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1. Introduction

Consider the following stochastic optimal control problem

Minimize E
{∫ T

0

(
g
(
X(t)

)
+ h

(
u(t)

))
dt + g0

(
X(T )

)}
, (1)

subject to u ∈ U and to state equation{
dX = f (X) dt +

√
u σ (X) dW , for t ∈ (0, T )

X(0) = X0
(2)

where U is the set of all {Ft}t≥0-adapted processes u : (0, T ) →

R+
= [0,+∞] and W : R → R is an 1-D Wiener process in a

probability space (Ω,F,P), provided the natural filtration {Ft}t≥0.
Here X0 ∈ R, while X : [0, T ] → R is the strong solution to (2).
We would like to underline that the studied optimization problem
is related to the so called stochastic volatility models, used in
the financial framework, whose relevance has raised exponentially
during last years. In fact such models, contrarily to the constant
volatility ones as, e.g., the standard Black and Scholes approach, the
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Vasicek interest rate model, or the Cox–Ross–Rubinstein model,
allow to consider the more realistic situation of volatility levels
changing in time. As an example, the latter is the case of the
Heston model, see Heston (1993), where the variance is assumed
to be a stochastic process following a Cox–Ingersoll–Ross (CIR)
dynamic, see Cordoni and Di Persio (2013) or Cox, Ingersoll and
Ross (1985) and references therein for more recent related tech-
niques, as well as the case of the Constant Elasticity of Variance
(CEV) model, see Cox (1975), where the volatility is expressed
by a power of the underlying level, which is often referred as
a local stochastic volatility model. Other interesting examples,
which is the object of our ongoing research particularly from the
numerical point of view, include the Stochastic Alpha, Beta, Rho
(SABR) model, see, e.g., Hagan, Lesniewski, andWoodward (2015),
and models which are used to estimate the stochastic volatility
by exploiting directly markets data, as happens using the GARCH
approach and its variants. Within latter frameworks and due to
several macroeconomic crises that have affected different (type
of) financial markets worldwide, governments decided to become
active players of the game, as, e.g., in the recent case of the Volatility
Control Mechanism (VCM) established for the securities, resp. for
the derivatives,market established in August 2016, resp. in January
2017, within the Hong Kong Stock Exchange (HKEX) framework,
see, e.g., Stein (2006) and Stein (2012) and references therein for
other applications and examples. It should be said however that
problems of the form (1)–(2) are relevant in other applications as
well.
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Hypotheses:

(i) h : R → R is convex, continuous and h(u) ≥ α1 |u|2, ∀u ∈ R,
for some α1 > 0.

(ii) f ∈ C2
b (R), f

′′
∈ L1(R), g, g0 ∈ W 2,∞(R).

(iii) σ ∈ C1
b (R), and

|σ (x)| ≥ ρ > 0, ∀x ∈ R. (3)

In the following H∗ is the Legendre conjugate of function

H(u) = h(u) + I[0,∞)(u) =

{
h(u) if u ≥ 0 ,
+∞ otherwise.

Namely,

H∗(p) = sup{p u − H(u) : u ∈ R}, ∀p ∈ R. (4)

We have ∂H∗(p) = (∂h + N[0,∞))−1p, where ∂ is the sub-
differential symbol, and N[0,∞) is the normal cone to [0,∞). This
yields

0 ≤ ∂H∗(p) ≤ C(|p| + 1) , ∀p ∈ R . (5)

We denote also by j the potential of H∗, that is

j(r) =

∫ r

0
H∗(p) dp, ∀r ∈ R.

The dynamic programming equation corresponding to the
stochastic optimal control problem (1) is given by (see, e.g., Flem-
ing & Rishel, 2012; Øksendal, 2003),⎧⎪⎨⎪⎩
ϕt (t, x) + min

u

{1
2
σ 2 ϕxx(t, x) u + H(u)

}
+ f (x)ϕx(t, x) + g(x) = 0, ∀t ∈ [0, T ], x ∈ R

ϕ(T , x) = g0(x), x ∈ R,

or equivalently⎧⎪⎨⎪⎩
ϕt (t, x) − H∗

(
−

1
2
σ 2 ϕxx(t, x)

)
+ f (x)ϕx(t, x)

+ g(x) = 0, ∀(t, x) ∈ [0, T ] × R
ϕ(T , x) = g0(x), x ∈ R .

