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Abstract

XML emerged as the (meta) mark-up language for representing, exchanging, and storing semistructured data. The
structure of an XML document may be specified either through DTD (Document Type Definition) language or through
the specific language XML Schema. While the expressiveness of XML Schema allows one to specify both the structure
and constraints for XML documents, DTD does not allow the specification of integrity constraints for XML documents.
On the other side, DTD has a very compact notation opposed to the complex notation and syntax of XML Schema.
Thus, it becomes important to consider the issue of how to express further constraints on DTD-based XML documents,
still retaining the simplicity and succinctness of DTDs. According to this scenario, in this paper we focus on a (as much
as possible) simple logic, named XHyb, expressive enough to allow the specification of the most common integrity and
reference constraints in XML documents. In particular, we focus on constraints on ID and IDREF(S) attributes, which
are the common way of logically connecting parts of XML documents, besides the usual parent-child relationship of XML
elements. Differently from other previously proposed hybrid logics, in XHyb IDREF(S) attributes are explicitly express-
ible by means of suitable syntactical constructors. Moreover, we propose a refinement of the usual graph representation
of XML documents in order to represent XML documents in a formal and intuitive way without flatten accessibility
through IDREF(S) to the usual parent-child relationship. Model checking algorithms are then proposed, to verify that
a given XML document satisfies the considered constraints.
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1. Introduction

The mark-up language XML (eXtensible Markup Lan-
guage) is one of the main solutions used for creating and
exchanging Web-based documents [1], for specifying differ-
ent system configuration settings [2], for specifying meta-5

data in many different, even web-based, applications [3, 4],
and, in general, for representing and storing data and
knowledge in a system-independent way [5].

XML allows the representation of structured and
semistructured data through a hierarchical organization10

of mark-up elements [6]. An XML document is typically
endowed with a DTD (Data Type Definition) [7]. DTDs
allow the specification of the main structural features of
XML documents in a simple and compact way. DTDs
easily express hierarchies, order between elements, and15

several types of element attributes. In particular, the
ID/IDREF(S) mechanism for DTD attributes describes
identifiers and references. It has some similarities with
both keys and foreign keys in a relational setting, and
object identifiers and the related references between ob-20

jects. Similarly to object identifiers (OIDs), ID attributes
uniquely identify elements within the whole document.
However, while OID values are hidden and managed di-
rectly by the system, ID attributes have a textual content,
which is explicitly represented, and are managed by the25

user through explicit value assignments. This last fea-

ture is in the spirit of relational keys and foreign keys [8].
However, the values of ID attributes have to be different
in an XML document and this is not true in relational DB
where two keys can have different names, but same values.30

Thus, ID/IDREF(S) mechanism is in some sense in the
middle between the semantics of relational keys/foreign
keys and that of object-style references. Thus, the value
of an attribute of type ID uniquely identifies an element
node, while the value of an attribute of type IDREF(S) al-35

lows the reference to element node(s) on the base of values
of its(their) ID attributes. For example, we may iden-
tify an element patient through an ID attribute pat id

with value “pat01”, unique in the document. An element
therapy would refer to the given patient, by an IDREF40

attribute pat ref having the same value of pat id.

DTD simplicity is paid in terms of expressiveness: a
DTD efficiently models the structure of XML documents
(it is able to provide a “syntactical” control such as
context-free grammar), but it is not powerful enough for45

capturing more subtle, semantic features. As an example,
(unique) values of ID attributes have the overall document
as a scope. Consequently, attributes of type IDREF(S)
cannot be constrained to refer to ID attribute values of a
specific subset of element nodes (e.g., those of same ele-50

ment). On the other side, complex specification languages
such as XML Schema [9] represent a powerful alternative
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to DTD. XML Schema supports the specification of a very
rich set of constraints (in terms of XPath expressions [10])
and seems to overcome DTD issues and limitations. Un-55

fortunately, as observed in [11, 8, 12], XML Schema is too
complicate and not compact at all in the specification of
even simple integrity constraints.

Focusing on the research area related to XML modeling,
in the literature there have been research efforts dealing60

with the proposal of formal approaches to specify different
kinds of integrity constraints, trying to maintain the com-
pactness of DTD specification [13, 14, 11, 15, 8, 16, 17, 18,
19]. Most efforts focused on formalisms allowing the ex-
pression of some kinds of key and foreign key constraints,65

by suitably extending DTD syntax and semantics [11, 16].
Complexity issues for the logical implication problem have
been studied [8] as well as for the complexity of checking
the consistency (or satisfiability) of different kinds of in-
tegrity constraints on XML documents [11, 19]. Other70

proposals deal with a comparison between DTD and XML
Schema [20], introduce a new schema language simple as
DTD but with the expressiveness of XML Schema [12],
and study the implication problem and validation of keys
in XML documents [21, 22, 23]. Moreover, some propos-75

als deal with XML model checking problem, i.e., verifying
whether a specific XML document is valid with respect to
all the specified constraints [18]. Most proposals rely ei-
ther on ad-hoc languages, e.g. the proposal in [8], or on
logic-based languages, e.g. the proposal in [18], based on80

hybrid logics.
According to the above scenario, in this paper we focus

on the issue of retaining in a logical framework the simplic-
ity of DTDs with the capability of expressing meaningful
integrity constraints. With respect to previous research ef-85

forts, we specifically propose a very simple formal language
which is able to model constraints with respect to XML
reference specification. More precisely, with some similar-
ities with the approach in [18, 24], we propose a logical
language, called XHyb, able to express in a direct and ex-90

plicit way constraints on XML documents. The novelty of
our work can be summarized as in the following.

• We propose XHyb, a new hybrid logics explicitly de-
fined for specifying features of XML documents. XHyb
allows us to encode constraints in terms of (as much95

as possible) simple modal formulas. Moreover, the
Kripke-style XHyb models naturally fit the shape of
XML documents, representing explicitly and distinctly
both the parent-child relation and the reference spec-
ification for XML documents.100

• We consider XML documents valid against a given
DTD and do not extend DTD to allow further con-
straints (e.g., key constraints on ID attributes with a
narrower scope than the entire document). We fo-
cus on the specification of ID/IDREF(S) reference105

constraints that cannot be expressed through DTD
but that maintain the original validity of XML doc-
uments. We show how to encode interesting XML

integrity constraints with an explicit focus on con-
straints related to ID/IDREF(S) mechanisms.110

• We propose algorithms for XML model checking prob-
lem. More specifically, we present model checker
XCheck, a simple, recursively defined algorithm,
which implements the model checking problem in our
theoretical setting.115

A preliminary version of this work can be found in [25].
With respect to that version, here we characterize and de-
scribe XHyb in a deeper way, explicitly focused on XML
document modeling. Moreover, the running example has
been extended and enriched with new integrity constraints.120

Such constraints are discussed in an extensive way, by
highlighting the differences with respect to previous con-
tributions from literature and by also proposing some for-
mula “templates” for the most common and recurring con-
straints. Finally, the XML model checking problem for125

XHyb is new to this paper.
The paper is structured as follows. In Section 2 we

briefly recall main contributions presented in literature
and show, focusing on reference constraints, the differ-
ences with respect to our system. In Section 3 we pro-130

vide a motivating example that we will use throughout
the paper to describe and clarify our proposal. Section 4
introduces both syntax and semantics of XHyb and dis-
cusses the correspondence between logical operators and
XML constructs. In Section 5, we discuss how to translate135

in XHyb both XML documents and the constraints intro-
duced in the motivating example. Model checker XCheck
is defined in Section 6. Finally, Section 7 summarizes the
main features of our proposal and sketches some future
research lines.140

2. Related Work

In this section we summarize the main issues faced in
literature when dealing with XML constraints. In partic-
ular, we provide a description of the main kinds of XML
constraints, and discuss the related solutions proposed in145

the literature, ending with a discussion on the complexity
of the related checking algorithms. We also give an idea
of our proposal by highlighting our contributions in the
considered context.

Key constraints. In a DTD, it is possible to define ID at-150

tributes that allow one to uniquely identify a specific el-
ement node within an XML document. This means that
the value of an ID attribute is unique with respect to the
entire document, rather than among a specific given set
of XML element nodes. Moreover, it is possible to specify155

at most one ID attribute for an element. Thus, using ID
attributes as identifiers has some similarity with relational
unary keys, as ID attributes are visible and could be re-
lated to the considered application domain. On the other
hand, ID attributes have similarities with object identi-160

fiers in the object-oriented data representation, as they
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have unique values within the overall document and their
scope cannot be restricted by element/attribute name.

