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Abstract

Travel recommendation systems provide suggestions to the users based on
different information, such as user preferences, needs, or constraints. The
recommendation may also take into account some characteristics of the points
of interest (POIs) to be visited, such as the opening hours, or the peak
hours. Although a number of studies have been proposed on the topic, most
of them tailor the recommendation considering the user viewpoint, without
evaluating the impact of the suggestions on the system as a whole. This may
lead to oscillatory dynamics, where the choices made by the recommendation
system generate new peak hours.

This paper considers the trip planning problem that takes into account
the balancing of users among the different POIs. To this aim, we consider the
estimate of the level of crowding at POIs, including both the historical data
and the effects of the recommendation. We formulate the problem as a multi-
objective optimization problem, and we design a recommendation engine that
explores the solution space in near real-time, through a distributed version of
the Simulated Annealing approach. Through an experimental evaluation on
a real dataset of users visiting the POIs of a touristic city, we show that our
solution is able to provide high quality recommendations, yet maintaining
the attractions not overcrowded.

Keywords: Trip recommendation, Simulated Annealing, Map Reduce, Spa-
tialHadoop



1 Introduction

Traveling is part of many people leisure activities, and an increasing fraction
of the economy comes from the tourism. Vising a city is a common choice
for a short-term trip: besides the well known destinations, such as New
York or Paris, many cities are becoming popular destinations, for instance,
during the weekend, or as an intermediate stop while reaching other places.
Each destination contains many attractions, or Points of Interests (POIs),
which are listed in different sources. For instance, travel guides, such as
Lonely Planet, provide different suggestions based on the available time.
Other options are the Location Based Social Networks (LBSNs) [1], which
collect the travellers’ experiences to derive popular attractions. Many cities
have tourist offices, which provide general information about the city and its
POIs. In order to facilitate the visiting experience, sometimes popular POIs
are bundled, so that the tourists have a single “city pass” that can be used
to guide their choices. Still, once the tourists have a list of POIs to visit,
how can they make the most of them given their available time?

Trip recommendation systems deal with this kind of issues. In their
essence, these systems need to solve an optimization problem [2], such as
the Traveling Salesman Problem, which is NP-hard. Very often, the trip rec-
ommendation systems try to provide a solution taking into account not only
the tourist available time, but also other elements, such as their personal
interests, or budget [3]. Therefore, these systems need to solve a multi-
objective optimization problem, whose complexity is further increased. The
solutions proposed in the literature usually deal with well-known heuristics
for local optimization: they translate the user requirements to an utility func-
tion, and they adopt different techniques (e.g., gradient descent) to explore
the solution space. Since the heuristics have been proven to approximate
efficiently the optimal solution, the literature has recently focused on more
complex scenarios that take into accounts the user needs and constraints: for
instance, the user previous experiences may influence the POI choice, or the
POI opening hours may determine its position in the sequence of POIs to
be visited [4]. The aim of the trip recommendation system becomes to tailor
the suggestions to the specific user.

Limitation of the prior works. The proposed solutions concentrate
their attention to the user needs and viewpoints: the systems take as input
the user preferences and some information about the POIs, and provide a
recommended trip. The information about the POIs are “static”, such as the
opening hours, or an estimate of the busy periods (see Sect. 2 for a review of
the literature). The fact that the suggestions have an impact on the status
of the POIs is not considered in the recommendation engine. In other words,
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the optimization is based on the users, not on the system as a whole. For
instance, if the recommendation system considers the busy hours of the POIs
of the previous day or week, it will generate trips trying to avoid the busy
hours of the different POIs. This may generate different busy hours, since
many of the users may be directed to a specific POI at the same time. This
oscillatory dynamics have been observed in routing algorithms that take into
accounts the current state of the routes [5]. In order to avoid such dynamics,
the system should estimate the effect of the trip recommendation on the
system itself. Considering the whole system in turn has an impact on the
user experience: balancing the user among the different POIs means avoiding
the formation of crowds, with the corresponding possible delays due to the
increased number of people to manage.

Proposed approach. In this paper we consider the trip planning prob-
lem that takes into account, besides the user preferences and the system
constraints, the balancing of users among the different POIs. The recom-
mendation engine needs to consider the prediction of the user presence at
the POIs. The quality of the prediction determines the quality of the rec-
ommendation: the prediction should include historical data, as well as the
recommendations made so far by the system itself. There are a number of
challenges that need to be faced to design such a system. First, the user
requests are usually issued by a mobile application, where the user expects a
near real-time response: the solution space, therefore, should be explored in
a limited timeframe. Another issue regards the necessity to understand the
impact of the estimation error – due to some unpredictable user behavior –
on the effectiveness of the balancing process. Finally, in order to increase
the effectiveness of the recommendations, the constraints used by the system
for comparing possible solution instances should include spatial properties,
like for example the total trip distance computed on a network with different
traveling modes.

