first make some assumptions

about the asymptotic distribution of θ̂. (Note that Assumptions 2.1 and 2.2 below are independent

of each other, so are the notations.)

Assumption 2.1. θ̂ is asymptotically normal as T ↑ ∞, in the sense that DT (θ̂ − θ0)
d−→
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N (0,Σ0(θ0)) uniformly over Θ, where DT is a diagonal matrix consisting of normalizing factors

that diverge to infinity with T and may differ from one another; and N (0,Σ0(θ0)) represents a

tight family of Gaussian random variables with the asymptotic variance-covariance matrix, Σ0(θ0),

which is the probability limit of a matrix of normalized sample statistics, D−1
T Σ̂TD

−1
T .

Assumption 2.2. θ̂ is asymptotically mixed normal as T ↑ ∞ such that

(a) DT (θ̂−θ0)
d−→ Σ̃

−1/2
0 (θ0)N(0, Ip) uniformly over Θ, where DT is a diagonal matrix consisting

of normalizing factors that diverge to infinity with T and may differ from one another; and

Σ̃
−1/2
0 (θ0)N(0, Ip) represents a tight family of Gaussian random variables with Σ̃−1

0 ≡ Σ̃−1
0 (θ0)

being some random asymptotic variance-covariance matrix that is independent of N(0, Ip);

(b) Σ̃0 is the probability limit of a matrix of normalized sample statistics, D−1
T Σ̂TD

−1
T , such that

D−1
T Σ̂TD

−1
T

p−→ Σ̃0.

Our objects of interest are the ratios ρ = (ρ1, . . . , ρq)
> with ρi =

L>i θ

K>θ
for i = 1, . . . , q ≤ p− 1,

where L1, . . . ,Lq, and K are q + 1 nonstochastic and linearly independent p× 1 vectors.

Theorem 1. Let either Assumption 2.1 or 2.2 hold. Then the 1−α asymptotic uniform simultane-

ous confidence sets, CST (ρ;α), for ρ0, defined via the inverse relationship limT↑∞ infθ0∈Θ Pθ0(ρ ∈

CST (ρ;α)) ≥ 1− α, can be obtained by inverting the following Wald-type test statistic for the null

hypothesis H0 :
(
L> − ρ0K

>)θ0 = 0, where L = (L1, . . . ,Lq) and Kρ = Kρ>0 .

W(ρ0) = θ̂>(L−Kρ>0 )
(

(L−Kρ>0 )>Σ̂−1
T (L−Kρ>0 )

)−1

(L−Kρ>0 )>θ̂

If the distributional convergence is not uniform in either Assumption 2.1 or 2.2, then one can only

construct the 1 − α asymptotic pointwise simultaneous confidence sets, CST (ρ;α), for ρ0, defined

via the inverse relationship limT↑∞ Pθ0(ρ ∈ CST (ρ;α)) ≥ 1− α for every θ0 ∈ Θ.

Therefore, a closed-form expression for CS(ρ;α) can be derived by utilizing the same argument

as in Section 4 of Bolduc, Khalaf and Yelou (2010).
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Proof. First, an application of the uniform continuous mapping theorem yields that

(L> −K>ρ )DTθ
d−→
(

(L−Kρ)
>Σ̃−1

0 (L−Kρ)
)1/2

N(0, Ip) under H0.

By replacing the unknown Σ̃0 with D−1
T ΣTD

−1
T , an application of Lemma 3 in Ogasawara and

Takahishi (1951) yields the Wald-type statistic

W(ρ0) = θ̂>DT (L−Kρ)

(
(L−Kρ)

>
(
D−1

T Σ̂TD
−1
T

)−1

(L−Kρ)

)−1

(L−Kρ)
>DT θ̂

d−→ χ2(q).

(2.1)

One can then obtain the simultaneous confidence sets for ρ0 as follows:

CS(ρ;α) = {ρ ∈ Rq : W(ρ) ≤ cq,α} ,

where cq,α is the (1−α) critical value of the χ2 distribution with q degrees of freedom. By applying

some simple transformations to the null hypothesis,

(
L> − ρ0K

>)θ0 = 0, ⇔
(
L∗ −K∗ρ>0

)>
DTθ0 = 0

where L∗ = D−1
T L and K∗ = D−1

T K, we obtain in view of (2.1) that

W(ρ0) = θ̂>DT (L∗ −K∗ρ>0 )

(
(L∗ −K∗ρ>0 )>

(
D−1

T Σ̂TD
−1
T

)−1

(L∗ −K∗ρ>0 )

)−1

(L∗ −K∗ρ>0 )>DT θ̂

d−→ χ2(q).

The matrices, DT , of normalizing factors in the above equation cancel out so that

W(ρ0) = θ̂>(L−Kρ>0 )
(

(L−Kρ>0 )>Σ̂−1
T (L−Kρ>0 )

)−1

(L−Kρ>0 )>θ̂.

The main theorem then follows.
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3 Dynamic Panel Polynomial Error Correction Models

Suppose that we have observations of some random variables, yi,t, Xi,t and Zi,t, across time periods,

t = 1, . . . , T , and individuals, i = 1, . . . , N. Let the observations be generated from the following

error correction model:

∆yi,t = φi(yi,t−1 − β>Wi,t) +

p−1∑
j=1

λi,j∆yi,t−j +

qx−1∑
j=0

γi,j∆Xi,t−j +

qz−1∑
j=0

α>i,j∆Zi,t−j + µi + εi,t, (3.1)

where Wi,t = (Z>i,t, Xi,t, X
2
i,t, . . . , X

kx
i,t )
>, with Zi,t being of dimension kz × 1, represent vectors of

explanatory variables; µi and εi,t are the fixed effects and the random errors respectively; λi,j, γi,j,

and αi,j denote the coefficients of the lagged explanatory variables; and β represents the regression

coefficients. Conditions imposed on the dynamics of the error process and of the covariates in the

d.g.p. defined by (3.1) are summarized in Assumption 3.1.