XML Schema allows the definition of key elements
through XPath expressions. Starting from the XML165

Schema key proposal, in [13] and [14], the authors discuss
the definition of keys for XML documents, with particular
attention to the concepts of absolute key and relative key.
A key can be considered either absolute or relative with
respect to its scope: a key having the entire document170

as scope is absolute, while a key having a subpart of the
document as scope is relative.

In [14], the authors show in theoretical terms, that au-
tomated reasoning about the fragment of XML keys with
nonempty sets of simple key paths can be done efficiently.175

This fact has been confirmed in practice in [21], where the
authors describe an efficient implementation of an algo-
rithm deciding the implication problem for the considered
expressive fragment of XML keys and thoroughly evaluate
its performance. Moreover, in [17], the authors deal with180

the definition of XML keys by using path expressions. In
particular, they consider XML keys that uniquely identify
nodes of an XML tree by (complex) values on some se-
lected descendant nodes. The contribution of the work
is the definition of a new fragment of XML keys that185

keeps the right balance between expressiveness and effi-
ciency of maintenance, by providing designers with an en-
hanced ability to capture properties of XML data that are
significant for the application at hand.

In [12], the authors introduce an XML specification lan-190

guage, named BonXai, which is almost easy to use as
DTD, but is able to incorporate many features of XML
Schema, such as the use of types. As for key constraints,
BonXai allows the user to express the same key constraints
as XML Schema, in a simplified way. The main aim of195

this proposal is to overcome limitations of both DTD and
XML Schema. On one side, BonXai tries to maintain the
same level of DTD simplicity incrementing expressiveness,
while, on the other side, it tries to maintain the same level
of XML schema expressiveness, reducing the difficulties in200

its use.
In this paper we will focus on the specification of con-

straints for ID/IDREF(S) attribute references given a
(standard) DTD declaration. According to this approach,
we will not deal with issues related to the definition of (pri-205

mary) key constraints by considering ad-hoc extensions for
ID attributes (or for elements). Indeed, such constraints
would imply the possibility of having XML documents not
valid with respect to the corresponding standard DTD
declaration. On the other hand, focusing on IDREF at-210

tributes, we will consider the capability of constraining
one or multiple IDREF attributes to be key for a given
element.

Foreign key constraints and more general integrity con-
straints. A foreign key constraint allows one to specify a215

relationship between two entities. In the context of rela-
tional databases, a foreign key is an attribute (or more

attributes) in a relation that uniquely refers to a tuple
of another relation (i.e., master table), through one of its
keys. Foreign keys can be used to define integrity con-220

straints, since they define a way for binding entities. The
ID/IDREF(S) mechanism in DTDs provides a simple form
of reference constraints. The reference to an ID attribute
is defined by using IDREF/IDREFS attributes, which are
untyped and thus do not allow the specification of the ID225

attribute to point to. This means that a DTD does not
guarantee the control over ID/IDREF(S) references.

In [15], the authors propose a simple model of integrity
constraints for XML. The proposal defines a single notion
of keys and foreign keys based on a limited form of XPath230

expressions. In [8], the authors extend DTDs with several
classes of integrity constraints such as keys and foreign
keys, and more general ones. In particular, they propose
several constraint languages for XML that provide both a
reference mechanism and a semantics specification. It is235

worth noting that our proposal does not deal with DTD
extensions considering typing and scoping of keys, as in
[8]. Indeed, we will deal with standard DTDs, and pro-
pose XHyb to verify further desired properties on valid
XML documents. We will give the possibility of enriching240

the definition of valid documents, that is, we will consider
documents that are valid against a DTD and verify if a
given document is valid also with respect to the specified
constraints.

In [19], the authors focus on the specification of the245

structure of XML documents, by giving an abstract ap-
proach for the definition of classes of XML documents.
The paper does not deal with the documents content, but
it aims to state complex conditions about the documents
structure, as, for example, the fact that if some element250

nodes appear in a document, then some other element
nodes cannot appear in the same XML document.

The already mentioned language BonXai allows the ex-
pression of foreign key constraints, through the keyword
keyref, similarly to XML Schema [12]. Key and keyref al-255

low a simple definition of referential integrity constraints
both for attribute and element content, possibly depend-
ing on the path of the given element/attribute (i.e., by
specifying the scope of such constraints).

As for foreign key constraints, in this paper we will260

try to overcome the main limitations related to the use
of ID/IDREF(S) attributes, considering DTD-based XML
documents. Thus, we do not consider foreign key con-
straints that would imply some XML code not compli-
ant with DTD (for example, DTD does not allow ID at-265

tributes to have a scope narrower than the entire docu-
ment). Indeed, XHyb allows one, for example, to con-
strain an IDREF(S) attribute to refer to suitable ID at-
tributes belonging to specific elements. In this sense, we
will provide a mechanism for specifying the “type” the270

pointed ID must have. Further integrity constraints in-
volving both ID/IDREF(S) attributes and parent-child re-
lationships between elements will be discussed.
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Cardinality constraints. Cardinality constraints can be
specified in DTD by using a set of indicators (none, ?,275

+, *) specifying how many times an element will appear
within an XML document. The considered indicators al-
low one to define general cardinalities, such as only once,
zero or one, one or more, and zero or more.

In [26] and [17], the authors introduce soft cardinality280

constraints, where “soft” indicates that the constraints
need to be satisfied on average only. The idea is to im-
pose a constraint allowing some violations in order to con-
sider the semistructured nature of XML document. This
means that, soft cardinality constraints express a preferred285

situation, but allow violations of the corresponding strict
constraints.

In this paper, we will consider cardinality constraints
mainly related to element nodes linked through corre-
sponding ID/IDREF(S) attributes.290

Functional dependencies. Functional dependencies [27]
(FDs) are crucial in database theory, and they have been
widely studied in the context of relational databases. A
functional dependency is a statement that describes a se-
mantics constraint on data. FD theory has been extended295

to XML, through different proposals, in the same year
by Lee and colleagues and then by Arenas and Libkin
[28, 29, 30]. In [30], the authors introduce the concept of
functional dependencies for XML, and define the semantics
by using a relational representation of XML. FDs for XML300

documents allow one to express constraints as “patient
elements, within root patients, having the same value
for attribute pathology must have the same value for
sub-element division”. Moreover, they define an XML
normal form avoiding update anomalies and redundancies.305

Authors’ main goal is to find a way of converting an ar-
bitrary DTD into a well-designed one that avoids these
problems.

In our proposal we do not suppose to modify/convert a
given DTD. Indeed, our approach deals with the definition310

and the verification of further reference constraints that
cannot be expressed by DTDs. The only functional de-
pendencies implicitly considered in our approach are those
related to the introduced key properties of ID and IDREF
attributes.315

Checking XML Constraints. According to the goals and
to the kinds of proposed constraints, different problems
have been studied, related to XML constraint verification.

In [31], the authors discuss different kinds of reasoning
problems for XML keys and provide some results for the320

satisfiability problem (i.e., given a finite set of keys, there
exists an XML tree satisfying such keys?), and for the im-
plication problem (i.e., deciding whether a new key holds
given a set of known keys). In [11], the authors show that
verifying the satisfiability of a DTD together with unary325

keys and foreign keys is NP-complete. The algorithm pro-
posed and evaluated in [21] shows that the implication
problem can be decided in quadratic time. The authors

demonstrate that reasoning about expressive notions of
XML keys can be done efficiently in practice and scales330

well. Similarly, considering FDs, in [30] the implication
problem for FDs over simple DTDs is shown solvable in
quadratic time.

A further basic problem is related to checking whether
an XML document satisfies some given constraints. In335

[32], the authors discuss the performances of checking both
XML inclusion dependency and XML foreign key, which
are defined taking into account also the tree-structure of
XML documents. They show that these kinds of con-
straints can be checked in linear time with respect to the340

number of tuples, i.e., those of atomic values composed
by exploring the XML subtrees to analyze, and the num-
ber of root-based paths. Moving to key and key refer-
ence constraints, different proposals introduce algorithms
working in linear time, with respect to the dimension of345

the checked XML document. In [33], a key validator is
proposed, while in [34], the authors introduce a method
for building an XML constraint validator from a given set
of schemata, key and foreign key constraints. In [35], the
authors address the problem of developing an efficient al-350

gorithm for checking whether an XML document satisfies
a set of XML functional dependencies. The running time
of the algorithm is linear in the size of the XML document
and of the number of XML functional dependencies.