Motivating example. Figure 1 shows an example taken from a real-
world case regarding the city of Verona in northern Italy. The map reports
a set of POIs covered by a “city pass”, called VeronaCard. Each POI is
represented by a circle of variable size which indicates an estimation of the
current number of visiting tourists. The figure displays also a trip performed
by a tourist (the green one), who travels from p1 = “Arena” to p2 = “Casa
di Giulietta”, without immediately visiting it; in fact, she goes over to reach
p3 = “Chiesa di San Fermo Maggiore” and comes back to p2 at the end.
The POI p2 is visited after p3 due to the number of tourists currently on
p2, producing a trip which is not optimal w.r.t. to the distance travelled.
Namely, if the tourist is able to know in advance the level of crowding in
each POI, she can plan a better trip (e.g., the blue one).
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Figure 1: Example of trip performed by using the “city pass” VeronaCard
and influenced by the number of tourists currently visiting the POIs. The
level of crowding is represented by the circle size. The green line is the real
trip, and the blu line is a recommended trip that avoids the crowded POI.

Key contributions. The contributions of our work are the following:
(1) we formulate the online optimization problem, where we consider the
current estimation of the user visiting the different POIs as part of the input
of the recommendation system. (2) We design and implement an efficient
solution engine that works in near real-time. The solution is based on a
parallel version of the Simulated Annealing approach, using the MapReduce
programming framework. (3) We evaluate the trip recommendation system
with a dataset collected from the tourist information office of the city of
Verona. The dataset contains the visits of different POIs included in a set of
city passes, whose duration is pre-determined (e.g, 1-day pass, 2-day pass).

The remainder of this paper is organized as follows. In Section 2 we
discuss the related works. Section 3 is devoted to the problem formulation.
In Section 4 we present the system, the algorithms for trip recommendation,
and their implementation in MapReduce. Finally, in Section 5 we discuss
the experimental results and we conclude the paper in Section 6.

2 Related Work

This section reviews the related works focusing on two main topics: (i) trip
or itinerary recommendation, and (ii) computational aspects of the solution
of the optimization problem.

Recommendation systems. This topic has received a lot of attention
in recent years, therefore the related literature is vast. Here, due to space
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constraints, we highlight some representative works based on the taxonomy
provided in two recent surveys [1] [6]. The interested reader can find more
details in such surveys and the references therein.

The main problem to consider is the identification of the POIs and their
relevance. The data used to find POIs can be gathered from different sources,
such as user check-in behaviours [7,8], crowdsourced digital footprints [9,10],
GPS data [11, 12], or it can be inferred by using geographical or social cor-
relations of visited POIs [13–15]. Once the system has the list of POIs, it
needs to select the subset of POIs that are relevant to the user. The recom-
mendation may take into account multiple constraints [2, 16] or constraints
related to time [4,17]. The POIs can be used to build semantically enriched
trajectories – for a survey on the topic, please refer to [18]. All the above
systems are focused on the user viewpoint to provide a tailored recommen-
dation. Only some of them include geographical consideration in building
the itinerary, and none of them adapts the solution considering the number
of users that can be present in the POIs.

The only work that considers how much a POI may be crowded is [3].
Nevertheless, the proposed system bases its recommendations on instanta-
neous information, therefore it may generate new peak hours at the different
POIs. Moreover, the authors do not consider the geographical aspects in
building the itinerary. To the best of our knowledge, our work is the first
that takes into consideration the impact of the recommendations on the cur-
rent and future level of crowding, so that to balance the users among the
POIs.

Optimization problem. Approximate solutions of optimization prob-
lems have been extensively treated in the literature. Hoos et al. [19] provide
a broad view of the techniques and the solutions adopted so far. Since we
are interested in a near real-time system, we focus on some works that deal
with the parallel implementation of a specific technique, i.e., the Simulated
Annealing (SA).

A common approach is to adopt an Asynchronous Approach [20, 21],
where different workers executes independent SA using different starting so-
lutions, and the best solution among them is reported. Inspired by such an
approach, the authors in [22, 23] propose different MapReduce implementa-
tions, where the computations is divided among Map and Reduce tasks in
different ways. The solution of multi-objective optimization problems using
SA have been considered in [24, 25], and its parallel implementation in [26].
To the best of our knowledge, these parallel implementations have never been
adapted to the MapReduce framework. In our work, we take inspirations
from the above mentioned works to design a MapReduce implementation of
the solution of a multi-objective optimization problem.
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3 Problem formulation

In this section we provide the necessary definitions and formalize the trip
planning problem we want to consider.

Definition 1 (Point of interest). A point of interest (POI) p represents an
attraction reachable by users. It is characterized by several attributes, such
as the admission fee, or the opening hours. Among these, we consider in
particular the spatial coordinates defining its position on the Earth surface,
which we denote with pc. We also consider the duration of a visit, denoted
by pv(t), which depends on the instant t when the visit starts.

The dependency on t is necessary since pv(t) is influenced by many factors,
such as the day of the week, and the number of people currently visiting the
POI p. We will show in Sect. 4 how we compute (and update) the value of
pv(t). For the purposes of this paper, the set of POIs that can be considered
for building a trip is assumed to be known and fixed, and is denoted by P .

Definition 2 (Trip). A trip τ is an ordered collection of POIs, i.e., τ =
〈p1, p2, . . . , pn〉, where n indicates the number of POIs contained in τ , |τ | = n.

Given the set of POIs, P , the set of all possible trips, denoted by T ,
contains all the possible ordered combination of POIs, for any cardinality of
τ .