Assumption 3.1. The innovations εi are orthogonal to both Wi and Xi. In addition, given i,

Xi,t is I(1) and can be represented as Xi,t =
∑t

s=1 ζi,s for some zero-mean innovations, {ζi,t, i =

1, . . . , N, t = 1, . . . , T}, which are independent across the individuals and stationary, are strongly

mixing across the time periods with the mixing coefficient satisfying the condition stated in Lemma

2. The same assumptions about Xi,t are also imposed on Zi,t =
∑t

s=1 ξi,s.

In addition, Assumption 3.2 below allows (3.1) to have a long-run relationship, yi,t = β>Wi,t +

νi,t, where νi,t is a stationary process.

Assumption 3.2. The process yi,t has a unit root for each i, and the lag polynomial
∑p−1

j=1 λi,jz
j = 1

has roots outside the unit circle.

We then focus on the long-run relationship between yi,t and Wi,t in (3.1). Let’s denote by

ϕ = (β>,φ>,σ)>, where φ = (φ1, . . . , φN)> and σ = (σ2
1, . . . , σ

2
N)>, the parameters of interest,

which are assumed to lie in the interior of some parameter spaces. We shall assume throughout

this section that all the parameter spaces are compact, and the log-likelihood maximization is

carried out on these compact spaces. Let p∗ = max(p, qx, qz), define (T − p∗)× 1 vectors, ∆yi,−j =
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(∆yi,p∗−j, . . . ,∆yi,T−j)
> and ∆Xi,−j = (∆Xi,p∗−j, . . . ,∆Xi,T−j)

>, a (T − p∗)× kz matrix, ∆Zi,−j =

(∆Zi,p∗−j, . . . ,∆Zi,T−j)
>, and a (T−p∗)×1 vector of random errors, εi = (εi,p∗ , . . . , εi,T )>. Moreover,

define

Ui = (∆yi,−1, . . . ,∆yi,−p+1,∆Xi, . . . ,∆Xi,−qx+1,∆Zi, . . . ,∆Zi,−qz+1, ιT ),

where ιT is the (T − p∗)× 1 unit vector, and

Λi = (λi,1, . . . , λi,p−1, γi,0, . . . , γi,qx−1,α
>
i,0, . . . ,α

>
i,qz−1, µi)

>.

Note at this point that Ui is of dimension (T − p∗) × ku with ku = p + qx + qzkz, and Λi is of

dimension ku × 1. One can now write (3.1) into the following matrix form:

yi = φi(yi,−1 −Wiβ) +UiΛi + εi,

where Wi = (Zi,Xi,X
2
i , . . . ,X

kx
i ) with Zi = (Zi,1, . . . ,Zi,T−p∗)

> and X`
i = (X`

i,1, . . . , X
`
i,T−p∗)

>

for ` = 1, . . . , kx. The log-likelihood function is given by

LT (ϕ) = −T
2

N∑
i=1

ln(2πσ2
i )−

1

2

N∑
i=1

1

σ2
i

(∆yi − φiξi(β))>Pi(∆yi − φiξi(β)),

where ξi(β) = yi,−1 −Wiβ and Pi = IT −Ui(U
>
i Ui)

−1U>i with IT being the (T − p∗)× (T − p∗)

identity matrix. Note that by using the orthogonality of Pi to Ui, one obtains for the true parameter

ϕ0,

1

T
(LT (ϕ0)− LT (ϕ)) =

1

2

N∑
i=1

σ2
0,i − σ2

i

σ2
i σ

2
0,i

(
ε>Piε

T
− σ2

0,i

)
+

1

2

N∑
i=1

(
σ2

0,i

σ2
i

− ln

(
σ2

0,i

σ2
i

)
− 1

)

+
1

2

1

T

N∑
i=1

1

σ2
i

(
(∆yi − φiξi(β))>Pi(∆yi − φiξi(β))− ε>i Piεi

)
=

1

2
(T1,T (σ,σ0) + T2,T (σ,σ0) + T3,T (ϕ)) . (3.2)

Since ∆yi − φiξi(β) = UiΛ0,i + εi + φiWi(β0 − β) + (φi − φ0,i)ξi(β0), one can also write
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T3,T (ϕ) = (θ − θ0)>GT (θ − θ0) + 2(θ − θ0)>FT ,

where θ = (β>,φ>)> and GT = GT (φ,σ) =


∑N
i=1

φ2i
σ2
i

W>i PiWi
T

−φ1
σ21

W>1 P1ξ0,1
T

··· −φN
σ2
N

W>N PNξ0,N
T

−φ1
σ21

W>1 P1ξ0,1
T

1

σ21

ξ>0,1P1ξ0,1
T

0 0

... 0
... 0

−φN
σ2
N

W>N PNξ0,N
T

0 0 1

σ2
N

ξ>0,NPNξ0,N
T

 ,

where ξ0,i = ξi(β0) for i = 1, . . . , N, and FT =


∑N
i=1

φ2i
σ2
i

W>i Piεi
T

− 1

σ21

ξ>0,1P1ε1
T

...
− 1

σ2
N

ξ>0,NPN εN
T

 . To work out the probability

limits for the random matrices GT and FT , we need to state the following lemma:

Lemma 1. Suppose that Assumptions 3.1 and 3.2 hold. Let’s denote by

Dww,T = diag
(
T 1/2ι>kz , T

1/2, . . . , T `/2, . . . , T kx/2
)
,

where ιkz is the kz × 1 unit vector, the diagonal matrix of normalizing factors. Then,

D−1
ww,T

W>
i PiWi

T
D−1

ww,T

p−→ Qww,i, (3.3)

D−1
ww,T

W>
i Piξ0,i

T

p−→ Qwξ,i, (3.4)

ξ>0,iPiξ0,i

T

p−→ Qξξ,i, (3.5)

where Qww,i, Qwξ,i, and Qξξ,i are some random matrices.

