Extending OpenVX for Model-based Design of
Embedded Vision Applications

Stefano Aldegheri, Nicola Bombieri
Dept. Computer Science
University of Verona - Italy
Email: name.surname @univr.it

Abstract—Developing computer vision applications for low-
power heterogeneous systems is increasingly gaining interest in
the embedded systems community. Even more interesting is the
tuning of such embedded software for the target architecture
when this is driven by multiple constraints (e.g., performance,
peak power, energy consumption). Indeed, developers frequently
run into system-level inefficiencies and bottlenecks that can not
be quickly addressed by traditional methods. In this context
OpenVX has been proposed as the standard platform to develop
portable, optimized and power-efficient applications for vision
algorithms targeting embedded systems. Nevertheless, adopting
OpenVX for rapid prototyping, early algorithm parametrization
and validation of complex embedded applications is a very
challenging task. This paper presents a methodology to integrate
a model-based design environment to OpenVX. The methodology
allows applying Matlab/Simulink for the model-based design,
parametrization, and validation of computer vision applications.
Then, it allows for the automatic synthesis of the application
model into an OpenVX description for the hardware and
constraints-aware application tuning. Experimental results have
been conducted with an application for digital image stabilization
developed through Simulink and, then, automatically synthesized
into OpenVX-VisionWorks code for an NVIDIA Jetson TX1
board.

I. INTRODUCTION

Computer vision has gained an increasing interest as an
efficient way to automatically extract of meaning from images
and video. It has been an active field of research for decades,
but until recently has had few major commercial applications.
However, with the advent of high-performance, low-cost, en-
ergy efficient processors, it has quickly become largely applied
in a wide range of applications for embedded systems [1].

The term embedded vision refers to this new wave of widely
deployed, practical computer vision applications properly op-
timized for a target embedded system by considering a set
of design constraints. The target embedded systems usually
consist of heterogeneous, multi-/many-core, low power embed-
ded devices, while the design constraints include performance,
energy efficiency, dependability, real-time response, resiliency,
fault tolerance, and certifiability.

Developing and optimizing a computer vision application
for an embedded processor can be a non-trivial task. Con-
sidering an application as a set of communicating and in-
teracting kernels, the effort for such application optimization
goes over two dimensions: the single kernel-level optimization
and the system-level optimization. Kernel-level optimizations
have traditionally revolved around one-off or single function
acceleration. This typically means that a developer re-writes

Matlab/Simulink

Embedded vision
application

Model-based
design

Embedded vision
application

Application
developers

Graph-based Graph
Q modelling Q synthesis
%) OpenVX OpenVX
3% ’ 8 -
c 2 API standard interface 3-8 API standard interface Multi-level
:xf £ UED [designand
& | openct | cupa | c/ce+ & § | OpencL|cuba | c/cr+ verification
- flow

Automatic optimiz.
and synthesis

SDK

Automatic optimiz.
and synthesis

SDK

o
= g APl |Runtime | System- = _§ APl |Runtime | System-
S| . :
B implem. | engines | level opt. T § implem. [engines | level opt.
S
Low-power heterogeneous board Low-power heterogeneous board
(a) (b)

Fig. 1. The embedded vision application design flow: the standard (a), and
the extended with the model-based design paradigm (b)

a computer vision function (e.g., any filter, image arithmetic,
geometric transform function) with a more efficient algorithm
or offloads its execution to accelerators such as a GPU by
using languages such as OpenCL or CUDA [2].

On the other hand, system-level optimizations pay close at-
tention to the overall power consumption, memory bandwidth
loading, low-latency functional computing, and Inter-Processor
Communication overhead. These issues are typically addressed
via frameworks [3], as the parameters of interest cannot be
tuned with compilers or operating systems.

In this context, OpenVX [4] has gained wide consensus
in the embedded vision community and has become the de-
facto reference standard and API library for system-level
optimization. OpenVX is designed to maximize functional and
performance portability across different hardware platforms,
providing a computer vision framework that efficiently ad-
dresses current and future hardware architectures with minimal
impact on software applications. Starting from a graph model
of the embedded application, it allows for automatic system-
level optimizations and synthesis on the HW board targeting
performance and power consumption design constraints [5],
(61, [71.

Nevertheless, the definition of such a graph-based model,
its parametrization and validation is time consuming and far
from intuitive to programmers, especially for the development
of medium-complex applications.