(6)

Moreover, if ϕ is a smooth solution to (1) the associated feedback
controller

u(t) = argmin
u

{1
2
σ 2 ϕxx

(
t, X(t)

)
u + H(u)

}
, (7)

is optimal for problem (1).
We set ψ = ϕx and replace Eq. (6) by⎧⎪⎨⎪⎩
ψt (t, x) − H∗

(
−

1
2
σ 2 ψx(t, x)

)
x + (f (x)ψ(t, x))x

+ g ′(x) = 0, ∀(t, x) ∈ [0, T ] × R
ψ(T , x) = g ′

0(x), x ∈ R .

(8)

Up to our knowledge, in literature the rigorous treatment of
existence theory for equations of this form has been shown so
far within the theory of viscosity solutions only. (See, e.g., Cran-
dall, Ishii, & Lions, 1992.) However, the known existence results
for viscosity solutions are not directly applicable in the present
case. Here we shall exploit a different approach, namely we use
a suitable transformation aiming at reducing (8) to a one dimen-
sional Fokker–Planck equationwhich is then treated as a nonlinear
Cauchy problem in L1(R). As regards the non-degenerate hypothe-
sis (3) it will be later on dispensed by assuming more regularity on
function σ . (See Section 4.)

1.1. Notation and basic results

Weshall use the standard notation for functional spaces onR. In
particular Ck

b (R) is the space of functions y : R → R, differentiable

of order k and with bounded derivatives until order k. By Lp(R),
1 ≤ p ≤ ∞, we denote the classical space of Lebesgue-measurable
p-integrable functions on R with the norm ∥·∥p and by Hk(Rn),
W k,p(Rn), k = 1, 2, the standard Sobolev spaces on Rn, n = 1, 2.
Denote by ⟨·, ·⟩2 the scalar product of L2(R). We set also yx = y′

=

∂y/∂x, yt = ∂y/∂t , yxx = ∂2y/∂x2, for x ∈ R. By D′(Rn) we denote
the space of Schwartz distributions on Rn.

Definition 1.1 (Accretive Operator). Given a Banach space X , a
nonlinear operator A from X to itself, with domain D(A), is said
to be accretive if ∀ui ∈ D(A),∀vi ∈ A ui, i = 1, 2, there exists
η ∈ J(u1 − u2) such that

X ⟨v1 − v2, η⟩X ′ ≥ 0 , (9)

where X ′ is the dual space of X , X ⟨·, ·⟩X ′ is the duality pairing and
J : X → X ′ is the duality mapping of X . (See, e.g., Barbu, 2010.)

An accretive operator A is said to bem-accretive if R(λ I+A) = X
for all (equivalently some) λ > 0, while it is said to be quasi-m-
accretive if there is λ0 ∈ R such that λ0 I + A ism-accretive.

We refer to Barbu (2010) for basic results on m-accretive oper-
ators in Banach spaces and the corresponding associated Cauchy
problem.

2. Existence results

We set

y(t, x) = −ψx(T − t, x), ∀t ∈ [0, T ], x ∈ R, (10)

and we rewrite Eq. (8) as⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt (t, x) −

(
H∗

(σ 2

2
y(t, x)

))
xx

− f ′′(x)ψ(T − t, x)

− 2f ′(x)ψx(T − t, x) − f (x)ψxx(T − t, x) = −g ′′(x),
in (0, T ) × R

y(0, x) = −g ′′

0 (x), x ∈ R.