Theorem 2 (Consistency). Suppose that Assumptions 3.1 and 3.2 hold. LetDG,T = diag(Dww,T , IN),

where IN is the N ×N identity matrix, and

QG = QG(φ,σ) =


∑N
i=1

φ2i
σ2
i

Qww,i −
φ1
σ21
Qwξ,1 ··· −φN

σ2
N

Qwξ,N

−φ1
σ21
Qwξ,1

1

σ21
Qξξ,1 0 0

... 0
... 0

−φN
σ2
N

Qwξ,N 0 0 1

σ2
N

Qξξ,N

 .
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Moreover, suppose that E[|εi,t|2+δ] <∞ for some δ > 0, and infφ,σ λ1(QG) > 0 a.s. Then,

Dww,T (β̂ − β0) = op(1), (φ̂− φ0) = op(1), and (σ̂ − σ0) = op(1).

Theorem 3 (Asymptotic Mixed Normality). Suppose that Assumptions 3.1 and 3.2 hold. Moreover,

presume that λ1 (QG(φ0,σ0)) > 0 a.s. and E[|εi,t|2+δ] <∞ for some δ > 0. Define

DT = diag
(
T 1/2Dww,T , T

1/2IN
)

= diag
(
T ι>kz , T, . . . , T

`+1
2 , . . . , T

kx+1
2 , T

1
2 ι>N

)
.

Then,

DT (θ̂ − θ0)
d−→MN

(
0,Q−1

G (φ0,σ0)
)
.

Corollary 4. Fieller’s confidence sets for the ratios ρi =
L>i θ0
K>θ0

for i = 1, . . . ,m, where Li and

K are some given column vectors, can be constructed by inverting a Wald’s statistics for testing

H0 : L>i θ0−ρ0,iK
>θ0 = 0 vs. H1 : L>i θ0−ρ0,iK

>θ0 6= 0. Theorem 3 suggests that this Wald-type

statistic is given by

WT (ρ) = θ>DT (L− ρ0Kρ)
(

(L> − ρ0K
>
ρ )
(
D−1

T GTD
−1
T

)−1
(L− ρ0Kρ)

)−1

(L> − ρ0K
>
ρ )DTθ

d−→ χ2(m),

where the matrices, DT , of normalizing factors in the above equation cancel out and

GT =


∑N
i=1

φ2i
σ2
i

W>i PiWi −
φ1
σ21
W>1 P1ξ1 ··· −φN

σ2
N

W>N PNξN

−φ1
σ21
W>1 P1ξ1

1

σ21
ξ>1 P1ξ1 0 0

... 0
... 0

−φN
σ2
N

W>N PNξN 0 0 1

σ2
N

ξ>NPNξN

 with ξi = yi,−1 −Wiβ for i = 1, . . . , N ;

D−1
T GTD

−1
T is the estimate of QG(φ0,σ0); ρ = diag(ρ1, . . . , ρm); L = (L1, . . . ,Lm) and Kρ =

ι>m ⊗K are kwn ×m matrices.
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4 Monte-Carlo Results

This section contains a Monte Carlo simulation to demonstrate the finite-sample performance of the

proposed method. Specifically, we calculate the size and power of the Fieller-based test involving a

ratio of two estimated parameters obtained by estimating a dynamic polynomial panel of the form:

yi,t =

p−1∑
j=1

λi,jyi,t−j +

qx−1∑
j=0

γi,jXi,t−j +

qz−1∑
j=0

α>i,jZi,t−j + µi + εi,t,

which translates in the following error correction model:

∆yi,t = φi(yi,t−1 − β>Wi,t) +

p−1∑
j=1

λi,j∆yi,t−j +

qx−1∑
j=0

γi,j∆Xi,t−j +

qz−1∑
j=0

α>i,j∆Zi,t−j + µi + εi,t,

i = 1, . . . , N and t = 1, . . . , T, where Wi,t = (Z>i,t, Xi,t, X
2
i,t, . . . , X

kx
i,t )
> with a dz × 1 vector, Zi,t,

contains strictly exogenous covariates; αi,j, λi,j, and γi,j all represent the coefficients of the short-run

relationship; µi, i = 1, . . . , N, indicate the fixed effects that are strictly independent of εi,t and Wi,t;

φi, i = 1, . . . , N, are the coefficients of the speed of adjustment to the long-run relationship; the

coefficients of the long-run relationship, β are invariant across units.

We consider that data generating process (DGP) is a finite-order ARDL(1, 0) process as in

Pesaran and Shin (1999), where the above model includes the Xi,t, a quadratic polynomial term

X2
i,t and no further lags of Xi,t and X2

i,t and no Zi,t−j:

yi,t = λyi,t−1 + γ1Xi,t + γ2X
2
i,t + µ+ εi,t,

with Xit generated as:

Xit − ψXi,t−1 = φ(Xit − ψXi,t−1) + ηit,

where the errors (εit, ηit) are serially correlated and are generated according to the following bivariate

11



normal distribution:  ε

η

→ N(0,Ω)

with

Ω =

 1 ω12

ω12 1

 .

The parameters θ comprise of µ (constant), γ1 (of Xit), γ2 (of X2
it), and the covariance ω12, were

obtained from a real data exercise done by Khalaf et al. (2011), where an empirical estimation and

inference of the Environmental Kuznets Curve (EKC) for carbon dioxide and sulfur were proposed.

The yit in our simulations were obtained using the data on annual per capita CO2 emission and

Xit was measuring per capita income, in 1000s of 2000 USD. The parameters of the DGP were

obtained by employing a Dynamic Panel Polynomial Error Correction Model with fixed effects (we

use a DFE abbreviation as in the Figures presented in the Appendix) on CO2 data. The above

example was considered in our simulations because the original data was highly persistent and γ2 is

weakly identified. In the simulations we keep µ, γ1, γ2, and ω12 fixed and we play with the degree of

persistence for the yit and Xit by changing the parameters λ, φ, and ψ. In Appendix D we present

a detailed description on how to construct confidence sets for a ratio of two parameters using Delta

and Fieller methods.

We use different levels of persistence for both yit and Xit starting from low persistence for both

yit and Xit to non-stationarity of yit and high persistence of xit. The parameters considered in the

simulations are listed in the Table 1 (see Appendix).