Moving to the problem of checking generic constraints355

on XML (and, more generally, semistructured) documents,
some proposals reduce it to the model checking problem of
some corresponding formula. In [18], the authors deal with
the complexity of the model checking problem for hybrid
logics. In particular, they establish a relationship between360

the query processing problem for semistructured and XML
data and the global model checking problem for hybrid
logics. In this context, they describe languages for spec-
ifying path constraints for semistructured data, including
inclusion, inverse, and functional path constraints, and un-365

derline the close connection between path constraint eval-
uation for semistructured data and model checking for
hybrid logics. They represent semistructured data as a
graph in which a node corresponds to an object and an
edge corresponds to an object attribute (i.e., an element370

name or an IDREF(S) attribute name). Edges are labelled
with element names (or IDREF(S) attribute names), while
leaf nodes are labelled with atomic string values (internal
nodes are not labelled). They consider monadic queries,
i.e., queries returning a set of nodes of the considered data375

graph. Queries in the most simple languages they consider
have linear time data and expression complexity, while
queries in the most complete language (with respect to
well-known query languages for semistructured data) have
exponential time expression complexity, i.e., with respect380

to the length of the query formula, and polynomial time
data complexity, i.e., with respect to the dimension of the
considered semistructured document. The constraint eval-
uation problem for key and functional constraints can be
solved in linear time in the length of the constraint (ex-385
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pression complexity) and in polynomial time in the size of
the semistructured document (data complexity).

In [36], the authors, after showing the connection be-
tween query languages applied to semistructured data and
modal logics, have characterized families of queries (pos-390

sibly corresponding to constraint expressions) that admit
efficient solutions to the data retrieval problem. In partic-
ular, they consider graph-based queries and identify some
families of them that correspond to CTL formulae. The
problem of solving a query is thus considered as an in-395

stance of the model-checking problem for CTL that can
be solved in polynomial time.

With respect to the proposed approaches, we will con-
sider the problem of (model) checking an XML document
against a given XHyb formula and will show that the com-400

plexity of the proposed checking algorithm is mainly re-
lated both to dimensions of formula and document, and to
the number of (nested) quantifiers.

3. The Adopted XML model with a Running Ex-
ample405

In this paper we will adopt a simple XML model, usu-
ally related to DTD specifications. An XML document is
represented as a set of nested elements, delimited by tags.
Any XML document must have a single element containing
all the other ones. Elements may contain other elements,410

a string, or may be empty. Elements may have attributes
either mandatory or optional. We will mainly focus on ID
and IDREF/IDREFS attributes. Such attributes are used
to define further relationships between elements, beside
the containment (i.e., parent-child) one. A DTD specifies415

the names of element tags, the content of elements, and
relationships between elements through attributes. Often,
an XML document is represented as a kind of node-labeled
(ordered) tree. In Section 4.2 we will describe the specific
tree-based representation we propose to represent DTD-420

based XML documents.

In this paper we will use the DTD shown in Figure 1 as a
running example to discuss our proposal. The considered
DTD describes a subset of data related to the university
domain by defining relationships among students, profes-425

sors, and courses. It represents the fact that a university
is composed of many students, professors, courses, and ex-
aminations; a student may have a supervisor, when she
starts her thesis work; a professor may act as both thesis
supervisor and thesis reviewer.430

The link between a student and her supervisor is
modeled by using attribute prof ref of type IDREF

within element supervisor (which is contained in ele-
ment student). On the other side, the corresponding link
between a professor and her thesis students is modeled435

by means of attribute stud refs of type IDREFS within
element thesis stud. Both attributes supervisor and
stud refs refer to elements identified by a suitable at-
tribute of type ID.

<!ELEMENT university (student*,professor*,

course*,examination*)>

<!ELEMENT student (name,surname,supervisor?)>

<!ELEMENT professor (name,surname,thesis_stud?,

thesis_reviewer?)>

<!ELEMENT course (title)>

<!ELEMENT examination (grade, distinction?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT surname (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT grade (#PCDATA)>

<!ELEMENT distinction (#PCDATA)>

<!ELEMENT supervisor EMPTY>

<!ELEMENT thesis_stud EMPTY>

<!ELEMENT thesis_reviewer EMPTY>

<!ATTLIST student stud_id ID #REQUIRED>

<!ATTLIST professor prof_id ID #REQUIRED>

<!ATTLIST course cour_id ID #REQUIRED

prof_ref IDREF #REQUIRED>

<!ATTLIST examination stud_ref IDREF #REQUIRED

cour_ref IDREF #REQUIRED>

<!ATTLIST supervisor prof_ref IDREF #REQUIRED>

<!ATTLIST thesis_stud stud_refs IDREFS #REQUIRED>

<!ATTLIST thesis_reviewer stud_refs IDREFS #REQUIRED>

Figure 1: An example of DTD for XML documents in a university
domain

In general, DTD grammar allows us only to validate440

parent-child relationships (i.e., restrictions on the ele-
ment structure of the document [16]) and links between
IDREF/IDREFS values and ID values within the whole doc-
ument. Thus, many obvious constraints cannot be explic-
itly modeled and some XML documents could be valid445

according to the given DTD but provide meaningless in-
formation, such as, for example, that a thesis reviewer is
a course. Indeed, the DTD grammar does not allow us,
for example, to constrain the value of attribute prof ref

to correspond to the value of attribute prof id of some450

element professor.
Figure 2 depicts an XML document valid against the

DTD reported in Figure 1.
Let us consider in the following some examples of re-

quirements we would like to represent and verify in XML455

documents related to the university domain.

• A professor may supervise only students and students
may be supervised only by professors. It means that,
for example, a professor cannot be the supervisor of
another professor (or of a course).460

• A professor may be thesis reviewer of only students.
Again, we want to avoid that a professor results to be
thesis reviewer of a course (!).

Such constraints can be viewed as foreign key constraints
as they require that the scope of some IDFREF(S) at-465

tribute values is restricted to the ID attribute values of
some specific XML elements. Such scope restriction is not
allowed in DTD documents, where we can only specify
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<university>

<student stud_id="stud1">

<name> Al </name> <surname> Jones </surname>

<supervisor prof_ref="prof1"/>

</student>

<student stud_id="stud2">

<name> Sue </name> <surname> Storme </surname>

<supervisor prof_ref="prof1"/>

</student>

<student stud_id="stud3">

<name> Bill </name> <surname> Taylor </surname>

<supervisor prof_ref="prof2"/>

</student>

<student stud_id="stud4">

<name> Sam </name> <surname> Evans </surname>

</student>

<professor prof_id="prof1">

<name> Ted </name> <surname> Wilson </surname>

<thesis_stud stud_refs="stud1 stud2"/>

<thesis_reviewer stud_refs="stud3"/>

</professor>

<professor prof_id="prof2">

<name> May </name> <surname> West </surname>

<thesis_reviewer stud_refs="stud1 stud2"/>

</professor>

<professor prof_id="prof3">

<name> Ed </name> <surname> Smith </surname>

</professor>

<course cour_id="cour1" prof_ref="prof2">

<title> Information Systems </title>

</course>

<course cour_id="cour2" prof_ref="prof1">

<title> Computability </title>

</course>

<course cour_id="cour3" prof_ref="prof1">

<title> Logics </title>

</course>

<course cour_id="cour4" prof_ref="prof3">

<title> Databases </title>

</course>

<examination stud_ref="stud1" cour_ref="cour1">

<grade>A</grade><distinction>+</distinction>

</examination>

<examination stud_ref="stud1" cour_ref="cour2">

<grade>B</grade>

</examination>

<examination stud_ref="stud2" cour_ref="cour2">

<grade>A</grade>

</examination>

</university>

Figure 2: An XML document valid against the DTD in Figure 1

that IDREF(S) attribute values refer to ID attribute val-
ues within the overall XML document.470

• A professor may be the thesis reviewer of up to three
students.

• A student can be evaluated only once for a given
course.

Such further cardinality constraints go beyond the DTD475

expressiveness as they require some counting mechanism
in the first case and the capability of specifying a key con-
straint based on the of IDREF attributes stud ref and
cour ref of element examination, in the second case.

• A professor cannot be both supervisor and reviewer480

of the same student.

• A professor can be supervisor only for students that
attended and passed a course she taught.

These last domain-related constraints refer to the capa-
bility of expressing some requirements about to the specific485

application domain. They can be expressed only by lever-
aging the interplay between parent-child relationships and
reference constraints.

4. XHyb: Hybrid Logic for XML Reference con-
straints490

XHyb is an extension of a fragment of hybrid logic [37,
38, 39, 40]. Appendix A briefly sketches the main features
of hybrid logic.

The specific features of XHyb are (i) the explicit repre-
sentation of the tree-based structure of XML documents495

(by parent-child relation between elements), and (ii) the
extension of quantified hybrid logic by means of a new
modal operator ∗, which explicitly captures the presence
of ID/IDREF(S) relation between elements of XML docu-
ments.500

Let us suppose to have an XML document D.xml, valid
against DTD document D.dtd.

