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Since the discovery that NO plays a crucial role in mediating plant defense response 

in the late nineties, extensive research over the past 20 years revealed that NO is 

acting as a mediator in plant growth and development, as well as coping with biotic 

and abiotic stresses. However, both NO biosynthesis and NO downstream signaling 

during the hypersensitive response triggered by an avirulent pathogen still need 

further clarification.  

Two routes for NO production in plants are known, the oxidative pathway and the 

reductive pathway. To date, the reductive route from nitrite is the most firmly 

described. NR can produce NO from nitrite but the physiological relevance of this 

activity is unclear. Furthermore, exogenous nitrite supply to an NR deficient mutant 

demonstrates that other routes for NO production from nitrite should exist in plants. 

Interestingly, it was reported that bovine carbonic anhydrase II, an alpha type CA, can 

convert nitrite to NO. Moreover, additional literature reports suggested the 

involvement of carbonic anhydrases belonging to the beta family of plant CAs in 

immunity. Therefore, the first aim of this work was to explore the possible 

involvement of plant carbonic anhydrase enzymes in nitric oxide synthesis during the 

HR. Firstly, we tried to explore the NO producing activity of AtαCA2, an Arabidopsis 

enzyme belonging to the same family as the bovine CA, which expression was 

induced by pathogen. We found that this protein requires glycosylation for its activity 

and localizes to plant thylakoids. Unfortunately, the transient expression in plant 

system, which yielded a properly glycosylated protein, led to low protein expression 

not enough to verify its NO production activity. Alternative production system should 

be eventually considered. Two representatives of β andγtype carbonic anhydrases 

were also cloned, expressed and purified. As expected, tobacco βCA1 showed high 

carbonic anhydrase activity, and Arabidopsis γCA2 showed no detectable carbonic 

anhydrase activity. However, these proteins were not able to catalyze the nitrite 

conversion to NO. 

In the second part of this work, we enquired the NO downstream signaling, focusing 

on transcriptomic changes associated to NO induced cell death. A massive 
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transcriptomic rearrangement was found to be associated to the NO induced plant cell 

death. The functional class response to stimuli was strongly enriched in the 

differentially expressed genes modulated by NO. Moreover, we found a large 

modulation in signaling and transcription factors. Genes encoding for proteins 

involved in protein degradation or metabolism of nucleic acids were induced, while 

genes involved in anabolic processes were down-regulated. Importantly we confirmed 

that NO treatment leads to a massive metabolic reprogramming, which specially 

affects lipid metabolism. Finally, among induced genes the enrichment in genes 

previously found to be involved/associated to cell death confirmed that chosen 

conditions were adequate to select for genes involved in cell death activation and 

execution during the HR.      
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Abbreviations 

aa Amino acid 

ARC Amidoxime Reducing Component 

bp Base pairs 

BSA Bovine serum albumin 

ºC Degree Celsius 

CA Carbonic anhydrase 

cDNA Complementary DNA 

cGMP Cyclic guanosine monophosphate 

DMSO Dimethylsulfoxid 

DEGs Differentially expressed genes 

EDTA Ethylendiaminetetraacetic acid 

ETI Effector-triggered immunity 

Endo H Endoglycosidase H 

GSNO S-nitrosylated glutathione 

GSNOR GSNO reductase 

H2O2 Hydrogen peroxide 

HR Hypersensitive response 

kDa Kilo dalton 

l Liter 

M Molar 

MAPKs mitogen-activated protein kinases 

mg Milligram 

min Minute  

mL Milliliter  

mM Millimolar 

MW Molecular weight 

μL Microliter  

μM Micromolar 

NO Nitric oxide  

NOS Nitric oxide synthase 

NR Nitrate reductase 

NiR Nitrite reductase 

ONOO
-
 Peroxynitrite 

ORF Open reading frame 

PAMPs Pathogen-associated molecular patterns 

PCR Polymerase chain reaction 

PR Pathogen-related protein 

PRRs Pattern recognition receptors 

PTI PAMP triggered immunity 

ROS Reactive oxygen species 

rpm Rotations per minute 
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sec Second  

SDS Sodium dodecyl sulfate 

sGC Soluble guanylate cyclase 

SNP Sodium nitroprusside 

O2
-
 Superoxide 

TE Tris-EDTA 
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1.1 The plant immunity system 

Plants are engaged in a continuous struggle with their pathogens to survive. Plant 

pathogens include a variety of microbes such as bacteria, fungi, oomycetes, 

nematodes and aphids (Jones and Dangl, 2006; Dodds and Rathjen, 2010). According 

to their lifestyles, phytopathogens can be classified as biotrophs, hemi-biotrophs and 

necrotrophs (Glazebrook, 2005). Biotrophic pathogens feed on living host tissues to 

get nutrients, while the necrotrophic pathogens take nutrients from dead or dying cells. 

Hemi-biotrophs, can be biotrophic or necrotrophic pathogens, depending on the stages 

of their life cycle or infection process. Among hemi-biotrophs is the bacterial 

pathogen Pseudomonas syringae (Glazebrook, 2005; Xin and He, 2013). The 

interactions between Arabidopsis thaliana / Pseudomonas syringae have been widely 

used as a model for characterizing plant / pathogen interactions and deciphering the 

molecular mechanisms of plant disease resistance and pathogen virulence (Quirino 

and Bent, 2003). Plant-pathogen interactions can be classified as compatible or 

incompatible interactions. Compatible interactions take place in susceptible hosts 

which are not able to recognize the pathogen effectors. In this case the pathogen is 

virulent. By contrast, incompatible interactions involve recognition of pathogen 

effectors by resistance genes, in this case the pathogen is called avirulent pathogen 

(Glazebrook, 2005). 

The first layer of defense against microbes is a passive defense constituted of 

constitutive defense systems. Plants can defend themselves from pathogen by 

preformed physical barriers such as the cuticle, and inhibit pathogen growth by 

production of antimicrobial compounds. The cuticle which is composed of cutin and 

waxes is the outer structures of the epidermis of the land plants (Yeats and Rose,2013). 

Usually, constitutive defense can defeat the invasion of the majority of pathogens, 

however, few successful pathogens can reach extracellular space by natural openings 

such as stomata or wound sites (Melotto et al., 2008).  
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Plants, unlike mammals, lack specialized mobile immune cells and a somatic adaptive 

immune system. However, they have the capability of establishing innate immunity, 

and launching systemic acquired immunity responses upon perception of signals from 

local infection sites (Gohre and Robatzek, 2008). The classical view of plant innate 

immunity is depicted by the so-called zigzag model introduced by Jones and Dangl 

(2006). This model proposes two lines of active defense. The first line of active plant 

defense is triggered by pattern recognition receptors (PRRs), cell surface receptors 

that recognize highly conserved molecules within a class of microbes, called 

pathogen-associated molecular patterns (PAMPs), and activate the so-called PAMP 

triggered immunity (PTI). Successful pathogens are able to overcome PTI by means 

of secreted effectors that suppress PTI responses. Pathogenic bacteria typically inject 

such effectors directly into the host cytoplasm through their type III secretion 

machinery.  During evolution, plants have responded to these effectors with the 

development of cytoplasmic R-proteins that recognize single effector thus activating a 

second line of active, much stronger and robust plant defense response, the so called 

effector-triggered immunity (ETI), which often involves the hypersensitive response 

(HR), a type of programmed cell death. 

However, we should also mention that accumulating evidence shows now that not all 

microbial defense activators conform to this distinction between PAMPs and effectors, 

thus this classical division has become hazy (Thomma et al., 2011). Therefore, the 

classical two layer model of plant immunity is recently evolving to a much modern 

view in which there is rather a continuum between PTI and ETI. ETI and PTI could 

be both robust or weak, depending on the specific interaction and possibly also 

environmental conditions. In a recent review an attempt of classifying R-proteins 

activating defense according to different mechanisms has also been provided 

(Kourelis et al., 2018) 
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1.1.1 PAMP-triggered immunity  

According to the classical view of the plant innate immunity, the first line of active 

defense involves recognition of the conserved microbial elicitors called pathogen 

associated molecular patterns (PAMPs) by plasma membrane-localized pattern 

recognition receptors (PRRs). PAMPs are typically essential conserved components of 

whole classes of pathogens, such as lipopolysaccharides, bacterial flagellin and fungal 

chitin (Boller and Felix, 2009, Macho and Zipfel, 2014). PRRs include 

transmembrane receptor kinases and transmembrane receptor-like proteins (Zipfel et 

al.,2008). There are 610 receptor kinase genes and 57 receptor-like proteins in 

A.thaliana (Dodds and Rathjen, 2010) in contrast to the situation in animals, which 

own 12 Toll-like receptors (Gay and Gangloff, 2007). This huge number of PRRs in 

plants greatly enhanced the adaptation ability of plants to biotic stress. One of best 

characterized PRRs is the A.thaliana receptor kinase FLAGELLIN SENSING 2 

(FLS2) (Figure 1, Dodds and Rathjen, 2010), which directly binds flagellin (step a). 

After perception of flagellin, FLS2 rapidly forms a complex with the leucine rich 

repeat (LRR) receptor kinase BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED 

KINASE 1(BAK1) (step b). The interaction of FLS2 and BAK1 results in 

phosphorylation of both proteins (step c). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Model of recognition of flagellin by pattern recognition receptor (FLS2). 

Adapted from Dodds and Rathjen, 2010   
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The cytoplasmic protein kinase BOTRYTIS INDUCED KINASE 1(BIK1) , BAK1 

and FLS2 form FLS2-BAK1-BIK1 complex, and transduce downstream signals by 

mitogen-activated protein kinases (MAPKs) or calcium-dependent protein kinases 

(CDPKs) (step c). The recognition of PAMPs by PRRs induces PAMP-triggered 

immunity (PTI). Its downstream responses include ion fluxes, oxidative burst, MAPK 

cascades, hormone signaling, transcriptional reprogramming, callose deposition,and 

stomatal closure (Nicaise et al.,2009, Bigeard et al.,2015).  

 

1.1.2 Effector-triggered immunity 

Adapted pathogens can deliver effectors into host cells to interfere with PTI, and 

promote pathogen virulence on susceptible plants. However, in resistant plants, the 

immune system uses Resistance (R) proteins to recognize the presence of specific 

pathogen effector proteins in host cells and induce a robust resistance response (Jones 

and Dang, 2006, Cui et al., 2015). Most R genes encode nucleotide-bingding 

leucine-rich repeat (NB-LRR) proteins, and there are about 160 R genes in 

Arabidopsis genome. Plant NB-LRRs are composed of a variable N terminus, a 

central nucleotide binding pocket (NB-ARC domain), and a C-terminal LRR domain. 

Most NB-LRRs can be classed into coiled-coil (CC) NB-LRR and Toll-interleukin-1 

receptor (TIR) NB-LRR based on their N-terminal domain. The N-terminal domain 

decides the requirement for distinct downstream signaling components (Feys and 

Parker, 2000; Elmore et al., 2011). Enhanced Disease Susceptibility 1 (EDS1) and 

Non-race specific Disease Resistance 1 (NDR1) are required for activation of 

TIR-NB-LRRs and CC-NB-LRRs-mediated immune responses, respectively (Aarts et 

al.,1998). The best characterized NB-LRRs include Arabidopsis R-proteins RPM1, 

RPS2 and RPS5 , which specifically recognize P. syringae effectors AvrRpm1/AvrB, 

AvrRpt2 and AvrPphB, respectively. In most case, recognition of effectors by 

NB-LRR is not relied on direct interaction between NB-LRR and effector molecule 

but by an indirect mechanism (Shao et al.,2003, Axtell and Staskawicz,2003; Mackey 
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et al.,2002,2003., Chisholm et al.,2006). One of the best characterized effectors is 

Arabidopsis AvrRpm1 (in Figure 2). Plant pathogenic Pseudomonas syringae deliver 

effectors AvrB or AvrRpm1 into the host cells by type III secretion system (TTSS) 

encoded by hrp (hypersensitive response and pathogenicity) (Step 1). The presence of 

AvrB or AvrRpm1 is perceived by RIN4 and thus induces phosphorylation of RIN4 

(Step 2). The Arabidopsis CC-NB-LRR protein Rpm1 monitors phosphorylation state 

of RIN4, and activates resistance reactions called ETI (Step 3) (Liu et al 2011, Li et 

al., 2014).  

According to the classical view of plant immunity, the ETI response is quantitatively 

more prolonged and robust than PTI (Tsuda et al., 2010) and is often referred as 

hypersensitive response (HR). Importantly, one of the most visible phenotype in ETI 

is the rapid and localized programmed cell death triggered upon pathogen recognition 

at the infection site which aims to restrict pathogen growth and spread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model for AvrB/AvrRpm1 induced ETI. 

Adapted from Chisholm, S.T et al., 2006 

ETI 
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1.1.3 The hypersensitive response 

The HR is typically triggered upon recognition of pathogen-encoded avirulence (Avr) 

protein by a cognate plant resistance (R) protein (Figure 3) and is often associated 

with a rapid localized programmed cell death at the site of infection in few hours 

following the pathogens infection (Mur et al.,2008; Coll et al.,2011). Besides, the HR 

is accompanied by the induction of a myriad of defence genes and the production of 

anti-microbial secondary metabolites such as phytoalexins finally triggering systemic 

acquired resistance (SAR) (Dangl and Jones,2001; Dixon, 2001; Truman et al.,2006). 

Depending on different plant-pathogen interactions, the outcome of HR can vary 

greatly in phenotype and timing at both macro and microscopic scales (Holub et al., 

1994; Christopher-Kozjan and Heath, 2003; Krzymowska et al., 2007). Such 

variations are related with different infection strategies employed by the various types 

of pathogen, and reflect differences in underlying mechanism(s) of HR cell death. In 

any case it has been demonstrated that the occurrence of HR is dependent on active 

metabolism and protein synthesis (Belenghi et al., 2003, Mur et al.,2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Jigsaw model of the hypersensitive response. 

Adapted from Mur et al., 2008 

HR 
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A symphony of cytosolic signaling molecules (including Ca(
2+

), reactive oxygen 

species and nitric oxide among others) have been suggested as early components of 

HR signaling (Figure 3). However, specific interactions among these cytosolic 

messengers and their roles in the signal cascade are still unclear. 

A leading signal following successful Avr and R proteins interaction is Ca
2+

influx. A 

persistent rise in cytoplasmic calcium ([Ca
2+

 ]cyt) was observed indeed in Arabidopsis 

and cowpea during HR (Xu and Heath,1998; Grant et al.,2000) and application of 

calcium channel blocker, LaCl3 suppressed avirulent bacteria induced cell death in 

soybean cultures (Levine et al.,1996). Moreover, application of the cyclic nucleotide 

gated channel (CNGC) blocker suppressed HR also in Arabidopsis and the 

Arabidopsis mutant defense no death (dnd1), mutated in CNGC showed abolished HR, 

demonstrating that a crucial role of calcium in HR cell death triggering (Clough et al., 

2000; Ali et al., 2007). 

Another typical signature during the early stages of many forms of HR is the 

triggering of an oxidative burst due to accumulation of reactive oxygen species (ROS) 

including superoxide (O2
-
) and hydrogen peroxide (H2O2) (Lamb and Dixon, 1997; 

Heath, 2000). Many studies reported involvement of NADPH oxidase activity for 

production of H2O2 in plant defence (Pugin et al., 1997; Simon-Plas et al., 2002; 

Torres et al., 2002; Torres and Dangl, 2005). Plant NADPH oxidases (RBOH) 

catalyse the reduction of dioxygen to O2
-
 from the oxidation of NADPH. Then 

generated O2
-
 is rapidly catalysed to H2O2 either enzymatically via superoxide 

dismutase (SOD) or/and non-enzymatically. A.thaliana genome contains 10 Rboh 

forms A-J (respiratory burst oxidative homologues), whose products are closely 

related to gp91phox homologues in mammalian phagocytes. Torres et al., (2002) 

reported that in A. thaliana, RbohD and RbohF are essential for the accumulation of 

ROS and for resistance during incompatible plant pathogen interaction. However, 

further evidences also showed the potential involvement of peroxidases or alternative 

systems including amine, diamine, and polyamine oxidases in the generation of H2O2 
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during the oxidative burst (Bolwell and Wojtaszek, 1997, O‟Brien et al., 2012). The 

oxidative burst, however, depends both on ROS generation and degradation. Indeed to 

control ROS homeostasis, plant cells make use of an array of protective enzymatic 

and non-enzymatical mechanisms, as unwanted injuries may lead to cell death 

execution (Montillet et al., 2005; Van Breusegem et al., 2006; Laloi et al., 2006). 

H2O2 can be catabolized enzymatically either directly by catalases or/and indirectly 

by ascorbate peroxidases, peroxiredoxins, glutathione peroxidases and by 

heterogeneous group of guaiacol peroxidases (Dat et al., 2000). Moreover, 

non-enzymatic antioxidant molecules such as ascorbate, glutathione, tocopherol and 

carotenoids are also involved in adjusting intracellular content of ROS to harmless 

level (Dellapenna et al., 2006). The oxidative burst plays several roles in plant 

hypersensitive disease resistance response. H2O2 contributes to limit the pathogen 

colonization by acting directly on the pathogen as antibiotic agent (Peng and Kuc, 

1992), or indirectly by helping to strengthen the cell wall via oxidative cross-linking 

of cell wall glycoproteins and/or by participating in the cell-signalling cascade leading 

to cell death (Lamb and Dixon, 1997; Bolwell et al., 1995). In support, Delledonne et 

al., (2001) reported that H2O2 (not O2
-
) plays a central role in potentiating 

pathogen-induced cell death during HR. Moreover, a reactive oxygen species 

contribution to establishment of the systemic acquired resistance has also been 

reported and studied (Wang et al., 2014). 

Nitric oxide (NO) is another early signal molecule accumulating during HR 

(Delledonne, 1998, Chen et al., 2014). Transgenic plants expressing either bacterial 

nitric oxide dioxygenases or flavohaemoglobins showed reduced NO level and 

delayed HR, suggesting that NO plays a key role in the development of the HR (Zeier 

et al.,2004; Bocarra et al.,2005). During avirulent pathogen infection, the NO 

production in host cells is stimulated in a biphasic manner as was first demonstrated 

in a study done in tobacco and soybeans cells infected with incompatible P. syringae 

pv. glycinea and further confirmed in additional studies (Delledonne et al., 1998, 

Gupta et al., 2013, Chen et al., 2014). The first NO burst is short and happens in 1 
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hour after infection whereas the second burst lasting longer occurs at later stage of 

infection i.e. 4-8 hours after infection (Delledonne et al., 1998, Chen et al., 2014). The 

main source for NO production during plant defence response, however, is still largely 

unknown. Moreover, likewise ROS the NO burst also depends on enzymes involved 

in its homeostasis (paragraph 2.3). As previously mentioned, synergistic NO and H2O2 

are required for the initiation of cell death (Delledonne et al., 2001; De Pinto et al., 

2002). NO is an highly reactive molecule. Once produced it participates to signalling 

through its reactivity. Indeed, NO also affects signaling through direct reaction with 

proteins resulting in post-translational modifications which modulate protein function. 

Several studies addressed this and many examples of NO mediated post-translational 

modification leading to modulation of plant protein function and signaling during the 

HR have been now elucidated (see paragraph 3). Interestingly, it has been recently 

reported that NO also mediates post-translational modification of a bacterial effector 

protein and modifies its activity, thus also directly targeting and disarming pathogen 

effector proteins beside targeting and modulating plant proteins activity during the HR 

(Ling et al., 2017). Finally NO can induce plant defence gene expression such as 

phenylalanine ammonia lyase (PAL) and pathogenesis-related 1 (PR1) and therefore 

modulate plant gene expression and act through the activation of second messengers 

such as cGMP and cyclic ADP ribose (cADPR) (Durner et al., 2001; Vandelle et al., 

2016). 

Beside the described early signaling events HR implies execution related process 

(Figure 3). Plants lack close caspase homologs, but several studies using 

caspase-specific peptide inhibitors suggested the presence of caspase-like protease 

activities during plant HR (Lam et al.,2000; Rojo et al., 2004; Hatsugai et al.,2004, 

2009). Plant metacaspases are thus suggested to be the ancestors of metazoan 

caspases, and plant metacaspases have previously been shown to be original cysteine 

proteases which auto-process in a manner similar to that of animal caspases. Their 

involvement in plant cell death execution during pathogen infection has been 

demonstrated. Indeed AtMC1, a type I Arabidopsis metacaspase containing a 
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conserved LSD1-like zinc finger motif interacts with LSD1, and is a positive regulator 

of cell death as its caspase-like activity is required for both superoxide-dependent cell 

death and HR mediated by an intracellular nucleotide-binding-leucine-rich repeat 

receptor (Coll et al., 2010). AtMC2 was also shown to positively regulate cell death 

(Watanabe and Lam, 2011). The vacuolar processing enzyme VPE in Nicotiana 

benthamiana and its homology VPE gamma in Arabidopsis show caspase-1-like 

activity during HR (Rojo et al., 2004; Hatsugai et al.,2004). VPE activity can lead to 

tonoplast rupture and thus cell death. However, the mechanism of activation of VPEs 

and their proteolytic targets are still unclear. Interestingly it was also shown that 

autophagic components contribute to HR cell death, but only to EDS1 dependent HR 

cell death conditioned by Toll/Interleukin-1(TIR)-type immune receptors (Hofius et 

al.,2009). 

 

1.1.4 Nitric oxide functions during the HR 

The first evidence showing NO production in plant cell and its involvement in plant 

immunity was reported by Delledonne et al., (1998). This work demonstrated that 

ROS are necessary but not sufficient to trigger host cell death and, as previously 

mentioned, that nitric oxide (NO) is produced during HR in a biphasic manner and 

cooperates with ROS in the activation of hypersensitive cell death. In a following 

study indeed it was demonstrated that a balance production of NO and H2O2 is 

required for the initiation of cell death (Delledonne et al., 2001). Furthermore, Durner 

et al., (1998), showed that NO once produced affects molecular responses during 

plant defence and therefore participates in plant disease resistance. More in detail they 

demonstrated that a high level of NOS-like activity is found in resistant tobacco plants 

under pathogen attack and they reported the induction of defence genes through NO. 

Accordingly, genetic approaches to scavenge NO in transgenic plants compromised 

the HR (Zeier et al.,2004; Bocarra et al.,2005). 
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Since then, several studies have addressed the key point of revealing how NO is 

produced and then translates its functions during the HR. An overview of the outcome 

of these studies concerning either the mechanisms involved in NO production during 

the HR, or its detailed signalling following its accumulation will be provided in the 

following paragraph 1.2 and paragraph 1.3. However, despite all these efforts, the NO 

production mechanism in plant during HR remains elusive and some aspects of NO 

signalling during HR also expect further elucidation. 

 

1.2 Routes for NO synthesis during the HR 

The first demonstration that plant cell can produce NO was that previously mentioned 

in the field of plant immunity. However, NO is produced by plant cell in many 

contexts and is widely recognized now as a key molecule in various plant 

physiological processes (Corpas and Barroso, 2015). Still, how NO is synthesized in 

plant cell in the different context is partially elusive and a better understanding of 

these mechanisms would greatly benefit our studies on NO functions in plant growth, 

development and defense against adverse environmental conditions (Corpas and 

Barroso, 2015). Biochemically, two routes for NO production can be considered, an 

oxidative pathway and a reductive pathway (Moreau et al., 2010). 