The results of the simulation study show how poorly the Delta Method works compared to the

Fieller method when we test the existence of a ratio of two parameters. In particular we show that in

presence of persistent outcome variables, combining the DFE method that estimates the parameters

of the model with the Fieller method used to test the existence of a ratio of two parameters,

outperform any other combination of estimation and testing considered in the simulation exercise.

As an alternative case we consider the Arrellano-Bond (AB) estimator that is widely used for fixed

12



T dynamic panels. We report size and power of the test underlying both Fieller and delta-method

for all the cases from Table 1, however for the exposition in the paper we present few relevant cases

(all the other cases are available in a separate appendix). The results show that the combination of

DFE-Fieller achieves the correct level even in finite samples, while DFE-Delta fails for any sample

size. Interesting, for this combination of parameters, both the combination of AB - Delta and AB

-Fieller achieves the correct level for micro panels (large N, not highly persistent data), however

the combination AB-Fieller is much stable for different sample sizes than AB-Delta. From Figure

1 we can conclude that the combination of DFE-Fieller outperforms all other combinations for any

sample sizes.

Table 2 completes the picture of the performance of the combination DFE-Fieller by showing

how powerful this combination is when compared to any other combination. The results also show

that AB - Delta is more powerful than AB - Fieller, but much less powerful than DFE-Fieller or

DFE-Delta.

In all the other cases of this Monte-Carlo study, we observe a similar behavior for both size

and power (see Tables: 3,4,5,6 for example). Therefore, we find that DFE-Fieller proposed method

works in all cases where data can be highly persistent [with nonstationary covariates] while the

other methods such as DFE-Delta, AB-Fieller and AB-Delta do not.

5 Conclusion

When ratios of parameters are estimated and tested, it is important to obtain reliable confidence

bounds especially when one deals with longitudinal and possible nonstationary data.

As theoretical contributions, we prove that the MLE estimators for persistent dynamic panel

data models converge to mixed normality at different rates, we extend the multivariate Fieller

method beyond standard estimators and apply it to ratios of parameters obtained in dynamic

polynomial panels and we show that the asymptotic distribution of Fieller’s statistic remains a

standard Chi-squared distribution regardless of the convergence rates of estimates.

13



A comprehensive Monte Carlo exercise suggest that highly persistent data require adequate esti-

mation methods coupled with appropriate testing procedures. Using a long-run estimation approach

holds promise - in the sense that it provides reliable estimates for curvatures with nonstationary

data. In addition, to answer the question whether data supports a plausible tipping point, statisti-

cal methods that account for a weakly identified tipping point should be preferred. Consequently,

combining the appropriate estimation method with Fieller method to construct confidence sets for

ratios of parameters of interest provides a powerful tool to a researcher because the constructed

confidence sets remain valid with both persistent and less persistent data.
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Appendix A Known Results

The following lemma contains an almost sure invariance principle for sums of mixing random vectors.

Lemma 2. Let {ξn, n ≥ 1} be a weak sense stationary sequence of Rd-valued random vectors,

centered at expectations and having (2 + δ)-th moments with 0 < δ ≤ 1, uniformly bounded by

1; and let F ba represent the σ-field generated by the random vectors ξa, ξa+1, . . . , ξb. Suppose that

{ξn, n ≥ 1} satisfies the following strong-mixing condition:

|P (AB)− P (A)P (B)| ≤ α(n)

for all n, k ≥ 1, all A ∈ Fk1 , and B ∈ F∞k+n such that α(n) = C0n
−(1+ε)(1+2/δ) for some ε > 0. Write

ξn = (ξn,1, . . . , ξn,d). Then the two series in γi,j = E[ξ1,iξ1,j] +
∑

k≥2E[ξ1,iξk, j] +
∑

k≥2E[ξk,iξ1,j]

converge absolutely. Denote the matrix (γi,j, 1 ≤ i, j ≤ d) by Γ. Then, we can redefine the sequence

{ξn, n ≥ 1} on a new probability space together with Brownian motion W (t) with covariance matrix

Γ such that ∑
n≤t

ξn −W (t)� t1/2−λ a.s.

for some λ > 0 depending on ε, δ, and d only.

Proof. See Theorem 4 in Kuelbs and Philipp (1980).

Appendix B Proofs of Auxiliary Lemmas

Proof of Lemma 1. First, note that, in view of Assumptions 3.1 and 3.2, an application of Lemma

2 yields

∆y>i ∆yi =
T∑
t=1

∆y2
i,t � T w.p.,

U>i Ui � T ιkuι
>
ku w.p., where ιku is the ku × 1 unit vector,

∆y>i Zi =
T∑
t=1

Zi,t∆yi,t ≈
∫ 1

0

Zi,bTτc(yi,bT (τ+dτ)c − yi,bTτc)� T ιkz w.p.
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as yi,bTτc− yi,bT (τ+dτ)c can be approximated by a Brownian motion, dW (bTτc) = W (bT (τ +dτ)c)−

W (bTτc). And by the same argument, one also obtains

∆X>i Zi � T ιkz w.p.,

∆Z>i Zi � T ιkzι
>
kz w.p.,

Z>i i =
T∑
t=1

Zi,t � T 3/2ιkz w.p.,

(X`
i )
>∆yi =

T∑
t=1

X`
i,t∆yi,t ≈

∫ 1

0

X`
i,bTτc(yi,bT (τ+dτ)c − yi,bTτc)� T

`+1
2 w.p.,

(X`
i )
>ιT � T

`+2
2 w.p.,

(X`
i )
>Ui �

(
T
`+1
2 ι>ku−1, T

`+2
2

)
w.p.