We perform the following steps: (i) we extract a suitable
hybrid language LD based on D.dtd, and (ii) using the
information in D.xml, we build an LD–structure, SD.505

These two steps are related to the syntax and to the
semantics of XHyb, respectively.

4.1. Syntax

4.1.1. Hybrid Language

An Hybrid Language LD is a set of symbols as listed510

below:

• a finite set of element names ED = {e0, . . . , ek}, given
by the set of tag names in D.dtd;

• a finite set of colors CD = {c0, . . . , cm}, given by the
set of IDREF and IDREFS attributes in D.dtd;515

• a denumerable set of nominals N = {i0, i1, . . .}. Nom-
inals, as the main peculiarity of hybrid languages, uni-
vocally identify specific element nodes of the XML
document;

• logical connectives and quantifiers →,⊥,∀, ∗,@,©520

and  .

We assume that CD and ED are disjoint.

Example 1 Let us consider DTD univ.dtd of Fig-
ure 1. Luniv has: (i) set ED = {university, student,
professor, course, examination, name, surname,525

supervisor, thesis stud, thesis reviewer, title,
grade, distinction}; (ii) set CD = {prof ref, stud ref,
cour ref, stud refs}.
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In the following we will use symbols p, q, . . . for element
names, c, d, . . . for color names, i, j, k, l,m, n, . . . for nomi-530

nals.
We provide now the definition of well formed XHyb for-

mulas.

4.1.2. Formulas

Given a language LD, the set of LD–formulas is the small-535

est set Y such that:

• N ⊆ Y ;

• ED ⊆ Y ;

• if i ∈ N and A ∈ Y then (@iA) ∈ Y ;

• if i ∈ N and c ∈ CD then ∗c(i) ∈ Y ;540

• if i ∈ N and A ∈ Y then (∀iA) ∈ Y ;

• if A,B ∈ Y then (A→ B) ∈ Y ;

• ⊥ ∈ Y ;

• if A ∈ Y then  A,©A ∈ Y .

In the following we will use A,B, · · · , possibly indexed,545

to range over the set of LD–formulas.
The intuition about the connectives is as follows:

• @iA means that formula A holds at element i. Fol-
lowing hybrid logic tradition, equality between two
elements i and j is represented as @ij;550

• ∗ is the reference operator : ∗c(i) means that there is a
reference, labelled by c, to the element with nominal
i.

• ∀ is the usual universal quantifier of hybrid logics:
(∀iA) ∈ Y means that formula A holds at each ele-555

ment i.

• → is the implication: A → B means that whenever
formula A is true, then also formula B is true.

• ⊥ is the basic symbol for falsehood.

•  A means that A holds at the parent of the given560

element, considering the parent-child relation in the
tree structure of an XML document;

• ©A means that A holds in each children of the given
element;

In this way, we are distinctly modelling parent-child re-565

lation (by means of modal temporal operators) and refer-
ence accessibility. This perspective is further pursued in
the definition of semantical models of the logic. This choice
makes XHyb different from other hybrid systems developed
for semistructured data representation and reasoning (see,570

for example [18, 24]).
In the rest of the paper, we will use the following (quite

standard) abbreviations: ¬A stands for A → ⊥; A ∨ B

stands for ((¬A) → B); A ∧ B stands for ¬(A ∨ B); ∃iA
stands for ¬(∀i(¬A)); ©∃A stands for ¬ © ¬A. We will575

always omit the most external parentheses in formulas.
Moreover we will adopt useful precedence between opera-
tors in order to simplify the readings of formulas, in partic-
ular we assume that ¬,∀,@,©, have the higher priority.
The only binder for variables is ∀. Therefore, the definition580

of the set of free variables in formulas is standard.

Example 2 Some simple examples of Luniv–formulas are
as follows:

• @istudent means that formula student holds at the
element identified by i, i.e. nominal i corresponds to585

an element student;

• ∗stud ref(i) ∧ @istudent means that there is a refer-
ence, labelled by stud ref, to an element student

having nominal i.

• ∀i(@iuniversity) means that formula university590

holds at each element i (i.e., the XML document
should contain only the root element university)).

• grade →  examination means that whenever for-
mula grade is true, then also formula examination

is true (i.e., a grade element is always contained in595

an element examination).

As we will see in Sections 5 and 6, we focus on specific
kinds of formulas, where all variables (i.e., nominals) cor-
respond *(are bound) to a suitable quantifier. Thus, we
need to distinguish free and bound variables.600

Definition 3 (Free and bound variables) The set
FV of free variables for LD-formulas is inductively defined
as follows:

• FV [i] = {i};

• FV [@iA] = {i} ∪ FV [A];605

• FV [∗c(i)] = {i};

• FV [∀iA] = FV [A]− {i};

• FV [A→ B] = FV [A] ∪ FV [B];

• FV [⊥] = ∅;

• FV [p] = ∅ for p ∈ PROP;610

• FV [ A] = FV [A];

• FV [©A] = FV [A].

An occurrence of i in an LD-formula A is bound iff there
is a sub-LD-formula of A of the kind C = ∀iB. In this
case we say also that B is the scope of i. We say that615

an occurrence of i in an LD-formula A is free iff it is not
bound.

Formulas without free variables are called closed formu-
las: for a closed formula A, FV [A] = ∅.
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4.2. Semantics620

We define now XHyb structures as an extension of
Kripke-models to give a formal representation of XML
documents and related DTDs. The idea is to decorate
an uncolored tree (built upon document elements and the
parent-child relationship) with colored edges representing625

references.

Definition 4 (LD-structure) Given a language LD, an
LD-structure SD is a tuple:

SD = 〈WD,ND, rD,/, VE〉

where:

• 〈WD,ND, rD〉 is a finite rooted tree, such that:

– WD is the set of nodes corresponding to XML
elements of document D.xml;630

– ND is the parent-child relationship. (u, v) ∈ ND

means that element u is parent of (i.e., contains)
element v in D.xml;

– rD ∈W corresponds to the root element of D.xml;

• /: CD ×WD → 2WD is a reference relation, where CD635

is the finite set of colors in LD. / (c, w) = {w′ : w′

has the attribute of type ID with value “a” and w has
an IDREF/IDREFS attribute c =“. . . a . . .”}. Infor-
mally, given an attribute c of type IDREF/IDREFS
and an element w, relation /D yields the set of el-640

ements “accessible” from w through references con-
tained in attribute c.

• VE : ED → 2WD is an evaluation function for element
names such that:

– VE(e) = {w : w has element name e}645

In the definition of XHyb we exploit the fact that the
tree-like structure of XML documents naturally fits the
shape of (most) modal/temporal logic Kripke models.
This has been observed and used in [18, 24]. In this pa-
per we started from the same observation, maintaining a650

slightly different viewpoint. Indeed, references have been
dealt with independently from parent-child relationship:
morally, the tree-component induced by the parent-child
relationship is decorated by “colored” edges representing
reference relations.655

We can also notice that different fragments of the logic
induce different shapes of the models, as depicted in Ta-
ble 1.

Example 5 Let us consider DTD univ.dtd in Figure 1,
and document univ.xml in Figure 2. By performing the660

above steps it is easy to obtain the Luniv–structure Suniv.
A graphical representation of Suniv, explicitly considering
both parent-child and reference relationships, is depicted in
Figure 3.

Table 2 summarizes the XML interpretation of XHyb,665

by showing the mapping between XHyb syntactical and
semantic objects and the corresponding meaning in the
XML document.

In analogy with first order logic, we define the concept
of variable evaluation in LD-structure SD.670

We need an evaluation function gSD
: N → WD that

maps each nominal to a node of the XML-based structure.
When the underlying structure SD is clear from the con-

text we will omit the subscript in the evaluation function
gSD

and will write simply g.675

Finally, we provide the definitions of satisfiability rela-
tion and satisfiability model, we will use in the following
sections.

Definition 6 (Satisfiability relation) Given a fixed
LD-structure SD, an evaluation function g and an element
node w ∈ WD, we inductively define the satisfiability rela-
tion

SD, g, w |= A

by means of the following clauses:

• SD, g, w 6|= ⊥;680

• SD, g, w |= p⇔ w ∈ VE(p) with p ∈ ED;

• SD, g, w |= i⇔ w = g(i);

• SD, g, w |= ∗c(i)⇔ g(i) ∈/ (c, w);

• SD, g, w |= @i A⇔ SD, g, g(i) |= A;

• SD, g, w |= @ij ⇔ g(i) = g(j);685

• SD, g, w |= ∀iA⇔ ∀v ∈ WD, SD, g[i 7→ v], w |= A;

• SD, g, w |= A→ B ⇔ SD, g, w 6|= A or SD, g, w |= B;

• SD, g, w |=  A⇔ ∀v ∈ WD((v, w) ∈ ND;⇒ SD, g, v |=
A);

• SD, g, w |=©A⇔ ∀v ∈ WD((w, v) ∈ ND ⇒ SD, g, v |=690

A).