 

1.2.1 The oxidative pathways for NO synthesis 

In animal cells, NO is mainly produced by the oxidative pathway even though the 

existence of a reductive pathway has been also recently reported (Maia and Moura 

2015). In the oxidative NO production pathway, the amino acid arginine is oxidized 

by nitric oxide synthase (NOS) into citrulline and NO in an oxidoreductase reaction 

using NADPH as an electron donor, O2 as a co-substrate, and 

(6R-)-5,6,7,8-tetrahydrobiopterin (BH4), FAD, FMN, and calmodulin (CaM) as 
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cofactors (Forstermann and Sessa, 2012 ). The existence of NOS in plant, however, is 

still an unsolved mystery. Experimental evidences support the existence of 

arginine-dependent NO production activity in plants (Corpas et al., 2009). Indeed, 

first evidence of NO involvement in plant disease resistance and in defense gene 

induction relied on the application of mammalian NOS inhibitors such as PBITU 

(S,S0-1,3-Phenylene-bis (1,2-ethanediyl) -bis-isothiourea, L-NAME 

(NG-Nitro-L-arginine methyl ester), L-NMMA (NG-Mono-methyl-L-arginine) 

(Delledonne et al., 1998; Durner et al., 1998). However, we know today that these 

inhibitors which are mainly arginine analogs competing for the active site of the 

enzyme suffer of not high specificity (Astier et al., 2017). Nevertheless, 

arginine-dependent NOS-like activity assay detected a NOS-like activity in various 

plant tissues and organelles such as mitochondria, chloroplasts, peroxisomes and was 

suggested to be involved in plant development and response to abiotic and biotic 

stresses (Corpas et al., 2006; Rodriguez-Serrano et al. 2006; Besson-Bard et al. 2008; 

Wang et al., 2009; Besson-Bard et al. 2009; De Michele et al.2009; Asai and Yoshioka 

2009;). These studies strongly indicated that plants may have a NOS-like enzyme 

(Corpas et al., 2009). However, it is worth noting that plant cell extracts, differently 

from animal extracts, contain another arginine-dependent activity that could convert 

arginine to arginosuccinate. Therefore, a reliable NOS activity assay in plants should 

always include the verification of citrulline production and NO production (Tischner 

et al.2007). 

During the past two decades, great efforts have been put in searching plant NOS. The 

first reported pathogen-inducible nitric oxide synthase (iNOS) was a variant isoform 

of the P protein of the glycine decarboxylase complex, isolated through the 

biochemical purification of a NOS-like activity from kilograms of tobacco leaves 

(Chandok et al., 2003). Unfortunately, the NOS activity of this iNOS enzyme was not 

further confirmed in following studies and finally the publication was retracted 

(Klessig et al., 2004). Meanwhile, through sequence similarity to a hypothetical snail 

NOS, Guo and colleagues (2003) retrieved a putative Arabidopsis NOS gene, the 
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corresponding mutant of which, AtNOS1, was defective in NO accumulation. 

However, it was later shown that the AtNOS per se don‟t produce NO directly but 

might affect the NO accumulation and or induction. Indeed, AtNOS encodes a 

circularly permuted GTPase, not a true NOS, therefore, AtNOS was renamed as 

AtNOA1 (NO-associated protein 1) (Moreau et al.,2008). AtNOA1 belongs to a 

family of circularly permuted GTPase containing RNA/ribosome binding domains 

and can hydrolyze GTP to GDP. Overexpression of the AtNOA1‟s bacterial homolog 

YqeH complemented the phenotype defect of atnoa1 mutant and suggested that 

AtNOA1 function by binding RNA/ribosomes and is required for ribosome 

functioning (Gas et al., 2009). Therefore, defective NO production in loss-of-function 

mutants is an indirect effect of interfering with normal plastid functions 

demonstrating that plastids play an important role in regulating NO levels in plant 

cells (Moreau et al.,2008). Nevertheless, this mutant is widely used in studies of NO 

function in plant. In addition to these unsuccessful reports about plant NOS, a study 

based on a proteomic approach to identifying NOS proteins using mammalian NOS 

antibodies as indicator obtained candidate proteins that displayed no similarities with 

animal NOS and no NOS activity (Butt et al., 2003).  

However, much recently, in the unicellular marine alga Ostreococcus tauri, an OtNOS 

has been finally characterized with sequence similarity to human NOSs (Forest et al., 

2010). OtNOS has the oxygenase and reductase domains of mammalian NOS and 

could bind all the cofactors of typical mammalian NOS including heme, H4B, 

NADPH, FMN and FAD (Foresi et al., 2010). The activity of OtNOS can be inhibited 

by mammalian NOS inhibitor like the inactive Arg analog L-NAME and the 

Ca
2+

/CaM was not necessary for enzymatic activity of OtNOS (Foresi et al., 2010). As 

bacterial NOS-like proteins, both pterin tetrahydrofolate (THF) and H4B can be used 

by OtNOS as cofactors in vitro and in vivo. So OtNOS possibly use THF as cofactor 

in plant instead of H4B which is not present in plant cells (Foresi et al.,2015). The 

transgenic OtNOS plants, in which OtNOS gene expression was under the control of a 

abiotic stress responsive promoter, accumulated higher NO level compared with the 
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empty vector transformants and showed enhanced abiotic stress tolerance and 

increased stomatal development (Foresi et al.,2015). However, this first discovery of a 

canonical NOS from the plant kingdom in algae, was not followed by the discovery of 

similar NOS in land plants. Remarkably, a recent work aiming to search for 

transcripts encoding NO-like proteins using data set generated by the 1000 plants 

(1kP) international consortium and publicly available plant genomes database 

highlighted 15 complete sequences presenting enough similarity to be identified as 

NOS, all belonging to algal species. However, this study failed to identify a canonical 

NOS sequence from land plants. Therefore, it is likely that the NOS gene was 

transmitted from a common ancestor to plant and was later lost in land plants, the 

NOS from algae being the remaining testimony of these events (Jeandroz et al., 2016; 

Santolini et al., 2017). 

Alternative NO production via oxidative pathway includes polyamines and 

hydroxylamine-mediated NO formation (Gupta et al., 2010). Arginine can be used as 

substrate for synthesis of polyamines, such as spermine and spermidine. Increased 

supply of these polyamines to Arabidopsis seedlings rapidly provoked NO production 

in the elongation zone of root tip and the veins and trichomes of primary leaves (Tun 

et al., 2006). The arginase enzyme can regulate arginine concentration in plant cells, 

and a reduction in arginase activity increased NO production and vice versa (Flores et 

al., 2008). Furthermore, NO production in plants was recovered when spermine was 

exogenously provided, suggesting the polyamine may be involved in the NO synthesis 

(Yamasaki and Cohen, 2006). Recently, an higher arginase activity impacting the 

arginine pool was found to be responsible for the impaired NO production and 

developmental phenotype observed in the A. thaliana mutant for the copper amine 

oxidase 8 (CuAO8), an enzyme involved in polyamine (PA) catabolism (Gross et al., 

2017). All these findings support the relevance of the oxidative pathway for NO 

production in plant. Besides, significant increase in NO emission was detected in 

NR-deficient tobacco cells supplied with exogenous hydroxylamine under aerobic 

conditions, supporting the possibility that hydroxylamine can be converted to NO 
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(Rumer et al.,2009) , but NO emission rate is much lower than that triggered from NR 

and mitochondrial electron transport chain (Gupta et al., 2010). However, the 

biochemical mechanisms by which polyamines and hydroxylamine-mediate NO 

production are unclear, and their physiological significance in context of 

hypersensitive response awaits further exploration. 

1.2.2 The reductive pathways for NO synthesis 

Nitrite is currently considered as the main source for NO production in plants by the 

reductive pathways for NO synthesis (Santolini et al., 2017). First of all, reduction of 

nitrites to NO can occur non-enzymatically in particular conditions, such as low pH or 

highly reducing environments, when high concentrations of nitrate are present, but 

these conditions are rarely encountered (Bethke et al.,2004). Furthermore, several 

enzymes or cellular complex components have been identified as sources for NO 

production using nitrite as substrate (Gupta et al., 2010; Moreau et al., 2010). 

 

1.2.2.1 Nitrate reductase 

The cytosolic enzyme nitrate reductase (NR) catalyzes the reduction of nitrate to 

nitrite using NADH as electron donor. Besides that, NR can also catalyze the 

conversion of nitrite to NO in vitro and in vivo through the side-reaction 

NADH+3H3O
+
 +2NO2

-
 → NAD

+
 +2NO +5H2O (Yamasaki and Sakihama, 2000; 

Rockel et al., 2002). However, in vivo the efficiency of NR catalyzed nitrite reduction 

to NO is estimated to be only 1% of its nitrate-reducing activity (Rockel et al., 2002; 

Plantchet et al., 2005). However, this reaction can be promoted by specific conditions 

such as anoxic or acidic environments. Arabidopisis has two homologous genes (Nia1 

and Nia2) encoding NR (Wilkinson and Crawford, 1993). The NR-deficient nia1nia2 

double knock-out mutants showed reduced levels of both nitrite and NO, while the 

nitrite reductase (NiR) antisense tobacco lines accumulated higher level of nitrite and 

NO (Modolo et al., 2006; Morot Gaudry-Talarmain et al., 2002). However, due to 
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reduction of nitrite to ammonia by the plastidic NiR, the nitrite concentration is 

usually low in contrast to nitrate under normal growth conditions. In addition, nitrate 

is a potent competitive inhibitors of the nitrite reductase activity of NR, and the Km of 

NR for NO2
-
 is relatively high compared to NO3

-
 (Yamasaki and Sakihama, 2000). All 

this suggest that the nitrite reductase activity of NR is very low compared to its nitrate 

reductase activity (Meyer et al.,2005). Nevertheless, nitrite based NO production was 

shown to be involved in various physiological processes and environmental stimuli 

(Gupta et al., 2010). Moreover, exogenously supplied nitrite to Arabidopsis mutant 

nia1nia2 rescues its compromised NO production and disease resistance phenotype, 

suggesting that other routes than NR for NO formation from nitrite in plants should 

exist (Modolo et al. 2006; Oliveira et al. 2009). Interestingly, in Chlamydomonas 

reinhardtii, the Amidoxime Reducing Component (ARC) protein and NR have been 

recently shown to constitute a dual enzymatic systems (Chamizo-Ampudia et al 2016, 

2017). In this systems, ARC displays a high affinity for NO2- and reduces NO2- to NO 

in vitro and in vivo by using electrons supplied by the diaphorase activity of NR. 

Because this complex can function in the presence of high NO3
-
 concentrations and in 

normoxia, differently from NR alone, the presence and formation of this complex also 

in higher plants could possibly explain the contradictory findings about NR activity 

and its involvement in NO production through the reductive pathway and deserve 

therefore further investigation.  

 

1.2.2.2 Alternative enzymes for nitrite-dependent NO production 

In addition to plant NR, a plasma membrane (PM)-bound nitrite:NO reductase can 

reduce nitrite to NO. This activity reported in membrane fraction of tobacco roots 

showed to be comparable the NO producing ability of NR, but was insensitive to 

cyanide and anti NR-IgG. Thus, it is expected to be due to an independent enzyme 

different from PM-NR and may produce NO from nitrite in apoplastic space (Stohr et 

al.,2001; Stohr and Stremlau 2006). However, this activity was only found in roots, 
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while was not reported in leaves (Stohr et al.,2001) and appears therefore not relevant 

for the NO production in HR. 

Mitochondrial electron transport chain is also capable of reducing nitrite to NO by the 

nitrite reducing activity of complex III and IV. Indeed, nitrite-dependent NO 

formation can be prevented by mETC inhibitors in algae and tobacco. However, this 

activity only occurs under hypoxia/anoxia (Tischner et al., 2004; Planchet et al. 2005). 

Moreover, additional Moco-containing enzymes, namely xanthine oxidases (XOs), 

aldehyde oxidases (AOs), and sulfite oxidases (SOs), have been shown also to possess 

a nitrite reducing activity in vitro which leads to NO. However, they all can only work 

in anaerobic conditions (Planchet et al. 2005, Maia and Moura 2015, Wang et al., 

2015). 

Therefore, all these routes are not relevant to plant hypersensitive response which 

occurs in leaves under normoxic condition.  

Recently, Aamand et al (2009) reported that bovine alpha carbonic anhydrase II, 

similarly as the previous described enzymes can catalyze nitrite conversion to NO 

both in vitro and in vivo. Interestingly they suggested a possible dismutation 

mechanism (2NO2- +2H+ ↔2HNO2↔H2O+N2O3, N2O3↔NO+NO2) for this 

reaction and demonstrated that this reaction can also occur under normoxic conditions. 

However, the possible conservation of this mechanism in plant carbonic anhydrases 

and the relevance of this described mechanisms for the plant hypersensitive response 

were not enquired so far. 

 

1.2.3 NO turnover 

NO homeostasis reflects the balance of NO production and NO turnover or 

conversion into other reactive nitrogen species (RNS). Concerning the consumption 

of synthesized NO, more mechanisms can be considered.  
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First of all, NO can react with glutathione (GSH) to produce S-nitrosylated 

glutathione (GSNO), that is considered to act as a reservoir for NO and which 

provides the NO signal for nitrosylation of proteins. The enzyme GSNO reductase 

(GSNOR) tightly controls GSNO levels by reducing GSNO to oxidized glutathione 

(GSSG) and ammonia (NH3) (Liu et al., 2001). This cytosolic enzyme functions in the 

control of GSNO levels, and thus of the nitrosylation of proteins. In turn, NO 

produced from nitrate assimilation inhibits GSNOR by nitrosylation, preventing the 

scavenging of GSNO (Frugillo et al., 2014). A. thaliana gsnor knockout mutants 

accumulate high levels of NO and S-nitroso species, and have been widely used to 

study NO/GSNO functions in different biological contexts, including HR (Feechan et 

al., 2005; Holzmeister et al., 2011; Rusterucci et al 2007; Yun et al., 2011)..  

NO can be scavenged by reacting with reactive oxygen species (ROS). Indeed, NO 

can react promptly with O2
-
 in a diffusion-limited reaction leading to the production 

of peroxynitrite (ONOO
-
), a potent oxidizing and nitrating species which, nevertheless, 

is not cytotoxic in plants (Delledonne et al., 2001; Vandelle and Delledonne, 2011). 

The non-enzymatic biosynthesis of ONOO
-
 is tightly controlled by the (enzymatic) 

formation of its precursors. The availability of O2
-
 can modulate the NO burst (and 

vice versa) integrating NO/H2O2 signaling during the HR according to the so-called 

balance model (Delledonne et al., 2001). 

Finally, NO can be converted into NO3
-
 by the NADPH-dependent NO dioxygenase 

activity of plant hemoglobins (Perazzolli et al., 2004). The overexpression or 

silencing of this protein did not affect NO levels or the HR cell death in response to 

avirulent pathogens in an early study (Perazzolli et al., 2004). More recently, the 

overexpression of AtHb1 has been shown to compromise NO accumulation in 

response to avirulent pathogens, associated with a reduction in HR-mediated PCD, 

whereas AtHb1 silencing enhances the resistance and the modulation of hormones 

involved in defense. Interestingly, the AtHb1 expression is also rapidly downregulated 

in response to infection with the avirulent bacteria Pseudomonas syringae pv. tomato, 
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suggesting the existence of a mechanism regulating NO turnover to potentiate the NO 

burst during the HR (Mur et al., 2012). 

 

1.3 Nitric oxide downstream signaling during the hypersensitive response 

NO signal transduction involves a highly amplified and integrated signaling system. 

This mainly relies on NO unique chemical features and reactivity, directly or 

indirectly affecting a large number of different protein targets ultimately triggering 

immunity (Leitner et al., 2009; Bellin et al., 2013). Indeed, NO directly modify 

protein functions by reacting with protein associated transition metals or through 

specific protein post-translational modifications, like S-nitrosylation and nitration, of 

specific amino acid residues, allowing the transduction of NO signals. Furthermore, 

NO extensively cross-talks with other signaling pathways like ROS signaling, 

hormone signaling, downstream mitogen activated protein kinase cascades, second 

messengers such as Ca
2+

 and cGMP or fatty acids. Ultimately, NO triggers an 

extensive modulation of gene expression during the HR. 

 

1.3.1 The second messenger cGMP 

In animals, the main mediator for NO signaling is the second messenger cGMP. In 

this pathway, NO binds to heme ferrous iron of soluble guanylate cyclase (sGC) to 

activate it, thus inducing cGMP production (Martinez-Ruiz et al.,2011). In plants, 

cGMP increases upon pathogen challenge in NO dependent manner (Meier et al., 

2009; Hussain et al., 2016) and exogenous cGMP treatment induced defense related 

gene expression (Duner et al., 1998). More recently, it was shown that constitutive 

high cGMP level in transgenic lines overexpressing a rat soluble guanylate cyclase 

abolish transient cGMP accumulation and compromise SAR establishment, thus 

confirming a role for cGMP in downstream NO signaling also in plant (Hussain et al., 
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2016). Even though several enzymes and kinases with a guanylate cyclase domain 

have been reported (Turek and Gehring, 2016, Gehring and Turek, 2017), there is still 

no conclusive evidence for a parallel NO-dependent soluble guanylate cyclase 

mediating NO signaling in plants during the HR. 

 

1.3.2 Protein S-nitrosylation 

S-nitrosylation refers to the covalent addition of an NO moiety to the sulfhydryl group 

of cysteine residues in a protein (Stamler et al.,2001). Several proteomic studies have 

revealed numerous S-nitrosylated proteins in plants (Lindermayr.,2005; Abat et al., 

2008; Romero-Puertas et al., 2008; Abat and Deswal, 2009). These proteins are 

involved in many cellular processes including primary and secondary metabolism, 

photosynthesis, genetic information processing, cellular architecture, and response to 

biotic and abiotic stresses (Astier et al.,2012). Although numerous plant 

S-nitrosylated proteins have been identified in vitro and/or in vivo, the impacts of NO 

on acitivity, structure, and function of target protein are still limited. The best 

characterized S-nitrosylated proteins are involved in plant immunity (Astier et 

al.,2012). The A. thaliana AtRBOHD, involved in pathogen induced ROS production, 

was shown to be S-nitrosylated during the HR triggered by the avirulent Pseudomonas 

syringae pv. tomato DC3000 AvrB. In silico structural modeling indicated that the 

S-nitrosylation of Cys
890

 would disrupt the side chain position of Phe
921

 , which is 

required to bind FAD, thus explaining the loss of activity (Yun et al., 2011). The 

NO-dependent regulation of AtRBOHD would help to fine tune NO/ROS cross talk in 

the HR, thus preventing the generation of excess ROS and allowing to the induction 

of HR-PCD. NPR1, a transcriptional activator involved in salicylic acid-mediated 

signal transduction is also subjected to S-nitrosylation. In unchallenged cells, NPR1 is 

present as an oligomer with intermolecular redox-sensitive disulfide bridges and the 

complex is sequestered in the cytoplasm. Redox changes induced by pathogens and 

the accumulation of salicylic acid cause a reduction and monomerization of the 
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protein and, consequently, the monomers are translocated to the nucleus, inducing the 

induction of specific resistance genes (Mou et al., 2003). The S-nitrosylation of NPR1 

at the predicted oligomerization interface favors the formation of disulfide bonds that 

promote oligomerization (Tada et al., 2008) and is required to maintain NPR1 

oligomer/monomer homeostasis, thereby facilitating the steady supply of monomeric 

protein to support salicylic acid-dependent gene expression. Likewise for the NADPH 

oxidase AtRBOHD and (NPR1), the S-nitrosylation functional consequences for other 

protein involved in immunity including peroxiredoxin II E (PrxII E), salicylic 

acid-binding protein 3 (SABP3), the transcription factor TGA1, the GAPDH and the 

metacaspase AtMC9 were studied. These analyses indicate that S-nitrosylation of 

critical Cys residues promotes or inhibits the formation of disulphide linkages bounds, 

induces changes in protein conformations, and impacts the binding of cofactors, thus 

modifying protein activities or localizations. 

 

1.3.3 Protein nitration 

As previously mentioned, NO can react with O2
-
 in a diffusion-limited way to form 

peroxynitrite (ONOO-), a potential reagent for protein tyrosine nitration modification. 

Therefore, the accumulation of ONOO- occurring during the HR causes an increase in 

nitrated proteins (Romero-Puertas et al., 2008). Indeed, while ONOO
-
 promotes PCD 

in animals, it does not appear to fulfil a similar role in plants and is instead emerging 

as a potential signaling molecule that acts by selectively nitrating tyrosine residues 

(Vandelle & Delledonne, 2011). This post-translational modification involves the 

addition of a nitro-group to the ortho-position of the aromatic ring of tyrosine residues, 

forming 3-nitrotyrosine (Radi, 2004). There is preliminary evidence that protein 

nitration in plants can achieve selective activity inhibition and can trigger selective 

proteasome mediated degradation of targets which would be involved in signaling, 

although this has not been demonstrated in the context of defense responses thus far 

(Castillo et al., 2015). No clear functional role for protein nitration has been 
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elucidated in the context of the HR, but some important immunity-related candidate 

proteins can be nitrated in vitro and the potential role in defense and immunity 

(Begara-Morales et al., 2015; 2014; Chaki et al., 2013; Holzmeister et al., 2015). 

Interestingly, Peroxiredoxin II E (PrxIIE), which detoxify ONOO-, is inactivated by 

S-nitrosylation during the HR, thus enhancing the nitrated protein formation and 

signaling (Romero-Puertas et al.,2007).  

 

1.3.4 NO-mediated gene expression modulation 

While the regulation of protein function and signaling by NO through 

post-translational modification has been well established, there is a substantial lack of 

information about the inductive or repressive effects of NO on gene expression. 

Transcriptional changes related to NO action could play a significant role in 

NO-mediated cellular responses. A preliminary analysis of transcripts profiles of 

A.thaliana leaves infiltrated with NO donor sodium nitroprusside (SNP) by 

cDNA-amplification fragment length polymorphism (AFLP) technique revealed 71 

differentially expressed genes involved in signal transduction, disease resistance, 

reactive oxygen species production and turnover, photosynthesis and cellular transport 

(Polverari et al., 2003). Following this pioneer study, further transcriptomic studies 

have been applied to characterize genes differentially expressed due to NO, mainly 

based on the application of NO donors. Microarray analysis of Arabidopsis roots 

treated with different concentration of SNP resulted in the differential expression of 

422 genes including 342 up- and 80 down-regulated genes (Parani et al., 2004). Much 

recently, in an RNASeq study involving Arabidopsis roots and leaves, GSNO 

mediated transcriptome analysis showed the differential expression of 3263 genes 

(Begara Morales et al., 2014). Further transcriptional analyses on plant response to 

NO using different techniques or NO donors have identified thousands of 

NO-responsive genes, most of them functioning in plant defense and oxidative stress 

response, hormone signaling, or developmental processes (Huang et al., 2002; Grun et 
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al.,2006; Ahlfors et al; 2009; Besson-Bard et al.,2009). Further bioinformatics 

analysis identified several transcription factors binding sites (TFBS) enriched in the 

promoters of these responsive genes, such as WRKY, GBOX and octopine synthase 

element-like sequence typically involved in stress responses (Palmieri et al., 2008). 

However, these data should be interpreted with caution, as these results were obtained 

by the exogenous application of NO donors, for which both problems in controlling of 

application timing, as well as side effects associated to the pharmacological 

treatments, cannot be avoided. As an alternative, a transcriptome study was also 

performed in transgenic Arabidopsis plants constitutively expressing the rat neuronal 

NOS (nNOS), leading to increased in vivo NO content (Shi et al., 2014). 