(11)

We set

Φ(z)(x) =

∫ x

−∞

z(ξ ) dξ , z ∈ L1(R). (12)

Then by (10) we have

ψ(t, x) = −Φ
(
y(T − t, x)

)
, ∀t ∈ [0, T ]. (13)

Setting

B y = −f ′′Φ(y) − 2 f ′y, ∀y ∈ L1(R) , (14)

and taking into account that f ′
∈ L∞(R), f ′′

∈ L1(R), we obtain for
the operator B the estimate

∥B y∥1 ≤ C ∥y∥1, ∀y ∈ L1(R) . (15)

Therefore Eq. (11) can be rewritten as follows⎧⎨⎩yt −

(
H∗

(σ 2

2
y
))

xx
− f yx + B y = g1, in [0, T ] × R

y(0) = y0 ∈ L1(R)
, (16)

where y0 = −g ′′

0 and g1 = −g ′′ in D′(R).

Definition 2.1. The function y : [0, T ]×R → R is said to be amild
solution to Eq. (16) if y ∈ C([0, T ]; L1(R)) and

y(t) = lim
ϵ→0

yϵ(t) in L1(R), ∀t ∈ [0, T ] , (17)

yϵ(t) = yiϵ, for t ∈ [i ϵ, (i + 1) ϵ], i = 0, 1, . . . ,
[T
ϵ

]
− 1 =

[T
ϵ

]
,

(18)
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1
ϵ
(yi+1
ϵ − yiϵ) −

(
H∗

(σ 2

2
yi+1
ϵ

))′′

− f (yi+1
ϵ )′ + B yi+1

ϵ = g1, in D′(R), (19)

y0ϵ = y0, yiϵ ∈ L1(R), i = 0, 1, . . . ,N.

See Barbu (2010, p. 127) for general definition of mild solution
to nonlinear Cauchy problem in Banach space.

We have

Theorem 2.2. Under hypotheses (i)–(iii) Eq. (11) has a unique mild
solution y. Assume further that j( σ

2

2 y0) ∈ L1(R). Then j( σ
2

2 y) ∈

L∞([0, T ]; L1(R)) and
(
H∗( σ

2

2 y)
)
x
∈ L2([0, T ] × R).

Theorem 2.2 will be proven by using the standard existence
theory for the Cauchy problem in Banach spaces with nonlin-
ear quasi-m-accretive operators. Now taking into account that
for y ∈ C([0, T ]; L1(R)) Eq. (12) uniquely defines the function
ψ ∈ C([0, T ];W 1,∞(R)), by Theorem 2.2 we obtain the following
existence result for the dynamic programming Eq. (1).

Theorem 2.3. Under hypothesis (i)–(iii) there is a unique mild
solution

ψ ∈ C
(
[0, T ];W 1,∞(R)

)
(20)

to Eq. (8). Moreover, if j(− σ2

2 g ′′

0 ) ∈ L1(R) and j (λu) ≤ cλj(u),
∀u ∈ R, λ > 0, then H∗

(
−
σ2

2 ψx(T − t, x)
)

∈ L2([0, T ] × R).

According to Definition 2.1 and (13), by mild solution ψ
to Eq. (8), we mean a function ψ ∈ C([0, T ];W 1,∞(R)) defined by

ψ(t) = lim
ϵ→0

ψϵ(t) in W 1,∞(R), ∀t ∈ [0, T ] , (21)

ψϵ(t) = −Φ(yiϵ), t ∈ [T − (i + 1) ϵ, T − i ϵ], (22)

for i = 0, 1, . . . ,N =
[ T
ϵ

]
and {yiϵ} is the solution to (19).

In particular, themild solutionψ to Eq. (8) is inW 1,∞(R) for each
t ∈ [0, T ]. Therefore, the feedback controller (7) where ϕxx = ψx is
well defined on [0, T ].

Remark 2.4. The principal advantage of Theorem 2.2 compared
with standard existence results expressed in terms of viscosity
solutions is the regularity of ψ and the fact that the optimal feed-
back controller can be computed explicitly by the finite difference
scheme (21)–(22). This will be treated in a forthcoming paper.