If SD, g, w |= A we say that 〈SD, g, w〉 satisfies A.

If for each w, g we have SD, g, w |= A we write SD |= A
and we say that A is true in SD or analogously that
SD is a model for A.695

Let us now briefly focus on the semantics of XHyb partic-
ular connectives. The meaning of a formula @iA is defined
by stipulating that A holds in an element node w if and
only if w = g(i), i.e., the interpretation by g of nominal i
is exactly w. The meaning of a formula @ij is defined by700

stipulating that the interpretation of nominals i and j is
the same (g maps both i and j to the same element node
of the structure).

The meaning of a formula ∀iA is given in the standard
way, by using the notation g[i 7→ v]. It specifies a function705
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Connectives  ,© ∗c ∗c + ,©
Relations Parent-child References Parent-child + References

Shape tree component “colored” structure, i.e., tree component
of of SD nodes connected (only) of SD

the models by references +“colored edges”

Table 1: XHyb Overall Picture

XHyb constructs XML interpretation
WD (Element nodes) Element nodes occurring in XML document D
ED (Element names) Tag names declared in the DTD

CD (Colors) IDREF(S) attribute declared in the DTD

VE : ED → 2WD
Each element name e is mapped to the set of element nodes

identifying occurrences of e
ND :WD → 2WD Parent-child relation

/:WD → 2WD
Each element node w

is mapped to the set of element nodes
w points to according to an IDREF(S) attribute (i.e., color)

Table 2: From XHyb to XML

g[i 7→ v] : N → WD s.t. g[i 7→ v](x) = g(x) if x 6= i and
g[i 7→ v](x) = v if x = i.

The meaning of a formula ∗c(i) is defined upon the ref-
erence relation /. ∗c(i) holds in an element node w if
and only if the interpretation by g of nominal variable i710

belongs to the set of element nodes w points to, through
color c, according to /. As previously said, the occurrence
of color c in a XHyb formula represents the presence of an
IDREF in a DTD and its semantics is given in terms of
the reference relation.715

Example 7 Consider the XML document in Figure 2.
The presence of an ID/IDREF relation between elements
supervisor and professor can be easily encoded as
∀i(∗prof ref(i) → @iprofessor). This formula clearly720

holds at all element nodes supervisor, i.e., we can state
Suniv |= ∀i((supervisor ∧ ∗prof ref(i))→ @iprofessor).

5. XHyb in action

XHyb syntax allows a simple and intuitive encoding of
interesting XML constraints non-expressible by the DTD.725

In particular, we focus on foreign key constraints, cardi-
nality constraints (implying some form of key constraints)
and domain-related constraints. Foreign key constraints
allow us to specify the elements having the ID attribute,
an IDREF(S) attribute must refer to. Cardinality con-730

straints allow the specification of the number of relation-
ships instances that must be present through a specific
ID/IDREF(S) mechanism. Moreover, a cardinality con-
straint may express a sort of key constraint for one or mul-
tiple IDREF attributes. Domain-related constraints repre-735

sent more general requirements deriving from the modeled
real-world context.

In this section we provide an XHyb encoding of some
examples of constraints that must hold for the XML doc-
ument in Figure 2. It is worth noting that, according to740

our approach, we will specify further constraints on valid
XML documents and will not consider DTD-related con-
straints, as, for example, the fact that an IDREF attribute
can contain only a value that must correspond to a value
of an ID attribute in the XML document, or that IDREF745

and IDREFS attributes cannot have empty values.

5.1. Foreign key constraints

Let us consider the following requirements:

1. The supervisor of a student must be a professor.

2. A course must be taught by a professor.750

3. An examination must be related to a student and to
a course.

Considering the DTD declaration shown in Figure 1,
the three above requirements may be expressed as: 1. At-
tribute prof ref of element supervisor must refer to755

an element professor; 2. Attribute prof ref of element
course must refer to an element professor; 3. Attribute
stud ref of element examination must refer to an ele-
ment student and, similarly, attribute cour ref of ele-
ment examination must refer to an element course.760

All these constraints are foreign key constraints involv-
ing an IDREF attribute. Moreover, such attributes are
within elements that must contain them. In other words,
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evaluation function

function ❋

student

supervisor

supervisor

thesis_stud

thesis_reviewer

course

course

course

student

student

student

examination

supervisor

stud_refs

stud_ref

cour_ref

prof_ref

supervisor

professor

   VE  

course

professor

examination

examination

professor

thesis_reviewer

university

Figure 3: Graphical representation (references are represented through lines with different colors and shapes) of XML document in Figure 2.
For sake of clarity, #PCDATA elements are not depicted.
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and according to the considered DTD, such IDREF at-
tributes have declared as #REQUIRED. Such kind of con-
straints can be expressed through some formulas having a
fixed structure as:

〈ContainingE〉 → ∃k(∗〈IdrefA〉(k) ∧ @k〈PointedE〉)

where 〈ContainingE〉 stands for the element containing
the considered IDREF attribute 〈IdrefA〉, and 〈PointedE〉
stands for the element containing the referenced ID at-
tribute. Thus, we could say that the scope of attribute
〈IdrefA〉 of element 〈ContainingE〉 is restricted to val-765

ues of ID attribute of element 〈PointedE〉. The proposed
meta-formula applied to the three considered requirements
corresponds to the following formulas, respectively:

1. supervisor→ ∃k(∗prof ref(k) ∧@kprofessor)

2. course→ ∃k(∗prof ref(k) ∧@kprofessor)770

3. examination → (∃k(∗cour ref(k) ∧ @kcourse) ∧
∃k(∗stud ref(k) ∧@kstudent))

Let us now move to constraints that involve foreign key
constraints expressed through IDREFS attributes and con-
sider the following requirement:775

4. A professor may be the supervisor of only students.

5. A professor may be thesis reviewer of only students.

According to the given DTD, when element
thesis stud appears, values of its attribute stud refs

must only refer to sets of ID attribute values of780

student element. Similarly to the previous case, when
thesis reviewer appears, its attribute stud refs must
only refer to sets of values of ID attribute of student

element.
Such kind of constraints can be represented through the

following (meta) formula:

〈ContainingE〉 → ∀k(∗〈IdrefsA〉(k) → @k〈PointedE〉)

where 〈ContainingE〉 stands for the element contain-785

ing the considered IDREFS attribute 〈IdrefsA〉, and
〈PointedE〉 stands for the element containing the refer-
enced ID attribute. Thus, we could say that the scope of
attribute 〈IdrefsA〉 of element 〈ContainingE〉 is restricted
to set of values of ID attribute of element 〈PointedE〉.790

Focusing on the introduced requirements, the following
formulas specify the corresponding constraints in XHyb:

4. thesis stud→ ∀k(∗stud refs(k)→ @kstudent)

5. thesis reviewer→ ∀k(∗stud refs(k)→ @kstudent)

Such foreign key constraints can be further refined to795

contain also some requirements related to the structure
of the XML document. As an example, assume that the
DTD is changed as depicted in Figure 4, where only the

<!ELEMENT university (student*,professor*,

course*,examination*,not_paying_students?)>

.....

.....

<!ELEMENT not_paying_students (student*)>

.....

.....

Figure 4: An extension of the DTD for XML documents in a univer-
sity domain

modified/new parts are reported. The XML document
is still valid according to the modified DTD. According800

to this DTD, we may have elements student contained
within an element not paying students, corresponding
to students who still have to pay the annual fee. Assume
now that we want to express a more precise constraint.

5.1 A professor may be thesis reviewer of only students,805

who already payed the annual fee.

Focusing on the introduced requirement, we need to
explicitly specify that only elements student contained
in university are allowed, while elements student con-
tained in not paying students are not considered. The810

following formula specifies the above constraint in XHyb:

5.1 thesis reviewer → ∀k(∗stud refs(k) →
@k(student ∧ university))

5.2. Further integrity and cardinality constraints

We now discuss some more complex requirements in-815

volving integrity and cardinality constraints. Before going
to requirements introduced in Section 3, let us focus on
a common integrity constraint involving more than one
ID/IDREF(S)-based references. Indeed, we could have
some cross-references that need to be suitably managed820

in order to avoid meaningless data. Consider, for exam-
ple, the following (implicit and obvious) requirement:

6. Students supervised by a professor compose the set of
students doing the thesis work with the given profes-
sor.825

According to the given DTD, when a thesis stud ele-
ment node appears, values of its attribute stud refs must
refer to sets of ID attribute values of student element
nodes and such student element nodes must contain a
supervisor element node having prof ref attribute value830

referring to the ID attribute value of the professor ele-
ment node containing the given thesis stud.