Transcriptome analysis revealed several drought stress related genes and related 

pathways significantly modulated in nNOS plants. Among genes regulated both by 

NO and ABA treatment, two ABA receptor were included which were further 

subjected to functional analysis (Shi et al., 2014). Very recently, genes 

transcriptionally regulated by NO were identified by using a high-throughout 

RNA-Seq-mediated transcriptomic approach in leaves infiltrated with 1 mM 

S-nitrosocysteine (CysNO). Changes in the expression of 6436 genes (2988 

down-regulate and 3448 up-regulated) was found, indicating a massive 

reprogramming of transcription at 6 h post treatment. Increasing cellular NO levels 

affected many important groups of genes, including metal-containing enzymes, such 

as peroxidases and catalases, various protein kinases, receptors, and transcription 

factors. Therefore, NO regulates several physiological pathways through intricate 

translational and transcriptional controls (Hussain et al., 2016). Lately, a further work 

focused on the differentially expressed genes emerged in this study encoding for 

transcription factors, both through in silico analyses and by the in vivo 

characterization of the knockout mutants of three among these differentially expressed 

transcription factors, ddf1, rap 2.6 and atmyb48 (Imran et al., 2017). 
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Since the discovery that NO plays a crucial role in mediating plant defense response 

in the late nineties (Delledonne et al.,1998; Durner et al.1998), extensive research 

over the past 20 years revealed that NO is acting as a mediator in plant growth and 

development, as well as coping with biotic and abiotic stresses (Bellin et al.,2013; Yu 

et al., 2014). However, both NO biosynthesis and NO downstream signaling need 

further clarification.  

In animals, NO is mainly produced via nitric oxide synthases (NOSs), which catalyze 

a two-step oxidation of l-arginine into l-citrulline and NO, using reduced NADPH as 

the electron donor, oxygen as co-substrate, and (6R-)-5,6,7,8-tetrahydrobiopterin 

(BH4), FAD, FMN, and calmodulin (CaM) as cofactors. NO production in plants is 

still not fully understood and remains one of the most challenging issues of the field. 

It can be schematically achieved via two main routes defined by their chemical 

properties, one reductive and one oxidative. The reductive pathway, the best 

characterized pathway for NO production in plant so far, is based on the reduction of 

nitrite to NO, while the oxidative route relies on the oxidation of aminated molecules, 

but enzymes involved in this oxidative pathway are not yet defined at least in land 

plant. 

The cytosol enzyme nitrate reductase (NR) primarily catalyzes the nitrate reduction to 

nitrite. It was demonstrated that it also produce NO from nitrite both in vitro and in 

vivo, however, the significant occurrence of this reaction in physiological conditions 

has been questioned (Yamasaki and sakihama, 2000; Rockel et al.,2002: Planchet et 

al., 2005). Importantly, it has been reported that NO production increases significantly 

in Arabidopsis NR-defective (nia1 nia2) mutant plants challenged with HR-inducing 

avirulent pathogens when nitrite is supplied exogenously (Modolo et al.,2005; Chen et 

al.,2014), suggesting that other unidentified routes for NO production from nitrite 

exist during HR. 

Recently, Aamand et al (2009) reported that bovine carbonic anhydrase II can produce 
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NO from nitrite under normoxic conditions and suggested a possible dismutation 

mechanism (2NO2- +2H+ ↔2HNO2↔H2O+N2O3, N2O3↔NO+NO2), which raises 

the question if plant carbonic anhydrases can also convert nitrite to NO particularly 

during HR. 

Carbonic anhydrases (CAs) are zinc metalloenzymes which catalyse the 

interconversion between CO2 and HCO3
-
 and are ubiquitous in all three kingdoms of 

life. Several evolutionarily independent CA families with a distinct difference in 

amino acid sequence and active site structure, but catalyzing the same chemical 

reaction using similar catalytic mechanisms exist (Hewett-Emmett and Tashian, 1996). 

The well-studied animal CAs all belong to the α-type carbonic anhydrases containing 

multiple isoforms with different catalytic activity (Supuran, 2008). In contrast, higher 

plants CAs are classified in α, β, and γ families (Moroney et al., 2001; Rudenko et al., 

2015) which share no significant primary sequence homology but appear to possess a 

similar catalytic function through the convergent evolution (Hewett-Emmett 

&Tashian 1996; Tripp et al., 2001). Multiple CA members for each type exist in a 

single organism, e.g. Arabidopsis thaliana has 8 αCA genes, 6 βCA genes and 5 γCA 

genes (Fabre et al., 2007).  

Plant cell αCAs were first reported in the unicellular green alga Clamydomonas 

reinhardtti, and named CAH1 and CAH2 which have periplasmic localization 

(Fukuzawa et al., 1990; Fujiwara et al., 1990). Interestingly, a third αCA CAH3 in C. 

reinhardtii was a thylakoid membrane-bound protein associated with photosynthesis 

II (PSII) particles (Karlsson et al., 1998; Moroney et al., 2011). Most αCAs are 

monomers but the exceptions of multimeric αCAs have already been reported 

(Moroney et al., 2011; Rudenko et al.,2015). Among the eight αCA genes present in 

the Arabidopsis genome, only three have a complete expressed sequence tags (ESTs), 

and the RNA-seq analysis also only reveal very low expression of the other five 

annotated genes (DiMario et al., 2017). The AtαCA8 contains an early in-frame stop 

codon is considered as a pseudogene (DiMario et al., 2017). The information on αCA 
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is rare, possibly due to their very low expression level or organ/tissue expression 

specificity. Concerning cellular localization, it was found that Arabidopsis αCA1 is a 

glycoprotein which is targeted to chloroplast via a newly discovered ER to Golgi to 

chloroplast pathway (Villarejo et al., 2005) and N-glycosylation modification is 

required for its correct folding and trafficking, and therefore carbonic anhydrase 

activity (Buren et al., 2011). In addition, Arabidopsis αCA4 was detected in 

thylakoids membranes proteome by mass spectrometry (Friso et al.,2004). Animal 

αCAs are involved in many physiological or pathological processes related with pH 

and CO homoeostasis/sensing, biosynthetic reaction such as lipogenesis, respiration 

and transport of CO2/bicarbonate, tumorigenicity (Supuran, 2008, 2016). In 

Chlamydomonas, the periplasmic CAH1 and CAH2 were suggested to facilitate the 

diffusion of inorganic carbon from the medium to the plasma membrane, while CAH3 

plays a crucial role in inorganic carbon acquisition and supplying CO2 for 

photosynthesis (Karlsson et al., 1998; Moroney et al., 2011). In Arabidopsis a recent 

study showed, through mutant characterization, that   the αCA2 and αCA4 

participate in photosynthetic reaction (Zhurikova et al., 2016). However, the 

knowledge of physiological roles of higher plant αCAs is still scarce. 

By contrast, plants βCAs, the predominating carbonic anhydrase and among the most 

abundant enzymes in plant leaves after the Rubisco (Badger and Price, 1994), have 

been much widely characterized given their high expression level (Fabre et al.,2007; 

DiMario et al., 2017). βCAs are multimers such tetramer, octamers and the 

fundamental structure unit of βCA is a dimer (Rowlett et al., 2010). βCAs exist in a 

variety of subcellular compartments including chloroplasts, mitochondria, cytosol, 

and plasma membrane (Rudenko et al., 2015; DiMario et al., 2016a ). Among the six 

βCAs of Arabidopsis, AtβCA1 and AtβCA5 target to the chloroplast (Fabre et al., 

2007; Hu et al., 2015), AtβCA2 and AtβCA3 and AtβCA4.2 are cytosolic (Fabre et 

al.,2007; DiMario et al., 2016) while AtβCA4.1 localizes to the plasm membrane. 

AtβCA6, finally, is located in the mitochondria matrix (Fabre et al., 2007; Jiang et al., 

2014). Majority of total leaf soluble CA activity is contributed by βCAs (Badger and 
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Price, 1994). Initially, βCA was assumed to play an important role in CO2 fixation by 

Rubisco by facilitating the diffusion of CO2 into chloroplasts and in regulating pH in 

chloroplast stroma in response to environmental fluctuations (Everson, 1970; 

Poincelot, 1972; Werdan and Heldt, 1972, Badger and Price, 1994). However, the 

antisense transformant tobacco plants with 1%-2% of the CA activity of WT plants 

didn‟t show significant differences in CO2 assimilation rates, Rubisco activity, and 

chlorophyll content compared to WT plants (Majeau et al.,1994; Price et al.,1994). 

Furthermore, by using Arabidopsis antisense transformants and knockout lines of 

βCA1, Ferreira and colleagues (2008) demonstrated that lack of βCA1 reduced 

seedling survival and the cotyledons have compromised CO2 assimilation rates. 

However, if the transformants did survive, the mature plants showed no distinguishing 

phenotypes with WT plants, suggesting AtβCA1 have no direct effect on 

photosynthesis in mature plants (Ferreira et al.,2008). More recently the involvement 

of AtβCA1and AtβCA4 together in stomatal movement and development have been 

extensively characterized (Hu et al., 2010; Engineer et al.,2014). Importantly, βCAs 

are involved in defense strategies for coping with challenges from various pathogens 

(Slaymaker et al., 2002; Restrepo et al., 2005; Jung et al., 2008; Wang et al., 2009; 

Collins et al., 2010). Silencing of tobacco chloroplast βCA1(SABP3, 

salicylic-acid-binding protein 3) expression suppresses the Pto:avrPto-Mediated HR 

in leaves, suggesting tobacco βCA1 is involved in hypersensitive defense response 

(Slaymaker et al., 2002). Furthermore, S-nitrosylation of Arabidopsis βCA1 

suppressed both CA and SA binding activities and abolished plant immunity response 

(Wang et al., 2009).  

Finally, γCAs which have a similar active site as αCA function as a trimer with the 

active site constituted by histidine residues from two neighboring subunits (Ferry et 

al.2010). In Arabidopsis there are five γCAs including two γCA-likes and all localize 

to mitochondria as part of mitochondria complex I (Braun and Zabaleta et al., 2007). 

They have a role in reproductive development and mitochondrial carbon metabolism 

to support efficient photosynthesis in the chloroplasts under ambient conditions 
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(Braun and Zabaleta, 2007; Wang et al.,2012; Fromm et al.,2016a, 2016b). Plant 

γCAs have active-site residues similar to that found in other bacteria active γCAs 

(Braun and Zabaleta, 2007). However, no CA activity has been detected from higher 

plant γCAs (Perales et al.,2005; Braun and Zabaleta, 2007).  

Given preliminary data on plant carbonic anhydrase, the first aim of this work was to 

explore the possible involvement of plant carbonic anhydrase enzymes in nitric oxide 

synthesis during the HR. To test this hypothesis, three carbonic anhydrases, named 

AtαCA2, Ntβ-CA1 and AtγCA2 were chosen as representatives of each of the three 

carbonic anhydrase families in plants. Firstly, we tried to explore the NO producing 

activity of AtαCA2, an Arabidopsis enzyme belonging to the same family as the 

bovine CA for which the NO producing activity was reported (Aamand et al., 2009). 

Moreover, the possible involvement in NO production of the Ntβ-CA1and AtγCA2 

was determined using ozone-based chemiluminescense, given the literature report 

about their involvement in plant disease resistance (Slymaker et al. 2002, Wang et al., 

2009).  

 

Signal transduction downstream of NO accumulation mainly relies on chemical NO  

reactivity. Indeed, NO directly modify protein through specific protein 

post-translational modifications, like S-nitrosylation and nitration, modifying function 

or cellular localization finally allowing the transduction of NO signals. Besides that, it 

has been documented that NO triggers extensive modulation of gene expression 

during the HR. However, while many S-nitrosylation targets have been identified and 

the consequences of S-nitrosylation on protein function deeply investigated and often 

clarified, transcriptomic changes induced by NO are much less characterized and 

there still is a substantial lack of information about the effects of NO on gene 

expression and how this is triggered. Transcriptomic studies applied so far to 

characterize genes differentially expressed due to NO accumulation in plant cells 

mainly rely on the application of NO donors. However, data from pharmacological 

treatments should be interpreted with caution, as such treatments imply problems in 
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carefully controlling timing and side effects associated to backbones or additionally 

released compounds in pharmacological treatments cannot be avoided. Therefore, 

alternative approaches should be applied to confirm observed transcriptomic changes 

following these NO treatment. In the second part of this thesis work, we have taken 

advantage of a fumigation system allowing the treatment of plants directly with gas 

NO in air with the aim to characterize the transcriptomic changes associated to NO 

treatment. In more detail, we have characterized transcriptomic changes associated to 

NO treatment, specifically those associated to treatments leading to cell death. To this 

aim, we first defined the conditions of exogenous NO fumigation on plants triggering 

an uniform cell death. Then an RNASeq experiment on samples subjected to this 

treatment or untreated samples was done to characterize the transcriptome modulation 

and identify gene functional classes which expression is more affected by the 

treatment.  
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3.1 Materials 

3.1.1 Plants 

Nicotiana benthamiana and Arabidopsis thaliana (Col-0) were grown in growth 

chamber with a 8 h day/16 h night photoperiod.  

 

3.1.2 Bacteria strains 

Bacteria strains Growth medium Antibiotics 

Escherichia coli DH5α, DB3.1, BL21 LB ─ 

Agrobacterium tumefaciens GV3101::pMP90 LB Rif50+ Gen25 

Agrobacterium tumefaciens EHA105 LB Rif50 

Pseudomonas syringae pv. tomato DC3000 

carrying avrB 

KB Rif50+Kan50 

Rifampicin 50 ug/ml; Gentamycin 25 ug/ml; Kanamycin 50 ug/ml.  

 

3.1.3 Vectors 

Vectors Purpose Selective antibiotics 

pDONR221 Entry cloning Kan 50 

pENTR/SD/D-TOPO, Entry cloning Kan 50 

pET28a Bacterial expression vector Kan 50 

pDEST17 Bacterial expression vector Carb 50 

pGR106 Plant expression vector Kan 50 

pK7WG2 Plant expression vector Spec 50, Strep 50 

Kanamycin 50 ug/mL; Carbenicillin 50 ug/mL; Spectinomycin100 ug/ml; 

Streptomycin 300 ug/mL. 
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3.1.4 Reagents 

Name Company 

Acetosyringone Sigma 

Acetic acid Merck 

Antifoam SE-15 Sigma 

Bacterial agar FORMEDIUM 

BSA (Bovine serum albumin) Sigma 

Carbenicillin Duchefa biochemie 

Chloroform Sigma 

Coomassie Brilliant Blue R-250 Sigma 

CTAB (Hexadecyl trimethyl ammonium Bromide) ACROS ORGANIC 

DTT (DL-Dithiothreitol) Sigma 

EDTA (Ethylenediaminetetraacetic acid) disodium salt  Sigma 

Ethanol Sigma 

Gentamycin Duchefa biochemie 

Glycerol Sigma 

Glycine Sigma 

HCl (Hydrochloric acid) Sigma 

Imidazole Sigma 

Isopropyl alcohol Sigma 

IPTG (Isopropyl β-D-1-Thiogalactopyranoside) V.W.R 

Kanamycin Duchefa biochemie 

KNO2 (Potassium nitrite) Sigma 

K2HPO4 (Potassium phosphate monobasic) Sigma 

KH2PO4 (Potassium phosphate dibasic) Sigma 

beta-mercaptoethanol Sigma 

Methanol Sigma 

MgCl₂ (Magnesium chloride) J.T. Baker 



44 
 

MgSO4·7H2O (Magnesium sulfate heptahydrate) Applichem 

NaCl (Sodium chloride) Sigma 

Peptone water Sigma 

PMSF (Phenylmethanesulfonyl fluoride) Sigma 

Rifampicin Duchefa biochemie 

Spectinomycin Duchefa biochemie 

Streptomycin Duchefa biochemie 

Sucrose Duchefa biochemie 

Tris (Tris (hydroxymethyl) aminomethane) Sigma 

Triton X-100 Sigma 

Tryptone Sigma 

Yeast extract Duchefa biochemie 

ZnCl2 (Zinc chloride) Sigma 

 

3.1.5 Buffers and mediums 

TE buffer: 

10 mM Tris, 1 mM EDTA, pH 8.0. 

CTAB buffer: 

2% CTAB, 1.4 M NaCl, 20 mM EDTA, 100 mM Tris, 2% PVP40, pH 8.0. 

Potassium phosphate buffer stock: 

1 M KH2PO4 and 1 M K2HPO4, mixed in an appropriate ratio to obtain desired 

concentration and pH. 

Lysis buffer: 

50 mM Tris-HCl pH 7.4, 0.5 M NaCl, 10% glycerol, Triton-X100 1%, PMSF 1 mM, 

DTT 1 mM, 10 mM Imidazole. 

Equilibration buffer: 

50 mM Tris-HCl pH 7.4, 300 mM NaCL, 10 mM Imidazole. 

Wash buffer: 
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50 mM Tris-HCl pH 7.4, 300 mM NaCL, 20 mM Imidazole. 

Elution buffer: 

50 mM Tris-HCl pH 7.4, 300 mM NaCL, 80, 100, 200, 400 and 500 mM Imidazole. 

Desalting buffer: 

phosphate buffer 10 mM, pH 7.2, 10% Glycerol. 

4x SDS Protein Sample Buffer:  

40% Glycerol, 240 mM Tris/HCl pH 6.8, 8% SDS, 0.04% bromophenol blue, 5% 

beta-mercaptoethanol. 

Coomassie Brilliant Blue R-250 staining solution: 0.1% Coomassie Blue R-250, 

Methanol (50% [v/v]), Acetic acid (10% [v/v]). 

Ponceau S Staining Solution: 0.1% (w/v) Ponceau S in 5% (v/v) acetic acid. 

Luria Broth (LB) medium: 

for 1 litre 10 g tryptone, 5 g yeast extract, 10 g NaCl, pH 7.0. 

King’s B (KB) medium: 

for 1 litre 10g peptone, 1.5g K2HPO4, 1.5g MgSO4·7H2O, 10 mL glycerol, pH 7.2. 

 

3.1.6 Reagent kits 

Name Company 

dNTP (100 mM) set Invitrogen, Life technologies 

ECL Select Western Blotting Detection Reagent GE Healthcare 

E.Z.N.A.® Plasmid Mini Kit I OMEGA 

GENECLEAN® II Kit M.P Biomedicals 

Platinum Pfx DNA polymerase Invitrogen, Life technologies 

Platinum® SYBR® Green qPCR SuperMix-UDG 

with ROX 

Invitrogen, Life technologies 

Restriction enzymes New England BioLabs 

SuperScript II Reverse Transcriptase Invitrogen, Life technologies 

TURBO DNA-free Ambion, Applied Biosystems 
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Taq DNA polymerase Invitrogen, Life technologies 

 

3.1.7 Primers 

Name of primers  Sequence (5'→3') 

Nt βCA-For ( Nde I ) CACCCGCCAGCCATATGGAATTGCAATCATCA  

Nt βCA-Rev ( EcoR I ) CTCGGCGAATTCGCTTCATACGGAAAGAGA 

AtβCA1-For ( Nde I ) CACCCGCCAGCCATATGTCGACCGCTCCTCTC 

AtβCA1-Rev ( EcoR I ) CTCGGCGAATTCGCTCTACAGCTTCCAATG 

AtγCA2-For ( Ndel I ) GGAATTCCATATGACGTTGATGAATGTGT 

AtγCA2-Rev( Hind III ) CTCGGCGAATTCGCTCTACAGCTTCCAATG 

AtαCA2-For ( Nde I, 

SP ) 

CACCCATATGGCGACAGATTATAGAGAAGTTG 

AtαCA2-Rev ( Sac I, 

SP ) 

CGAGCTCTCATAGTGATTTTGGTTTGTATAA 

AtαCA2-For (no SP) AATAGAGGCCATGATATGATGCTG 

AtαCA2-Rev (no SP) AGTAGTAAGTGATCCAATGTAT 

AtαCA2-real time-For CATTGGCATTCTCCCTCTGA 

AtαCA2-real time-Rev CCAGCAATCCGAGAAAAGAAT 

AtαCA2-Flag-For ggggacaagtttgtacaaaaaagcaggcttcATGGCGACAGATTAT

AGAGAAGTTG 

AtαCA2-Flag-Rev 

 

ggggaccactttgtacaagaaagctgggtcTCActtatcgtca tcgtccttgt 

aatcgctgccgcgcggcaccagTAGTGATTTTGGTTTGTATAA 
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3.2. Methods 

3.2.1 RNA extraction 

Total RNA was isolated from leaves using TRIzol reagent (Invitrogen). 

Homogenize about 100 mg leaves frozen by liquid nitrogen in a 1.5 ml Eppendorf 

tube containing glass beads using a power homogenizer. 

Add 1 ml of TRIzol reagent and vortex.  

After incubation for 5 minutes at room temperature, add 0.2 mL of chloroform and 

mix them vigorously by hand for 15 seconds. 

Incubate for 3 minutes at room temperature and centrifuge at 12,000×g for 15 minutes 

at 4℃.  

Transfer carefully the aqueous phase to a new tube and add 0.5 ml of isopropanol and 

mix well. Incubate at room temperature for 10 minutes and centrifuge at 12,000×g for 

15 minutes at 4℃. 

Remove the supernatant and wash the pellet with cold 75% ethanol twice. 

Air dry the RNA and dissolve it in RNase free water. Store RNA samples at −80℃. 

The concentration of total RNA was measured with NanoDrop-1000 

Spectrophotometer (Thermo Scientific). The purity was assessed by optical density 

(OD) absorption ratio OD 260 nm / OD 280 and OD260 nm /230 nm. The integrity 

was examined by 1.0 % agarose gel electrophoresis. 

 

3.2.2 Genomic DNA extraction 

Preheat the CTAB buffer containing 1% beta-mercaptoethanol to 65°C.  

Grind 50-100mg frozen leaves into fine power.  

Add the 500 μl of pre-warmed CTAB buffer to the tube with samples and incubate at 

65°C for 30 min. 



48 
 

Add 500 μl of chloroform and mix well. 

Centrifuge at 13,000 g for 5 min and transfer the supernatant to a new tube. 

Add 330 μl isopropanol and mix gently and incubate at room temperature for 10 min. 

Centrifuge the mixture at 13,000 g for 10 min at 4℃. 

Remove the supernatant and suspend the pellet in 1 ml 70% ethanol. 

Centrifuge the mixture at 13,000 g for 10 min at 4℃ to remove ethanol. 

Air dry the DNA pellet. 

Dissolve the DNA pellet in 30 μl TE Buffer with 1 μl RNase solution 

 

3.2.3 Synthesis of first strand cDNA  

To eliminate genomic DNA contamination, the RNA samples were treated with 

TURBO DNase enzyme (TURBO DNA-free kit; Ambion, Inc., Applied Biosystems). 

First strand cDNA was synthesized using SuperScript™ II Reverse Transcriptase 

(Invitrogen) with Oligo (dT)15 in 20 μl reaction volume according to the 

manufacturer's protocol. 

 

3.2.4 Quantitative RT-PCR 

Quantitative RT-PCR using gene-specific primers was performed using Platinum® 

SYBR® Green qPCR SuperMix-UDG with ROX (Invitrogen) on the StepOnePlus 

Real-Time PCR Systems (Applied Biosystems). 

The components in a 25 μl PCR reaction include 12.5 μl Platinum® SYBR® Green 

qPCR SuperMix-UDG with ROX, 0.25 μl of forward primer and reverse primer (each 

20 μM), 7 μl of sterilized H2O and 5 μl of 10-fold diluted cDNA. 

The relative gene expression was calculated by the 2^-ΔΔCt method (Livak and 

Schmittgen, 2001) using ACTIN2 (At3g18780) as a reference gene. 
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3.2.5 PCR, PCR product purification, Restriction enzyme digestion and ligation 

PCR reaction was performed using Platinum® Pfx DNA Polymerase or Taq DNA 

Polymerase (Invitrogen). 

The DNA fragments in PCR product were purified from agarose gel slices using 

GENECLEAN® II Kit. 

Restriction enzyme digestions and ligations were performed following the 

manufacturer‟s instructions. 

Ligation reactions were performed by using the T4 DNA ligase according to 

manufacturer instructions. 

 

3.2.6 Gene cloning 

TOPO® Cloning was performed following the protocols provided in TOPO® Cloning 

Kits. 