Collecting all the above-derived rates of divergence, one can immediately show that

Z>i Ui �
(
T ιkz×(ku−1), T

3/2ιkz
)

w.p.,

where ιkz×(ku−1) represents the kz × (ku − 1) unit matrix. Some matrix manipulations then yield

D−1
ww,T

W>
i Ui(U

>
i Ui)

−1U>i Wi

T
D−1

ww,T

p−→ Q
(1)
ww,i,

D−1
ww,T

W>
i Wi

T
D−1

ww,T

p−→ Q
(2)
ww,i.
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Hence, (3.3) immediately follows. In addition, note that

Z>i ξ0,i �
T∑
t=1

t1/2 ≈ T 3/2 w.p.,

(X`
i )
>ξ0,i �

T∑
t=1

t`/2 = T
`+2
2 , w.p.

Z>i ξ0,i � T 3/2 w.p.,

(X`
i )
>ξ0,i � T

`+2
2 w.p..

One can immediately show (3.4) and (3.5).

Appendix C Proofs of Main Theorems

Proof of Theorem 2. We adopt the strategy used in Saikkonen (1995) and Pesaran, Shin and Smith

(1998). First, define the open shrinking balls: BT (β0, δβ) = {β ∈ Θβ ⊂ Rkw : ‖Dww,T (β − β0)‖ <

δβ}, where kw = kz + kx and Θβ is some compact parameter space of β0; B(φ0, δφ) = {φ ∈ Θφ ⊂

RN : ‖φ − φ0‖ < δφ}, where Θφ is some compact parameter space of φ0; and B(σ0, δσ) = {σ ∈

Θσ ⊂ RN : ‖σ − σ0‖ < δσ}, where Θσ is some compact parameter space of σ0. Let Bc
T (β0, δβ),

Bc(φ0, δφ), and Bc(σ0, δσ) be the complements of BT (β0, δβ), B(φ0, δφ), and B(σ0, δσ) respectively.

Define BT (ϕ, δ, δσ) =
{⋃

{δβ ,δφ: (δ2β+δ2φ)1/2=δ}B
c
T (β0, δβ)×Bc(φ0, δφ)

}
×Bc(σ0, δσ). We need to show

that

lim
T↑∞

P

(
inf

ϕ∈BT (ϕ,δ,δσ)

1

T
(LT (ϕ0)− LT (ϕ)) > 0

)
= 1 (C-1)

for every δ, δσ > 0. In view of (3.2), one obtains

inf
ϕ∈BT (ϕ,δ,δσ)

1

T
(LT (ϕ0)−LT (ϕ)) ≥ 1

2

{
inf

σ∈Bc(σ0,δσ)
T1,T (σ,σ0) + inf

σ∈Bc(σ0,δσ)
T2,T (σ,σ0) + inf

ϕ∈BT (ϕ,δ,δσ)
T3,T (ϕ)

}
.
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It can immediately be shown that infσ∈Bc(σ0,δσ) T1,T (σ,σ0) = op(1) and infσ∈Bc(σ0,δσ) T2,T (σ,σ0) >

0. Furthermore,

inf
ϕ∈BT (ϕ,δ,δσ)

T3,T (ϕ) ≥ inf
ϕ∈BT (ϕ,δ,δσ)

(θ−θ0)>GT (θ−θ0)+2 inf
ϕ∈BT (ϕ,δ,δσ)

(θ−θ0)>FT = T3,a,T (ϕ)+2T3,b,T (ϕ).

Note that, by an elementary matrix inequality and Lemma 1,

T3,a,T (ϕ) = inf
ϕ∈BT (ϕ,δ,δσ)

(θ − θ0)>DG,T [D−1
G,TGTD

−1
G,T ]DG,T (θ − θ0)

≥ inf
ϕ∈BT (ϕ,δ,δσ)

‖DG,T (θ − θ0)‖2 inf
ϕ∈BT (ϕ,δ,δσ)

λ1

(
D−1

G,TGTD
−1
G,T

)
≥ δ2 inf

φ∈B(φ0,δφ)
σ∈B(σ0,δσ)

λ1(QG) w.p.

It then follows that T3,a,T (ϕ) > 0 w.p. Moreover, by Lemma 1, one has

D−1
ww,T

W>
i PiE[ε>i ε]PiWi

T
D−1

ww,T

p−→ σ2
iQww,i,

ξ>0,iPiE[ε>i ε]Piξ0,i

T

p−→ σ2
iQξξ,i.

Conditioning FT on Wi, Pi and ξi, an application of the multivariate CLT to the sequence εi yields

D−1
G,TFT = Op

(
T−1/2

)
= op(1). Since, from the way BT (β0, δβ) is defined, the term infϕ∈BT (ϕ,δ,δσ)(θ−

θ0)>D−1
G,T ιkw+N is bounded either above or below by a generic constant, which can be large but does

not depend on T , it immediately follows that T3,b,T = op(1). Therefore, (C-1) has been verified.

Proof of Theorem 3. The gradient and Hessian matrices of LT (ϕ) are given by ∂LT (ϕ)
∂θ

=
(
∂LT (ϕ)
∂β>

, ∂LT (ϕ)
∂φ>

)>
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and ∂2LT (ϕ)
∂θ∂θ>

=

(
∂2LT (ϕ)

∂β∂β>
∂2LT (ϕ)

∂β∂φ

∂2LT (ϕ)

∂β∂φ

∂2LT (ϕ)

∂φ∂φ>

)
, where

∂LT (ϕ)

∂φi
=

1

σ2
i

ξi(β)>Pi(∆yi − φiξi(β)),

∂LT (ϕ)

∂β
= −

N∑
i=1

φi
σ2
i

W>
i Pi(∆yi − φiξi(β)),

∂2LT (ϕ)

φiφj
= 0 for i 6= j,

∂2LT (ϕ)

φ2
i

= − 1

σ2
i

ξi(β)>Piξi(β),

∂2LT (ϕ)

∂β∂β>
= −

N∑
i=1

φ2
i

σ2
i

W>
i PiWi,

∂2LT (ϕ)

∂β∂φi
= − 1

σ2
i

W>
i Pi(∆yi − φiξi(β)) +

φi
σ2
i

W>
i Piξi(β).