Definition 3 (Path). Given any two spatial coordinates ci and cj, and a
travel mode m (e.g, walking, public transportation), a path π(ci, cj ,m) is a
continuous portion of a transport network that connects the points whose lo-
cation is defined by ci and cj. The path is characterized by the travel distance,
πtd(ci, cj,m), and by the travel time, πtt(ci, cj ,m).

Notice that, in order to maintain the notation simple, we may not indicate
the dependency of πtd (πtt) on the travel mode, which is specified by the user
when she/he submits the query to the system.

Definition 4 (Recommendation query). Users looking for a recommendation
submit a query Q to the system by specifying the following constraints:

• the initial coordinates c0 where the trip begins (user position);

• the time at which the trip will start t0;

• the maximum trip duration TDmax;

• the travel mode m.
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In order to reply to such a query, the system needs to compute a set
of values that drives the trip selection. We start considering the main con-
straint, i.e., the total time of the duration of the trip should be less than
TDmax. To this aim, we introduce a fictional POI p0, which corresponds to
the user initial position, and we set pc

0 = c0 and pv
0(t0) = 0. We denote with

ti the time of arrival at pi, the i-th POI of the trip, which can be computed
considering the time ti−1, the visit time of the previous POI and the travel
time between the two POIs, i.e.,

ti = ti−1 + pv
i−1(ti−1) + πtt(p

c
i−1, p

c
i), i ≥ 1. (1)

Note that t1 = t0 + pv
0(t0) + πtt(p

c
0, p

c
1) = t0 + πtt(c0, p

c
1), which represents the

staring time of the trip plus the travel time between the user position and
the first POI. We can now define the total trip time λτ for a trip τ as:

λτ (c0, t0) =
n∑

i=1

(
πtt(p

c
i−1, p

c
i) + pv

i (ti)
)
, (2)

where n = |τ |. When exploring the solution space, the system will consider
the trips for which λτ (c0, t0) < TDmax. The exploration is guided by the
values of the objective function. In the following, we consider a set of possible
optimization criteria that can be minimized. For simplicity, we focus mainly
of three criteria: adding more objective functions is cumbersome.

Definition 5 (Objective functions). Given a trip τ , the objective functions
fn, ftt and ftd denotes the number of locations not visited during the trip,
the estimated trip travel time, and the total distance travelled during the trip
respectively. They are computed as:

fn = |P| − |τ |

ftt =
n∑

i=1

πtt(p
c
i−1, p

c
i)

ftd =
n∑

i=1

πtd(p
c
i−1, p

c
i)

(3)

where n = |τ |.

When defining fn, we use the number of locations not visited (instead of
the ones visited), so that all objective functions need to be minimized.

We are now ready to define the trip planning problem, which can be cast
as an optimization problem:

Minimize
τ

〈fn, ftt, ftd〉,

subject to λτ (c0, t0) < TDmax

(4)
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Note that the global objective function we would like to minimize is a
composition of objective functions, and it can be defined as f̄ : T → R3. We
are therefore in the context of multi-objective optimization, in which is not
possible to define a total order. We need to introduce a dominance relation
to partially order the set of possible solutions. A trip τi dominates a trip
τj , denoted τi ≺ τj , if at least one of the composing objective functions is
smaller for τi than for τj, while the other are equivalent. The results of the
optimization problem will be the set of mutually non-dominating trips, i.e.,

res(Q) = {τ ∈ T |6 ∃τ0 ∈ T such that τ0 ≺ τ}

Considering the cardinality of the set containing all the possible trips,
T , the solution space to explore in order to provide a recommendation is
very large. In addition, note that the total trip time depends on the POI
visit duration, which depends on the time when the visit starts, therefore the
solution space further increases. For this reason, our search for the solution
is based on well known heuristics for solving the optimization problem.

4 Proposed system

4.1 Overview

Our proposed recommendation system has two main components: an offline
analysis of the user presence in the different POIs, and a recommendation
engine based on a parallel implementation divided into two main stages. Fig-
ure 2 shows the overall architecture. User presence at the POIs is collected in
a database. Overnight, the new records are processed by an offline procedure
that extracts the main information and updates the data structures that are
used by the recommendation engine. In particular, a set of common trips are
stored back in the database, while the POI profiles (see Sect. 4.2) are stored
in a distributed cache. The recommendation engine itself is composed by
two steps: given a query, it first extracts a set of possible solutions from the
set of common trips, then it explores the solution space looking for improved
solutions by taking into account the optimization criteria, which include the
time spent in each POI.

Once the system has issued the recommendation, it updates the POI
profiles to reflect the impact of such recommendation on the POI crowding.
Therefore, when the next user will submit a query, the recommendation en-
gine will use the updated values of POI profiles while computing the optimal
solution.

In the following sections, we describe in detail the different system com-
ponents.
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Figure 2: System architecure.

4.2 Offline analysis of the check-ins

The POIs record the entering and the exiting visitors: in fact, for security
reasons, it is necessary to know how many people are inside a POI. Every
time a new entrance is recorded, the POI sends to the database a record
r = 〈tci, p, uid, np〉, where tci is the check-in (entrance) timestamp, p ∈ P is
the POI, uid is the user identifier (if it exists), and np is the current number
of visitors inside the POI p.