3. Proof of Theorem 2.2

The idea is to write equation (16) as a Cauchy problem of the
form⎧⎨⎩

dy
dt

+ A y + B y = g1, in [0, T ]

y(0) = y0
, (23)

in the space L1(R), where A is a suitable nonlinear quasi-m-
accretive operator. The operator A : D(A) ⊂ L1(R) → L1(R) is
defined as follows

A y = −

(
H∗

(σ 2

2
y
))′′

− f y′ in D′(R), ∀y ∈ D(A) , (24)

D(A) =

{
y ∈ L1(R) : A y ∈ L1(R)

}
,

where the derivatives are taken in the D′(R) sense.

Lemma 3.1. For each η ∈ L1(R) and λ ≥ λ0 = ∥f ′
∥∞ there exists a

unique solution y = y(η) to equation

λ y + A y = η. (25)

Moreover, it holds

∥y(η) − y(η̄)∥1 ≤ (λ− λ0)−1
∥η − η̄∥1 , (26)

∀η, η̄ ∈ L1(R), λ > λ0, hence A turns to be quasi-m-accretive in
L1(R).

Proof of Lemma 3.1. Assume first that η ∈ L1(R)∩ L2(R). For each
ν > 0 consider the equation

λ y − ν y′′
−

(
H∗

(σ 2

2
y
))′′

+ ν H∗
(σ 2

2
y
)
− f y′

= η, (27)

in D′(R). Equivalently,

(λ− ν2)
(
ν I −

d2

dx2

)−1
y + H∗(

σ 2

2
y) + ν y

−

(
ν I −

d2

dx2

)−1
(f y′) =

(
ν I −

d2

dx2

)−1
η , (28)

and z =
(
ν I −

d2

dx2
)−1 y is defined by equation

ν z − z ′′
= y, in D′(R) . (29)

We shall get the solution y to (25) by proving first the existence of
(28) for all ν > 0 and letting ν → 0. Note that by Hypothesis (ii)
the operator Γ y = (λ− ν2)

(
νI − d2

dx2
)−1y−

(
νI − d2

dx2
)−1(fy′)+ νy

is linear continuous in L2(R) and by (29) we have that

⟨z, y⟩2 = ν ∥z∥2
2 + ∥z ′

∥
2
2 , (30)

−

⟨(
ν I −

d2

dx2

)−1
(f y′), y

⟩
2

= −⟨(fy)′ − f ′ y, z⟩2

= ⟨y, f ′ z + f z ′
⟩2

≤ ∥f ′
∥∞ ∥y∥2 ∥z∥2

+ ∥f ∥∞ ∥y∥2 ∥z ′
∥2.

(31)

Here ∥ · ∥2 and ⟨·, ·⟩2 are the norm and the scalar product in L2(R),
respectively, and by ∥·∥p, 1 ≤ p ≤ ∞we denote the norm of Lp(R).
We note that Hypothesis (i) and Eq. (4) imply that the function H∗

is continuous, monotonically non-decreasing, and

H∗(0) = 0 , 0 ≤ H∗(v) ≤ C1 v
2, ∀v ∈ R . (32)

Furthermore, by (29)–(31), we have

⟨Γ y, y⟩2 = ν ∥y∥2
2 + (λ− ν2)⟨y, z⟩2 − ⟨f y′, z⟩2

≥ ν ∥y∥2
2 + (λ− ν2)(ν ∥z∥2

2 +
z ′

2
2)

− ∥y∥2 (
f ′


∞

∥z∥2 + ∥f ∥∞

z ′

2)

≥ ν ∥y∥2
2 + (λ− ν2)(ν ∥z∥2

2 +
z ′

2
2)

− C(f ) ∥y∥2 (∥z∥2 +
z ′


2) .