This paper presents a framework that extends OpenVX to

Fig. 2. OpenVX sample application (graph diagram)

the model-based design paradigm (see Fig. 1). Differently from
the standard approaches at the state of the art that require
designers to manually model the algorithm through OpenVX
code (see Fig. 1(a)), the proposed approach allows for a
rapid prototyping, algorithm validation and parametrization
in a model-based design environment (i.e., Matlab/Simulink).
The framework relies on a multi-level design and verification
flow by which the high-level model is then semi-automatically
refined towards the final automatic synthesis into OpenVX
code. The paper presents the results obtained by applying the
proposed methodology for developing and tuning an algorithm
for digital image stabilization for two different application
contexts. The paper presents the Simulink toolbox developed
to support the NVIDIA OpenVX-VisionWorks library, and
how it has been used in the design flow to synthesize OpenVX
code for an NVIDIA Jetson TX1 embedded system board.

The paper is organized as follows. Section II presents
the background and the related work. Section III explains
the model-based design methodology. Section IV presents
the experimental results, while Section V is devoted to the
conclusions.

II. BACKGROUND AND RELATED WORK

OpenVX relies on a graph-based software architecture to
enable efficient computation on heterogeneous computing plat-
forms, including those with GPU accelerators. It provides a set
of primitives (or kernels) that are commonly used in computer
vision algorithms. It also provides a set of data objects like
scalars, arrays, matrices and images, as well as high-level data
objects like histograms, image pyramids, and look-up tables.
It supports customized user-defined kernels for implementing
customized application features.

The programmer constructs a computer vision algorithm by
instantiating kernels as nodes and data objects as parameters.
Since each node may use the mix of the processing units in
the heterogeneous platform, a single graph may be executed
across CPUs, GPUs, DSPs, etc.. Fig. 2 and Listing 1 give
an example of computer vision application and its OpenVX
code, respectively. The programming flow starts by creating an
OpenVX context to manage references to all used objects (line
1, Listing 1). Based on this context, the code builds the graph
(line 2) and generates all required data objects (lines 4 to 11).
Then, it instantiates the kernel as graph nodes and generates
their connections (lines 15 to 18). The graph integrity and
correctness is checked in line 20 (e.g., checking of data type
coherence between nodes and absence of cycles). Finally, the
graph is processed by the OpenVX framework (line 23). At
the end of the code execution, all created data objects, the
graph, and the the context are released.

Different works have been presented to analyse the use of
OpenVX for embedded vision [5], [6], [7]. In [6], the authors

vx_context ¢ = vxCreateContext ();

vx_graph g = vxCreateGraph (context);

vx_enum type = VX_DF_IMAGE_VIRT;
create data str

uctures

vx_image in = vxCreatelImage(c, w, h, VX_DF_IMAGE_RGBX);

vx_image gray = vxCreateVirtuallImage(g, 0, 0, type);

vx_image grad_x = vxCreateVirtuallImage(g, 0, 0, type);

vx_image grad_y = vxCreateVirtuallImage(g, 0, 0, type);

vx_image grad = vxCreateVirtuallImage(g, 0, 0, type);
)

vx_image out = vxCreateImage(c, w, h, VX_DF_IMAGE_US8

vx_threshold threshold = vxCreateThreshold(c,
VX_THRESHOLD_TYPE_BINARY, VX_TYPE_FLOAT32);

12 x read 1put mage a object

— OO0 001U AW —

—_—

ind copy i into "in" da
14| /= cons the graph =

15| vxColorConvertNode (g, in, gray);

16| vxSobel3x3Node (g, gray, grad_x, grad_y);

17| vxMagnitudeNode (g, grad_x, grad_y, grad);

18| vxThresholdNode (g, grad, threshold, out);

19| /«verif he graph=

20| status = vxVerifyGraph(g);

ruct

21 xexecute the graph=
22| if (status == VX_SUCCESS)
23 status = vxProcessGraph (g);

Listing 1. OpenVX code of the example of Fig. 2

present a new implementation of OpenVX targeting CPUs and
GPU-based devices by leveraging different analytical optimza-
tion techniques. In [7], the authors examine how OpenVX
responds to different data access patterns, by testing three
different OpenVX optimizations: kernels merge, data tiling
and parallelization via OpenMP. In [5], the authors introduce
ADRENALINE, a novel framework for fast prototyping and
optimization of OpenVX applications for heterogeneous SoCs
with many-core accelerators.