There are two types of users: anonymous and registered. Registered
users are people who use, for instance, a bundle offer, where they receive an
identifier and they can access to a set of POIs with reduced prices (e.g., a
city-pass, or an app for their smartphones). All the other users that cannot
be identified, such as local users who visit a single POI, are anonymous.

Having registered users is important, since it is possible to reconstruct
the set of POIs that they visited. The offline analysis of the registered users
allows to build a set of popular trips that can be used by the recommendation
engine as a starting point in the search of the optimal solution when replying
to a query. The set of popular trips are stored back in the main database,
and accessed by the recommendation engine when it processes a query.

Another advantage derived from registered users is the possibility to com-
pute an important metric: the visiting time. Given a registered user uid, for
any two consecutive visited POIs, pj and pk, the offline analysis can compute
the actual time spent at POI pj by subtracting from the interval between the
timestamps tcij and tcik the travel time from pj to pk, assuming a given travel
mode m (e.g., the most used m). In such way, the record corresponding to

8



the check in of uid at pj , formally rj = 〈tcij , pj , u
id, np

j〉 can be enriched by a
new element, vtj = tcik − tcij −πtt(p

c
j , p

c
k,m), where tcik is taken from the record

rk = 〈tcik , pk, u
id, np

k〉. The records that have been enriched now contain a
direct relation between the number of people inside a POI and the visiting
time for that POI.

In summary, given a POI pi, it is possible to build a set of characterizing
measures, which we call profiles :

• Average Time Occupancy, ATO(d, h): for each day d of the week,
it represents the average number of visitors inside the POI at time h
(h has the granularity of hours); the average is calculated considering
the same day for a given interval (e.g., last year);

• Average Visiting time, AVT(np): it provides the average visiting
time given a number of visitors inside the POI; the average is computed
considering all the enriched records, by grouping the records for the
same value of np.

The Average Time Occupancy ATO(d, h) reflects how much crowded a
POI is on average, and it should show some peaks at specific hours (e.g. mid
morning). As for the Average Visiting Time AVT(np), intuitively it should
be an increasing function, i.e, as the number of user inside a POI increases,
the visiting time should increase, since the crowding slows the visit. Note
that these profiles can be updated incrementally: it is sufficient to maintain
some additional information in the database and use such information during
the update.

With the profiles defined above, the duration of a POI visit at time t,
introduced in Definition 1 and denoted by pv(t), can be computed as follow.
Given the time t we can derive the day d and the hour h, we then compute
the average number of user for that day at that hour, np = ATO(d, h), and
then we derive the average visiting time from AVT(np), i.e.,

pv(t) = AVT(ATO(d, h)), (5)

with d day and h hour of the request derived from t.
The above definition may suggest that the system does not adapt to the

estimated level of crowding as more and more recommendation are provided
by the system, since ATO(d, h) is computed offline. We will show in Sect. 4.6
that the actual ATO′(d, h) profile used by the recommendation engine con-
tains a dynamic variable component, which is continuously updated during
the day. The system, therefore, is able to tailor the recommendation to the
estimated level of crowding.
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4.3 Exploration of the solution space

Looking for the exact solution of the optimization problem defined in Eq.
(4) is computationally expensive, therefore we need to resort to well known
heuristics. Our solution builds trip recommendations using a dominance-
based Multi-Objective Simulated Annealing (MOSA) [25] technique.

Multi-Objective Simulated Annealing. At each step of the simulated
annealing procedure, the current solution is replaced with a random one with
a probability that depends both on the difference between the corresponding
objective values and a global parameter T (temperature), which is progres-
sively decreased during the process. This behaviour avoids the stuck on
local optima, which is the main drawback of greedy algorithms. It has been
proven that, using a simulated annealing approach, the solution converges to
the global optimum if annealed sufficiently slow [27].

The exploration of the solution space is based on the comparison between
the current solution τcurr with a new potential solution τnew, obtained through
a perturbation of the current solution τcurr. The perturbation could be, for
instance, a POI removal or addition, or a change in the order of the POI.
The comparison is done by considering the objective function f̄ = 〈fn, ftt, ftd〉
defined in Eq. (3). As stated in Sect. 3, with multi-objective optimization, we
can define a partial order on the solution based on the concept of dominance:
A trip τnew dominates another trip τcurr, denoted as τnew ≺ τcurr, if it is better
in at least one objective function and equivalent in the remaining ones.