The latter yields

⟨Γ y, y⟩2 ≥
ν

2
∥y∥2

2, λ ≥ C
(
1
ν

+ ν2
)
,∀ν > 0 , (33)

where C is dependent on ν. By assumption (3) we have that the
operator y → H(y) ≡ H∗

(
σ2

2 y
)
is maximal monotone in L2(R),
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hence, by (33),Γ is maximalmonotone and coercive, i.e. positively
definite, therefore we have

R(Γ + H) = L2(R),

for λ ≥ λ∗
= C( 1

ν
+ ν2). Consequently, for each ν > 0 and

λ ≥ λ∗, Eq. (28) (equivalently Eq. (27)) has a unique solution
y = yλ,ν ∈ L2(R), with H∗

(
σ2

2 yλ,ν
)

∈ L2(R).

We have also zλ,ν − z ′′

λ,ν ∈ L2(R), so that zλ,ν =

(
ν I −

d2

dx2

)−1

yλ,ν ∈ H2(R).

Note that by (30),
(
ν I −

d2

dx2

)−1
(fy′) ∈ H1(R). Hence by (28)we

have νyλ,ν + H∗

(
σ2

2 yλ,ν
)

∈ H1(R) and since (αI + H∗)−1
∈ Lip(R)

∀α > 0, we infer that yλ,ν ∈ H1(R).
It is worth to mention that by (27), we have

λ
yλ,ν(η) − yλ,ν(η̄)


1 ≤f ′


∞

yλ,ν(η) − yλ,ν(η̄)

1 + ∥η − η̄∥1

∀η, η̄ ∈ L1(R), so thatyλ,ν(η) − yλ,ν(η̄)

1 ≤

1
λ− λ0

∥η − η̄∥1 , ∀η, η̄ ∈ L1(R) , (34)

forλ ≥ max (λ0, λ∗) andwhereλ0 =
f ′


∞
. To get (34),we simply

multiply the equation

λ(yλ,ν(η) − yλ,ν(η̄)) − ν(yλ,ν(η) − yλ,ν(η̄))′′

+ ν

(
H∗

(
σ 2

2
yλ,ν(η)

)
− H∗

(
σ 2

2
yλ,ν(η̄)

))
−

(
H∗

(
σ 2

2
yλ,ν(η)

)
− H∗

(
σ 2

2
yλ,ν(η̄)

))′′

+ f (yλ,ν(η) − yλ,ν(η̄))′ = η − η̄

by ζ ∈ L∞(R),

ζ ∈ sgn(yλ,ν(η) − yλ,ν(η̄))

= sgn
(
H∗

(
σ 2

2
yλ,ν(η)

)
− H∗

(
σ 2

2
yλ,ν(η̄)

))
,

where sgn r =
r
|r| for r ̸= 0, sgn 0 = [−1, 1] and we integrate on

R, taking into account that

−

∫
R
y′′ sgn ydx ≥ 0 , ∀y ∈ H1(R),

∫
R
fy′ sgn ydx =

∫
R
f |y|′dx = −

∫
R
f ′

|y| dy.

For a rigorous proof of these relations we replace sgn y by χδ(y),
where χδ is a smooth approximation of signum function, while
δ → 0, see , e.g., Barbu (2010), p. 115. If η ∈ L1(R) and {ηn}

∞

n=1 ⊂

L1(R) ∩ L2(R) is strongly convergent to η ∈ L1(R), we can proceed
as above to obtain for the corresponding solution yn to (27) the
estimate (34), namely, for all λ > max (λ∗, λ0)

∥yn − ym∥1 ≤ (λ− λ0)−1
∥ηn − ηm∥1 .

Hence there exists y ∈ L1(R) such that

yn → y in L1(R) as n → ∞ . (35)

By (28), we have

(λ− ν2)
(
νI −

d2

dx2

)−1

yn + H∗

(
σ 2

2
yn

)
+ νyn

−

(
νI −

d2

dx2

)−1

(fy′

n) =

(
νI −

d2

dx2

)−1

ηn .