Differently from all the work of the literature, this paper
presents an extension of the OpenvX environment to the
model-based design paradigm. Such an extension aims at
exploiting the model-based approach for the fast prototyping
of any computer vision algorithm through a Matlab/Simulink
model, its parametrization, validation, and automatic synthesis
into an equivalent OpenVX code representation.

III. THE MODEL-BASED DESIGN APPROACH

Fig. 3 depicts the overview of the proposed design flow.
The computer vision application is firstly developed in Mat-
lab/Simulink, by exploiting a computer vision oriented toolbox
of Simulink'. Such a block library allows developers to
define the application algorithms through Simulink blocks and
to quickly simulate and validate the application at system
level. The platform allows specific and embedded application
primitives to be defined by the user if not included in the
toolbox through the Simulink S-Function construct [8] (e.g.,
user-defined block UDB Block, in Fig. 3). Streams of frames
are given as input stimuli to the application model and the
results (generally represented by frames or streams of frames)
are evaluated by adopting any ad-hoc validation metrics from
the computer vision literature (e.g., [9]). Efficient test patterns
are extrapolated, by using any technique of the literature, to

n this work, we selected the Simulink Computer Vision toolbox (CVT),
as it represents the most widespread and used toolbox in the computer vision
community. The methodology, however, is general and can be extended to
other Simulink toolboxes.

—
Simulink $ Computer vision application Applic.
High-level SIMULINK | 1661 box - results
i : (e.g., CVT) = (frames)
simulation A
and L -
Test f Validation
validation patterns Analysis B
(f) of results
rames
L7

I
_________ Application model |_,. | q 5
ml Project.slx PP synthesis V. Open\/_x-_Sl_mulmk
Low-level gl (Matlab script) primitive
simulation 3' T L mapping table

and | 7
validation 4
SIMULINK I_ S Applic.
@ @ Block, results
OpenVX ubB) Ly (frames)
OpenVX toolbox for
primitives Si i Q idati
imulink Analveis Validation
|f‘> v metrics
@ Computer vision application| of results

Application model

ol
]
T T T T T T Ell ''''''''''' ~ synthesis (Matlab script)

Node level and

I N tem level
. OpenVX Applic. SV -
Execution P [@ @ __, rs:ms |:> profiling
and ' (frames) (Performance,

validation ! Power, Energy)

onreal @ -

Analysis o
board Validation
OpenVX application of results metrics

Fig. 3. Methodology overview

asses the quality of the application results by considering the
adopted validation metrics.

The high-level application model is then automatically
synthesized for a low-level simulation and validation through
Matlab/Simulink. Such a simulation aims at validating the
computer vision application at system-level by using the
OpenVX primitive implementations provided by the HW
board vendor (e.g., NVIDIA VisionWorks) instead of Simulink
blocks. The synthesis, which is performed through e Matlab
routine, relies on two key components:

1) The OpenVX toolbox for Simulink. Starting from the li-

brary of OpenVX primitives (e.g., NVIDIA VisionWorks
[10], INTEL OpenVX [11], AMDOVX [12], Khronos
OpenVX standard implementation [13]), such a toolbox
of blocks for Simulink is created by properly wrapping
the primitives through Matlab S-Function, as explained
in Section III-A.

2) The OpenVX primitives-Simulink blocks mapping table.
It provides the mapping between Simulink blocks and
the functionally equivalent OpenVX primitives, as ex-
plained in Section III-B.

As explained in the experimental results, we created the
OpenVX toolbox for Simulink of the NVIDIA VisionWorks
library as well as the mapping table between VisionWorks
primitives and Simulink CVT blocks. They are available for
download from https://profs.sci.univr.it/bombieri/VW4Sim.

The low-level representation allows simulating and validat-
ing the model by reusing the test patterns and the validation
metrics identified during the higher level (and faster) simula-
tion.