Trips τcurr and τnew are mutually non-dominating if and only if neither
dominates the other. The set of mutually non-dominating solutions is called
Pareto-set, and it is denoted by S. A solution not dominated by any other
solution is called Pareto-optimum. From the Pareto-set S we can compute
the Pareto-front F ⊆ R3, which is the set of points in the objective space,
i.e., F = {f̄(τ) | τ ∈ S}

The goal of a MOSA algorithm is to move the current Pareto-front to-
wards the optimal Pareto-front (the Pareto-front of the Pareto-optimum set)
while encouraging the diversification of the candidate solutions. In partic-
ular, the probability of making a transition from the current solution τcurr

towards a new solution τnew is specified by an acceptance probability function
P (τcurr, τnew, T ) which depends upon the global parameter T (temperature)
and the energy of the two solutions. The energy of a solution τ , denoted by
E(τ,F), measures the portion (number of solutions) of the current Pareto-
front that dominates τ , i.e.,

E(τ,F) = |{v ∈ F | v ≺ f̄(τ)}|. (6)

Note that the energy of a solution τ belonging to the Pareto-front is 0.
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Given two solutions τcurr and τnew, where τcurr is part of the Pareto-set, and
therefore f̄(τcurr) is part of the Pareto-front F , we can compute the energy
difference between τcurr and τnew by considering the extended Pareto-front
F ′ = F ∪ f̄(τnew) as following:

ΔE(τnew, τcurr,F
′) =

E(τnew,F ′)− E(τcurr,F ′)

|F ′|
(7)

The acceptance probability P (τcurr, τnew, T ) is then

P (τcurr, τnew, T ) = min

(

1, exp

(

−
ΔE(τnew, τcurr,F ′)

T

))

(8)

Note that it is possible to escape local optima, since a candidate solution τnew

that is dominated by one or more members of the current estimated Pareto-
front, may still be accepted with a probability defined in Eq. (8). On the
other hand, candidate solutions that move the estimated front towards the
true front are always accepted, since P (τcurr, τnew, T ) = 1. The temperature
T is actually a monotonically decreasing function, that decreases at every
iteration at a very slow rate till it reaches a minimum value.

Basic building block: the TRSA Algorithm. The exploration of the
solution space is based on a building block called TRSA (Trip Recommenda-
tion Simulated Annealing). Starting from a given Pareto-set Sinit and a trip
τ ∈ Sinit, the algorithm looks for potential new trips to be added to Sinit in
order to advance the Pareto-front F . TRSA is illustrated in Algorithm 1.

The function ComputeParetoFront() uses the input Pareto-set S for
initializing the Pareto-front F . As long as the temperature T is greater
than the minimum value Tmin, the algorithm explores the solution space by
perturbating the current solution τ . The possible perturbations are:

• adding a POI in a random position (except the first);

• removing a POI (except the first);

• replacing a POI (except the first) with another one;

• shifting the position between two POIs (except the first).

The function Perturb(), while looking for a new potential trip τ ′, eval-
uates its total trip time, λτ ′ , and considers only the trips for which λτ ′ <
TDmax.

The algorithm then computes the energy of τ ′ (line 7), and the proba-
bility of accepting τ ′ (line 8). If τ ′ is accepted, we remove from S the trips
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Algorithm 1: TRSA algorithm.

Data: Sinit, τ , TDmax, Tmin, Tinit

Result: S
1 S ←− Sinit;
2 F ←− ComputeParetoFront(S);
3 T ←− Tinit;
4 while T > Tmin do
5 τ ′ ←− Perturb(τ, TDmax);
6 F ′ ←− F ∪ f̄(τ ′);
7 ΔE ←− ComputeEnergyDiff(τ ′, τ,F ′);
8 P ←− min(1, exp(−ΔE/T ));
9 if rand(0, 1) < P then

10 RemoveDominated(S, τ ′,F , f̄(τ ′));
11 S ←− S ∪ τ ′;
12 F ←− F ∪ f̄(τ ′);
13 τ ←− τ ′;

14 UpdateTemperature(T );

15 return S

dominated by τ ′, and from F the corresponding points (line 10), we add
the trip to S and continue to explore. At each iteration, the temperature is
updated according to a cooling strategy such as the ones defined in [28].

Using the TRSA Algorithm. The initial Pareto-set Sinit contains a set
of equivalent solutions, and the aim of TRSA is to look for better solutions
starting from a trip τ ∈ Sinit. This exploration can be done on a single
machine. In parallel, other machines may try to improve the Pareto-front
F starting from other trips τ ′ ∈ Sinit. Therefore TRSA represents the basic
building block of the overall parallel computation. In Sect. 4.5 we will show
how these parallel computation is done with MapReduce. Before, we need to
determine the main input of the TRSA algorithm: the initial Pareto-set Sinit.
Such input can be determined in parallel using the MapReduce framework.

4.4 Initial Pareto-set

The initial Pareto-set Sinit is built using the popular trips computed offline
(see Sect. 4.2) and stored in the main database. The evaluation of these
potential solutions include the verification of the main constraint, i.e., the
duration of the selected trips cannot be longer than the total trip duration
TDmax. This is done with the help of the profiles ATO(d, h) and AVT(np)
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stored in the cache. Moreover, we need to check that each potential trip is
not-dominated by the trips currently inserted in Sinit.

The evaluation of the potential trips to be added to Sinit may be expensive.
Nevertheless, it can be done easily in parallel, since each trip is independent
from the others (see Algorithm 2). Given a query Q that defines the start
point, the travel mode and the desired duration interval, we extract all the
popular trips that have similar duration interval: the duration interval of the
popular trips has been computed offline considering as a starting point the
first POI of the trip, and visit time for each POI equal to the average visit
time computed over all the visits at that POI. For each of these popular trips,
the Map method checks if the trip satisfies Q, it actually computes the total
duration considering the staring point specified in the query and the time at
which the trip will start. If the trip satifies the query, it is added to S. The
addition is done with the help of the function Update(S, τ ), which ensures
that S does not contain duplicates and that dominated values are removed.
Since multiple Map calls may be executed by the same JVM, we return the
S in the CleanUp method called at the end of the task.