LR Reaction and BP Reaction were performed using Gateway™ LR Clonase™ II 

Enzyme Mix and Gateway™ BP Clonase™ II Enzyme Mix, respectively for cloning 

in gateway compatible vectors. Appropriate amounts of LR Reaction or BP Reaction 

were used for bacterial transformation. 

Alternatively for gene cloning into pET expression system vectors primers with 

adequate restriction sites were used and traditional restriction digestion and ligations 

were applied. 

 

3.2.7 Plasmid DNA extraction and purification 

Plasmid DNA was isolated from bacteria using E.Z.N.A.® Plasmid Mini Kit I 

(OMEGA). 

1. Grow 3 mL culture overnight in a 13 mL culture tube. 

2. Transfer culture into 1.5 ml microcentrifuge tube, centrifuge at 10,000 x g for 1 
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minute at room temperature and discard the supernatant. 

3. Add 250 μl Solution I mixed with RNase A, and vortex to mix thoroughly. 

4. Add 250 μl Solution II. Invert and gently rotate the tube several times to obtain a 

clear lysate. Incubation for 2-3 minutes. 

5. Add 350 μl Solution III. Immediately invert several time until a flocculent white 

precipitate forms. Centrifuge at 13,000 x g for 10 minutes. 

6. Insert a HiBind® DNA Mini Column into a 2 mL collection tube. 

7. Transfer the cleared supernatant into the HiBind® DNA Mini Column. Centrifuge 

at 13,000 x g for 60 seconds. Discard the filtrate and reuse the collection tube. 

8. Add 500 μl HBC buffer diluted with isopropanol. 

9. Centrifuge at 13,000 x g for 60 seconds. Discard the filtrate and reuse the collection 

tube. 

10. Add 700 μl DNA wash buffer diluted with ethanol. Centrifuge at maximum speed 

for 30 seconds. Discard the filtrate and reuse the collection tube.  

11. Repeat step 10. 

12. Centrifuge the empty HiBind® DNA Mini Column at 13,000 x g for 2 minutes to 

dry the column. 

13. Transfer the HiBind® DNA Mini Column into a nuclease-free 1.5 ml 

micro-centrifuge tube. 

14. Add 30 μl Elution buffer and incubation at room temperature for 60 seconds. 

Centrifuge at 13,000 x g for 60 seconds. 

15. Store eluted DNA at -20℃. 

  

3.2.8 Electroporation of E.coli and Agrobacterium 

Electrocompetent E.coli and Agrobacterium cells were electrotransformed with the 

corresponding plasmids using a Gene Pulser™ apparatus (Bio-Rad). 

1. Keep competent cells on ice and chill an electroporation cuvette. 

2. Add 1 µl of plasmid (10 - 50 ng) to the competent cells aliquot, mix gently and 
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transfer to the pre-chilled cuvette. 

3. Dry the exterior of the cuvette with a bit of paper and insert in the electroporator. 

4. Put the lid on, adjust voltage to 1.8 kV (for Agrobacterium) or 2.5 kV (for E.coli)., 

press start and wait till you hear the 'beep'. Immediately take the cuvette and add 200 

µl of SOC or LB with no antibiotics. 

5. Transfer to a micro-centrifuge tube and rescue for 3-4 h in a shaking incubator at 

28 °C (for Agrobacterium) or for 1 h, 37℃(for E.coli). 

6. Plate out 25-100 µl in a plate with the appropriate antibiotics and incubate at 28 °C 

for two days(for Agrobacterium) or 37℃ overnight (for E.coli). 

 

3.2.9 Recombinant protein expression in E.coli 

E.coli BL21 (DE3) cells carrying constructs for protein expression were grown as 

overnight pre-culture in LB at 37°C with appropriate antibiotics. Then culture was 

diluted 1 to 100 and grown for further 2 to 3 hours until the OD600 of the culture 

reached 0.6-0.8. The protein expression was induced with IPTG and 0.1 mM ZnCl2 at 

optimal temperatures for indicated times. IPTG concentrations and expression 

conditions were pre-optimized for the different constructs and are given in the 

respective results sections. Thereafter, cells were harvested by centrifugation and 

stored at -80℃. Thawed cell pellets were resuspended in lysis buffer and lysed by 

sonication in a pulse mode (60-70% bursts, 10 cycles of 10s, 20 seconds interval). 

The resulting homogenate was centrifuged at 10,000×g for 15 min at 4℃.  

After centrifugation at 10,000×g for 15 min at 4℃, the pellet, containing inclusion 

bodies was washed with lysis buffer once and resuspended in the solubilization buffer 

(50 mM Tris-HCl pH 7.4, 0.5 M NaCl, 8 M Urea, 1 mM β-Mercaptoethanol, 5 mM 

Imidazole). The mixture was incubated at room temperature for 1 hour and 

centrifuged at 12,000×g for 15 min at 4℃ . Protein expression was tested by 

antibodies after loading in acrylamide gels.  
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3.2.10 Recombinant protein purification 

The supernatants were filtered with a 0.45 μm syringe filter and used for protein 

purification by Ni-NTA matrix (Qiagen). Alternatively, inclusion bodies after 

solubilization were used for protein purification on Ni-NTA resin under denaturing 

conditions. 

PD-10 columns (GE Healthcare) were used for buffer exchange and desalting of the 

eluate containing most of the recombinant proteins. 

 

3.2.11 SDS-PAGE 

Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with 

Stacking gel (4%) and Resolving gel (10%) was performed using Mini-PROTEIN 

Tetra Cell (Bio-Rad). The components of SDS-PAGE gel are shown in Table 1 

(amount for one gel). 

 

Table 1 SDS-PAGE gel components 

Reagent 10% Resolving gel 4% Stacking gel 

4x Tris-HCl(1.5 M), pH 8.8 1.25 ml ─ 

4x Tris-HCl(0.5 M), pH 6.8 ─ 0.5 ml 

Acrylamide: Bis, 40% 1.25 ml 200 μl 

APS 10% 50 μl 20 μl 

TEMED 5 μl 2 μl 

H2O 2.5 ml 1.2 ml 

 

Protein samples dissolved in 1X protein loading buffer were boiled for 5 min and 

centrifuged at 10,000×g for 5 min. The resulting supernatant was loaded into the well. 

After SDS-PAGE, gels were stained with Coomassie Blue R250 staining solution. 
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3.2.12 Western blot 

For Western blotting analysis, SDS-PAGE gels were blotted onto nitrocellulose 

blotting membrane by using the indicated apparatus and manufacturer instructions 

(GE Healthcare, Amersham Protran Premium 0.45µm NC). Ponceau S staining was 

used for checking the transfer efficiency.  

After blocking the membrane in TBST buffer with 5% skim milk power overnight at 

4℃, the membrane was incubated with the primary antibody diluted in TBST buffer 

contaning 3% skim milk power at room temperature with agitation for 2 hours. 

Horseradish peroxidase-coupled anti-His antibody (A 7058, Sigma-Aldrich, 1:60,000) 

was used to detect His tagged proteins.  

For Flag tagged proteins, rabbit-ANTI-FLAG antibody (F 7425, Sigma-Aldrich, 

1:2,000) was used as primary antibody. After washing the membrane three times each 

10 min with TBST buffer, horseradish peroxidase-coupled secondary antibody 

anti-rabbit (A 6154, Sigma-Aldrich, 1:5,000) for Flag tag was put on for 2 hours at 

room temperature.  

Signals were detected by chemiluminescence using ECL Select™ Western Blotting 

Detection Reagent (GE Healthcare) and visualized on ECL film or imaged with the 

ChemiDoc Touch Imaging System (Bio-Rad). 

 

3.2.13 Transient expression of proteins in Nicotiana benthamiana leaves by 

agroinfiltration 

Preparation of Agrobacterium cultures and agroinfiltration of N. benthamiana were 

performed as described by Liu et al. (2003) and Avesani et al. (2014) with some 

modifications. 

Agrobacterium tumefaciens strains GV3101 containing pGR106-AtαCA2, and 

EHA105 containing pK7WG2-AtαCA2 or pK7WG2-gfp were grown at 28℃ 

overnight in 3 ml of LB medium containing appropriate antibiotics with shaking at 
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180 rpm. This overnight culture was inoculated into 25 ml of LB medium with 10 

mM MES-K (pH 5.6), 20 μM acetosyringone as well as appropriate antibiotics, and 

grown overnight at 28℃. Agrobacterium cells were harvested by centrifugation and 

re-suspended in infiltration buffer (10 mM MgCl2, 10 mM MES [pH 5.6], 100 µM 

acetosyringone) to a final optical density at 600 nm (OD600) of 0.8. Bacteria were 

maintained at room temperature for 2-3 h. 

Fully expanded leaves of 6 to 7-week-old N.benthamiana plants were infiltrated using 

a syringe without a needle. 

 

3.2.14 Total protein extraction from plant tissue 

Leaf discs harvested from infiltrated plants were frozen in liquid nitrogen and then 

used for protein extraction. Homogenate were produced in 1X Laemmli buffer and 

then samples were centrifuged for 15min at 15,000g at 4°C. Supernatants of plant 

extracts were stored at -80°C freezer. 

 

3.2.15 Endoglycosidase H digestion 

Protein samples were dissolved in Glycoprotein denaturing buffer (0.5% SDS,40 mM 

DTT) and incubated at 95℃for 10 mins. To total reaction volume of 20 μl, 2 μl of 

10X G5 reaction buffer , 2 μl Endo H and H2O were added and incubation was 

performed at 37℃for 60 mins. The reaction was stopped at 75℃for 10 mins. 

 

3.2.16 Isolation of thylakoids 

Thylakoids were isolated from frozen leaves of N.benthamiana plants essentially 

according to Ignatova et al.(2011). 

Frozen leaves were homogenized with a mortar and pestle in ice-cold Grinding buffer 

(0.4 M sucrose, 35 mM K2HPO4, 15 mM NaH2PO4, 3 mM MgSO4, 10 mM KCl, 20 
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mM sodium ascorbate, 10 mM KHCO3, and 2 mM EDTA-Na) at a ratio of Grinding 

buffer to leaves of 40 mL:10 g
-1

 fresh weight (FW). 

The homogenate was filtered through nylon cloth and centrifuged at 200×g for 2 min 

to eliminate cell debris. All centrifugations were performed at 4℃. 

The resulting homogenate (H) was centrifuged at 3600×g for 6 min. The pellet 

obtained was suspended in ten-fold diluted Grinding buffer and incubated on ice for 

10 min to break chloroplasts. Thylakoids were harvested at 3600×g for 6 min. 

After washed with Washing buffer (0.4 M sucrose, 35 mM K2HPO4,15mM NaH2PO4, 

3 mM MgSO4, 2 mM sodium ascorbate, 1 mM KHCO3, and 0.5 mM EDTA-Na) at 

least twice, the thylakoids membranes were resuspended in medium with 1 mM 

PMSF, 50 mM Tris-HCl, 150 mM NaCl, 10 ml glycerol, pH 7.4 and were kept at 

-80 ℃. 

The chlorophyll content in the samples was determined in aceton extracts according to  

Porra et al., 1989. 

 

3.2.17 Carbonic anhydrase activity assay 

CA activity was measured by a modified electrometric method of Wilbur and 

Anderson (1948). The sample was added into 6 ml of ice-cold 20 mM Tris-HCl buffer 

(pH 8.3) in a 25ml plastic graduated cylinder with stirring, and the reaction was 

initiated by adding 4 ml of ice-cold CO2-saturated water. The time required for the pH 

drop of the reaction mixture from 8.3 to 6.3 was recorded. The activity was expressed 

in Wilbur-Anderson (W-A) units per mg of protein or chlorophyll in samples used. 

W-A units = 2×( t0-t ) / t, where t0 and t are times required for the pH change in 

control buffer and the test sample, respectively. Bovine CAII purchased from Sigma 

was used as a positive control. 
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3.2.18 Detection of NO production by chemiluminescence 

Reaction was conducted in the liquid purge vessel with 3 ml of 10 mM phosphate 

buffer containing appropriate amount of KNO2 and protein samples. A gas air flow of 

0.3 L/min filtered by deNOxer was passed through reaction mixture, and NO 

concentration of the air flow was monitored and recorded by a chemiluminescence 

detector (ECO Physics cld 88et,Switzerland, detection limit 0.5ppt).  

 

3.2.19 NO fumigation treatment 

A home-made NO fumigation system was used for NO fumigation treatment. Gas 

from air and NO cylinders (600 ppm) was controlled by mass flow controllers to 

adjust their flow to get desired NO concentration. An electronic device was linked 

with the mass flow controllers to set the desired flow speed. The chamber used for 

NO fumigation was a box-shaped and made of Plexiglas, with an airtight locker to 

avoid gas leak. The NO concentration was checked by a chemiluminescence based 

high sensitive NO detector (ECO PHYSICS CLD 70 E). 7-weeks old Arabidopsis 

wild type plants are fumigated with NO at the different concentrations as indicated in 

the result section for given times in fumigation chamber with light (30-40 μmol/m
2
/s) 

at room temperature. 

Fully expanded leaves from fumigated and un-fumigated plants were harvested for 

RNA extraction. 

 

3.2.20 Electrolyte leakage assay 

Leaf discs were removed from Arabidopsis leaves with a 6-mm punch. After floating 

on distilled water for 30 min, six leaf discs per genotype from different plants were 

transferred to a plate containing 2 ml of distilled water and agitated on a shaker (80 

rpm/min). Conductivity (µs/cm2) was measured with the B-173 compact conductivity 
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meter (HORIBA) at interval times as indicated. 

 

3.2.21 Library preparation for RNASeq analysis, sequencing and bioinformatics 

analysis 

Samples from three independent biological replicate for each condition were 

considered, each obtained by pooling leaves of three independent treated or untreated 

plants. RNA was extracted from Arabidopsis leaves as described in 3.2.1. The 

quantity and purity of RNA were quantified by NanoDrop®ND-1000 

spectrophotometer. The RNA integrity was examined by Agilent 2100 Bioanalyzer 

with RNA 6000 Nano Kit I (Agilent). Illumina non directional RNA-Seq libraries 

were prepared from 3.0 μg of total RNA per sample by using the TruSeq RNA Sample 

Prep Kit v2 according to the manufacturer‟s instructions (Illumina Inc.,San Diego, 

California, USA). The RNA-Seq libraries were size-selected at 350 to 550 bp using 

the Pippin Prep DNA size selection system (Sage Science). Library quality was 

determined using the Agilent High Sensitivity DNA kit on the Agilent 2100 

bioanalyzer, and the quantity was determined by quantitative PCR using the KAPA 

Library Quantification kit (KapaBiosystems). 

 

3.2.22 Sequencing for the RNASeq analysis 

Libraries were then pooled in equimolar concentrations and sequenced with the 

TruSeq Sequencing by Synthesis Kit v3-HS and TruSeq Paired End Cluster Kit 

v3-cBot-HS (Illumina) using an Illumina HiSequation 1000 sequencer according to 

the manufacturer‟s instructions to generate 100-bp paired-end reads. 
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3.2.23 Bioinformatic analysis of RNASeq data 

Bioinformatic analysis was performed by Pietro Delfino (unpublished results).   

To identify differentially expressed genes, reads (FASTQ data) were trimmed, tested 

for quality (FastQC software analysis) and aligned against the Arabidopsis genome 

TAIR 10 by using the HISAT software (Kim et al., 2015). Differential expression 

analysis was performed by applying the DESeq software (Anders and Huber, 2010) 

with standard parameters. DEGs were identified by comparing samples treated with 8 

h NO 200ppm and untreated samples. As criteria: (log2FC)>1,5 and (log2FC)<-1,5 

log2(FC) ≥ |1,5| was used as threshold. Gene ontology enrichment analysis was 

performed on differentially expressed genes by using the online AgriGO v2.0 analysis 

toolkit (Du et al., 2010, Tian et al., 2017) using the Singular Enrichment Analysis and 

selecting biological processes in the GO slim gene ontologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
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4.1 Nitric oxide synthesis during the HR: characterization of plant alpha 

carbonic anhydrase as candidate enzyme for nitric oxide production from nitrite 

4.1.1 Selection of Arabidopsis AtαCA2 protein as candidate for the 

characterization 

Eight genes encoding for αCAs exist in the Arabidopsis thaliana genome (Fabre et al., 

2007, Table 1). However, in contrast to the well-studied mammalian αCAs, the 

information on plant αCAs is very poor. 

 

    Table 1. The Arabidopsis thaliana αCA gene family 

 AGI number Name 

α CA gene family At3g52720 AtαCA1 

At2g28210 AtαCA2 

At5g04180 AtαCA3 

At4g20990 AtαCA4 

At1g08065 AtαCA5 

At4g21000 AtαCA6 

At1g08080 AtαCA7 

At5g56330 AtαCA8 

 

All CA proteins belonging to class alpha show similar identity percentage at amino 

acid level to bovine CAII (about 30%). Multiple amino acid sequence comparison of 

these proteins with bovine CAII revealed that αCA1-8 all retain the 3 histidine 

residues which are involved in coordinating the Zn
2+

 ion in the mammalian CAs 

active site (according to structural characterization of the human isoenzyme II αCA, 

Swiss Prot accession number P00918, Eriksson et al., 1988). Furthermore, residues 

that interact with H2O and assist in charging Zn
2+

 ion with the hydroxyl and residues 

involved in composing the hydrophobic pocket for CO2 hydration/ HCO3
-
 dehydration 

are also widely conserved in the plant αCA family (Fabre et al., 2007, Figure 4).  

This conservation suggests that Arabidopsis αCAs may possess a similar catalytic 

capacity like Bovine CAII, including nitrite disproportionation (Amand et al., 2009), 

and that this could be a shared feature for all family members. However, as small 

differences exist in the sequences of AtACA 1, AtACA 3, AtACA 4, AtACA 6, 



61 
 

AtACA 8 affecting residues which are involved in hydroxyl binding that could impact 

on nitrite binding (Nielsen et al., 2015), we didn‟t select these as main candidates in 

the family for our biochemical characterization.  

 
 
AtΑCA1    1 -MKIMM---MIKLCFFSM-SLIC--------------------------------------------------------- 
AtΑCA2    1 -MDKISIRCFIFLVLTSFVTTVSCL------------------------------------------------------- 
AtΑCA3    1 -----MKTIILFVTFL---------------------------------------------------------------- 
AtΑCA4    1 -MDTNAKTIFFMAMCFIY-------------------------------------------------------------- 
AtΑCA5    1 -MKIPSIGYVFFLIFISI-TIVSSS------------------------------------------------------- 
AtΑCA6    1 -MDANTKTILFFVVFFID-------------------------------------------------------------- 
AtΑCA7    1 MVNYSSISCIFFVALFSIFTIVSIS------------------------------------------------------- 
AtΑCA8    1 -MKISSLGWVLVLIFISI-TIVSSAPAPKPPKPKPAPAPTPPKPKPTPAPTPPKPKPKPAPTPPKPKPAPAPTPPKPKPA 
Bovine    1 -------------------------------------------------------------------------------- 
  CAII 
 
AtΑCA1   19 -------------------------------------------------IAPADA--QTEGVVFGYKGKNGPNQWGHLNP 
AtΑCA2   25 -----------------------------------------------SAATDYREVEDEHEFSYEWNQENGPAKWGKLRP 
AtΑCA3   12 -----------------------------------------------ALSSSSLADETETEFHYKPGEIADPSKWSSIKA 
AtΑCA4   18 ------------------------------------------LSFPNISHA-HSEVDDETPFTYEQKTEKGPEGWGKINP 
AtΑCA5   24 --------------------------------------------------PDHGEVEDETQFNYEKKGEKGPENWGRLKP 
AtΑCA6   18 ------------------------------------------LFSPNILFVYAREIGNKPLFTYKQKTEKGPAEWGKLDP 
AtΑCA7   26 -----------------------------------------------SAASSHGEVEDEREFNYKKNDEKGPERWGELKP 
AtΑCA8   79 PAPTPPKPKPKPAPTPPNPKPTPAPTPPKPKPAPAPAPTPAPKPKPAPKPAPGGEVEDETEFSYETKGNKGPAKWGTLDA 
Bovine    1 -----------------------------------------------------------MSHHWGYGKHNGPEHWHKDFP 
  CAII 
 
AtΑCA1   48 HFTTCAVGKLQSPIDIQRRQIFYNHK-LNSIHREYY-FTNATLVNHVCNVAMFFGEGAG----DVIIENKNYTLLQMHWH 
AtΑCA2   58 EWKMCGKGEMQSPIDLMNKRVRLVTH-LKKLTRHYK-PCNATLKNRGHDMMLKFGEEGSG---SITVNGTEYKLLQLHWH 
AtΑCA3   45 EWKICGTGKRQSPINLTPKIARIVHNSTEILQTYYK-PVEAILKNRGFDMKVKWEDDAG----KIVINDTDYKLVQSHWH 
AtΑCA4   55 HWKVCNTGRYQSPIDLTNERVSLIHD-Q-AWTRQYK-PAPAVITNRGHDIMVSWKGDAG----KMTIRKTDFNLVQCHWH 
AtΑCA5   54 EWAMCGKGNMQSPIDLTDKRVLIDHN-LGYLRSQYL-PSNATIKNRGHDIMMKFEGGNAGL--GITINGTEYKLQQIHWH 
AtΑCA6   56 QWKVCSTGKIQSPIDLTDERVSLIHD-Q-ALSKHYK-PASAVIQSRGHDVMVSWKGDGG----KITIHQTDYKLVQCHWH 
AtΑCA7   59 EWEMCGKGEMQSPIDLMNERVNIVSH-LGRLNRDYN-PSNATLKNRGHDIMLKFE-DGAG---TIKINGFEYELQQLHWH 
AtΑCA8  159 EWKMCGIGKMQSPIDLRDKNVVVSNK-FGLLRSQYL-PSNTTIKNRGHDIMLKFKGGNKGI--GVTIRGTRYQLQQLHWH 
Bovine   22 ----IANGERQSPVDIDTKAVVQDPA-LKPLALVYGEATSRRMVNNGHSFNVEYDDSQDKAVLKDGPLTGTYRLVQFHFH 
  CAII                                                               ○                                  ☆ ☆ 
 
AtΑCA1  122 T------PSEHHLHGVQYAAELHMVHQAK-----------DGSFAVVASLFKIGTEEPFLSQMKEKLVKLKEERLKGNHT 
AtΑCA2  133 S------PSEHTMNGRRFALELHMVHENI-----------NGSLAVVTVLYKIGRPDSFLGLLENKLSAI-----TDQNE 
AtΑCA3  120 A------PSEHFLDGQRLAMELHMVHKSV-----------EGHLAVIGVLFREGEPNAFISRIMDKIHKI-----ADVQD 
AtΑCA4  128 S------PSEHTVNGTRYDLELHMVHTSA-----------RGRTAVIGVLYKLGEPNEFLTKLLN---GI-----KAVGN 
AtΑCA5  130 S------PSEHTLNGKRFVLEEHMVHQSK-----------DGRNAVVAFFYKLGKPDYFLLTLERYLKRI-----TDTHE 
AtΑCA6  129 S------PSEHTINGTSYDLELHMVHTSA-----------SGKTTVVGVLYKLGEPDEFLTKILN---GI-----KGVGK 
AtΑCA7  133 S------PSEHTINGRRFALELHMVHEGR-----------NRRMAVVTVLYKIGRADTFIRSLEKELEGI-----AEMEE 
AtΑCA8  235 S------PSEHTINGKRFALEEHLVHESK-----------DKRYAVVAFLYNLGASDPFLFSLEKQLKKI-----TDTHA 
Bovine   97 WGSSDDQGSEHTVDRKKYAAELHLVHWNTKYGDFGTAAQQPDGLAVVGVFLKVGDANPALQKVLDALDSIKT------KG 
  CAII                  ○             ☆  ●                      ●  
 
AtΑCA1  185 AQVEVGRIDTRHIERKTRKYYRYIGSLTTPPCSENVSWTILGKVRSMSKEQVELLRSPLDTS-------FKNNSRPCQPL 
AtΑCA2  191 AEKYVDVIDPRDIKIGSRKFYRYIGSLTTPPCTQNVIWTVVKKVRTVTKNQVKLLRVAVHDN-------SDTNARPVQPT 
AtΑCA3  178 GEVSIGKIDPREFGWDLTKFYEYRGSLTTPPCTEDVMWTIINKVGTVSREQIDVLTDARRGG-------YEKNARPAQPL 
AtΑCA4  183 KEINLGMIDPREIRFQTRKFYRYIGSLTVPPCTEGVIWTVVKRVNTISMEQITALRQAVDDG-------FETNSRPVQDS 
AtΑCA5  188 SQEFVEMVHPRTFGFESKHYYRFIGSLTTPPCSENVIWTISKEMRTVTLKQLIMLRVTVHDQ-------SNSNARPLQRK 
AtΑCA6  184 KEIDLGIVDPRDIRFETNNFYRYIGSLTIPPCTEGVIWTVQKRVLYFFCFCYRLIIF--------------------VTP 
AtΑCA7  191 AEKNVGMIDPTKIKIGSRKYYRYTGSLTTPPCTQNVTWSVVRKVRTVTRKQVKLLRVAVHDD-------ANSNARPVQPT 
AtΑCA8  293 SEEHI---------------------------------------RTVSSKQVKLLRVAVHDA-------SDSNARPLQAV 
Bovine  171 KSTDFPNFDPGSLLPNVLDYWTYPGSLTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPL 
  CAII                                      ●○ 
 
AtΑCA1  258 NGRRVEMFHDHERVDKKETGNKKKKPN 
AtΑCA2  264 NKRVVKLYKPKSL-------------- 
AtΑCA3  251 NGRLVYLNEQSSPSPTPRLRIPRVGPV 
AtΑCA4  256 KGRSVWFYDPNV--------------- 
AtΑCA5  261 NERPVALYIPTWHSKLY---------- 
AtΑCA6  244 YINIFWIFVFVFWCMLM---------- 
AtΑCA7  264 NKRIVHLYRPIV--------------- 
AtΑCA8  327 NKRKVYLYKPKVKLMKKYCNISSY--- 
Bovine  251 KNRQVRGFPK----------------- 
CAII 

 

 

 

 

 

 

 

 

As further information to select the best candidate for our characterization, we 

decided to explore also gene expression. Transcriptomic data of Arabidopsis thaliana 

Col-0 adult leaves challenged with the avirulent pathogen Pseudomonas syringae pv. 