Such kind of constraints can be expressed through some
formulas having a fixed structure as:

∀i(@i(〈ContainingE〉 →
∀k(∗〈IdrefsA〉(k)→ @k(〈PointedE〉 ∧ ∗〈IdrefB〉( i))))

where 〈ContainingE〉, 〈IdrefsA〉, and 〈PointedE〉 have
the same meaning as in the above formula, and 〈IdrefB〉
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stands for the IDREF attribute “pointing back” to the ID835

attribute value of the parent node of the considered ele-
ment node i. This kind of formulas can be slightly modified
according to different choices in structuring and nesting el-
ements. As an example, if the IDREFS attribute would
be in the “main” element, and not in a nested empty one,840

 i would be simply replaced by i.
According to the introduced (meta) formula, the con-

sidered requirement can be expressed as in the following
constraint:

6. ∀i(@i(thesis stud→845

∀k(∗stud refs(k)→ @k(student∧∗supervisor( i))))

Let us now continue with other kinds of constraints
and precisely with two different kinds of cardinality con-
straints.

7. A professor may be the thesis reviewer of up to 3850

students.

8. A student can be evaluated only once for a given
course.

According to the given DTD, the first requirement can
be expressed as in the following. Any thesis stud ele-855

ment node has attribute stud refs containing up to three
different references to ID attribute values of student ele-
ment nodes.

Among the different ways of expressing such constraint,
we will mainly consider elements professor, student and860

supervisor, together with attribute prof ref, and will
use the optional element thesis stud, to avoid to consider
the case of professors without any supervised student.

Let φ = @j(student ∧ ©∃(supervisor ∧ ∗prof ref(i)))
be a (sub)formula with free variables j and i.865

We can express the above constraint through the follow-
ing formula

7. (∀i(@i(professor ∧©∃thesis stud)→
((∃k1, k2, k3(φ[j/k1] ∧ φ[j/k2] ∧ φ[j/k3]) ∧

∀l(φ[j/l])→ (@lk1 ∨@lk2 ∨@lk3))))870

This formula uses subformula φ by binding variable i
and by using variable j as a “parameter” substituted in
the different parts of the formula with bounded variables
k1, k2, k3, and l. According to the formula, there can be
at most three (possibly) different student element nodes875

pointing to the same professor element node. More-
over, any student element node pointing to the given
professor element node must coincide with one of the
three student element nodes.

As for the second requirement, according to the given880

DTD, attributes stud ref and cour ref are required to
satisfy a key constraint on the couple of such IDREF at-
tributes.

8. ∀i∀j((@istudent ∧@jcourse)→
∀m∀n(@m(examination∧∗stud ref(i)∧∗cour ref(j))∧885

@n(examination∧∗stud ref(i)∧∗cour ref(j))→ @mn)

It is simple to observe in this last formula both the for-
eign key constraint between examination attributes and
student and course ID attributes, and the key constraint
for the couple attributes stud ref and cour ref.890

5.3. Domain-related constraints

Let us conclude with some specific requirements related
to the considered application domain.

9. A professor cannot be both supervisor and reviewer
of the same student.895

10. A professor can be supervisor only for students that
attended and passed a course she taught.

According to the given DTD, the first requirement can
be expressed by saying that the stud refs attribute value
of a thesis stud element node and the stud refs at-900

tribute value of a thesis reviewer element node must
refer to two different and disjoint sets of ID values refer-
ring to student element nodes, when such nodes are child
of the same professor element node. The following XHyb
formula formally specifies the above constraint.905

9. ¬∃k ∃j(@k(professor ∧
©∃ (thesis reviewer ∧ ∗stud refs(j)) ∧
©∃ (thesis stud ∧ ∗stud refs(j))))

Finally, as for the second requirement, we could say
that, given a thesis stud element node, the values of910

its attribute stud refs are forced to be a subset of the
values of attributes stud ref of examination element
nodes, having the value of attribute cour ref referring
to a course element node having attribute prof ref that
refers to the professor element node containing the given915

thesis stud element node.

10. ∀i ∀k(@i(thesis stud ∧ ∗stud refs(k))→
∃m ∃n(@m(course ∧ ∗prof ref( i))
∧@n(examination ∧ ∗cour ref(m) ∧ ∗stud ref(k))))

The above formula formalises according to XHyb the920

above constraints. It is worth noting that some struc-
tural constraints remain implicit in the given formula, as,
for example, the fact that element thesis stud is child of
professor, attribute prof ref of element course points
to.925

6. XCheck: the XHyb Model Checker

XHyb is a suitable specification language for automatic
constraint verification. As a first step toward automatic
document validation, we define the Model Checking prob-
lem for XHyb.930

The intuitive meaning of model checking is to establish
whether an instance, i.e., a valid XML document together
with its associated DTD, is a model for a formula. More
formally, the model checking problem for a logic L on a
class of structures C can be formulated as follows: given935
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a structure S ∈ C, and a sentence A ∈ L, decide if S
satisfies A.

The interest of model checking in the setting of
semistructured data has been pointed out in [18], where
authors study the computational complexity of the prob-940

lem for a hybrid logic and provide some applications
to XML constraint specification and query languages for
semistructured data. Following the same motivation, in
this section we use XHyb as a specification language and we
define XCheck, a simple, recursively defined, model check-945

ing algorithm.

6.1. Adding element nodes as constants to the logic

In order to simplify the model checking procedure, we
adopt here some (standard) modification to the syntax
and semantics of XHyb (see, for example [41]). The idea950

is to eliminate (retaining an equivalent system) the need
of evaluation function g, by introducing element nodes as
constants in the syntax. This way, nominals in formulas
stand for variables for element nodes and we can simplify
the model checking algorithm we will provide.955

Definition 8 (Extended logic) The extended language
LD[WD] is obtained by adding to LD the set of constants
representing specific element nodes of WD.

The definition of formulas and semantics is extended as
follow (see [41] for the first-order case).960

In the definition of formula add:

• WD ⊆ Y ;

• if w ∈ WD and c ∈ CD then ∗c(w) ∈ Y ;

• if w ∈ WD and A ∈ Y then (@wA) ∈ Y .

In the definition of free variables add:965

• FV [w] = ∅;

• FV [∗c(w)] = ∅.

The satisfiability relation is given only for closed for-
mulas (i.e., without free variables). Indeed they represent
different kinds of constraint, as exemplified in the previous970

section.

Definition 9 (Satisfiability relation) Given a fixed
LD-structure SD, and an element node w ∈ WD we in-
ductively define satisfiability relation

SD, w |= A

for A closed.

• SD, w 6|= ⊥;

• SD, w |= p⇔ w ∈ VE(p) with p ∈ ED;

• SD, w |= w′ ⇔ w = w′;975

• SD, w |= ∗c(w′)⇔ w′ ∈ / (c, w);

• SD, w |= @vA⇔ S, v |= A;

• SD, w |= ∀iA⇔ ∀v ∈ WD,SD, w |= A[i/v]1;

• SD, w |= ¬A⇔ SD, w 6|= A;

• SD, w |= A→ B ⇔ SD, w 6|= A or SD, w |= B;980

• SD, w |= A ∨B ⇔ SD, w |= A or SD, w |= B;

• SD, w |= A ∧B ⇔ SD, w |= A and SD, w |= B;

• SD, w |=  A⇔ ∀v ∈ WD((v, w) ∈ N ⇒ SD, v |= A);

• SD, w |=©A⇔ ∀v ∈ WD((w, v) ∈ N ⇒ SD, v |= A).

Now we are ready to define (using a pseudocode) the985

model checker for XHyb, constraining ourselves to closed
formulas in the language LD[WD].

6.2. The model checking problem

The model checking problem is formulated as follow.
Given a closed formula A in the language LD[WD] and a990

LD[WD]-structure SD, check algorithmically whether SD |=
A.

Model checking is important in our approach since we
propose XHyb as a concrete tool to validate XML docu-
ment beyond DTD–validation. As already underlined, we995

assume here to have a DTD document D.dtd and an XML
document D.xml, valid w.r.t. D.dtd. In this case, after the
two steps we performed in building XHyb (see Section 4),
i.e., (i) extracting a suitable hybrid language LD based on
D.dtd, and (ii) building an LD–structure SD on the base of1000

the content in D.xml, we perform three further steps: (iii)
we extend the language with the set WD of element nodes
of SD, obtaining the language LD[WD]; (iv) we formulate a
constraint as a closed formula A in LD; and (v) we check
by means of suitable algorithms whether SD |= A. If the1005

answer is “TRUE” we can state that document D.xml is
valid w.r.t the constraint A, otherwise we say that D.xml

is not valid w.r.t. constraint A.