Algorithm 2: MapReduce job for the initialization of the Pareto-set
Sinit. The key id read by the mapper is a generic identifier associated
to each row and can be safely ignored.

1 class Mapper
2 method Setup()
3 Smap ←− ∅

4 method Map(id, τ)
5 if τ satisfies Q then
6 Smap ←− Update(Smap, τ )

7 method Cleanup()
8 return (Q,Smap)

9 class Reducer
10 method Reduce(Q, 〈S1,S2, . . . 〉)
11 Sinit ←− ∅
12 foreach Si ∈ 〈S1,S2, . . . 〉 do
13 foreach τ ∈ Si do
14 Sinit ←− Update(Sinit, τ )

15 return (Q,Sinit)
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The Reduce method collects the partial Pareto-sets computed by the
Map tasks, and merge them using the Update(S, τ ). Since it is necessary
to verify that the merged Pareto-sets do not contain dominated solutions,
there could be only one reducer. Nevertheless, most of the work is done by
the mappers, then the reduce simply compares the proposed solutions.

4.5 Stochastic parallel search of the optimum

As reported in Sect. 2, different approaches have been proposed in literature
for parallelizing the Simulated Annealing algorithm with MapReduce. The
approach we adopt is similar to the one presented in [20]: we use different
mappers for executing independent iterations of the TRSA algorithm, start-
ing from different solutions τ ∈ Sinit, and we then use the reducer to compute
the final result.

The initial Pareto-set Sinit computed by Algorithm 2 is stored both in the
cache (so that all mappers can access to it) and in a parallel data struc-
ture that makes easy to access to each τ ∈ Sinit in parallel by the different
mappers. The MapReduce pseudo-code is shown in Algorithm 3.

Each mapper performs an execution of the TRSA algorithm, i.e., it ex-
plores the solution space starting from a trip τ . The output of each mapper
contains the improved Pareto-set Si, and these sets are combined together by
a single reducer to eliminate dominated and redundant solutions. Note that,
also for this job, most of the work is done by the mappers, which explores
the solution space through perturbations.

4.6 Closing the loop: Profile update

The recommendation system takes as input a set of popular trips and com-
pute the best solutions to the user query Q. To this aim, since the query
contains the maximum trip duration TDmax, the system uses the profiles
stored in the cache to compute the duration of the potential solutions. If
we use the profiles ATO(d, h) and AVT(np) (defined in Sect. 4.2) computed
offline, we obtain a static system that redistribute the users according to
average values. This approach may be still important, since not all tourists
make use of the recommendation system, therefore the averages may be a
good indication of the level of crowding.

Nevertheless, with the diffusion of smartphones, we may expect that an
increasing number of tourists will use the recommendation system, therefore
we should be able to update the profiles to reflect the actual tourist distribu-
tion over the POIs. In particular, we consider the Average Time Occupancy
ATO(d, h) profiles. While building offline these profiles, it is possible to
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Algorithm 3: MapReduce job for the execution of the TRSA algo-
rithm. The key id read by the mapper is a generic identifier associated
to the trip and can be safely ignored.

1 class Mapper
2 method Map(id, τ)
3 Smap ←− ∅
4 Sinit ←− retrieve from cache
5 Smap ←− TRSA(Sinit, τ, TDmax, Tmin, Tinit)
6 return (Q,Smap)

7 class Reducer
8 method Reduce(Q, 〈S1,S2, . . . 〉)
9 S ←− ∅

10 foreach Si ∈ 〈S1,S2, . . . 〉 do
11 foreach τ ∈ Si do
12 S ←− Update(S, τ )

13 return (Q,S)

identify the two main components for such profiles: the occupancy due to
(i) registered and (ii) anonymous users. While we can not have any impact
on the anonymous users, we may be able to influence the registered users,
since they are the tourists that make use of the recommendation system.
Therefore, in our system we consider the following Average Time Occupancy
profiles:

ATO′(d, h) = ATOanon(d, h) + ETOreg(d, h) (9)

where ATOanon(d, h) is the component due to anonymous users, and ETOreg(d, h)
is the Estimated Time Occupancy computed considering the registered users
and the recommendations done so far by the system.

The profiles ETOreg(d, h) are reset at the beginning of each day with the
average behaviour of the user in the past. As the system issues recommen-
dations, it records the choices of the users, and it updates the estimation of
the POI occupancy assuming that the user will follow the recommended trip,
spending the estimated time in each POI and for traveling from one POI to
the next. Even if the actual user behaviour may vary, the overall estimation
of the POI occupancies should not be significantly affected, since they are
the results of aggregated values.
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4.7 Discussion

The current recommendation system considers a set of objective functions
in the search for the optimal solution. Using the Avergage Time Occupancy
ATO′(d, h) defined in Eq. (9), for a given trip τ we can estimate the number
of visitors inside a POI at the time the tourist should reach the POI (and
this estimate includes the recommendations done so far), and we can com-
pute the time spent inside the POI from the AVT(np) profile. The level of
crowding influences the number of visitors inside a POI, and the correspond-
ing computation of the visiting time. Selecting POIs without considering
the current level of crowding may result in spending time in crowded POIs,
which in turn influences the number of POIs that can be visited. Since one of
the objective functions includes the number of POI visited, optimizing using
such objective function means finding the solution where the time spent in
the visited POI is at its minimum.