Figure 4. Amino acid sequence alignment of Arabidopsis αCAs with Bovine CAII. 

Multiple alignment was processed using Clustal Omega and further formatted using the BoxShade 

programs. Conserved and similar amino acids are shown with black-shaded and grey-shaded boxes 

and gaps introduced to maximize the alignment are indicated by hyphens (−). The histidine residues 

ligated to Zn ion are denoted as stars. Residues that interact with H2O and assist in charging Zn
2+

 ion 

with a hydroxyl are marked by white circles. Residues composing the CO2 hydrophobic pocket are 

indicated with black circles. 
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tomato (Pst) DC3000 carrying the avirulence gene AvrB (Jingjing Huang 

unpubblished data) were analysed to retrieve expression information for all alpha CAs 

family members. We found that among αCAs, AtαCA1 was the highest expressed 

gene at basal conditions, followed by AtαCA2 gene, while all other αCAs showed very 

low expression or no expression (Figure 5). Interestingly, AtαCA1 was 

down-regulated following pathogen infection both at 8 and 12 hours post infection, 

while AtαCA2 was significantly up-regulated. Therefore, AtαCA2 was selected for our 

biochemical characterization, to explore the possible involvement of plant αCAs 

family in NO production from nitrite during pathogen infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Expression of αCA family members in Arabidopsis leaves infiltrated with avirulent 

pathogen Pseudomonas syringae pv tomato carrying AvrB at 0, 8 and 12 hours post infection. 

Arabidopsis thaliana Col-0 leaves were infiltrated with 5x10
6
 cfu/ml of Pst AvrB. RNASeq libraries 

were produced from leaves sampled at indicated times after infection. Expression levels as FPKM 

(Fragments per Kilobase per Million Reads) deduced from these samples (Jingjing Huang unpublished 

results) are plotted for each AtαCA family member. 
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4.1.2 Characterization of the recombinant AtαCA2 produced in E. coli 

4.1.2.1 Production of the recombinant AtαCA2 

Given the expression profiles previously reported (see paragraph 4.1.1), we decided to 

clone the AtαCA2 coding sequence from leaf samples infected with the Pst AvrB 

avirulent pathogen (5x10
6
 cfu/ml) and harvested at 8 hours post infection. 

The coding sequence was amplified from cDNA by using primers designed on the 

manually refined ORF derived from RNASeq available reads. Moreover, subcellular 

localization prediction by Target P v1.1 program 

(http://www.cbs.dtu.dk/services/TargetP/) (Emanuelsson et al., 2007) indicated that 

the deduced 276 aa protein sequence for AtαCA2 very likely includes a 23 aa 

secretory pathway signal peptide (Table 2). Amplification primers were thus designed 

to avoid including the sequence encoding for the signal peptide and are reported in 

paragraph 3.1.7. 

 

 

 

Name Len cTP mTP SP other Loc RC TPlen 

AtαCA2 276 0.002 0.032 0.995 0.093 S 1 23 

 

 

 

 

The purified PCR product was cloned into a pENTR vector by using the 

TOPOCLONING system and then transfered by LR reaction (Gateway system, see 

paragraph 3.2.6) to a pDEST17 vector for expressing in Escherichia coli, the 

recombinant protein was fused to an N-terminal 6x-Histidine tag (Figure 6). This 

construct was finally transferred to BL21 Escherichia coli strain for protein 

expression. 

 

Table 2. Signal pepetide and subcellular location prediction for AtαCA2 by Target P v1.1 

program 

Protein sequence analysis was performed by using the TargetP software 

(http://www.cbs.dtu.dk/services/TargetP/). cTP: chloroplast transit peptide, mTP: mitochondrial 

transit peptide, SP: secretory pathway signal peptide, C: chloroplast, M: mitochondria,  TPlen: 

transit peptide length.  

 

http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
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Different temperatures (21℃ or 37℃) and different concentrations of IPTG (0.4 mM 

or 0.05 mM) were tested for the over night induction of the AtαCA2 expression in 

order to maximize the amount of protein produced in the soluble fraction. Induction of 

protein expression at 21℃ over night and 0.05 mM IPTG were selected as best 

conditions (Figure 7). The recombinant 6XHis-AtαCA2 was purified from soluble 

fraction by affinity chromatography using the Ni-NTA agarose (QIAGEN) (Figure 8) 

and dialyzed against the elution buffer to remove imidazole. Western blot analysis 

confirmed that we could successfully produce and purify the histidine tagged AtαCA2. 

The yield of the recombinant AtαCA2 in our expression system was 0.2 mg per liter 

of bacterial culture. 

Figure 6. Map of the pDEST17 construct for expression in heterologous E. coli system of the 

6x-histidine tagged recombinant AtαCA2  

The coding sequence for AtαCA2 without predicted signal peptide was cloned in the pDEST17 

vector for expression in E. coli of His-tagged proteins by using the topocloning and gateway 

cloning system.  

 

Expression clone/pDEST17/pENTR/D-TOPO-AtαCA2-E2
5494 bp

initiation ATG

6xHis

ROP

Amp(R)

AtαCA2

attB1

attB2

T7 reverse primer

T7 primer

T7 promoter

bla promoter

TOPO?binding site

TOPO?binding site

directional TOPO?overhang

RBS

pBR322 origin

T7 transcription terminator
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Figure 7. Western blot analysis of recombinant 6XHis-AtαCA2 expressed in E.coli under 

different conditions.  

Western blot analysis by using an α-His antibody was performed on total cell proteins (TCP) or 

soluble protein fractions (SF) recovered from equal volumes of E. coli BL21 cell lysate. Protein 

expression was induced over night by using the following different conditions: 1. 21℃, 0.4 mM 

IPTG; 2. 37℃, 0.4 mM IPTG; 3. 21℃, 0.05 mM IPTG; 4. 37℃, 0.05 mM IPTG. 
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Figure 8. Purification of the recombinant 6XHis-AtαCA2 protein.  

Equal volume samples for each fraction eluted with buffers at different imidazole concentrations 

(80, 160, 400 mM) were resolved by SDS-PAGE, stained with Commassie brilliant blue R-250 and 

analyzed by western blot using the α-His antibody. SF, soluble fraction of E.coli cells lysate. FT, 

flow through. 
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4.1.2.2 Activity of the recombinant AtαCA2 produced in E. coli 

The carbonic anhydrase activity of the purified AtαCA2 was measured according to 

the Wilbur-Anderson method (Wilbur and Anderson, 1948). Unfortunately, no CA 

activity was detected for the recombinant AtαCA2 produced in E.coli (Figure 9). 

 

 

 

Interestingly, it was shown in literature that N-glycosylation was necessary for CA 

activity of AtαCA1 (Villarejo et al., 2005; Buren et al., 2011). The AtαCA2 shares 

39% of identity at protein level with AtαCA1. In silico N-glycosylation prediction 

analysis performed by NetNGlyc 1.0 program 

(http://www.cbs.dtu.dk/services/NetNGlyc/) indicated that AtαCA2 sequence contains 

three potential N-glycosylation sites (Figure 10). Thus, we hypothesized that AtαCA2 

could be requiring N-glycosylation, which is lacking in E.coli expression system, at 

least for its carbonic anhydrase activity.  

Since AtαCA2 protein produced in the E. coli expression system was not an active 

recombinant protein, we decided not to proceed further our analysis to verify the 

AtαCA2 putative involvement in converting nitrite to NO, and to chose instead an 

alternative expression system allowing N-glycosylation. 
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Bovine αCAII AtαCA2

Figure 9. Carbonic anhydrase activity of recombinant AtαCA2 purified from E.coli.  

Carbonic anhydrase activity was tested by the Wilbur Anderson protocol and plotted as average 

W-A units for mg of used protein (n=5, + SD). Commercial bovine αCA II was used as a control. 

http://www.cbs.dtu.dk/services/NetNGlyc/
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4.1.3 Characterization of recombinant AtαCA2 produced in plants 

4.1.3.1 Preparation of constructs for expression of AtαCA2 in plants 

With the final aim of producing an active AtαCA2 recombinant protein, which 

possibly requires N-linked glycosylation, to be tested for its involvement in NO 

production from nitrite, we decided then to try an alternative expression system to E. 

coli which lacks protein N-glycosylation. More in detail, we chose to use the 

Nicotiana benthamiana plant as protein expression system. Two different vectors for 

expression in plants were chosen to compare protein yields. One was the gateway 

compatible pGR106new expression construct for protein expression in plants based 

on the plant virus Potato virus X (PVX) system (Angell and Baulcombe, 1997, 

Cerovska et al., 2004). This vector is similar to the pGR106 binary vector derived 

from pGreen0000 but carries a gateway cassette cloned in the SalI restriction site of 

Figure 10. N-glycosylation sites of the deduced amino acid sequence of AtαCA2. 

The output of the in silico N-glycosylation prediction analysis performed by NetNGlyc 1.0 

program (http://www.cbs.dtu.dk/services/NetNGlyc/) is provided. Predicted signal peptide is 

reported in bold. Asn-Xaa-Ser/Thr signatures in the AtαCA2 sequence are highlighted in blue and 

asparagines with N- glycosylation potential higher than threshold are highlighted in red. 

          10           20           30          40           50           60           70          80 

.........| .........| .........| .........| .........| .........| .........| .........| 

MDKISIRCFI FLVLTSFVTT VSCLSAATDY REVEDEHEFS YEWNQENGPA KWGKLRPEWK MCGKGEMQSP IDLMNKRVRL   80  

VTHLKKLTRH YKPCNATLKN RGHDMMLKFG EEGSGSITVN GTEYKLLQLH WHSPSEHTMN GRRFALELHM VHENINGSLA   160  

VVTVLYKIGR PDSFLGLLEN KLSAITDQNE AEKYVDVIDP RDIKIGSRKF YRYIGSLTTP PCTQNVIWTV VKKVRTVTKN   240  

QVKLLRVAVH DNSDTNARPV QPTNKRVVKL YKPKSL 

http://www.cbs.dtu.dk/services/NetNGlyc/
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the polylinker inserted in the coat protein (CP) promoter. The second was the 

pK7WG2 gateway compatible vector for constitutive expression of proteins in plants 

(Karimi et al., 2002).  

In both cases an Agrobacterium mediated transient transformation system was 

selected for delivery of the vector. However, the pGR106new vector relies on the 

PVX virus which should allow an higher level of expression for the foreign gene 

according to the optimized conditions described in Cerovska et al., 2004.  

The full-length coding sequence of AtαCA2 gene including the signal peptide was 

amplified from cDNA of pathogen infected Arabidopsis leaves by using primers 

designed on the manually refined ORF derived from RNASeq available reads (see 

paragraph 3.1.7). This sequence was cloned in the entry vector to create the construct 

pENTR-AtαCA2-E. The same construct was then used to produce a modified version 

of the coding sequence including the FLAG and His tags in the C-terminal portion 

subcloned into the Gateway entry vector pENTR/D-TOPO to create the construct 

pENTR-AtαCA2-FLAG-His-P which was also verified by sequencing. The entry 

vector was recombined with the binary vectors pGR106new and pK7WG2 by LR 

Clonase, to construct the plant expression vectors pGR106- AtαCA2-flag-His and 

pK7WG2- AtαCA2-flag-His respectively. Finally, the pGR106-AtαCA2-flag-His and 

pK7WG2- AtαCA2-flag-His plasmids verified by PCR using gene specific primers 

and restriction enzyme digestion were introduced into Agrobacterium tumefaciens 

strains GV3101. Maps of the prepared constructs are provided in Figure 11. 
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Figure 11. Maps of construct pGR106-AtαCA2-His-Flag and pK7WG2-AtαCA2-His-Flag. 
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4.1.3.2 Transient expression of AtαCA2 in N. benthamiana leaves 

The two plant binary expression vectors pGR106new and pK7WG2 described in the 

previous paragraph were then delivered by agroinfiltration to N.benthamiana leaves to 

induce the transient expression of AtαCA2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Western blot analysis of transiently expressed AtαCA2 accumulation in 

N.benthamiana leaves. 

(A) Time-course of AtαCA2-Flag-His expression in plant analysed by anti-FLAG western blotting. 

N. benthamiana leaves were infiltrated with Agrobacterium tumefaciens GV3101 strain carrying the 

pGR106new binary vector. Samples were harvested from locally infected leaves at indicated times 

(dpi, day post infection) or from systemic leaves 9 dpi.  

(B) Time-course of AtαCA2-Flag-His expression in plant analysed by anti-FLAG western blotting. 

N. benthamiana leaves were infiltrated with Agrobacterium tumefaciens GV3101 strain carrying 

the pK7WG2 binary vector. Samples were harvested from locally infected leaves at indicated times 

(dpi, day post infection) or from systemic leaves 9 dpi. A sample extracted from systemic leaves 

wes loaded in both A and B as comparison. Comassie stained gel is provided under western blot as 

loading control. 

A 

 

       Local             Systemic 

    Leaves (dpi)           Leaves 

M  0 1  2  3  4  5  6  7       C 

100 

70 

55 

35 

25 

KDa 

100 

70 

55 

35 

25 

KDa 

 

              Leaves (hpi) 

 

  M  0  16  24  40  48  64  72  C 

100 

70 

55 

35 

25 

KDa 

 

Rubisco L 

B 

100 

70 

55 

35 

25 

KDa 

 



70 
 

RT-PCR analyses were performed to preliminarly test gene expression (data not 

shown). 

 

Then, in order to identify the best expression system and timing of protein 

accumulation, protein expression was monitored in a time-course study for both 

expression systems (Figure 12). When using the pGR106new construct, which relies 

on the PVX virus mediated expression system, locally infected leaf samples were 

harvested from 1 to 7 dpi (days post-infiltration). Furthermore, leaf samples were 

collected from systemic leaves at 9 dpi to test for protein accumulation following the 

spread of the virus. Alternatively, when using the pK7WG2 vector for protein 

expression in plant local leaf, samples were collected for 3 days following 

agroinfiltration.  

Equal volumes of total protein extracts were separated on SDS PAGE and western 

blot analysis by using the anti-FLAG antibody was performed to test 

AtαCA2-Flag-His expression and accumulation in time. As shown in Figure 12, 

anti-FLAG immunoreactive proteins of about 40 and 80 kDa (see arrows in Figure 12 

A) started to accumulate from 3 dpi (days post-infiltration) in local leaves and 

maximum accumulation appeared from 4 to 6 dpi when using the vector pGR106new. 

Morever, systemic leaves showed lower level of protein accumulation compared to 

local leaves. Highest accumulation of anti-FLAG immunoreactive proteins of similar 

molecular weight (MW) appeared instead at about 40 hours post-infiltration when 

using the binary vector pK7WG2 (Figure 12 B).  

Comparison of maximum immunoreactive protein accumulation levels in the two 

systems by densitometric analysis and using same concentrated sample (C) as control 

showed that maximum levels of protein accumulation were comparable by using the 

two different expression systems or even stronger when using the pK7WG2 construct 

for transient expression at 40 hpi (hours post-infiltration). 
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4.1.3.3 AtαCA2 protein expressed in N.benthamiana leaves is N-glycosylated  

We observed that the protein expressed in Nicotiana benthamiana leaves (Figure 12 A 

and B) showed an apparent MW higher than the expected MW for full length AtαCA2 

including the two C-terminal added tags (34,8 kDa). Indeed the protein showed a MW 

of 40 kDa. Furthermore, a second immunoreactive band at 80 kDa was also observed. 

We speculated that the expressed AtαCA2 protein could be thus properly 

N-glycosylated when expressed in the plant system, leading to the shift from the 

expected weight of 34,8 kDa to the observed weight of 40 kDa. Furthermore, AtαCA2 

could possibly produce dimers, stable in the SDS-PAGE, thus explaining the 

immunoreactive band at about 80 kDa.  

To confirm that the 40 kDa immunoreactive protein corresponded indeed to the 

N-glycosylated form of AtαCA2-Flag-His proteins, total proteins isolated from leaves 

infected with Agrobacterium carrying previously described constructs were treated 

with the endoglycosidase H enzyme, which cleaves within the chitobiose core of high 

mannose and some hybrid oligosaccharides from N-linked glycoproteins (Figure 13).  

Interestingly, following Endo H treatment we observed a size shift in the apparent 

MW of the protein from the 40 kDa to about 35 kDa.  

 

 

 

 

 

 

 

Therefore, as it showed to be sensitive to Endo H digestion, we concluded AtαCA2 

was glycosylated when expressed in N. benthamiana leaves (Figure 14).  

 

 

Figure 13. Endoglycosidase H cleavage site on N-glycans bound to nascent proteins 
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4.1.3.4 Thylakoid fractions prepared from leaves expressing AtαCA2 accumulate 

N-glycosylated AtαCA2 

We previously mentioned that subcellular localization prediction by Target P1.1 

program (http://www.cbs.dtu.dk/services/TargetP/) showed that AtαCA2, similarly as 

AtαCA1, has a secretary pathway signal peptide which would target protein to the 

endoplasmic reticulum (ER) (see paragraph 4.1.2.1). However, it was demonstrated 

that AtαCA1, like other glycoproteins such as Rice Plastidial N-Glycosylated NPP1 

or Rice a-Amylase, was finally targeted to plastids (chloroplasts) through an ER to 

Golgi to chloroplast protein transport pathway (Villarejo et al., 2005; Nanjo et al., 

2006; Kitajima et al.,2009). Therefore, we expected that AtαCA2 could also target to 

Figure 14. Endo H sensitivity of plant produced AtαCA2 

Total protein extracts from N. benthamiana leaves agroinfiltrated with pGR106new-AtαCA2 (left 

panel) or pK7WG2-AtαCA2 constructs (right panel) and harvested respectively 5 dpi or 40hpi were 

treated with EndoH enzyme, separated on SDS-PAGE and then analysed by western blotting by 

using an anti-FLAG antibody. Protein extracts from non agroinfiltrated leaves or leaves infiltrated 

with pK7WG2-GFP (only right panel) are shown as control. Comparison of protein size for EndoH 

treated and untreated samples is shown for each panel. In the right panel non glycosylated FLAG 

tagged AtαCA2 (produced in E. coli, 32 KDa) is loaded as MW reference. Ponceau stained 

membrane or Comassie stained gel are provided as equal loading control of samples. 
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chloroplast through a similar pathway. Moreover, considering that the expressed 

AtαCA2 mainly accumulated in insoluble fractions, we expected that AtαCA2 could 

be associated with chloroplast membrane system. 

We tested first whether the recombinant AtαCA2 was enriched in thylakoids using 

LHCII, a thylakoid marker protein, for comparison. Indeed, we found that AtαCA2 

amount in thylakoids fraction was comparable to AtαCA2 in total homogenates (H), 

in a similar manner as LHCII, suggesting that recombinant AtαCA2 protein, like 

LHCII, mainly accumulates in thylakoid fraction of N.benthamiana leaves when 

transiently expressed (Figure 15).  

Prepared thylakoid fraction showed very low level of contamination with stroma 

proteins (Rubisco) (see Comassie in Figure 16A). To further confirm that 

contamination of thylacoid was very low, a serial dilution of total homogenate was 

compared for Rubisco content to thylakoids. We could clearly see that in our 

thylakoids samples Rubisco content was lower than the amount present in total 

homogenate after 1: 100 dilution (Figure 15B).  

Finally, we enquired whether the protein enriched in thylakoid fraction was also 

N-glycosylated. We extracted and solubilized thylakoid proteins, containg AtαCA2, 

and showed by western blotting that AtαCA2 present in the thylakoid fraction was 

Endo H sensitive similarly as previously shown for AtαCA2 from total protein 

extracts (Figure 16). 
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Figure 15. AtαCA2 transiently expressed in plant accumulates in thylakoid fractions  

(A) N. benthamiana leaves agroinfiltrated with pK7WG2-AtαCA2 construct (or pK7WG2-GFP as 

negative control) and harvested 40hpi were used for preparing either total protein homogenate (H) 

or thylakoid fractions (Thy). Samples (1 ug of chlorophyll each) were tested by western blotting 

using an anti-FLAG antibody or an anti LHCII antibody. AtαCA2 content in thylakoids was 

comparable to the amount in total homogenate similarly as was for LHCII. Ponceau stained 

membrane and Comassie stained gel are shown as sample loading control. Rubisco was absent in 

thylakoid fraction as expected. 

(B) Serial dilution of total homogenates (H) demonstrates that thylakoid fraction prepared and used 

in (A) carries as low as 1/100 of Rubisco protein. 

 

A B 
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4.1.3.5 Estimation of recombinant AtαCA2 expression in N.benthamiana leaves 

To evaluate the expression level of the recombinant AtαCA2-FLAG-His in 

N.benthamiana leaves following agroinfiltration, we have first expressed and purified 

the AtαCA2 protein without signal peptide tagged both with 6xHis and FLAG in 

E.coli to be used as standard. 