Step (iii) implements the extension with constants for
element nodes described in Section 6.1. Step (iv) requires1010

the encoding of constraints according to the syntax of the
extended logic.

In the following, we give the abstract (high level) pro-
cedures to perform step (v). We will use some auxiliary
notations: with pred(w) and succ(w) we will denote the1015

parent and the set of children of element node w, respec-
tively.

1A[i/v] is the new formula obtained by replacing each free occur-
rence of i in A with symbol v.
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/* This is the top function. XCheck returns true if SD |= A,
false otherwise. The procedure checks for each element
node w whether SD, w |= A */

fun XCheck(SD : structure, A : formula):bool
begin

bool s ; foreach w ∈ WD do
s← s ;and lXCheck(SD, A, w);

return s ;

Algorithm 1: Main global procedure of the Model
Checker

6.2.1. XCheck abstract procedures

The global procedure XCheck takes as inputs a S-
structure and a formula A. It returns true if the structure1020

satisfies A (SD |= A) and false otherwise. XCheck calls,
on each element node in WD, the local switch procedure
lXCheck. lXCheck is recursively defined and calls the cor-
rect sub-routine according to the shape of the currently
processed formula. Recursive callings on sub-formulas1025

stop when propositional symbols are reached and then a
boolean value is returned.

Main global and local procedures are reported in Algo-
rithm 1 and 2. Subroutines for classical connectives and
modal connectives are reported in Algorithm 3 and in Al-1030

gorithm 4, respectively. Algorithm 5 contains subroutines
for hybrid/reference connectives.

6.2.2. Correctness of the model checker

Let us now briefly discuss the correctness of algorithms
we propose for model checking. The proof of correctness1035

is mainly based on the correspondence of local procedure
lXCheck(SD, A,w) with the definition of satisfiability re-
lation according to the structure of formula A. Then,
we move to prove the correctness of the global procedure,
based on the local one.1040

Thus, we first sketch the correctness of
lXCheck(SD, A,w).

Lemma 10 lXCheck(SD, A,w) returns true ⇔ SD, w |=
A

Proof Sketch1045

We proceed by induction on the structure of A.

Base If A ≡ p (i.e., we are in presence of an
atomic formula and p is an element name)is atomic
lXCheck(SD, p, w) returns true ⇔ w ∈ VE(p) ⇔
SD, w |= p1050

Inductive step

A ≡ B ∨ C:
lXCheck(SD, B ∨ C,w) returns true
⇔ (since the switch matches the case B ∨ C)
lXCheck∨(SD, B,C,w) returns true1055

⇔
lXCheck(SD, B,w) returns true
or

/* The function considers the syntax of formula A. If A is a
propositional symbol, the function verifies immediately it.
Otherwise, it calls the suitable function depending on the
logical operator to be checked. */

fun lXCheck(SD : structure, A : formula, w :
element node):bool

begin
switch A do

case p do
if w ∈ VE(p) then

return true;
else

return false;

case u do
if w = u then

return true;
else

return false;

case @uB do
return lXCheck@(SD, B, u);

case ©B do
return lXCheck©(SD, B,w);

case  B do
return lXCheck (SD, B,w);

case ∀iB do
return lXCheck∀(SD, B, i, w);

case ∃iB do
return lXCheck∃(SD, B, i, w);

case ∗c(i) do
return lXCheck∗(SD, c, i, w);

case B ∨ C do
return lXCheck∨(SD, B,C,w);

case B ∧ C do
return lXCheck∧(SD, B,C,w);

case B → C do
return lXCheck→(SD, B,C,w);

case ¬B do
return lXCheck¬(SD, B,w);

Algorithm 2: local procedure of the Model Checker

lXCheck(SDC,w) returns true
⇔ (Induction Hypotesis)1060

SD, w |= B or SD, w |= C ⇔ SD, w |= B ∨ C

A ≡ ¬B,A ≡ B ∧ C,A ≡ ∗c(u), A ≡ @vA: proceed
recursively in analogy with the previous case;

A ≡ ∀iB:
lXCheck(SD,∀iB,w) returns true1065

⇔ (since the switch matches the case ∀iB)
lXCheck∀(SD, B, i, w) returns true
⇔ (execution of the command foreach)
for each v ∈ WD

lXCheck(SD, B[i/v], w) returns true1070

⇔ (Induction Hypotesis)
∀v ∈ WD,SD, w |= B[i/v] ⇔

14



/* recursively call lXCheck on A */
fun lXCheck¬(SD : structure, A : formula, u :
element node):bool

begin
return not lXCheck(S, A, u);

/* Recursively call lXCheck on subformulas A and B */
fun lXCheck∨(SD : structure, A : formula, B :
formula, u : element node):bool

begin
return lXCheck(SD, A, u) or lXCheck(SD, B, u);

fun lXCheck∧(SD : structure, A : formula, B :
formula, u : element node):bool

begin
return lXCheck(SD, A, u) and lXCheck(SD, B, u);

fun lXCheck→(SD : structure, A : formula, B :
formula, u : element node):bool

begin
return not lXCheck(SD, A, u) or lXCheck(SD, B, u);

/* Recursively call procedure lXCheck on formulas A[i/w]
for each possible renaming of free occurrences of nominal
i with element nodes in SD. */

fun lXCheck∀(SD : structure, A : formula, i :
nominal, u : element node):bool

begin
bool s← true;
foreach w ∈ WD do

s← s and lXCheck(SD, A[i/w], u);

return s

fun lXCheck∃(SD : structure, A : formula, i :
nominal, u : element node):bool

begin
bool s← true;
foreach w ∈ WD do

s← s and not lXCheck(SD, A[i/w], u);
if s is false then

return true;

return false

Algorithm 3: Subroutines for classical connectives

SD, g, w |= ∀iB

A ≡ ∃iB,A ≡ ©B,A ≡  B: proceed recursively in
analogy with the previous case1075

Now, we are ready to move to the correctness of the
global procedure.

Theorem 11 XCheck(SD, A) returns true⇔ SD |= A

Proof. Since XCheck(SD, A) returns true iff for each w ∈
WD, lXCheck(SD, A,w) returns true, and (by definition)1080

SD |= A if and only if SD, w |= A, apply the previous
lemma and conclude.

6.2.3. Complexity of XHyb Model Checker

In this section we sketch the complexity of XCheck, par-
tially following the proof discussed in [18].1085

/* Recursively call lXCheck on formula A for each successor
element node s */

fun lXCheck©(SD : structure, A : formula, u :
element node):bool

begin
bools← true;
foreach w ∈ succ(u) do

s← s and lXCheck(SD, A, w) ;

return s;

/* Recursively call lXCheck on formula A and parent w */
fun lXCheck (SD : structure, B : formula, u :
element node):bool

begin
if u is the root then

return true ;
else

return lXCheck(SD, B, pred(u));

Algorithm 4: Subroutines for modal connectives

/* test whether u belong to / (c, w) */
fun lXCheck∗(SD : structure, u : element node, w :
element node):bool

begin
if u ∈/ (c, w) then

return true;
else

return false;

/* Recursively call lXCheck with B and the new element
node u */

fun lXCheck@(SD : structure, B : formula, u :
element node):bool

begin
return lXCheck(SD, B, u);

Algorithm 5: Subroutines for hybrid/reference connec-
tives

The complexity of the model checker depends on n and
size(A), where n = |WD| and size(A) is the size of the
checked formula, recursively defined as the number of sym-
bols of A: size(p) = size(c) = size(⊥) = 1; size(∗ci) = 2;
size(∀iA) = size(A)+2; size(@iA) = size(©A) = size( A) =1090

size(A) + 1; size(A→ B) = size(A) + size(B) + 1. Observe
that |N | ∈ O(n) and | / (c, w)| ∈ O(n) for all c and w in
the given LD-structure.

To measure the complexity of the model checker, we
proceed in two steps: (i) we analyze the model checking1095

problem for the system XHyb−, i.e. the fragment of XHyb
without the universal quantification (∀); (ii) we extend the
result to the full XHyb.