Finally, the low-level Simulink model is synthesized,
through a Matlab script, into an OpenVX model, which is

function s_colorConvert (block)
setup (block);

1

2

3

4 function setup (block)

5 3 Number of ports and parameters
6 block.NumInputPorts =
7 block.NumOutputPorts = 1;
8

9 block.RegBlockMethod (' Start’, @Begin);
10 block.RegBlockMethod (' Stop’, @End);
11 block.RegBlockMethod (' Outputs’, @Outputs);
12 function begin (block)
13 %create vx_image
14 gray = m_vxCreateImage ();
15 function end (block)
16 tdestroy vx_image
17 m_vxReleaselImage (gray) ;
18 function outputs (block) //computation phase:
19 in = block.InputPort (1) .Data;
20 ret_val = m_vxColorConvert (in, gray);
21 block.OutputPort (1) .Data = gray;

Listing 2. Matlab S-function Code for the Color Converter node.

executed and validated on the target embedded board. At
this level, all the techniques of the literature for OpenVX
system-level optimization can be applied. The synthesis is
straightforward (and thus not addressed in this paper for the
sake of space), as all the key information required to build
a stand-alone OpenVX code is contained in the low-level
Simulink model. Both the test patterns and the validation
metrics are be re-used for the node-level and system-level
optimization of the OpenVX application.

A. OpenVX toolbox for Simulink

The generation of the OpenVX toolbox for Simulink relies
on the S-function construct, which allows describing any
Simulink block functionality through C/C++ code. The code
is compiled as mex file by using the Matlab mex utility [14].
As with other mex files, S-functions are dynamically linked
subroutines that the Matlab execution engine can automatically
load and execute. S-functions use a special calling syntax (i.e.,
S-function API) that enables the interaction between the block
and the Simulink engine. This interaction is very similar to
the interaction that takes place between the engine and built-
in Simulink blocks.

We defined a S-function template to build OpenVX blocks
for Simulink that, as for the construct specifications, consists
of four main phases (see the example in Listing 2, which
represents the Color Converter node of Fig. 2):

o Setup phase (lines 4-11): it defines the I/O block interface
in terms of number of input and output ports and the
block internal state (e.g., point list for tracking primi-
tives).

o Begin phase (lines 12-14): It allocates data structure in
the Simulink memory space for saving the results of the
block execution. Since the block executes OpenVX code,
this phase implementation relies on a data wrapper for
the OpenVX-Simulink data exchange and conversion.

o End phase (lines 15-17): It deallocates the created data
structures at the end of the simulation (after the compu-
tation phase).

Matlab/Simulink context Context wrapper OpenVX context

m_vxCreateContext() e——+ Mex_function(){
vx_context ctx = vxCreateContext(Je—» vxCreateContext(){
}
}

//blockl execution: Data wrapper

m_vxCreatelmage() &——mex_function(ctx, 1/0 data){
mem_lock()
vx_image img = vxCreateimage() &———» VxCreatelmage(){

}

Primitive wrapper

m_vxNode() & —Pmex_function(ctx, img){

//enf of blockl context m_ctx =ref_to_context(ctx)
vx_image m_vximg = ref_to_image(img)
block2 execution mem_lock()
" m_vxNode() @ vxNode(){

/)end of block2 ! 1

Fig. 4. Overview of the Simulink-OpenVX communication

o Computation phase (lines 18-20): it reads the input data
and executes the code implementing the block function-
ality. It makes use of a primitive wrapper to execute
OpenVX code.

Three different wrappers have been defined to allow com-
munication and synchronization between the Simulink and the
OpenVX environments. They are summarized in Fig. 4. The
context wrapper allows creating the OpenVX context (see line
1 of Listing 1), which is mandatory for any OpenVX primitive
execution. It is run once for the whole system application. The
data wrapper allows creating the OpenVX data structures for
the primitive communication (see in, gray, grad,, grad,,, grad,
and out in the example of Fig. 2 and lines 4-11 of Listing
1). It is run once for each application block. The primitive
wrapper allows executing, in the Simulink context, each prim-
itive functionality implemented in OpenVX. To speed up the
simulation, the wrapped primitives work through references
to data structures, which are passed as function parameters
during the primitive invocations to the OpenVX context. To
do that, the wrappers implement memory locking mechanisms
(i.e., through the Matlab mem_lock()/mem_unlock() constructs)
to prevent data objects to be released automatically by the
Matlab engine between primitive invocations.

B. Mapping table between OpenVX primitives and Simulink
blocks

To enable the application model synthesis from the high-
level to the low-level representation, mapping information is
required to put in correspondence the built-in Simulink blocks
and the corresponding OpenVX primitives. In this work, we
defined such a mapping table between the Simulink CVT
Toolbox and the NVIDIA OpenVX-VisionWorks library. The
table, which consists of 58 entries in the current release,
includes primitives for image arithmetic, flow and depth,
geometric transforms, filters, feature and analysis operations.
Table I shows, as an example, a representative subset of the
mapped entries.