The same procedure already reported in paragraph 4.1.2.1 was applied to produce the 

FLAG tagged standard. Briefly, we constructed the E. coli expression vector 

pDEST17 carrying AtαCA2-Flag encoding sequence without signal peptide and 

expressed the His-AtαCA2-Flag protein in E. coli using previously established 

conditions. Western blotting using both anti-FLAG and Anti-His are given in Figure 

17 showing that the tagged recombinant His-AtαCA2-Flag protein (32 kDa) 

Figure 16. Endo H sensitivity of AtαCA2 in solubilized thylakoid fractions 

Solubilized thylakoids (0.1% TritonX-100) prepared from N. benthamiana leaves expressing 

AtαCA2 were either treated or not with Endo H. Comparison of protein size for EndoH treated and 

untreated samples is shown. Non glycosylated FLAG tagged AtαCA2 (produced in E. coli, 32 KDa, 

5ng, 2 ng) is loaded as MW reference. 
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accumulated mostly in insoluble fraction. The His-AtαCA2-Flag protein was then 

purified from solubilized inclusion bodies as previously described. Concentration of 

purified protein was carefully evaluated by densitometric analysis in Comassie stained 

SDS-PAGE against know amounts of BSA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Western blotting of the His/FLAG tagged recombinant AtαCA2 protein expressed in 

E.coli to be used as standard for plant expression quantification 

Conditions as reported in paragraph 1.2 were used for protein expression in E. coli. Western blotting 

by using an anti-FLAG antibody (left panel) or anti-His antibody (right panel) on the same stripped 

membrane are shown. The corresponding Comassie stained SDS-PAGE is shown under. Equal 

amounts of protein extracts were loaded (BI, total cell proteins before induction; AI, total cell proteins 

after induction; IF, protein insoluble fraction; SF, protein soluble fraction). 
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Using purified His-AtαCA2-Flag protein as standard, the expression level of 

AtαCA2-Flag-His protein expressed in N.benthamiana leaves following 

agroinfiltration was quantified by densitometric analysis of western blotting 

(anti-FLAG antibody) (Figure 18). According to this quantification, we estimated that 

about 8.6 ug of AtαCA2 was produced per gram of fresh leaf, when using the 

pK7WG2 construct for transient plant protein expression. 

 

 

 

 

 

 

 

Figure 18. Estimation of protein expression level in agroinfiltrated N.bethamiana leaves by 

using the pK7WG2-AtαCA2 construct 

Total protein extracts from N. benthamiana leaves agroinfiltrated with pK7WG2-AtαCA2 construct 

and harvested 40hpi were separated on SDS-PAGE and then analysed by westrn blotting using an 

anti-FLAG antibody. Protein extracts were also prepared from non agroinfiltrated leaves (negative 

control) and from leaves infiltrated with pK7WG2-GFP. Two independent experiments are shown. 

Densitometric analysis was performed to estimate protein expression using FLAG tagged AtαCA2 

produced in E. coli at known concentration at different dilution as standard. 
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Quantification of protein level was also performed for samples collected from N. 

benthamiana leaves infiltrated with Agrobacyerium carrying the pGR106new 

construct by using the same procedure. A comparable amount of protein expression 

(7,5 ug per gram of fresh weight) was extimated in plant tissue. Moreover, attempts to 

purify the AtαCA2 protein either from whole plant tissue or purified thylakoids 

membranes yielded even lower amount of protein (~1.26 ug recombinant AtαCA2 per 

gram of fresh weight in best cases). As some milligram of recombinant AtαCA2 is 

required to test its NO production from nitrite by using chemiluminescence, we 

estimated the amount of expressed protein in plant tissue with this transient system 

too low and decided no to proceed further with protein purification. 
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4.2 Nitric oxide synthesis during the HR: characterization of plant beta and 

gamma carbonic anhydrase as candidate enzymes for nitric oxide production 

from nitrite 

4.2.1 Selection of tobacco NtβCA1, Arabidopsis AtβCA1 and AtγCA2 carbonic 

anhydrases as candidates for the characterization 

In higher plants, differently from mammalian, majority of soluble carbonic anhydrase 

activity is ascribed to the β-class of carbonic anhydrases (β-CAs), a class of 

independently evolved enzymes with CA activity (Majeau et al., 1994; Price et 

al.,1994). This class is constituted of six genes in Arabidopsis thaliana (Table 3). 

Encoded proteins show distinct primary amino acid sequences compared to bovine 

CA, but partially conserved residues in the catalytic domain (Figure 19, Kimber and 

Pai, 2000; Rowlett, 2010). Among genes in this class, litterature data provided 

indication about the involvement of the tobacco and Arabidopsis carbonic anhydrase 

enzyme SABP3s (respectively NtβCA1 and AtβCA1) in immunity. Indeed, these 

genes were required for hypersensitive cell death and/or immunity response 

(Slaymaker et al.,2002; Wang et al.,2009). Therefore, even if AtβCA1 was 

down-regulated by avirulent pathogen infection (Figure 20), these two gene were 

selected according to literature to test the possibility that enzymes belonging to 

β-class of carbonic anhydrases are responsible for nitrite to nitric oxide conversion 

expecially in the HR, similarly as shown for bovine alphaCA. 

 

Table 3. The Arabidopsis thaliana βCA gene family 

 AGI number Name 

β CA gene family At3g01500 AtβCA1 

At5g14740 AtβCA2 

At1g23730 AtβCA3 

At1g70410 AtβCA4 

At4g33580 AtβCA5 

At1g58180 AtβCA6 
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In plant, a further family of carbonic anhydrases exists, the γCA gene family (Parisi et 

al.,2004). However, no real carbonic anhydrase activity was shown so far for proteins 

belonging to this family, even though residues for zinc coordination are found in 

γCAs (Kisker et al., 1996. Figure 21). These proteins are mainly targeted to the 

mitochondria and are supposed therefore to have structural function.  

In Arabidopsis, there are three genes encoding γCA and two genes encoding γCA-like 

proteins (Table 4). γCAs are more similar to each other at the amino acid sequence 

level (Figure 21) , even though they show no similarity with bovine αCAs. All γCAs 

and γCA-likes were up-regulated by avirulent pathogen infection (Figure 20). 

Figure 19. Amino acid sequence alignment of Arabidopsis βCAs and tobacco NtβCA. 

Multiple alignment was processed using Clustal Omega and further formatted using the 

BoxShade programs. Conserved and similar amino acids are shown with blank-shaded and 

grey-shaded boxes and gaps introduced to maximize the alignment are indicated by hyphens (−). 

The cysteine and histidine residues ligated to Zn ion are denoted as stars. Residues that interact 

with H2O and assist in charging Zn ion with a hydroxyl are marked by white circles. Residues 

composing the CO2 hydrophobic pocket are indicated with black circles. 
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Recombinant AtγCA2 protein was already expressed in several studies and showed 

higher induction following pathogen infection (Perales et al.,2005; Sunderhaus et al., 

2006; Villarreal et al.,2009). Therefore, we selected AtγCA2 as a representative of 

plant γCA for our characterization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. The Arabidopsis thaliana γCA gene family 

 AGI number Name 

γCA gene family AT1G19580 AtγCA1 

AT1G47260 AtγCA2 

AT5G66510 AtγCA3 

AT5G63510 AtγCAL1 

AT3G48680 AtγCAL2 

 

 

 

 

 

Figure 20. Expression of βCA and γCA gene family members in Arabidopsis leaves infiltrated 

with avirulent pathogen Pseudomonas syringae pv tomato carrying AvrB at 0, 8 and 12 hours 

post infection. 

Arabidopsis thaliana Col-0 leaves were infiltrated with 5x10
6
 cfu/ml of Pst AvrB. RNASeq 

libraries were produced from leaves sampled at indicated times after infection. Expression levels as 

FPKM (Fragments per Kilobase per Million Reads) deduced from these samples (Jingjing Huang 

unpublished results) are plotted for each CA family member. 
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4.2.2 Production of recombinant beta and gamma carbonic anhydrases 

The coding sequences of selected genes NtβCA1, AtβCA1 and AtγCA2 without the 

predicted signal peptide (Table 5) were cloned into the expression vector pET28a to 

produce in-frame fusion proteins with the 6xHis tag.  

The expression of the recombinant His-NtβCA1, His-AtβCA1 or His-AtγCA2 in 

E.coli BL21 cells containing pET28a-NtβCA1, pET28a-AtβCA1or pET28a-AtγCA2 

constructs was induced by using different temperatures and induction times in order to 

identify best conditions for accumulation of proteins in soluble fractions. More in 

detail, the recombinant His-NtβCA1 was expressed in both insoluble and soluble 

fractions of E.coli cells after induction for 4 h at 21°C (Figure 22, expected size 26k 

Da). The recombinant His-AtβCA1 was instead mainly expressed in insoluble fraction 

(Figure 23, expected size 31 kDa) and this was independent of time and temperature 

Figure 21. Amino acid sequence alignment of Arabidopsis γCAs and γCALs. 

Multiple alignment was processed using Clustal Omega and further formatted using the 

BoxShade programs. Conserved and similar amino acids are shown with blank-shaded and 

grey-shaded boxes and gaps introduced to maximize the alignment are indicated by hyphens (−). 

The histidine residues ligated to Zn ion are denoted as stars.  
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conditions used for induction. Finally, the recombinant His-AtγCA2 was mainly 

expressed in soluble fraction after induction for 18 h at 21°C (Figure 24, expected size 

21 kDa).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Production of the recombinant NtβCA1 in E.coli 

A. Map of the construct pET28a-NtβCA1 prepared for the expression of the His tagged 

recombinant protein in E. coli.  

B. Expression of the recombinant protein in E.coli. Comassie stained gels and Western blot, by 

using an α-His antibody, for total cell proteins before induction (BI) or after induction (AI) and 

insoluble or soluble protein fractions (IF, SF) derived from equal volumes of E. coli BL21 cell 

lysate are shown. Protein expression was induced for 4h at 21°C.  

C. Purification of recombinant NtβCA1. Fractions were collected from Ni-NTA agarose resin 

washed with elution buffer containing different concentrations of imidazole as indicated. 

Imidazole was removed from elution fraction with most of recombinant NtβCA1 through buffer 

change. SF, soluble fraction. FT, flow through. 

PET 28a-SABP3-TOBCLCAA

5999 bp

Kan(R)

lacI

Inserted gene-SABP3-TOBCLCAA

T7 promoter
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Name Len cTP mTP SP other Loc RC TPlen 

NtβCA1 321 0.966 0.052 0.015 0.036 C 1 62 

AtβCA1 347 0.977 0.044 0.005 0.013 C 1 47 

AtγCA2 278 0.038 0.921 0.008 0.210 M 2 43 

 

 

 

 

 

B             His-AtβCA1 

BI   AI   IF  SF 

35 kDa 

25 kDa 

WB: anti-His 

A 

Figure 23. Production of the recombinant AtβCA1 in E.coli 

A. Map of the construct pET28a- AtβCA1 prepared for the expression of the His tagged recombinant 

protein in E. coli.  

B. Expression of the recombinant protein in E.coli. Comassie stained gels and Western blot, by using 

an α-His antibody, for total cell proteins before induction (BI) or after induction (AI) and insoluble 

or soluble protein fractions (IF, SF) derived from equal volumes of E. coli BL21 cell lysate are 

shown. Protein expression was induced here for 4h at 21°C. Induction for longer times (18 h) either 

at 21°C or 16°C did not improve the amount of protein in the soluble fraction. 

 

Table 5. Signal pepetide and subcellular location prediction for selected β and γ CA by 

Target P v1.1 program 

Protein sequence analysis was performed by using the TargetP software 

(http://www.cbs.dtu.dk/services/TargetP/). cTP: chloroplast transit peptide, mTP: mitochondrial 

transit peptide, SP: secretory pathway signal peptide, C: chloroplast, M: mitochondria,  TPlen: 

transit peptide length.  

 

http://www.cbs.dtu.dk/services/TargetP/
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A 

                     Imidazole (mM)         

M   SF    FT   20   80   200   400  

C 

Figure 24. Production of the recombinant AtγCA2 in E.coli 

A. Map of the construct pET28a- AtγCA2 prepared for the expression of the His tagged 

recombinant protein in E. coli.  

B. Expression of the recombinant protein in E.coli. Comassie stained gels and Western blot, by 

using an α-His antibody, for total cell proteins before induction (BI) or after induction (AI) and 

insoluble or soluble protein fractions (IF, SF) derived from equal volumes of E. coli BL21 cell 

lysate are shown. Protein expression was induced for 18h at 21°C.  

C. Purification of recombinant AtγCA2. Fractions were collected from Ni-NTA agarose resin 

washed with elution buffer containing different concentrations of imidazole as indicated. 

Imidazole was removed from elution fraction with most of recombinant AtγCA2 through buffer 

change. SF, soluble fraction. FT, flow through. 
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Soluble fractions containing respective recombinant proteins were used for 

purification of His-NtβCA1 and His-AtγCA2. Since recombinant His-AtβCA1 was 

instead mainly expressed in insoluble fraction, we did not proceed with protein 

purification for this. The elution fraction with the highest amount of recombinant 

proteins was subjected to buffer exchange to remove imidazole. The purity of the 

purified His-NtβCA1 or His-AtγCA2 was high as shown in SDS-PAGE analysis 

(Figures 22 and Figures 24). Estimated yield was about 4 mg/liter for His-NtβCA1 

and 3 mg/liter for His-AtγCA2.  

4.2.3 Carbonic anhydrase activity of recombinant NtβCA1 and AtγCA2 

To verify that recombinant proteins were produced in their active form, the carbonic 

anhydrase activity was first determined.  

As expected (Slaymaker et al.,2002), the purified NtβCA1 showed carbonic 

anhydrase activity (Figure 25), indicating that NtβCA1s have the correct active 

conformation and can be used for further analysis. Consistent with previous results 

(Perales et al.,2005), no carbonic anhydrase activity was detected instead for the 

AtγCA2 recombinant protein produced in E.coli, even if sequence comparison and 

computer modeling would support a possible carbonic anhydrase activity for AtγCA2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Carbonic anhydrase activity of recombinant NtβCA1 and AtγCA2 purified from 

E. coli. 

Carbonic anhydrase activity was tested by the Wilbur Anderson protocol and plotted as average 

W-A units for mg of protein (n=5, + SD). Commercial bovine αCA II was used as a control.  
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0

200

400

600

800

1000

1200

NtβCA1 AtγCA2 Bovine CAII

C
a

rb
o

n
ic

 a
n

h
y

d
ra

se
 a

ct
iv

it
y

 

W
-A

 u
n

it
s 

/ 
m

g
 o

f 
p

ro
te

in
 

N
D

 



87 
 

4.2.4 NO production from nitrite by recombinant NtβCA1 and AtγCA2 

Both proteins were then used for testing their ability to produce NO from nitrite. NO 

was measured by using a chemiluminescence based NO detector (CLD88E 

Ecophysics) coupled to a glass vial for reactions in solution fluxed with air. The 

bovine CAII, as expected, gave a clear NO signal. However, no NO signal could be 

detected for recombinant NtβCA1 and AtγCA2 proteins in our experimental 

conditions (Figure 26).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. NO production activity of recombinant NtβCA1 and AtγCA2 from nitrite 

measured by chemiluminescence. 

Reaction was performed in 3 ml final reaction volume in 10 mM phosphate buffer in a glass vial 

coupled to the NO detector. 100 uM KNO2 was first added and then protein was injected to 

provide a final concentration equal to 10uM (Aamand et al., 2009). Bovine CAII was used as a 

positive control. Recorded NO traces content in air along time are shown (Ppb: parts per billion of 

NO in air gas). 
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4.3 Nitric oxide signaling during the HR-cell death: transcriptomic changes 

associated to NO induced cell death  

4.3.1 Establishing NO fumigation conditions triggering cell death in Arabidopsis 

plants 

Beside working on possible mecchanisms involved in NO production during the HR, 

we were also interested in investigating the downstream NO signaling following the 

NO burst induced by the pathogen recongnition and in particular the signaling 

involved in the cell death triggering. To this aim, we decided to set up an experimental 

approach, based on transcriptomic analysis, to identify transcriptomic changes 

associated the NO burst and more specifically to the NO triggered cell-death.  

NO accumulation in the HR is well documented (Delledonne et al., 1998; Chen et al., 

2014). This burst usually lasts a few hours after pathogen recognition and is required 

for the development of cell death associated to the HR. We decided to take advantage 

of a fumigation system, which was previously established in our lab, to treat plants 

with know amount of NO triggering cell death, to mimic this burst without pathogen 

infection, thus focusing specifically on the transcriptomic changes associated to the 

NO burst and consequent cell death development.  

Conditions triggering cell death on four-weeks-old Arabidopsis thaliana Col-0 plants 

were previously established (Zahra Imanifard, PhD thesis). Here, we applied the same 

NO treatment (200 ppm for 8 hours) to six-weeks-old Arabidopsis Col-0 plants and 

showed that such treatment was leading to HR also in older plants. In Figure 27, 

visual cell death symptoms 48 hours after fumigation on plants treated with NO can 

be observed. As comparison, we lowered either the time for NO fumigation or the NO 

concentration and found that no obvious cell death was observed in leaves fumigated 

for 3 hours with NO at 100 ppm or for 4 hours with NO at 200 ppm. Partial cell death 

was triggered instead in leaves fumigated for 6 hours with NO at 200 ppm.  

To validate these observations, cell death visual symptoms were correlated with the 

results of a test for quantitative assessment of cell death on leaf discs, the ion leakage 
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assay. Indeed, the cell death in plant tissues is accompanied by the loss of electrolytes 

from dying cells due to membrane injury and measurement of ion leakage from plant 

tissues allows to evaluate cell death. Therefore, leaf disks were produced from leaves 

subjected to the different NO treatments previously described, and release of ion in 

solution was then quantified along time. As shown in Figure 28, no significant 

difference in ion leakage was found between tissues fumigated either for 3 hours or 4 

hours with NO at 100 ppm or 200 ppm and untreated tissues. However, 6 hours or 8 

hours of NO fumigation at 200 ppm strongly increased the ion leakage, indicating that 

cell death was triggered by both treatments, even thought the careful inspection of 

visual symptoms indicated a much uniform cell death in tissues for the 8 hours 

treatment with NO.  

Figure 27. Visual sympthoms of NO fumigation-induced cell death in six-week-old Arabidopsis 

Col-0. 

Six weeks old Arabidopsis plants were treated with NO by using a fumigation chamber system for 

time indicated and with indicated amounts of NO (ppm of NO in air). Photos were taken before 

fumigations, immediately after fumigation and then after 24 hours and 48 hours. 
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4.3.2 Transcriptomic changes triggered by NO fumigation conditions inducing 

cell death 

Once conditions for the uniform NO-triggering of cell death were established, a gene 

expression analysis by RNASeq was performed to identify genes induced or repressed 

by the treatment and therefore possibly involved in NO mediated cell death. Fully 

expanded Arabidopsis leaves were harvested for RNA extraction immediately after 

NO fumigation for 8 h with NO (200 ppm). Untreated plants were used as control 

sample. For each condition, three independent samples were harvested as biological 

replicates.  

Sequencing library were prepared for each sample in collaboration with the 

Functional Genomic Centre at the University of Verona and sequenced with an 

Illumina sequencer. Untreated and NO fumigated samples provided complexively 

145045586 and 58841352 paired-end 100 bp reads, respectively. 

Figure 28. Ion leakage assays to assess cell death in Arabidopsis adult leaves triggered by 

different NO treatment conditions. 

Different NO fumigation conditions were applied to 6 weeks old Arabidopsis plants Col-0 as 

indicated in legends. After fumigation leaf discs from fully expanded leaves were used for the ion 

leakage assay to quantify cell death. Conductivity (uS/cm) in water is measured along time. Values 

are average of n=3 + SD. The experiment was repeated twice. 
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Table 6. Statistics of RNASeq sequencing. For each sample total number of reads obtained as well as 

mapped (unique position or multi mapped) and unmapped reads are indicated. 

Sample 

name 
Treatment 

Replica 

Total 

reads 

Unique 

Mapped  

Multi 

mapped Unmapped 

NO_untreated 

Untreated 1 24287344 

22082550 

(90.922%) 

1425800 

(5.87055%) 

778994 

(3.20741%) 

Untreated 2 50287688 

47162438 

(93.7853%) 

1027025 

(2.0423%) 

2098225 

(4.17244%) 

Untreated 3 70470554 

65699523 

(93.2298%) 

997326 

(1.41524%) 

3773705 

(5.35501%) 

NO_8h200ppm 

200ppmNO_8h 1 23871782 

22402371 

(93.8446%) 

492732 

(2.06408%) 

976679 

(4.09135%) 

200ppmNO_8h 2 16295289 

15164743 

(93.0621%) 

501350 

(3.07666%) 

629196 

(3.86121%) 

200ppmNO_8h 3 18674288 

17586864 

(94.1769%) 

341601 

(1.82926%) 

745823 

(3.99385%) 

 

Up to 93.79% and 94.18% mapped on genome by using A. thaliana TAIR10 reference 

genome. Even though the full number of reads was different in untreated samples and 

NO treated samples, samples could be properly distinguished as seen in Figure 29. 

 

Figure 29. Principal Component Analysis (PCA) on normalized gene expression values. X- 

and Y-axes show the PC1 and PC2 (amount of variance explained by each component in 

parenthesis). Each point represents a sample, dots of the same colors are replicates of a same 

experimental group. 
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Differential gene expression analysis was performed by using the DESeq2 software. 

This analysis revealed that among 18690 expressed genes, 15416 were significantly 

differentially expressed in NO fumigated Arabidopsis leaves compared with untreated 

leaves, thus revealing a major transcriptome modulation upon NO treatment. 

By setting as threshold (log2FC)>1,5 and (log2FC)<-1,5, we focused on the 4678 most 

upregulated and 5960 most downregulated genes. 

Gene enrichment analysis on the most upregulated genes showed the functional class 

“response to stimulus” as the most enriched one (Figure 30). This included in more 

detail genes involved in response to endogenous as well as extracellular stimuli and 

genes involved in abiotic and biotic stress responses. These genes encoded mainly 

transcription factors and proteins involved in signaling, including receptors, kinases 

and phosphatases. Many genes commonly involved in plant response to pathogens or 

hormones, as well as redox or other stresses were included. Interestingly, genes 

encoding for marker proteins for HR or autophagy related, senescence associated, or 

involved in cell death were found in these enriched classes as well. Enrichment in 

functional classes associated to ongoing “cellular and biological processes” and its 

regulation were also found. This included again many genes involved in cellular 

communication and signal transduction. Furthermore, we found enrichment in 

functional classes for “cellular metabolic processes” which included genes encoding 

for proteins involved in proteins modifications, mainly phosphorylation or 

ubiquitination, and in modification of nucleobase containing compounds, which 

included beside transcription factors also genes involved in the modulation and 

processing of nucleic acids. Finally, our enrichment analsyis of upregulated genes 

highlighted an enrichment also in functional classes for “establishment of 

localization”, “transport” or “catabolic processes” and “cell death”. 

Gene enrichment analysis on the most downregulated genes showed that several of 

the functional classes enriched in the most upregulated genes were represented in the 

most downregulated genes too, thus confirming the relevant NO effect on genes 

belonging to these functional classes (Figure 31). In particular, we found again an 
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enrichment in the functional class “response to stimulus” including genes involved in 

response to abiotic or endogenous stimulus encoding for hormones receptors, other 

receptors, kinases and transcription factors. 
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Figure 30. Gene enrichment analysis of gene ontologies functional classes in genes 

upregulated by the NO treatment 

Percentage of genes belonging to each enriched gene ontology functional class (biological 

process, GO slim annotation) was plotted beside the percentage of genes belonging to the same 

class in the reference annotated genome (TAIR10). Enrichment analysis was performed by the 

on-line AgriGO software version 2.0 (http://bioinfo.cau.edu.cn/agriGO/). 
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Furthermore, we found the functional class “regulation of cellular processes”, which 

was also found enriched in upregulated genes, including similar kind of genes. 