We can consider additional objective functions that take into considera-
tion the affinity with the user interests, or the contraints related to the tourist
budget, or the relevance of a POI using rankings. All these extensions are
straightforward to implement, and we consider here only the functions de-
fined in Eq. (3) in order to show the effectiveness of our approach.

5 Case Study and Experiments

We evaluated the recommendation system described in this paper using real-
world traces collected for registered tourists visiting the city of Verona, Italy.

Available dataset. The tourist office of the city of Verona offers a sight-
seeing city pass called “VeronaCard”: for a given fee, the tourist may visit
up to 22 POIs around the city within a specific time-frame (e.g., 24 hours,
or 48 hours). Every time a tourist with the VeronaCard enters in a POI,
a record is created: it contains the VeronaCard number (unique identifier),
the timestamp of the entrance and the POI identifier. The dataset includes
approximately 1,200,000 records that spans 5 years.

From this dataset, we derive a set of data and measurements that we use in
our experiments. We start by building the trips followed by the tourists with
a VeronaCard, i.e., the sequence of visited POIs, obtaining approximately
250,000 trips. For each trip, given two consecutively visited POIs, with the
help of the Google APIs, we compute the travel time and distance of the path
connecting such two POIs. Since Verona is a small city and all the POIs are
within walking distance, we assume walking as main travel mode. Knowing
the travel time, we derive the visit time for each POI, at different times of
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Table 1: Statistics about the collected trips. The columns report: the number
of visited POIs, the number of trips with such number of POIs, the average
duration of the trip (hour:min), the average travel time, and the average
travel distance.

|τ | # trips λ̄τ avg trav. time avg trav dist.
2 14,520 04:10 00:10 750m
3 31,455 04:20 00:17 1,5Km
4 40,878 06:00 00:26 2,0Km
5 37,900 07:50 00:34 2,7Km
6 28,261 09:00 00:42 3,4Km
7 16,139 10:30 00:51 4,0Km
8 7,823 11:30 00:60 4,7Km
9 3,060 12:00 01:10 5,5Km

the day. In addition, we compute the number of tourists inside each POI1.
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Figure 3: Average Time Occupancy ATO(d, h) for two POIs in Verona. The
averages have been computed considering the Sundays in July.

Table 1 show some statistics related to trips. We grouped trips with the
same number of visited POIs, |τ |: for each group, we show the number of
trips with that number of POIs, the average duration of the trips (considering

1The information about the exact number of tourists visiting a POI is available partially
for a subset of POIs, therefore, for the purpose of our experiments, we prefer to compute
in the same way the number of visitors with the described approach for all the POIs.
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the first POI as the starting POI), the average travel time and travel distance
– we first sum the travel times and travel distances of the paths for each trip,
and then compute the average.

We use the processed dataset to build the POI profiles defined in Sect.4.2:
for any POI, we compute the Average Time Occupancy ATO(d, h) and the
Average Visiting Time AVT(np). Figures 3 and 4 shows sample ATO(d, h)
and AVT(np) profiles for two POIs called “Casa di Giulietta” and “Castelvec-
chio” respectively. As for the average time occupancy (Fig. 3), we show the
curves for July’s Sundays (the average number of visitors computed consid-
ering the Sundays in July). As expected, there are two peak hours, in the
morning and the afternoon. Interestingly, the peak hours for the two POIs
in the afternoon are slightly different.
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Figure 4: Average Visiting Time AVT(np) for two POIs. The averages are
computed considering the whole dataset.

As for the average visiting time (ATV curves shown in Fig. 4) we notice
an increasing visiting time as the number of visitor increases, which indicates
the impact of crowding in the visiting time.

As a final step of our offline processing, we collect the most popular trips,
which will be used by the recommendation engine as a starting point when
a new query is submitted.

Experimental methodology. In order to test our recommendation system,
we need to provide a set of queries. To this aim, we consider out dataset
and the trips we built from such a dataset. For a given day, we consider the
trips collected that day: for each trip, we create a query where (i) the initial
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coordinates at which the trip starts are the coordinates of the first POI, (ii)
the time at which the trip begins is the time of the access to the first POI,
and (iii) the maximum trip duration is given by the computed trip duration
time augmented with an estimate duration of the last visit2.

For that set of queries, we observe the output from two possible perspec-
tives: the POI viewpoint and the trip viewpoint. To do so, we assume that
the users actually behave as expected, i.e., if we estimate a visit time for a
POI or a travel time for a path, it will take exactly those estimated times
to visit that POI or to travel along that path. As a future work, we plan
to introduce some variability in the user behaviour, and study the impact of
such variability on the observed output.

From the POI viewpoint, we record for each POI the number of visitors
over time, and we build the time occupancy curve for that day. From the trip
viewpoint, we record the values of the objective functions defined in Eq. (3).