Since ϕ̂ is consistent by Theorem 2, an application of a first-order Taylor expansion of ∂LT (ϕ̂)
∂θ

about

θ0 yields

0 =
∂LT (ϕ̂)

∂θ
=
∂LT (θ0, σ̂)

∂θ
+
∂2LT (θ∗, σ̂)

∂θ∂θ>
(θ̂ − θ0),

where θ∗ is some point lying on the line segment L(θ0, θ̂) = {sθ0 + (1 − s)θ̂ : s ∈ (0, 1)} ⊂

Θβ × Θφ ⊂ Rkwn , where Θβ × Θφ are the compact parameter spaces of θ0 (as defined in the proof

of Theorem 2), and kwn = kw +N. One can then obtain

DT (θ̂ − θ0) = −
[
D−1

T

∂2LT (θ∗, σ̂)

∂θ∂θ>
D−1

T

]−1

D−1
T

∂LT (θ0, σ̂)

∂θ
. (C-2)

For notational brevity, let IT (θ∗, σ̂) = D−1
T

∂2LT (θ∗,σ̂)
∂θ∂θ>

D−1
T . First, one needs to show that

lim
T↑∞

P (‖IT (θ∗, σ̂)− IT (θ0,σ0)‖ > ε) = 0 given some arbitrarily small ε > 0. (C-3)
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Note that

P (‖IT (θ∗, σ̂)− IT (θ0,σ0)‖ > ε)

= P (‖IT (θ∗, σ̂)− IT (θ0,σ0)‖ > ε |θ∗ ∈ BT (β0, δβ)×B(φ0, δφ), σ̂ ∈ B(σ0, δσ))

P (θ∗ ∈ BT (β0, δβ)×B(φ0, δφ), σ̂ ∈ B(σ0, δσ))

+ P (‖IT (θ∗, σ̂)− IT (θ0,σ0)‖ > ε |θ∗ ∈ Bc
T (β0, δβ)×Bc(φ0, δφ), σ̂ ∈ Bc(σ0, δσ))

P (θ∗ ∈ Bc
T (β0, δβ)×Bc(φ0, δφ), σ̂ ∈ Bc(σ0, δσ)) ,

where the balls BT (β0, δβ), B(φ0, δφ), and B(σ0, δσ) are defined in the proof of Theorem 2. Since

limT↑∞ P (θ∗ ∈ Bc
T (β0, δβ)×Bc(φ0, δφ), σ̂ ∈ Bc(σ0, δσ)) = 0 for every θ∗ lying on the line segment

L(θ0, θ̂) by Theorem 2, one has

lim
T↑∞

P (‖IT (θ∗, σ̂)− IT (θ0,σ0)‖ > ε) ≤ lim
T↑∞

P

 sup
θ∈BT (β0,δβ)×B(φ0,δφ)

σ∈B(σ0,δσ)

‖IT (θ,σ)− IT (θ0,σ0)‖ > ε


(C-4)

for some arbitrarily small numbers, δβ, δφ and δσ. An application of Lemma 1 and some inequalities

for matrices yields

sup
φ∈B(φ0,δφ)
σ∈B(σ0,δσ)

∥∥∥∥D−1
γ,kw

(
∂2LT (ϕ)

∂β∂β>
− ∂2LT (ϕ0)

∂β∂β>

)
D−1

γ,kw

∥∥∥∥ ≤ C0

(
δ2
φ + δ2

σ

) 1
2

N∑
i=1

‖Qww,i‖,

sup
φ∈B(φ0,δφ)
σ∈B(σ0,δσ)

∥∥∥∥D−1
γ,kw

(
∂2LT (ϕ)

∂β∂φ>
− ∂2LT (ϕ0)

∂β∂φ>

)
INT

1/2

∥∥∥∥ ≤ C0

(
δβ

N∑
i=1

‖Qww,i‖+
(
δ2
φ + δ2

σ

) 1
2

N∑
i=1

‖Qwξ,i‖

)
,

sup
φ∈B(φ0,δφ)
σ∈B(σ0,δσ)

∥∥∥∥∂2LT (ϕ)

∂φ∂φ>
− ∂2LT (ϕ0)

∂φ∂φ>

∥∥∥∥ ≤ δσ

(
N∑
i=1

‖Qξξ,i‖

)1/2

,

where C0 is some finite generic constant that may differ from a line to another one. An application
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of the matrix inequality: ‖ A C
C D ‖ ≤ ‖A‖2 +

√
2‖C‖2 + ‖D‖2 yields

sup
θ∈BT (β0,δβ)×B(φ0,δφ)

σ∈B(σ0,δσ)

‖IT (θ,σ)− IT (θ0,σ0)‖

≤ C0

((
δβ + (δ2

φ + δ2
σ)1/2

) N∑
i=1

‖Qww,i‖+ (δ2
φ + δ2

σ)1/2

N∑
i=1

‖Qwξ,i‖+ δσ

N∑
i=1

‖Qξξ,i‖

)
. (C-5)

The consistency of θ̂ allows one to make δβ, δφ, and δσ in (C-5) arbitrarily small such that its RHS

becomes less than ε. In view of (C-4), (C-3) has been proved. Therefore, ‖IT (θ∗, σ̂)−IT (θ0,σ0)‖ =

op(1). By the same argument, one can also show that

∥∥∥∥D−1
T

(
∂LT (θ0, σ̂)

∂θ
− ∂LT (ϕ0)

∂θ

)∥∥∥∥ = op(1).

Moreover, by Lemma 1, one has

IT (θ0,σ0)
p−→ QG(φ0,σ0),

where QG is given in Theorem 2. Now, notice that for each

Eε

[
D−1

T

∂LT (ϕ0)

∂θ

∂LT (ϕ0)

∂θ>
D−1

T

]
= QG(φ0,σ0),

where the expectation is taken with respect to the joint probability density of εi. Therefore,

conditioning D−1
T

∂LT (ϕ0)
∂θ

on Wi, Pi, and ξi(β0), an application of the multivariate CLT to the

sequence εi yields

D−1
T

∂LT (ϕ0)

∂θ

d−→ N (0,QG(φ0,σ0)) .