We implemented three possible mapping strategies:

Simulink block Visionworks primitive Notes to the developer

CVT/AnalysisAnd vxuCannyEdgeDetector If Simulink EdgeDetection
-Enhancement/ set as Canny
EdgeDetection

CVT/AnalysisAnd vxuSobel3x3 If Simulink EdgeDetection
-Enhancement/ set as Sobel

EdgeDetection

CVT/AnalysisAnd vxuConvolve If filter size different from
-Enhancement/ 3x3

EdgeDetection

CVT/Morphological vxuErode3x3 +

operation/Opening vxuDilate3x3

CVT/Filtering/Median
Filter

vxuMedianFilter3x3

CVT/Filtering/Median vxuNonLinearFilter If filter size different from
Filter 3x3

Math Op./Subtract +
Math Op./Abs

vxuAbsoluteDifference

CVT/Conversion/Color | vxuColorConvert

space conversion

CVT/Statistics/2D

Mean Only mean and standard
vxuMeanStdDev deviation of the entire

CVT/Statistics/2D image supported

StandardDev

Simulink/Math opera-

t}ons/Real/ComplexTo Gradient magnitude

~mag vxuMagnitude computed through complex
Simulink/Math numbers
operations/Real/Imag

to Magnitude

TABLE I
REPRESENTATIVE SUBSET OF THE MAPPING TABLE BETWEEN SIMULINK
CVT AND NVIDIA OPENVX-VISIONWORKS

1) 1-to-1: the Simulink block is mapped to a single
OpenVX primitive (e.g., color converter image arith-
metic).

2) 1-to-n: the Simulink block functionality is implemented
by a concatenation of multiple OpenVX primitives (e.g.,
the opening morphological operation).

3) n-to-1: a concatenation of multiple Simulink blocks are
needed to implement a single OpenVX primitive (e.g.,
subtract + absolute blocks).

For some entry, the mapping also depends on the Simulink
block setting. As an example, the OpenVX primitive for
edge detection is selected depending on the setting of the
corresponding CVT block. The setting includes the choice of
the filter algorithm (i.e., Canny or Sobel) and the filter size.

The blocks listed in the left-most column of the table form
the OpenVX toolbox for Simulink. Any Simulink model built
from them can undergo the proposed automatic refinement
flow. In addition, user-defined Simulink blocks implemented in
C/C++ are supported and translated into OpenVX user kernels.
They are eventually loaded and included in the OpenVX
representation as graph nodes. To do that, we defined the
wrapper represented in Listing 3, which follows the node
implementation directives required by the standard OpenVX
for importing user kernels’>. The wrapper invocation (i.e.,

2www.khronos.org/registry/OpenV X/specs/1.0/html/da/d83/group__group_
_user__kernels.html

N -

W oW

vx_userNode () {
vx_status processingOpenVX (vx_node node, const
vx_reference sparameters, vx_uint32 num)

{
//convert data in internal representation
SimulinkBlockFunctionality(); //C/C++ code of the UDB
functionality
return VX_SUCCESS;
}
vx_status validationOpenVX (vx_node node, const
vx_reference parameters[], vx_uint32 num,
vx_meta_format metas[]))
{
//insert parameter validation
return VX_SUCCESS;
}
vx_status singleShotProcessing (vx_context context,
parameters)
{
//create graph and execute it
}
vx_status registerCustomKernel (vx_context context)
{
vx_status = vxAddUserKernel (context, ...);//register
kernel in context
return VX_SUCCESS;
}
}
Listing 3. Overview of wrapper for user-defined Simulink block

implementations

Input
stream
Color
Converter

— Forward edge
===p Delayed edge

,,,,,,
- S~
~,

-

f" '~
/' > Feature . S,
4 - N ~ N\,
I/ pd Detection \ \\
1 ! v ¥
. Compute - "
Remapping (Homograph\)_.(Filtering H Warping j

Output
stream

Optical
Flow

Fig. 5. Digital image stabilization algorithm.

vr_userNode()) is similar to the invocation of any built-
in OpenVX node (i.e., vaNode()) in the OpenVX context
through the previously presented context wrapper (see the
righ-most side of Fig. 4).