However, the enriched functional class “metabolic and cellular processes” included 

different genes compared to the genes found in the corresponding class in upregulated 

genes. Indeed, we found an enrichment in genes involved in photosynthesis and 

energy precursors, as well as genes involved in carbohydrates and lipids metabolism.  
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Figure 31. Gene enrichment analysis of gene ontologies functional classes in genes 

downregulated by the NO treatment 

Percentage of genes belonging to each enriched gene ontology functional class (biological process, 

GO slim annotation) was plotted beside the percentage of genes belonging to the same class in the 

reference annotated genome (TAIR10). Enrichment analysis was perfomed by the on-line AgriGO 

software version 2.0 (http://bioinfo.cau.edu.cn/agriGO/). 
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Interestingly, genes involved in lipid metabolism were mainly related to fatty acid 

synthesis, steroid metabolism and synthesis and metabolism of phospholipids.  

Finally, we also found an enrichment in the functional class “development” including 

again many genes involved in the cellular communication, but also genes involved in 

development of specific anatomic structure and related to post-embrionic 

development.  

Differently from up regulated genes, we did not find an enrichment in genes involved 

in cell death regulation in genes downregulated by NO treatment. The complete list of 

DEG genes upregulated by the cell death inducing NO treatment belonging to the 

functional class “cell death” is provided as Supplemental table 1. The full list includes 

93 genes which have been related to cell death processes. Moreover, among these, 57 

genes showed a Log2FC higher than 1,5. 
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5. Discussion 
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Nitric oxide is a gas molecule which is crucial as signaling molecule in hypersensitive 

cell death (Yu et al.,2014). Since its first discovery in plants during plant pathogen 

interaction in the late nineties (Delledonne et al., 1998), many studies have focused on 

this signaling molecule, attempting to clarify its production and function in plant 

pathogen interaction but also in several additional contexts, like seed germination, 

plant development, flowering or response to abiotic stresses, to name a few. Despite 

intensive studies, NO production in plants is still not fully understood and remains 

one of the most challenging issues of the field. NO synthesis in plants can be 

schematically achieved via two main routes defined by their chemical properties, one 

reductive and one oxidative. The reductive routes concern the reduction of nitrite. To 

date, this reductive route is the most firmly described and evidenced synthesis 

pathway for NO in plants. However, the first discovered NO production activity in 

plant was through the oxidative pathway (Corpas et al., 2004), but still after many 

years no enzyme involved in this activity could be found by any of the several 

approaches applied (Jeandroz et al., 2016, Santolini et al., 2017). Moreover, the 

enzymes specifically involved in the reductive pathway are still largely questioned. 

While the NR can definitely catalyse the NO production from nitrite as side reaction, 

the relevance of this reaction in in vivo plant cell conditions is still under debate. 

Furthermore, additional enzymes which could catalyse this reaction mainly work 

under anaerobiosis and thus their relevance in the frame of the plant pathogen 

interaction is also unclear. 

Recently, it was reported that bovine carbonic anhydrase II can produce NO from 

nitrite under normoxia conditions and this activity is enhanced by CA activity 

inhibitors (Aamand et al., 2009). Applying CA inhibitor dorzolamide slightly 

increased NO production during potato - P. infestans incompatible interaction at 3hpi, 

suggesting a possible functional link between CA and NO production in plants 

(Floryszak-Wieczorek and Arasimowicz-Jelonek, 2017). This prompted us to explore 

if plant carbonic anhydrases can directly produce NO from nitrite, especially during 

HR.  
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The bovine carbonic anhydrase II enzyme belongs to α-type carbonic anhydrase, 

while there are three types of carbonic anhydrases in higher plants (Moroney et 

al.,2001). The model plant Arabidopsis genome contains eight genes encoding for 

αCA (Fabre et al., 2007). However, only AtαCA1-3 genes have complete expressed 

sequence tags (ESTs) (Di Mario et al., 2016). Accordingly, inspection of RNASeq 

data in Arabidopsis thaliana either untreated or treated with the plant pathogen 

Pseudomonas syringae at 8 or 12 hpi (Jingjing Huang unpublished results) confirmed 

very low constitutive expression and expression upon treatment for six genes in this 

family (AtαCA3-8). Moreover, the AtαCA8 contains an early in-frame stop codon and 

is therefore considered as a pseudogene (DiMario et al., 2016). AtαCA1 was instead 

constitutively expressed in leaves at higher levels but its expression was strongly 

reduced by the pathogen treatment, while AtαCA2 was not constitutively expressed 

but was up-regulated significantly in response to avirulent bacteria, suggesting its 

possible involvement in hypersensitive defense response. Literature data are scarce 

about this gene family, and so far this specific protein (AtαCA2) was only shown to 

participate together with αCA4 in photosynthetic reactions (Zhurikova et al., 2016). 

Here, we aimed at enquiring then whether this protein could catalyze NO production, 

as shown for the bovine carbonic anhydrase II, being thus involved in plant defense. 

Previous studies on AtαCA1 protein showed that this protein was targeted to 

chloroplast through a newly discovered secretory pathway, which is alternative to the 

traditional Toc/Tic complex that mediates delivery of nuclear proteins to the 

chloroplast, and that glycosylation was required for its folding, ER-export and 

carbonic anhydrase activity (Villarejo et al., 2005; Buren et al.,2011). AtαCA2 has a 

strong similarity with AtαCA1, sharing in particular a high similarity transit peptide 

and glycosylation sites according to in silico prediction. Thus, it is also likely to be 

targeted to chloroplast and to require glycosylation. Indeed, we found that its 

overexpression in E.coli, which lacks the N-glycosylation, leads to a protein which 

showed no carbonic anhydrase activity. Therefore, in order to produce a functional 

protein to be tested for its NO production activity we attempted to take advantage of 
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an alternative expression system, able to support protein glycosylation. We chose to 

express the protein transiently in plants. More in detail, we expressed AtαCA2 in 

Nicotiana benthamiana leaves by using two different binary vectors, one acting 

through a viral vector. However, the protein expression level was comparable in the 

two different systems. Endo H treatment of expressed proteins proved that AtαCA2 

was a glycoprotein. According to our findings, AtαCA2, in its glycosylated form, was 

targeted to thylakoids or was associated to thylakoids membranes. Therefore, we 

evidenced a different targeting inside chloroplast for AtαCA2 compared to AtαCA1, 

which was instead targeted to chloroplast stroma. However, this finding is consistent 

with the finding reported in Zhurikova et al. 2016. Indeed, the authors characterized 

the photosynthetic yield of the AtαCA2 knock-out Arabidopsis mutant, and, according 

to the results, proposed that this gene could be involved in photosynthetic electron 

transport chain functioning under illumination and in the protonation of PsbS, being 

therefore localized closed to photosystem II or PsbS in thylakoid membranes. 

Accordingly, a CA activity was indeed already reported in thylakoid membranes in 

several studies in higher plants (Ignatova et al., 2011, Rudenko et al., 2007, Khristin 

et al., 2004). However, the expression level of AtαCA2 by using the described 

transient systems was much lower compared to expected yield for these expression 

systems (Avesani et al., 2014), and not enough to justify to proceed further with 

purification, to reasonably evaluate any protein activity. Reasons for such low yield 

may include RNA silencing events in the agrobacterium-mediated transient gene 

expression system or complications related to the post-translational glycosylation 

modification or protein localization in thylakoids and targeting (Johansen and 

Carrington., 2001; Desai et al., 2010; ).  

Moreover, contrary to what was previously published (Aamand et al., 2009), it was 

recently reported by Andring et al., (2018) that the bovine carbonic anhydrase II does 

not exhibit nitrite reductase or nitrous anhydrase activity. These authors revisited 

previous findings from Aamand et al., 2009 and by measuring NO generation by two 

different methods did not observe the generation of NO upon the addition of NaNO2 



100 
 

to bovine CA II in the presence or absence of the CA inhibitor dorzolamide. In 

addition, by a structural analysis of bovine CA II in complex with dorzolamide, they 

showed that the binding of sulphonamide based CA inhibitors to the catalytic zinc 

would exclude NO2 binding in the active site.  

To measure the NO generation, these authors relied on two methods, either mass 

spectrometry or electrode based NO measurement. The measurement of NO 

generation in the Aamand et al., 2009 work relied also on NO electrode, but produced 

a different result. Moreover, in the same work the NO generation was confirmed by 

using a chemiluminescence based NO sensor. In our hands, chemiluminescence based 

analysis of NO generation mediated by bovine CAII was in line with Aamand et al., 

2009 results, and we used same commercial bovine CAII in this work. On the contrary, 

in Andring et al., the used bovine CA II was purified from red blood cells using 

affinity chromatography and then enzyme samples were extensively dialyzed against 

EDTA to remove extraneous metal ions. Thus, the reason for the discrepancy may lay 

in the different source for the enzyme used in the different works, as Aamand et al., 

2009 used commercial bovine carbonic anhydrase II, as we did, while Andring et al., 

2018 worked with purified carbonic anhydrase II. It is possible, for example, that the 

commercial carbonic anhydrase II may contain extraneous metal ions which could be 

a source of electron donation for nitrite reduction, or the purified bovine CAII could 

perform differently from the commercial one concerning its NO production activity 

for other unknown reasons. In any case, this obviously needs now to be further 

experimentally enquired, and bovine CAII-mediated NO generation validated, before 

putting new efforts in the attempt of providing a functional recombinant AtαCA2 

protein as candidate to test the involvement of plant alpha carbonic anhydrases in NO 

generation from nitrite during the HR. 

Plant βCAs are the most abundant CAs in plants and are also involved in carbon 

fixation. Their involvement in response to abiotic and biotic responses was previously 

demonstrated (Di Mario et al., 2017). Indeed, silencing of tobacco chloroplast 



101 
 

βCA1(SABP3, salicylic-acid-binding protein 3) expression suppressed the 

Pto:avrPto-mediated HR in leaves, suggesting tobacco βCA1 requirement for HR 

(Slaymaker et al., 2002). Therefore, we produced in E.coli the recombinant NtβCA1. 

This protein showed carbonic anhydrase activity, consistently with previous reports 

by Slaymaker et al., (2002). However, NtβCA1 was unable to convert nitrite to NO. 

βCA has significantly different amino acid sequence and dimensional structure 

compared to αCA. The zinc atom in the active site of αCAs, previously found to be 

able to convert nitrite to NO, is coordinated by three histidine residues and one water 

molecule (Tripp et al., 2001; Rudenko et al., 2015). Most αCAs are believed to be 

monomers, even if some evidences, in line with our results too, showed they could be 

also dimers (Moroney et al., 2011; Rudenko et al.,2015). Differently, the zinc ion in 

reaction center of the βCAs is coordinated by two cysteine residues and one histidine 

residue (Rowlett et al., 2010) and βCAs are multimers such as tetramer or octamers 

with a fundamental dimeric unit (Rowlett et al., 2010). Thus, even admitting αCAs, 

like bovine CAII, could indeed generate NO from nitrite, this doesn‟t imply a similar 

enzymatic function for βCAs. Thus, given the results, we can speculate that βCAs 

involvement in response to biotic responses is likely indirect and not directly due to a 

βCA NO generation activity. For example, it was proposed that CA may participate in 

lipid biosynthesis, so the βCA involvement in defense response may be related with 

the activation of the jasmonate-dependent pathway (Hoang and Chapman, 2002). 

Moreover, the finding that Arabidopsis βCA1 undergoes S-nitrosylation, which 

suppresses both CA and SA binding activities and abolishes the immune response, 

suggested that a negative feedback loop modulates βCA1 activity in plant defense 

(Wang et al., 2009). Additionally, under conditions such as high temperature, which 

can induce nitrosative stress, βCA activity was found to be inhibited by protein 

tyrosine nitration (Chaki et al.,2013). Therefore, a careful modulation of protein 

activity is likely required under different stresses, possibly through different NO 

mediated post-translational modification events, which eventually allows the 

fine-tuning of its activity. 
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Plant γCAs act as subunits essential for mitochondrial respiratory complex I assembly 

and participate in CO2 translocation from mitochondria to chloroplasts during 

photorespiration (Braun and Zabaleta, 2007; Zabaleta et al., 2012 ). So far, no 

carbonic anhydrase activity of higher plant gamma carbonic anhydrase has been 

detected. In our study, the recombinant AtγCA2 protein overexpressed in E. coli 

showed also no carbonic anhydrase activity, even though sequence comparison and 

computer modeling suggested a possible carbonic anhydrase activity of AtγCA2 

(Perales et al.,2005). Moreover, no NO signal was detected from the recombinant 

AtγCA2. The structural difference in the active domain between αCAs, possibly 

producing NO, and γ types of carbonic anhydrase likely justify the absence of this NO 

generation activity in γCAs which are possibly mainly having structural function 

(Kimber and Pai.,2000; Tripp et al., 2001).  

After having worked on the NO production during the HR, in the last part of this 

thesis work, we focused on NO downstream signaling and wanted to enquire in details 

the NO-triggered modulation of gene expression during the HR. Our main purpose 

was to characterize the transcriptomic changes associated to the NO induced 

triggering of cell death during the HR. 

Transcriptomic studies applied so far in plants to NO treatment mainly relied on the 

application of exogenous NO donors. However, as we already mentioned these data 

should be interpreted with caution. Here, we decide to exploit a fumigation system 

allowing the treatment of plants directly with NO gas, thus avoiding side effects 

associated to backbones of NO donors or additionally released compounds. We first 

experimentally identified conditions triggering an uniform cell death in plant tissue 

comparable to that occurring in response to an avirulent pathogen. In our hands, a 

treatment with NO at the concentration of 200 ppm for 8 hours triggered an uniform 

cell death in plant leaf tissue, which was confirmed either by visual symptoms 

inspection and release of ions from broken cell membranes. This condition was in line 

with previous findings in our lab, with younger plants (Zahra Imanifard, PhD thesis). 



103 
 

However, we have not quantified so far the NO content in plant cells under this 

condition, neither compared it to the NO content in plant cells upon infection under 

pathophysiological conditions triggering the HR. This would be definitely an 

interesting point to be further explored in the near future, in order to validate our 

experimental set-up, and confirm that it properly allows to carefully explore a special 

feature of HR, thus focusing specifically NO-modulated genes. On the other hand, the 

evaluation of the behavior of mutants impaired in NO homeostasis or signaling during 

the HR, would represent a complimentary approach to validate our setup. 

Unfortunately, few genes known to be specifically involved in NO signaling 

triggering HR are known so far and we are currently exploring the behavior of 

mutants affected in NO homeostasis/signaling in response to this treatment. 

Transcriptome sequencing by the RNASeq approach on samples subjected to the 

established treatment was done to characterize the transcriptome modulation 

associated to cell death triggering and identify gene functional classes which 

expression is more affected by the treatment. First of all, the analysis of RNASeq data 

showed that a huge transcriptomic change was associated to the NO treatment 

triggering cell death. Indeed, complexively 10638 genes were significantly modulated 

with a |Log2FC|>1,5. This modulation was much stronger than that found so far in 

literature associated to NO donor treatments. Indeed, in a recent RNASeq study in 

Arabidopsis roots and leaves, GSNO mediated transcriptome analysis triggered 

differential expression of 3263 genes (Begara Morales et al., 2014). More recently, the 

CysNO infiltration of Arabidopsis leaf samples caused the differential expression of 

6436 genes among which 3448 were upregulated and 2879 downregulated (Hussain et 

al., 2016). Therefore, it is likely that the characterized transcriptomic changes induced 

by these NO donors do not fully reflect those triggered by an NO burst resembling 

that occurring endogenously upon infection by an avirulent pathogen, similarly 

leading to the activation of a PCD program.  

In order to confirm sensing by plants of NO, the induction of genes which are 
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typically induced by NO was first explored. Among induced genes, the PR1 gene, a 

known marker induced by NO (Durner et al., 1998) was found.  

A GO enrichment analysis was applied to identify functional classes which are more 

represented in differentially expressed genes (Figure 32). The emerging picture was a 

massive transcriptomic change associated to changes in cellular and metabolic 

processes. Both induced and down regulated genes were enriched in genes involved in 

signal transduction, in response to biotic and abiotic stresses as well as endogenous 

stimuli. The major class included indeed transcription factors. In a recent study, a 

comprehensive characterization of transcription factors modulated by CysNO was 

reported (Imran et al., 2017). Even though a large number of transcription factor 

classes were found to be modulated in this study, our results point to a more massive 

change in transcription factors expression. Moreover, several receptors like kinases 

and several phosphatases or receptors involved in hormones perception were also 

modulated according to our results. Interestingly, among these, NPR3/NPR4 working 

as salicylic acid receptors in immune signaling and modulating NPR1 turnover 

required for ETI, were found to be induced by NO (Fu et al., 2012). 

 

 

 

 

 

Beside this huge transcriptomic modulation and changes affecting plant signal 

transduction, the GO enrichment analysis revealed also important changes in the plant 

cell metabolism. However, genes in this functional class differed in upregulated and 

downregulated genes. More careful inspection showed that upregulated genes in the 

Figure 32. A simplified schematic diagram of functional classification of differentially 

expressed genes regulated by NO treatment triggering cell death.  
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metabolic processes were mainly genes involved in protein activity modulation and 

degradation. Several ubiquitin ligases and genes involved in proteasome mediated 

protein degradation were found. Moreover, genes involved in the modulation of the 

antioxidant system were also strongly induced. Finally, we also observed induction of 

genes involved in processing of nucleic acids. 

On the other hand, genes involved in anabolic processes were strongly downregulated. 

Indeed, genes encoding proteins involved in the photosynthetic reactions or working 

in producing energy precursors (e.g. antenna systems or reaction centers in 

photosystems), as well as genes for starch and sugar synthesis were switched off by 

the NO treatment. Interestingly, an important down regulation of genes involved in 

lipid metabolism, namely fatty acid synthesis, steroid metabolism and synthesis and 

metabolism of phospholipids was found. Genes involved in lipid metabolism were 

partially enriched also in upregulated genes by the NO treatment. This is in agreement 

with finding from a recent publication, in which the metabolic reprogramming 

induced by NO treatment was enquired in Arabidopsis by a metabolomics analysis. 

Authors found that content of compounds belonging to the lipid category underwent 

large changes in NO-treated plants likely connected to lipid trafficking, membrane 

remodeling or alteration in lipidic leaf structures, such as cuticles. An enhancement of 

membrane permeability by NO was clearly demonstrated in this study. Moreover, in 

lines with our findings, authors also found progressive genomic degradation processes 

and reduction in glycolysis intermediate and starch with a general rearrangement in 

carbon metabolism upon NO treatment (Leon et al., 2016). 

Interestingly, the enrichment analysis of NO induced genes revealed also a significant 

enrichment in genes belonging to the functional class “cell death”. 93 genes related to 

cell death processes were found as significantly upregulated by NO, among which 57 

genes with a Log2FC higher than 1,5. Among these a large number (18) of R-genes 

and genes encoding for receptor like kinase or proteins strictly involved in pathogen 

perception were found. For example, the Arabidopsis R-genes RPP13, RPS4, RPW8, 
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RRS, RPS5 or MLO-like proteins, which recessive mutation confers broad spectrum 

and durable pathogen resistance (Consonni et al., 2006) were induced. Beside these, 

several proteins involved in basal resistance and pathogen MAMP/PAMP perception 

like SERK3, CRK13, CRK20 or BAK1 functioning as a co-receptor with the receptor 

kinase for bacterial flagellin FLAGELLIN-SENSING 2 (FLS2) or the EF-TU 

RECEPTOR (EFR) involved in immunity (Chinchilla et al., 2007) were also induced. 

Moreover, proteins associated to ETI and involved in immunity associated signaling 

through interaction/regulation of R-genes like RIN2/RIN3 E3 ubiquitin ligases 

(Kawasaki et al., 2005), other ubiquitin ligases (BOI related ubiquitin ligases 

AT4G19700 or AT5G45100), or the BON3 copin protein (Li et al., 2009) were also 

found among these induced genes.  

Furthermore, marker genes previously known to be associated or involved in 

programmed cell death execution were also found, which demonstrates that our 

analysis successfully focused on transcriptomic changes induced by NO and related to 

the cell death triggering. The AtMC1 metacaspase, a positive regulator of cell death 

triggered by avirulent pathogens with a conserved caspase-like putative catalytic 

residues for its function, was found in this table (Coll et al., 2010). AtMC2 and 

AtMC8 metacaspases, also involved in modulating plant cell death were also found to 

be induced by NO during cell death (Coll et al., 2010, He et al., 2008). Among the 

most NO induced genes in the functional class “cell death”, we found then HSR4, a 

long known hypersensitive response and stress-induced ATPase encoding a protein 

located in the outer mitochondrial membrane, recently renamed AtOM66, which is 

known to be involved in cell death (Sugimoto et al., 2004, Zhang et al., 2014). The 

Bax inhibitor-1, an highly conserved cell death regulator recently found to interact 

with ATG6 to modulate autophagy and plant cell death (Xu et al., 2017), the 

Flavin-containing monooxygenase 1 (FMO1), and the mitochondrial outer membrane 

protein porin 3 (VDAC3) previously studied in apoptosis in the animal system and 

recently found to trigger cell death by a complex with PR10 in grapevine, were also 

among the most induced genes by NO (Bartsch et al., 2006, Ma et al., 2018). Finally, 
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also the accelerated cell death 11 (ACD11), phospholipase D, the zinc finger protein 

LSD1 negative regulator of PCD, the mitogen activated protein kinase 6 (MPK6) 

activated in ETI associated PCD, the vascular associated cell death 1 (VAD1) and the 

nudix hydrolase 7 (NUDT7), all previously found to be involved in plant programmed 

cell death, were among induced genes (Petersen et al., 2008, Dietrich et al., 1997, 

Lorrain et al., 2004, Bartsch et al., 2006). 

It is also interesting to mention here that among the NO induced genes belonging to 

this functional class “cell death”, we found also genes involved in ROS production 

and signalling, like the RBOHD protein which is involved in superoxide production 

during the hypersensitive response (Torres et al., 2005), or the radical induced cell 

death (RCD1) which is involved in ozone induced signalling leading to cell death 

(Overmyer et al., 2005). Importantly, RBOHD is one of the best know proteins 

targeted and modulated by NO during the immunity and the ozone sensitive rcd1 

mutant over accumulates NO, thus demonstrating that NO accumulation act also 

through a finely regulated cross-talk with ROS, acting on ROS producing/sensing 

proteins at different levels (Yun et al., 2011, Ahlfors et al., 2009).  

Finally, we observed that several transcription factors related to plant cell death were 

induced by NO, which are thus possibly involved in the observed large transcriptomic 

rearrangement associated to NO and cell death triggering. Among these, the 

transcriptional regulator NPR1 was induced, as were induced genes involved in SA 

signalling and systemic acquired resistance (SAR) (just to name a few, the 

transcription factor TGA3 or the AZI1 protein which mediates SAR through 

mobilization of lipid signalling (Cecchini et al., 2015)). Transcription factors 

belonging to the NAC or MYB family (among which MYB30 a member of this 

family involved in cell death processes during the hypersensitive response (HR) of 

plants which is targeted and inhibited by NO (Tavares et al., 2014)) were found as 

well as transcription factors involved in the ethylene signalling, among which the 

ERF011 and the RAP2.3. 
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In the first part of this work, we enquired NO production mechanism in the plant HR. 

Based on literature reports, we enquired if plant carbonic anhydrases can directly 

produce NO from nitrite during HR. Indeed, it was reported that carbonic anhydrases 

could be involved in immunity in plants. Moreover, the Bovine carbonic anhydrase II, 

an alpha type carbonic anhydrase which catalyzes the conversion between carbon 

dioxide and bicarbonate, was shown to be able to convert nitrite to NO. We first 

focused on the plant alpha CA family aiming to verify their NO production activity. 