We compare three different approaches:

• No recommendation: we simply consider that the user follows the trip
as built from the dataset, i.e., the query result is actually the trip from
which the query has been derived, which is the trip performed by the
user autonomously;

• Recommendation based on averages: we use the static version of the
ATO(d, h) profiles, i.e., the recommendation are based on the average
occupancy of the previous observation interval (e.g., last year);

• Adaptive Recommendation: we use the ATO′(d, h) profiles, which are
updated after every recommendation.

For the last case, since we do not have the records from the anonymous
users, we assume that half of the users recorded that day are anonymous, i.e.,
ATOanon(d, h) = 0.5∙ATO(d, h). We tested different percentage, not reported
here for space constraints, obtaining similar qualitative results. The MapRe-
duce TRSA algorithm has been implemented using SpatialHadoop [29], an
extension of Apache Hadoop [30] which provides a native support for spatial
data, in terms of spatial data types, operations and indexes. SpatialHadoop
has been successfully applied in order to efficiently perform spatial analysis
and validation of huge amount of geographical data [31].

POI viewpoint. Figure 5 shows the number of visitors over time for the
POI called “Casa di Giulietta” on February 14th, 2015, with or without a rec-
ommendation system. It is interesting to note that a static recommendation

2For any trip, we are not able to know the visit time of the last POI, since we do not
have the next visited POI used to compute such value. The estimated duration of the last
visit is simply the average visit time for that POI.
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simply changes the peak hour with respect to a system with no recommen-
dation, since it uses the average peak hour of the past days, but it does not
adapt to the estimated number of users in the POI. Instead, our dynamic
recommendation spread the tourists over time.
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Figure 5: Number of visits at “Casa di Giulietta” both considering the be-
havior of the tourists without recommendation (basic) and with the two
approaches based on average (static) and adaptive (dynamic) profiles for
POIs.

Trip viewpoint. Figure 6 illustrates three different alternative trips: the
red one is an original trip performed by a user without any recommendation.
It starts from the POI named “Torre dei Lamberti” at 11:06, then it stops
at “Casa di Giulietta” at 12:33, and finally it reaches “Arena” at 14:15.
The blue path is a solution produced by the TRSA algorithm using only
recommendation based on average crowding information. As you can notice,
the trip starts from the same POI and at the same time (query parameters),
then it stops at “City Sightseeing” at 12:16, it proceeds towards “Casa di
Giulietta” at 13:15, and it finally arrives at “Arena” at 14:15. In this case,
the tourist arrived at “Casa di Giulietta” during the peak hour (13:15) for
this specific day, since the algorithm considers only average historical static
information about the POI occupancies. Finally, the green line represents the
trip produced by the TRSA algorithm considering adaptive recommendation.
In this case, the trip starts from the same POI and at the same hour, but it
proceed towards “Museo Conte” at 12:16, then it visits “Centro Internaz. di
Fotografia” at 13:04 and it arrives at “Casa di Giulietta” at 14:40 when the
peak hour is passed. Notice that, the recommendation system has improved
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the values of the objective functions, indeed the blu trip enhanced fn since
it includes an additional POI, while the green trip enhanced all objective
functions: it has an additional POI, ftt is decreased of 36% and ftd of 49%
with respect to the red trip.

Figure 6: An original path (the red one) together with two paths produced
by our TRSA algorithm, the blue one obtained by using only historical sta-
tistical data about the level of crowding, while the green one considering also
dynamic and adaptive information about the level of crowding.

Table 2 reports some data about the quality of the produced recommen-
dations. More specifically, we have considered the three POIs that have
been most frequently chosen as the starting point for a trip: “Arena” (p1

s),
“Casa di Giulietta” (p2

s) and “Castelvecchio” p3
s. For each of these POIs,

the table reports the number of historical records, the size of the initial esti-
mated Pareto-front built from these records, the percentage of improvement
of the various objective functions w.r.t. the original trips. The table shows
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Table 2: Statistics about the recommendations. For each starting point we
show the number of available trips, the size of the initial Pareto-front, the
percentage of improvement of each objective function w.r.t. its original trip,
the percentage of cases in which at least one or two objective functions are
improved.

ps #τ | F | fn ftt ftd |fimproved|
≥ 1 ≥ 2

p1
s 124,800 11,300 4% 67% 64% 71% 64%

p2
s 28,000 3,930 1% 68% 66% 69% 66%

p3
s 21,175 3,359 1% 73% 70% 74% 70%

that each component of the objective function is improved by the TRSA
algorithm. Moreover, the improvements in each component of the objective
function increases with the number of available historical trips.

6 Conclusion and future work

Personalized trip recommendation systems tailor the suggestions to the users
based on their constraints and requirements. Nevertheless, they do not con-
sider the impact of the recommendations on the whole system. In this paper
we took a step to fill this gap. In particular, we proposed a system that
efficiently searches the solution space through a MapReduce implementation
of the multi-objects optimization problem and balances the users among dif-
ferent POIs by including the predicted level of crowding. We evaluate our
implementation using a real dataset, showing consistent improvements over
the paths usually followed by the tourists.

Our road-map includes the evaluation of the impact that errors may have
on the predictions of the level of crowding, and the corresponding quality of
the recommendations. Moreover, we plan to extend the system to support
approximated spatial query [32].
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