Finally, some restrictions on the Simulink block interfaces
are required to allow the Simulink/OpenVX communication
as well as the model synthesis. The set of data types and data
structures available for the high-level model is reduced to the
subset supported by OpenVX, whereby each I/O port of the
Simulink blocks consists of:

e Dimension d € {1D,2D,3D,3D + AlphaChannel},
e.g., greyscale, RGB or YUV, and alpha channel for
transparency.

o Size s€{NxMx1,NxMx3 NxMx4}.

o Type t € {wint8, float}, where uint8 is generally used
for representing data (pixels, colours, etc.) while float is
generally used for representing interpolation data.

IV. EXPERIMENTAL RESULTS

We applied the proposed model-based design flow for the
development of the embedded software implementing a digital
image stabilization algorithm for camera streams.

Original input stream Selected test patterns

Context

Video | Model Frames Video Model Frames

real simulation #) real time simulation #

time time (min) (min) time (min)

(min)
Indoor 364 492 1.296.278 | 20.5 30.5 72.112
Outdoor | 192 263 648.644 11.0 13.0 36.935

TABLE 11

EXPERIMENTAL RESULTS: HIGH-LEVEL SIMULATION TIME IN SIMULINK

Fig. 5 shows an overview of the algorithm, which is
represented through a dependency graph. The input stream
(i.e., sequence of frames) is taken from a high-definition
camera, and each frame is converted to the grayscale format
to improve the algorithm efficiency without compromising the
quality of the result. A remapping operation is then applied to
the resulting frames to remove fish-eye distortions. A sparse
optical flow is applied to the points detected in the previous
frame by using a feature detector (e.g., Harris or Fast detector).
The resulting points are then compared to the original point
to find the homography matrix. The last N matrices are then
combined by using a Gaussian filtering, where N is defined by
the user (higher N means more smoothed trajectory a the cost
of more latency). Finally, each frame is inversely warped to
get the final result. Dashed lines in Fig. 5 denote inter-frame
dependencies, i.e., parts of the algorithm where a temporal
window of several frames is used to calculate the camera
translation.

We firstly modelled the algorithm application in Simulink
(CVT toolbox). The nodes Optical flow and Filtering have
been inserted as user-defined blocks, since they implement
customized functionality and are not present in the CVT
toolbox. We conducted two different parametrizations of the
algorithm, and in particular of the feature detection phase: For
an indoor and for an outdoor application context. The first
targets a system for indoor navigation of an Unmanned aerial
vehicle (UAV), while the second targets a system for outdoor
navigation of an Autonomous Surface Crafts (ASCs)3.

We validated the two algorithm configurations starting from
input streams registered by different cameras at 60 FPS with
1280x720 (1080P) and 1920x1080 wide angle resolution,
respectively. Table II reports the characteristics of the input
streams (columns Video real time and #Frames) and the time
spent for simulating the high-level model on such video
streams in Simulink (Model simulation time). Starting from
the original video streams, we extrapolated a subset of test pat-
terns, which consist of the minimal selection of video streams
necessary to validate the model correctness by adopting the
Smith et al. validation metrics for light field video stabilization
[9]. The table reports the characteristics of such selected test
patterns (sequences of frames), while Fig. 6 shows some of
the application results obtained for the outdoor context.

We then applied the Matlab synthesis script to translate
the high-level model into the low-level model by using the
OpenVX toolbox for Simulink generated from the NVIDIA

3H2020 EU project INTCATCH - www.intcatch.eu

(a) (b)

Fig. 6. Video stabilization results for the outdoor context. (a) A frame in the
unstabilized video overlayed with lines representing point trajectories traced
over time. (b) The stabilization results satisfying the validation metrics in [9].

VisionWorks v1.6 [10] and the corresponding Simulink CVT-
NVIDIA OpenVX/VisionWorks mapping table, as described
in Sections III-A and III-B, respectively. In particular, the low
level simulation in Simulink allowed us to validate the com-
puter vision application implemented through the primitives
provided by the HW board vendor (e.g., NVIDIA OpenVX-
VisionWorks) instead of Simulink blocks.