However, we found that this protein requires glycosylation for activity. Unfortunately, 

the transient expression in plant system, which could yield a properly glycosylated 

protein, led to low protein expression and we could therefore not finally use this 

protein to verify its NO production activity. However, meanwhile, the finding 

reporting its ability to produce NO from nitrite was questioned by a more recent 

publication. As conclusion, based on this new literature finding, and on the protein 

localization as observed in our study and previous literature about mutant 

characterization, appears currently less likely that this alpha CA protein is directly 

involved in NO production from nitrite in HR. Clarification of controversial literature 

reports about bovine CAII NO production activity would help to postulate alpha CAII 

function in HR. Meanwhile, we also cloned and expressed in an heterologous system 

CAs member belonging to beta and gamma families and demonstrated these were not 

able to catalyze the nitrite conversion to NO. The documented involvement of beta 

type CA in immunity is thus likely to occur indirectly. Recently, in Chlamydomonas 

reinhardtii, the Amidoxime Reducing Component (ARC) protein was shown to 

complex with NR to constitute a dual enzymatic system which can reduce nitrite to 

NO in the presence of high NO3
-
 concentrations and in normoxia (Chamizo-Ampudia 

et al 2016, 2017). Interestingly, the A. thaliana genome contains two genes for ARC 

protein, one presenting an NO-producing activity in vitro (Yang et al., 2015). The 

determination of the existence of an NR:NOFNiR complex in higher plants, similar to 

what was found in C. reinhardtii, represents now a very promising research field. 

 



110 
 

In the second part of this work, we enquired the NO downstream signaling, focusing 

on transcriptomic changes associated to NO induced cell death. A massive 

transcriptomic rearrangement was found to be associated to the NO induced plant cell 

death. The functional class “response to stimuli” was strongly enriched in the 

differentially expressed genes modulated by NO. Moreover, we found a large 

modulation in signaling and transcription factors. Genes encoding for proteins 

involved in protein degradation or metabolism of nucleic acids were induced, while 

genes involved in anabolic processes were down-regulated. Importantly, we 

confirmed that NO treatment leads to a massive metabolic reprogramming which 

specially affects lipid metabolism. Finally, the enrichment among induced genes of 

several genes previously found to be involved/associated to the cell death confirmed 

that conditions we have selected were adequate to our aim. The comparison of this 

dataset with transcriptomic modulation induced by NO at low concentration not 

triggering cell death (Jingjing Huang PhD thesis, RNASeq with 3h NO at 100ppm) or 

with avirulent pathogen induced transcriptomic modulation will allow to carefully 

select among all NO modulated genes the most relevant, specifically involved in the 

cell death activation and execution during the HR. 
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Supplemental Table 1. List of genes in the functional class “cell death” significantly 

differentially expressed following treatment for 8 hour with NO at 200 ppm. 

  

Gene ID FDR P-value logFC  Alias Description 

AT4G12470 2,94E-182 2,09E-184 9,92 AZI1 
pEARLI1-like lipid transfer protein 1 [Uniprot/SWISSPROT 

Acc. Q9SU35] 

AT2G44110 6,00E-08 3,04E-08 6,99 MLO15 
MLO-like protein [Uniprot/SPTREMBL Acc. F4IT46]; 

MLO-like protein 15 [Uniprot/SWISSPROT Acc. O80580] 

AT3G13610 4,31E-34 6,67E-35 6,78 F6'H1 
F6'H1 [Uniprot/SPTREMBL Acc. A0A178V671]; Feruloyl CoA 

ortho-hydroxylase 1 [Uniprot/SWISSPROT Acc. Q9LHN8] 

AT1G16420 6,92E-92 2,31E-93 6,27 AMC8 Metacaspase-8 [Uniprot/SWISSPROT Acc. Q9SA41] 

AT2G26560 1,58E-113 3,41E-115 6,20 PLP2 Patatin-like protein 2 [Uniprot/SWISSPROT Acc. O48723] 

AT3G50930 3,51E-107 8,43E-109 6,08 HSR4 
Protein HYPER-SENSITIVITY-RELATED 4 

[Uniprot/SWISSPROT Acc. Q8VZG2] 

AT5G47130 7,45E-104 1,91E-105 5,74   
Bax inhibitor-1 family protein [Uniprot/SPTREMBL Acc. 

Q9LTB6] 

AT1G19250 1,60E-31 2,72E-32 5,73 FMO1 
Probable flavin-containing monooxygenase 1 

[Uniprot/SWISSPROT Acc. Q9LMA1] 

AT3G01420 9,70E-06 5,77E-06 5,63 DOX1 Alpha-dioxygenase 1 [Uniprot/SWISSPROT Acc. Q9SGH6] 

AT5G65600 6,83E-62 4,56E-63 4,81 LECRK92 

Uncharacterized protein [Uniprot/SPTREMBL Acc. 

A0A178UB11]; L-type lectin-domain containing receptor kinase 

IX.2 [Uniprot/SWISSPROT Acc. Q9LSL5] 

AT1G08860 1,41E-32 2,30E-33 4,76 BON3 Protein BONZAI 3 [Uniprot/SWISSPROT Acc. Q5XQC7] 

AT5G15090 3,54E-111 8,05E-113 4,38 VDAC3 
Mitochondrial outer membrane protein porin 3 

[Uniprot/SWISSPROT Acc. Q9SMX3] 

AT1G32230 1,25E-70 6,74E-72 3,90 RCD1 

Poly [ADP-ribose] polymerase [Uniprot/SPTREMBL Acc. 

F4ICM3]; Poly [ADP-ribose] polymerase [Uniprot/SPTREMBL 

Acc. M5BF30]; Inactive poly [ADP-ribose] polymerase RCD1 

[Uniprot/SWISSPROT Acc. Q8RY59] 

AT4G23210 1,83E-22 4,35E-23 3,70 CRK13 
Cysteine-rich receptor-like protein kinase 13 

[Uniprot/SWISSPROT Acc. Q0PW40] 

AT4G36480 7,84E-106 1,93E-107 3,50 LCB1 
LCB1 [Uniprot/SPTREMBL Acc. A0A178UY56]; Long chain 

base biosynthesis protein 1 [Uniprot/SWISSPROT Acc. Q94IB8] 

AT3G46530 7,03E-45 7,58E-46 3,43 RPP13 
Disease resistance protein RPP13 [Uniprot/SWISSPROT Acc. 

Q9M667] 

AT3G52400 2,95E-52 2,53E-53 3,39 SYP122 
SYP122 [Uniprot/SPTREMBL Acc. A0A178VEE7]; 

Syntaxin-122 [Uniprot/SWISSPROT Acc. Q9SVC2] 

AT4G37990 2,82E-15 9,23E-16 3,33 CAD8 
ELI3-2 [Uniprot/SPTREMBL Acc. A0A178UVK9]; Cinnamyl 

alcohol dehydrogenase 8 [Uniprot/SWISSPROT Acc. Q02972] 

AT4G23280 1,62E-13 5,81E-14 3,26 CRK20 
Putative cysteine-rich receptor-like protein kinase 20 

[Uniprot/SWISSPROT Acc. O65479] 

AT5G45100 9,33E-52 8,13E-53 3,19 BRG1 BOI-related E3 ubiquitin-protein ligase 1 [Uniprot/SWISSPROT 
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Acc. Q9FHE4] 

AT5G44870 1,92E-47 1,91E-48 3,13 LAZ5 
TTR1 [Uniprot/SPTREMBL Acc. A0A178ULB4]; Disease 

resistance protein LAZ5 [Uniprot/SWISSPROT Acc. O48573] 

AT2G46240 3,42E-21 8,58E-22 3,09 BAG6 
BAG family molecular chaperone regulator 6 

[Uniprot/SWISSPROT Acc. O82345] 

AT5G45250 2,50E-50 2,28E-51 3,00 RPS4 
Disease resistance protein RPS4 [Uniprot/SWISSPROT Acc. 

Q9XGM3] 

AT1G61560 5,27E-34 8,18E-35 2,90 MLO6 
MLO-like protein [Uniprot/SPTREMBL Acc. F4HVC3]; 

MLO-like protein 6 [Uniprot/SWISSPROT Acc. Q94KB7] 

AT3G50480 3,96E-54 3,23E-55 2,87 HR4 RPW8-like protein 4 [Uniprot/SWISSPROT Acc. Q9SCS6] 

AT1G02170 3,52E-93 1,14E-94 2,87 AMC1 Metacaspase-1 [Uniprot/SWISSPROT Acc. Q7XJE6] 

AT5G26920 2,25E-27 4,41E-28 2,71 CBP60G 
Calmodulin-binding protein 60 G [Uniprot/SWISSPROT Acc. 

F4K2R6] 

AT5G39610 3,11E-07 1,66E-07 2,68 NAC92 
NAC domain-containing protein 92 [Uniprot/SWISSPROT Acc. 

Q9FKA0] 

AT4G34180 4,46E-61 3,03E-62 2,66   AT4g34180/F28A23_60 [Uniprot/SPTREMBL Acc. Q93V74] 

AT2G17430 2,33E-08 1,15E-08 2,62 MLO7 MLO-like protein 7 [Uniprot/SWISSPROT Acc. O22752] 

AT2G01290 1,58E-29 2,87E-30 2,60 RPI2 
Probable ribose-5-phosphate isomerase 2 [Uniprot/SWISSPROT 

Acc. Q9ZU38] 

AT5G51290 5,58E-31 9,72E-32 2,58 CERK Ceramide kinase [Uniprot/SWISSPROT Acc. Q6USK2] 

AT5G51450 2,10E-48 2,02E-49 2,47 RIN3 

E3 ubiquitin protein ligase RIN3 [Uniprot/SPTREMBL Acc. 

F4KD92]; E3 ubiquitin protein ligase RIN3 

[Uniprot/SWISSPROT Acc. Q8W4Q5] 

AT1G29690 5,79E-20 1,53E-20 2,29 CAD1 
MACPF domain-containing protein CAD1 

[Uniprot/SWISSPROT Acc. Q9C7N2] 

AT1G11310 9,52E-54 7,85E-55 2,27 MLO2 

MLO-like protein [Uniprot/SPTREMBL Acc. B3H6R0]; 

MLO-like protein [Uniprot/SPTREMBL Acc. Q0WWA7]; 

MLO-like protein 2 [Uniprot/SWISSPROT Acc. Q9SXB6] 

AT3G54420 1,43E-11 5,75E-12 2,23 EP3 
EP3 [Uniprot/SPTREMBL Acc. A0A178VE44]; Endochitinase 

EP3 [Uniprot/SWISSPROT Acc. Q9M2U5] 

AT4G33430 1,46E-46 1,49E-47 2,18 BAK1 

SERK3 [Uniprot/SPTREMBL Acc. A0A178UUK2]; Leu-rich 

receptor Serine/threonine protein kinase BAK1 

[Uniprot/SPTREMBL Acc. F4JIX9]; BRASSINOSTEROID 

INSENSITIVE 1-associated receptor kinase 1 

[Uniprot/SWISSPROT Acc. Q94F62] 

AT4G25230 1,54E-47 1,52E-48 2,15 RIN2 
E3 ubiquitin protein ligase RIN2 [Uniprot/SWISSPROT Acc. 

Q8VYC8] 

AT4G03110 3,12E-31 5,37E-32 2,15 BRN1 
RNA-binding protein BRN1 [Uniprot/SWISSPROT Acc. 

Q8LFS6] 

AT1G77300 2,13E-17 6,31E-18 2,12   
Histone-lysine N-methyltransferase ASHH2 

[Uniprot/SPTREMBL Acc. F4I6Z9] 

AT4G02640 1,83E-20 4,73E-21 2,00 BZIP10 Basic leucine zipper 10 [Uniprot/SWISSPROT Acc. O22763] 

AT5G22290 5,82E-12 2,29E-12 2,00 NAC089 NAC089 [Uniprot/SPTREMBL Acc. A0A178UI96]; NAC 
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domain-containing protein 89 [Uniprot/SWISSPROT Acc. 

Q94F58] 

AT3G11820 5,86E-33 9,41E-34 1,95 SYP121 
SYR1 [Uniprot/SPTREMBL Acc. A0A178VIM4]; Syntaxin-121 

[Uniprot/SWISSPROT Acc. Q9ZSD4] 

AT3G28910 1,93E-08 9,46E-09 1,94 MYB30 
Transcription factor MYB30 [Uniprot/SWISSPROT Acc. 

Q9SCU7] 

AT2G01180 9,12E-15 3,06E-15 1,92 LPP1 
PAP1 [Uniprot/SPTREMBL Acc. A0A178VSS9]; Lipid 

phosphate phosphatase 1 [Uniprot/SWISSPROT Acc. Q9ZU49] 

AT4G25110 3,00E-10 1,31E-10 1,83 AMC2 Metacaspase-2 [Uniprot/SWISSPROT Acc. Q7XJE5] 

AT3G57330 1,04E-20 2,67E-21 1,83 ACA11 

Calcium-transporting ATPase [Uniprot/SPTREMBL Acc. 

A0A178VG68]; Putative calcium-transporting ATPase 11, 

plasma membrane-type [Uniprot/SWISSPROT Acc. Q9M2L4] 

AT5G13190 6,44E-22 1,57E-22 1,83   GILP [Uniprot/SPTREMBL Acc. Q94CD4] 

AT1G22070 2,89E-18 8,22E-19 1,82 TGA3 
At1g22070 [Uniprot/SPTREMBL Acc. Q147Q9]; Transcription 

factor TGA3 [Uniprot/SWISSPROT Acc. Q39234] 

AT3G50260 4,31E-13 1,58E-13 1,81 ERF011 

DEAR1 [Uniprot/SPTREMBL Acc. A0A178VN80]; 

Ethylene-responsive transcription factor ERF011 

[Uniprot/SWISSPROT Acc. Q9SNE1] 

AT2G34690 6,68E-24 1,50E-24 1,68 ACD11 Accelerated cell death 11 [Uniprot/SWISSPROT Acc. O64587] 

AT3G15010 1,37E-16 4,22E-17 1,58 UBA2C 

Uncharacterized protein [Uniprot/SPTREMBL Acc. 

A0A178V7K4]; UBP1-associated protein 2C 

[Uniprot/SWISSPROT Acc. Q9LKA4] 

AT5G13320 5,07E-06 2,95E-06 1,56 GH3.12 
4-substituted benzoates-glutamate ligase GH3.12 

[Uniprot/SWISSPROT Acc. Q9LYU4] 

AT1G28380 1,51E-13 5,42E-14 1,55 NSL1 
MACPF domain-containing protein NSL1 [Uniprot/SWISSPROT 

Acc. Q9SGN6] 

AT4G35790 2,55E-28 4,85E-29 1,54 PLDDELTA 

Phospholipase D [Uniprot/SPTREMBL Acc. A0A178UUU1]; 

Phospholipase D [Uniprot/SPTREMBL Acc. F4JNU6]; 

Phospholipase D delta [Uniprot/SWISSPROT Acc. Q9C5Y0] 

AT5G46180 6,25E-11 2,61E-11 1,52 DELTA-OAT 
Ornithine aminotransferase, mitochondrial 

[Uniprot/SWISSPROT Acc. Q9FNK4] 

AT2G39200 7,53E-06 4,44E-06 1,51 MLO12 
MLO-like protein [Uniprot/SPTREMBL Acc. A0A178VNS1]; 

MLO-like protein 12 [Uniprot/SWISSPROT Acc. O80961] 

AT4G20380 3,19E-18 9,10E-19 1,47 LSD1 
Zinc finger protein LSD1 [Uniprot/SPTREMBL Acc. F4JUW0]; 

Protein LSD1 [Uniprot/SWISSPROT Acc. P94077] 

AT2G34770 6,31E-20 1,67E-20 1,46 FAH1 

FAH1 [Uniprot/SPTREMBL Acc. A0A178W0P1]; 

Dihydroceramide fatty acyl 2-hydroxylase FAH1 

[Uniprot/SWISSPROT Acc. O48916] 

AT4G19040 1,02E-13 3,61E-14 1,45 EDR2 
Protein ENHANCED DISEASE RESISTANCE 2 

[Uniprot/SWISSPROT Acc. F4JSE7] 

AT3G50470 5,48E-06 3,20E-06 1,42 HR3 RPW8-like protein 3 [Uniprot/SWISSPROT Acc. Q9SCS7] 

AT5G47910 1,28E-14 4,33E-15 1,42 RBOHD 
Respiratory burst oxidase homolog protein D 

[Uniprot/SWISSPROT Acc. Q9FIJ0] 
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AT4G24290 1,21E-19 3,25E-20 1,41   
MACPF domain-containing protein At4g24290 

[Uniprot/SWISSPROT Acc. Q9STW5] 

AT4G12720 1,85E-08 9,08E-09 1,40 NUDT7 

NUDT7 [Uniprot/SPTREMBL Acc. A0A178V4N8]; Nudix 

hydrolase 7 [Uniprot/SPTREMBL Acc. F4JRE7]; Nudix 

hydrolase 7 [Uniprot/SWISSPROT Acc. Q9SU14] 

AT4G19700 4,37E-08 2,19E-08 1,40 BOI 
E3 ubiquitin-protein ligase BOI [Uniprot/SWISSPROT Acc. 

O81851] 

AT3G45290 1,59E-05 9,63E-06 1,39 MLO3 MLO-like protein 3 [Uniprot/SWISSPROT Acc. Q94KB9] 

AT1G64280 8,17E-19 2,27E-19 1,38 NPR1 Regulatory protein NPR1 [Uniprot/SWISSPROT Acc. P93002] 

AT1G02860 1,46E-10 6,23E-11 1,33 BAH1 

NLA [Uniprot/SPTREMBL Acc. A0A178WJE5]; E3 

ubiquitin-protein ligase BAH1 [Uniprot/SWISSPROT Acc. 

Q9SRX9] 

AT4G31300 1,03E-16 3,14E-17 1,28 PBA1 

Proteasome subunit beta type [Uniprot/SPTREMBL Acc. 

A0A178V2B3]; Proteasome subunit beta type 

[Uniprot/SPTREMBL Acc. F4JRY2]; Proteasome subunit beta 

type-6 [Uniprot/SWISSPROT Acc. Q8LD27] 

AT5G06100 1,00E-10 4,23E-11 1,28   

Transcription factor [Uniprot/SPTREMBL Acc. Q8W1W6]; 

MYB family transcription factor-like [Uniprot/SPTREMBL Acc. 

Q9LHS6] 

AT4G37980 1,56E-10 6,67E-11 1,20 CAD7 
ELI3-1 [Uniprot/SPTREMBL Acc. A0A178V3X8]; Cinnamyl 

alcohol dehydrogenase 7 [Uniprot/SWISSPROT Acc. Q02971] 

AT5G45260 5,94E-08 3,00E-08 1,19 RRS1 
Disease resistance protein RRS1 [Uniprot/SWISSPROT Acc. 

P0DKH5] 

AT1G29850 1,30E-11 5,21E-12 1,18   

Double-stranded DNA-binding-like protein 

[Uniprot/SPTREMBL Acc. F4I355]; At1g29850/F1N18_19 

[Uniprot/SPTREMBL Acc. Q9FXG0] 

AT3G16770 3,63E-05 2,25E-05 1,18 RAP2-3 
Ethylene-responsive transcription factor RAP2-3 

[Uniprot/SWISSPROT Acc. P42736] 

AT5G48030 3,18E-10 1,39E-10 1,12 GFA2 

GFA2 [Uniprot/SPTREMBL Acc. A0A178UJR3]; Chaperone 

protein dnaJ GFA2, mitochondrial [Uniprot/SWISSPROT Acc. 

Q8GWW8] 

AT1G12220 5,57E-09 2,63E-09 1,09 RPS5 

Disease resistance protein RPS5 [Uniprot/SWISSPROT Acc. 

O64973]; Disease resistance protein [Uniprot/SPTREMBL Acc. 

Q56YM8] 

AT1G30460 5,18E-07 2,80E-07 1,06 CPSF30 
30-kDa cleavage and polyadenylation specificity factor 30 

[Uniprot/SWISSPROT Acc. A9LNK9] 

AT5G47120 2,72E-10 1,19E-10 1,05 BI-1 Bax inhibitor 1 [Uniprot/SWISSPROT Acc. Q9LD45] 

AT3G46510 1,37E-08 6,63E-09 0,99 PUB13 
U-box domain-containing protein 13 [Uniprot/SWISSPROT Acc. 

Q9SNC6] 

AT5G23670 6,65E-08 3,38E-08 0,98 LCB2A 
Long chain base biosynthesis protein 2a [Uniprot/SWISSPROT 

Acc. Q9LSZ9] 

AT1G51660 2,90E-08 1,44E-08 0,98 MKK4 
MKK4 [Uniprot/SPTREMBL Acc. A0A178WCC0]; 

Mitogen-activated protein kinase kinase 4 [Uniprot/SWISSPROT 
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Acc. O80397] 

AT2G43790 3,89E-09 1,82E-09 0,92 MPK6 

Mitogen-activated protein kinase [Uniprot/SPTREMBL Acc. 

A0A178VTX8]; Mitogen-activated protein kinase 6 

[Uniprot/SWISSPROT Acc. Q39026] 

AT3G11440 0,0023217 0,00167909 0,89   Transcription factor [Uniprot/SPTREMBL Acc. Q9FR97] 

AT1G02120 1,57E-05 9,47E-06 0,77 VAD1 

VAD1 [Uniprot/SPTREMBL Acc. A0A178W223]; Protein 

VASCULAR ASSOCIATED DEATH 1, chloroplastic 

[Uniprot/SWISSPROT Acc. F4HVW5] 

AT5G64930 4,76E-05 2,99E-05 0,76 CPR5 
At5g64930 [Uniprot/SPTREMBL Acc. B4F7R3]; Protein CPR-5 

[Uniprot/SWISSPROT Acc. Q9LV85] 

AT5G54250 0,0085141 0,00648635 0,75 CNGC4 

AT5G54250 protein [Uniprot/SPTREMBL Acc. B9DFK7]; 

Cyclic nucleotide-gated ion channel 4 [Uniprot/SPTREMBL Acc. 

F4K0A1]; Cyclic nucleotide-gated ion channel 4 

[Uniprot/SWISSPROT Acc. Q94AS9] 

AT2G47130 0,0021627 0,00156045 0,74 SDR3A 
Short-chain dehydrogenase reductase 3a [Uniprot/SWISSPROT 

Acc. O80713] 

AT3G56860 0,0003652 0,00024594 0,73 UBA2A 

UBA2A [Uniprot/SPTREMBL Acc. A0A178VCS6]; 

UBP1-associated protein 2A [Uniprot/SWISSPROT Acc. 

Q9LES2] 

AT5G17310 0,0033268 0,00243666 0,67 UGP1 

UGP2 [Uniprot/SPTREMBL Acc. A0A178UCA6]; 

UTP--glucose-1-phosphate uridylyltransferase 1 

[Uniprot/SPTREMBL Acc. F4KGY8]; 

UTP--glucose-1-phosphate uridylyltransferase 1 

[Uniprot/SWISSPROT Acc. P57751] 

AT2G17480 0,03248 0,02628418 0,61 MLO8 MLO-like protein 8 [Uniprot/SWISSPROT Acc. O22757] 

AT2G26300 0,0026435 0,00192188 0,57 GPA1 

GPA1 [Uniprot/SPTREMBL Acc. A0A178VY32]; Guanine 

nucleotide-binding protein alpha-1 subunit 

[Uniprot/SWISSPROT Acc. P18064] 

AT4G36280 0,0023922 0,00173268 0,57 MORC2 
Protein MICRORCHIDIA 2 [Uniprot/SWISSPROT Acc. 

Q5FV35] 

AT3G25070 0,0354963 0,02884786 0,43 RIN4 
RPM1-interacting protein 4 [Uniprot/SWISSPROT Acc. 

Q8GYN5] 
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