Focusing on the auxiliary main function lXCheck, pro-
cedures for element names p, for element nodes u, and for1100

formulas of the shape ∗c(w) require a constant amount
of resources, in particular O(1) time units, respectively.
Other procedures also involve a stack of recursive calls to
subformulas. O(size(A)) is clearly the upper bound for
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the stack of recursive calls and also for the complexity of1105

all procedures with the exception of lXCheck©. lXCheck©
is the most expensive subroutine for XHyb− and requires
O(size(A) · n). It is easy to prove by induction that an
arbitrary deep nesting of © operator (© . . .©︸ ︷︷ ︸

k

A) always

costs O(n) for any finite k and any model with finite size1110

n = |WD|.
Thus, the time complexity of the local model checker

lXCheck for the fragment XHyb− is O(size(A) · n).
We are now ready to extend the proof to the full XHyb,

adding the quantifier ∀.1115

For XHyb formula ∀i.A, the corresponding function
lXCheck∀ has complexity n · C(A), where C(A) represent
the complexity of subformula A. Moreover, along recur-
sive calls, a nesting of universal quantifications may occur.

To provide a complexity bound, we introduce the con-1120

cept of nesting degree, denoted as d∀(·), related to nested
universal quantifiers of a formula.

Definition 12 (Nesting degree) The nesting degree d∀
of an LD–formula is inductively defined as:

• d∀(p) = d∀(w) = d∀(⊥) = d∀(∗ci) = 0;1125

• d∀(A→ B) = max(d∀(A),d∀(B));

• d∀(@iA) = d∀(©A) = d∀( A) = d∀(A);

• d∀(∀iA) = d∀(A) + 1.

The time complexity bound for lXCheck considering
XHyb depends also on the nesting degree of the formula.1130

At each step of the recursive call, in the worst case the
switch function returns the subroutine lXCheck∀, which,
by definition, checks the current subformula at each ele-
ment node of the XML document. The complexity of local
procedure lXCheck for XHyb is thus O(size(A)·n·nd∀(A)) =1135

O(size(A) · nd∀(A)+1).

We can state now the overall result, taking into account
that the top function XCheck calls the auxiliary main func-
tion lXCheck on each element node w in the structure.

Theorem 13 (Complexity of XCheck)1140

Let SD be a LD-structure such that n = |WD| and let A be
a XHyb formula.
XCheck(SD, A) terminates in O(size(A) ·nd∀(A)+2). More-
over, since the bound of recursive calls is O(size(A)),
XCheck requires polynomial space.1145

6.3. Towards the implementation of XHyb–structures

Since the underlying data-structure of an XHyb–
structure SD = 〈WD,ND, rD,/, VE , VR〉 is the tree
〈WD,ND, r〉 we are in some sense forced to use a standard
way to implement finite trees. This means to drop ap-1150

proaches based on adjacency matrices (tree are, de facto,

scattered tree) in favour of approaches based on linked
(non linear) lists.

The solution we propose here is quite simple, and is
depicted in Figure 5, that shows the data structures needed1155

to implement each element node.
Figure 6 shows the corresponding data type definitions

in C syntax (it is easy to see how to implement the same
concept in other languages that are able to manipulate
lists, e.g. JAVA, ML-family an so on).1160

7. Conclusions and Future Work

In this paper we proposed a simple extension of hybrid
logic with a reference operator ∗c. We showed how this
logic, called XHyb, is suitable to express reference con-
straints and thus overcomes, in an feasible way, some limi-1165

tations of DTD expressiveness. Our work is open to several
future directions. The first one is the proof-theoretic de-
velopment of XHyb. It is possible to provide a full Hilbert-
style axiomatization of the logic and to prove a Soundness
and Completeness Theorem (the latter by means of a non-1170

trivial but plain variation of Henkin’s saturation technique
for hybrid logic).

Moreover, we will study and develop extensions of the
core logic presented in this paper, in order to model more
sophisticated constraints, both improving expressiveness1175

and retaining XHyb simplicity. The first step will be to
capture arbitrary keys and foreign keys specification. An-
other interesting task will be the study of the XHyb ex-
pressive power w.r.t. a constraint taxonomy. Following
the results proved in [42, 24], which relate Hybrid Logic,1180

First Order Logic and XPath language, we aim to provide
a complete account of the expressiveness of XHyb and its
refinements.

Finally, we plan to implement the model checker algo-
rithm XCheck defined in Section 6, as an important step1185

toward the automatic constraint verification. Proposing
and implementing an appropriate extension of the DTD
language for the declaration of reference constraints, based
on the provided XHyb formulas, is a further and interesting
task.1190
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(Eds.), 11th Asia-Pacific Conference on Conceptual Modelling,1295

APCCM 2015, Sydney, Australia, January 2015, Vol. 165 of
CRPIT, Australian Computer Society, 2015, pp. 81–90.
URL http://crpit.com/abstracts/CRPITV165Liu.html

[24] M. Marx, Xpath and modal logics of finite DAG’s, in: Auto-
mated Reasoning with Analytic Tableaux and Related Meth-1300

ods, International Conference, TABLEAUX 2003, Rome, Italy,
September 9-12, 2003. Proceedings, 2003, pp. 150–164.

[25] C. Combi, A. Masini, B. Oliboni, M. Zorzi, A logical framework
for XML reference specification, in: Q. Chen, A. Hameurlain,
F. Toumani, R. R. Wagner, H. Decker (Eds.), Database1305

and Expert Systems Applications - 26th International Con-
ference, DEXA 2015, Valencia, Spain, September 1-4, 2015,
Proceedings, Part II, Vol. 9262 of Lecture Notes in Com-
puter Science, Springer, 2015, pp. 258–267. doi:10.1007/

978-3-319-22852-5_22.1310

URL https://doi.org/10.1007/978-3-319-22852-5_22

[26] F. Ferrarotti, S. Hartmann, S. Link, M. Maŕın, E. Muñoz, Soft
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Appendix A. Hybrid Logics

Hybrid logics are a class of logics extending classical
modal/temporal logics.

It is well known that a propositional modal logic with
necessity operator 2 (actually, in the paper we have two1385

kinds of necessity operators, © and  ) is modeled by
means of a so called Kripke model, namely a structure
of the kind M = 〈W,R, V 〉 where W is a set of so-called
possible worlds, R ⊆W ×W is called accessibility relation
(in the paper we have more complex structures; in any1390

case for this short survey, graph structures 〈W,R〉 suffice),
and V : Prop→ 2W is a function assigning to each propo-
sitional p symbol the set of worlds where p is true.

Once we have fixed a Kripke model M , the semantics
of a formula is given by means of the so-called Kripke1395

semantics. For example, a formula 2A is true in the world
w iff A is true in all the accessible worlds from w:

M,w |= 2A⇔ for all u : wRu, u |= A

The main idea behind Hybrid logics is the introduction
in the logical language of explicit references to possible
worlds. The basic step is given by enriching the language1400

with a new syntactical category, i.e., the so-called nomi-
nals. A nominal i is a kind of variable referring to one
possible world w. Semantically, the connection between
nominals and possible worlds is realized by means of an
evaluation function g : N → W , which assigns to each i a1405

world g(i) ∈W .
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We say that a nominal i is true with regard to a world
w iff i refers to w, namely:

M, g,w |= i⇔ g(i) = w

In order to use nominals, Hybrid Logics introduce a new
operator @ (read ”at”). Given a nominal i and a formula
A, @iAmeans that formulaA holds at the world referenced
by i. More precisely we have:

M, g,w |= @iA⇔M, g, g(i) |= A

Interestingly, the @ operator defines a notion of seman-
tical equality between nominals. In fact by using the rules
given above, we have that

M, g,w |= @ij ⇔M, g, g(i) |= j ⇔ g(i) = g(j)

i.e., @ij is true iff both i and j refer to the same world.
In order to have further expressive power, it is possible

to introduce a first order quantification over nominals. It
is therefore possible to write formulas of the kind ∀iA,
whose informal meaning is that A is true with regard to
all the possible ways to assign a world to i, i.e.

M, g,w |= ∀iA⇔ ∀u ∈W,M, g[i 7→ u], w |= A

where g′ = g[i 7→ u] is the new function that coincides
with g but for i, where g′(i) is equal to u (note that this
is the standard way to evaluate first order quantification1410

with respect to a domain of values).
We conclude here with two very simple examples:

1. the formula ∀i(@iA→ 2B)
has the informal meaning ”each world satisfying A has
all the accessible worlds satisfying B”.1415

2. the formula ∃i(@iA)→ ∃j, k(¬@jk ∧ (@jB ∧@kC))
has the informal meaning ”if there is a world satisfy-
ing A, then there are two distinct worlds, one satisfy-
ing B and the other one C, respectively”.

The paper contains a lot of quite complex examples deal-1420

ing with @ and ∀ in the context of formulas specifying
different kinds of constraints for DTD-based XML docu-
ments.
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