Finally, we synthesized the low-level model into pure
OpenVX code, by which we run the real time analysis and
validation on the target embedded board (NVIDIA Jetson
TX1). Table III reports a comparison among the different
simulation time (real execution time for the OpenVX code)
spent to validate the embedded software application at each
level of the design flow. At each refinement step, we reused
the selected test patterns to verify the code over the adopted
validation metrics [9] for both the contexts and by assuming
a maximum deviation of 5%. The results underline that the
higher level model simulation is faster as it mostly relies on
built-in Simulink blocks. It is recommended for functional val-
idation, algorithm parametrization, and test pattern selection. It
provides all the benefits of the model-based design paradigm,
while it cannot be used for accurate timing analysis, power,
and energy measurements. The low level model simulation is
much slower since it relies on actual primitive implementation
and many wrapper invocations. However, it represents a fun-
damental step as it allows verifying the functional equivalence
between the system-level model implemented through blocks
and the system-level model implemented through primitives.
Finally, the validation through execution on the target real
device allows for accurate timing and power analysis, in which
all the techniques at the state of the art for system-level
optimization can be applied.

V. CONCLUSION

This paper presented a methodology to integrate model-
based design to OpenVX. It showed how such a design flow
allows for fast prototyping of any computer vision algorithm
through a Matlab/Simulink model, its parametrization, valida-

L Sim./Exec. time (min)

Validation level
Indoor Outdoor
Simulink High-Level model 30.5 13.0
Simulink Low Level model 59.0 26’
Software application on target | 20.5 11.0
embedded system device
TABLE III

EXPERIMENTAL RESULTS: COMPARISON OF THE SIMULATION TIME SPENT
TO VALIDATE THE SOFTWARE APPLICATION AT DIFFERENT LEVELS OF THE
DESIGN FLOW. THE BOARD LEVEL VALIDATION TIME REFERS TO REAL
EXECUTION TIME ON THE TARGET BOARD.

tion, and automatic synthesis into an equivalent OpenVX code
representation. The paper presented the experimental results
obtained by applying the proposed methodology for the devel-
opment of an embedded software implementing the digital im-
age stabilization, which has been modelled and parametrized
through Simulink for different application contexts and, then,
automatically synthesized into OpenVX-VisionWorks code for
an NVIDIA Jetson TX1 board.

ACKNOWLEDGMENT

The authors would like to thank Domenico Daniele Bloisi,
Jason Joseph Blum, and Alessandro Farinelli for providing the
datasets and for supporting the analysis of the quality results.

REFERENCES

[1] Embedded Vision Alliance, “Applications for Embedded Vision,”
https://www.embedded-vision.com/applications-embedded-vision.

[2] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime
computer vision with OpenCV,” vol. 10, no. 4, 2012.

[3] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill,
“Addressing system-level optimization with OpenVX graphs,” in /[EEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops, 2014, pp. 658—663.

[4] Khronos Group, “OpenVX: Portable, Power-efficient Vision Processing,”
https://www.khronos.org/openvx.

[5] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “Adrenaline:
An openvx environment to optimize embedded vision applications on
many-core accelerators,” in International Symposium on Embedded
Multicore/Many-core Systems-on-Chip, 2015, pp. 289-296.

[6] K. Yang, G. A. Elliott, and J. H. Anderson, “Analysis for supporting
real-time computer vision workloads using openvx on multicore+gpu
platforms,” in Proceedings of the 23rd International Conference on Real
Time and Networks Systems, ser. RTINS ’15, 2015, pp. 77-86.

[7]1 D. Dekkiche, B. Vincke, and A. Merigot, “Investigation and performance
analysis of openvx optimizations on computer vision applications,” in
14th International Conference on Control, Automation, Robotics and
Vision, 2016, pp. 1-6.

[8] Simulink, “S-Functions,”
function-basics.html.

[9] B. M. Smith, L. Zhang, H. Jin, and A. Agarwala, “Light field video
stabilization,” in International Conference on Computer Vision, 2009,
pp. 341-348.

[10] NVIDIA Inc., “VisionWorks,” https://developer.nvidia.com/embedded/
visionworks.

[11] INTEL, “Intel Computer Vision SDK,” https://software.intel.com/en-
us/computer-vision-sdk.

[12] AMD, “AMD OpenVX - AMDOVX,” http://gpuopen.com/compute-
product/amd-openvx/.

[13] Khronos, “OpenVX lib,” https://www.khronos.org/openvx.

[14] Matlab, “mex functions,” https://it. mathworks.com/matlabcentral/
fileexchange/26825-utilities-for-mex-files.

https://it. mathworks.com/help/simulink/s-