The main theorem then follows from (C-2) and some marginal integration.
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Appendix D Confidence Set for Ratios of two Parameters

[Tipping Points]

Consider the general model (Y , {Pθ : θ ∈ Θ}), Θ ⊂ Rp, p ≥ 1, where Y is the sample space and

Pθ is a probability distribution over Y indexed by θ = (θ1, θ2, ..., θp)
′. Our object of interest are

functions of θ of the form h (θ) = L′θ/K ′θ where L and K are nonstochastic p × 1 vectors.

Given a sample of size T , assume a consistent and asympotically normal estimator of θ is available

θ̂ = (θ̂1, θ̂2, ..., θ̂p)
′ asy∼ N(θ,Σθ) where Σθ is estimated consistently by Σ̂θ. The discontinuity set

{θ ∈ Θ : K ′θ = 0} is clearly non-empty. In this context, the delta method expoits the following

regualr asympttoic result:

h(θ̂)
asy∼ N

h (θ) ,
∂h
(
θ̂
)

∂θ′
Σ̂θ
∂h′
(
θ̂
)

∂θ

 . (D-1)

For the same problem, Fieller’s method inverts a Wald-type test associated with the hypothesis

L′θ − ρ0K
′θ = 0 for a collection of fixed ρ0 values. For the ratio case presented in Section 2,

Fieller’s method involves assembling all ρ0 values such that θ1 − ρ0θ2 = 0 is not rejected at the α%

using the t-statistic
(
θ̂1 − ρ0θ̂2

)
/ (ρ2v̂2 − 2ρ0v̂12 + v̂1)

1/2
which is asymptotically standard normal

under the null hypothesis. The confidence set is thus defined as solution to following inequality in

ρ0

FCS (ρ;α) =

{
ρ0 :

(
θ̂1 − ρ0θ̂2

)2

≤ z2
α/2

(
v̂1 + ρ2

0v̂2 − 2ρ0v̂12

)}
. (D-2)

This requires solving the following second-degree-polynomial inequality for ρ0:

Aρ2
0 + 2Bρ0 + C ≤ 0 (D-3)

A = θ̂2
2 − z2

α/2v̂2, B = −θ̂1θ̂2 + z2
α/2v̂12, C = θ̂2

1 − z2
α/2v̂1. (D-4)
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for real solutions ρ0. Except for a set of measure zero, A 6= 0. Similarly, except for a set of measure

zero, ∆ = B2 − AC 6= 0. Real roots

δ01 =
−B −

√
∆

A
, δ02 =

−B +
√

∆

A

exist if and only if ∆ > 0, so

FCS (ρ;α) =

 [ρ01, δ02] if A > 0

]−∞, δ01] ∪ [δ02, +∞[ if A < 0
. (D-5)

Bolduc, Khalaf and Yelou (2010) further show that: (i) if ∆ < 0, then A < 0 and FCS (ρ;α) =

R; (ii) FCS (ρ;α) contains the point estimate ρ̂ = θ̂1/θ̂2 and thus cannot be empty, and (iii)

asymptotically, Fieller’s solution and the delta method give similar results when the former leads

to an interval, i.e. when the denominator is far from zero.
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Table 1: Parameters for Monte Carlo Simulation

Parameters 1
λ {0.2,0.99,1}
φ {0.2,0.8,0.9,0.99}
ψ {0.8,1}
ω12 0.85
µ -0.679
β1 0.619
β2 -0.007

Table 2: Size and Power for λ = 1, φ = 0.2, ψ = 1

Size Power
N T=5 T=10 T=50 T=100 T=5 T=10 T=50 T=100

PMG Delta 10 0.117 0.514 1 1 0.566 0.87 1 1
50 0.22 0.668 1 1 0.721 0.971 1 1
100 0.335 0.745 1 1 0.787 0.998 1 1
150 0.406 0.792 1 1 0.832 1 1 1

PMG Fieller 10 0.066 0.061 0.055 0.057 0.781 1 1 1
50 0.057 0.047 0.055 0.051 1 1 1 1
100 0.05 0.056 0.067 0.063 1 1 1 1
150 0.045 0.055 0.066 0.051 1 1 1 1

AB Delta 10 0.162 0.086 0.125 0.165 0.381 0.388 0.501 0.531
50 0.03 0.054 0.134 0.218 0.305 0.333 0.477 0.515
100 0.038 0.057 0.132 0.198 0.296 0.348 0.346 0.517
150 0.053 0.05 0.121 0.119 0.322 0.356 0.308 0.265

AB Fieller 10 0.147 0.066 0.086 0.1 0.138 0.092 0.067 0.069
50 0.053 0.078 0.054 0.097 0.032 0.071 0.055 0.064
100 0.031 0.068 0.074 0.07 0.037 0.048 0.067 0.061
150 0.019 0.054 0.137 0.176 0.027 0.039 0.117 0.069

Notes: µ = −0.679, β1 = 0.619, β2 = −0.007, ω12 = 0.85
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Table 3: Size and Power for λ = 0.9, φ = 1, ψ = 1

Size Power
N T=5 T=10 T=50 T=100 T=5 T=10 T=50 T=100

PMG Delta 10 0.987 1 1 1 984 0.997 1 1
50 1 1 1 1 1 0.971 1 1
100 1 1 1 1 0.787 0.998 1 1
150 1 1 1 1 0.832 1 1 1

PMG Fieller 10 0.068 0.067 0.053 0.049 0.781 1 1 1
50 0.052 0.048 0.046 0.05 1 1 1 1
100 0.062 0.056 0.065 0.05 1 1 1 1
150 0.044 0.055 0.059 0.057 1 1 1 1

AB Delta 10 0.801 0.919 0.989 0.992 0.984 0.997 1 1
50 0.947 1 0.953 0.998 1 1 0.999 1
100 0.941 1 1 0.957 1 1 1 0.997
150 0.963 1 1 1 1 1 1 1

AB Fieller 10 0.174 0.146 0.414 0.477 0.916 0.968 0.996 0.996
50 0.06 0.225 0.237 0.673 1 1 0.954 1
100 0.056 0.212 0.989 0.306 0.999 1 1 0.887
150 0.049 0.215 0.998 0.999 0.999 1 1 1

Notes: µ = −0.679, β1 = 0.619, β2 = −0.007, ω12 = 0.85

Table 4: Size and Power for λ = 0.2, φ = 0.2, ψ = 1

Size Power
N T=5 T=10 T=50 T=100 T=5 T=10 T=50 T=100

PMG Delta 10 0.161 0.508 1 1 0.657 0.873 1 1
50 0.383 0.814 1 1 0.863 0.999 1 1
100 0.516 0.902 1 1 0.948 1 1 1
150 0.581 0.94 1 1 0.974 1 1 1

PMG Fieller 10 0.064 0.066 0.056 0.058 0.956 1 1 1
50 0.074 0.048 0.055 0.05 1 1 1 1
100 0.057 0.059 0.044 0.063 1 1 1 1
150 0.059 0.069 0.060 0.061 1 1 1 1

AB Delta 10 0.15 0.084 0.146 0.185 0.366 0.416 0.503 0.518
50 0.04 0.066 0.147 0.216 0.3 0.342 0.497 0.513
100 0.035 0.061 0.104 0.189 0.291 0.334 0.244 0.497
150 0.037 0.048 0.108 0.08 0.285 0.333 0.165 0.162

AB Fieller 10 0.142 0.073 0.061 0.087 0.133 0.087 0.059 0.066
50 0.05 0.072 0.175 0.098 0.05 0.105 0.056 0.061
100 0.025 0.053 0.137 0.186 0.039 0.083 0.107 0.048
150 0.021 0.054 0.305 0.306 0.031 0.087 0.259 0.108

Notes: µ = −0.679, β1 = 0.619, β2 = −0.007, ω12 = 0.85
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Table 5: Size and Power for λ = 0.9, φ = 0.2, ψ = 1

Size Power
N T=5 T=10 T=50 T=100 T=5 T=10 T=50 T=100

PMG Delta 10 0.998 1 1 1 1 1 1 1
50 1 1 1 1 1 1 1 1
100 1 1 1 1 1 1 1 1
150 1 1 1 1 1 1 1 1

PMG Fieller 10 0.07 0.072 0.056 0.048 1 1 1 1
50 0.083 0.054 0.046 0.054 1 1 1 1
100 0.092 0.078 0.05 0.056 1 1 1 1
150 0.09 0.081 0.063 0.06 1 1 1 1

AB Delta 10 0.895 0.918 0.991 0.997 0.995 0.996 1 1
50 0.996 1 0.956 1 1 1 0.994 1
100 0.994 1 1 0.964 1 1 1 0.997
150 0.997 1 1 1 1 1 1 1

AB Fieller 10 0.191 0.159 0.423 0.498 0.978 0.96 0.997 0.99
50 0.143 0.513 0.225 0.663 1 1 0.945 1
100 0.137 0.523 1 0.345 1 1 1 1
150 0.116 0.57 1 1 1 1 1 1

Notes: µ = −0.679, β1 = 0.619, β2 = −0.007, ω12 = 0.85

Table 6: Size and Power for λ = 0.2, φ = 1, ψ = 0.8

Size Power
N T=5 T=10 T=50 T=100 T=5 T=10 T=50 T=100

PMG Delta 10 0.056 0.216 0.594 0.653 0.446 0.689 0.968 0.997
50 0.098 0.306 0.782 0.887 0.625 0.751 1 1
100 0.161 0.369 0.739 0.968 0.663 0.845 1 1
150 0.194 0.44 0.772 0.916 0.702 0.868 1 1

PMG Fieller 10 0.068 0.056 0.048 0.064 0.545 1 1 1
50 0.061 0.047 0.055 0.078 0.986 1 1 1
100 0.06 0.061 0.06 0.102 1 1 1 1
150 0.046 0.061 0.048 0.102 1 1 1 1

AB Delta 10 0.194 0.155 0.064 0.071 0.347 0.345 0.306 0.315
50 0.028 0.038 0.0.083 0.057 0.252 0.249 0.275 0.296
100 0.038 0.026 0.032 0.09 0.224 0.246 0.283 0.311
150 0.031 0.037 0.035 0.043 0.262 0.256 0.286 0.282

AB Fieller 10 0.146 0.074 0.067 0.053 0.157 0.091 0.074 0.072
50 0.042 0.052 0.051 0.056 0.043 0.071 0.048 0.059
100 0.039 0.046 0.019 0.345 0.037 0.046 0.07 0.048
150 0.019 0.054 0.046 0.028 0.03 0.055 0.106 0.076

Notes: µ = −0.679, β1 = 0.619, β2 = −0.007, ω12 = 0.85
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Table 7: Size and Power for λ = 0.9, φ = 0.2, ψ = 1

Size Power
N T=5 T=10 T=50 T=100 T=5 T=10 T=50 T=100

PMG Delta 10 0.998 1 1 1 1 1 1 1
50 1 1 1 1 1 1 1 1
100 1 1 1 1 18 1 1 1
150 1 1 1 1 1 1 1 1

PMG Fieller 10 0.07 0.072 0.056 0.048 1 1 1 1
50 0.083 0.054 0.046 0.054 1 1 1 1
100 0.092 0.078 0.05 0.056 1 1 1 1
150 0.09 0.081 0.063 0.06 1 1 1 1

AB Delta 10 0.895 0.918 0.991 0.997 0.995 0.996 1 1
50 0.996 1 0.956 1 1 1 0.994 1
100 0.994 1 1 0.964 1 1 1 0.997
150 0.997 1 1 1 1 1 1 1

AB Fieller 10 0.191 0.159 0.423 0.498 0.978 0.96 0.997 0.99
50 0.143 0.513 0.225 0.663 1 1 0.945 1
100 0.137 0.523 1 0.345 1 1 1 1
150 0.116 0.57 1 1 1 1 1 1

Notes: µ = −0.679, β1 = 0.619, β2 = −0.007, ω12 = 0.85
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