(36)

By (12) and (29) , we have

∥zn∥W1,∞(R) ≤ ∥νzn − yn∥1 ≤ (ν + 1)∥yn∥1 . (37)

Let θn :=

(
νI −

d2

dx2

)−1 (
fy′

n

)
,

that is νθn − θ ′′
n = fy′

n = (fyn)′ − f ′yn in D′ (Rn). Equivalently

ν

(
θn(x) +

∫ x

0
fyndξ

)
−

(
θn(x) +

∫ x

0
fyndξ

)′′

= ν

∫ x

0
fyndξ − f ′yn .

(38)

By accretivity of operator z → −z ′′ in L1(R), this yieldsνθn + ν

∫ x

0
fyndξ


1

≤ ν

∫ x

0
fyndξ


1
+ ∥f ′yn∥1

≤ ν∥f ∥∞∥yn∥1 + ∥f ′
∥∞∥yn∥1

, (39)

and then

ν∥θn∥1 ≤
(
(ν + 1)∥f ∥∞∥yn∥1 + ∥f ′

∥∞

)
∥yn∥1.

On the other hand, by (38), we haveθn +

∫ x

0
fyndξ


W1,∞(R)

≤

νθn + ν

∫ x

0
fyndξ


1

+ ∥ν

∫ x

0
fyndξ − f ′yn∥1 ≤ ν∥θ∥1

+
(
2ν∥f ∥∞ + ∥f ′

∥∞

)
∥y∥1 .

(40)

Hence (see e.g. Benilan, Brezis, and Crandall (1975)),

∥θn∥W1,∞(R) ≤
(
(3ν + 1)∥f ∥∞ + 2∥f ′

∥∞

)
∥yn∥1 .

This yields
(
νI −

d2

dx2

)−1

(fy′

n)


∞

≤ C ∥yn∥1 ≤
C1

λ− λ0
∥ηn∥1 , (41)

and therefore, by (36), we derive the estimateH∗

(
σ 2

2
yn

)
+ νyn


∞

≤ C ∥yn∥1 ≤
C1

λ− λ0
∥ηn∥1 .

Since, by hypothesis (i) H∗(v)v ≥ 0,∀v ∈ R, the latter implies thatH∗

(
σ 2

2
yn

)
∞

+ ν ∥yn∥∞ ≤
C1

λ− λ0
∥ηn∥1 , ∀n , (42)

where C1 is still independent of n as well as of ν.
By (35) and (42), it follows that (eventually on a subsequence),

H∗

(
σ 2

2
yn

)
n→∞
−→ H∗

(
σ 2

2
y
)
, a.e. in R (43)

andweakly in L2(R), and therefore y = yλ,ν ∈ L∞(R)∩ L2(R) solves
(27). Furthermore, by (34) and (42), we haveyλ,ν1 +

H∗

(
σ 2

2
yλ,ν

)
∞

+ ν
yλ,η∞

≤
C1

λ− λ0
∥η∥1 , (44)

∀λ > max (λ∗, λ0), where C1 is independent of ν. We also obtain
that inequality (34) holds for solution yλ,ν to (27), with η ∈ L1(R)
only. Now we are going to extend the solution yλ,ν to (27) for all
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λ > λ0. To this end we set Gνλ = (Γ + H)y, rewriting (27) as
follows Gνλ = η. For every λ > 0, we can equivalently write this
as

y = (Gνλ+δ)
−1(η) + δ(Gνλ+δ)

−1(η) . (45)

By (34) we also have(Gνλ+δ)−1

L(L1(R),L1(R)) ≤

1
λ− λ0

,

then, by contraction principle, (45) has a unique solution y =

yλ,ν ∈ L1(R), for all λ > λ0. Estimate (44) extends for all λ > λ0. In
order to complete the proof of Lemma 3.1, we are going to let ν →

0 in Eq. (27) which holds for all λ > λ0. To this end, we assume
first that η ∈ L1(R) ∩ L∞(R) and extend afterward by density
the convergence result to all of η ∈ L2(R). By multiplying (27)
by yλ,ν and H∗

(
σ2

2 yλ,ν
)
, respectively, we obtain after integration

on R,

λ
yλ,ν2

2 + ν
y′

λ,ν

2
2 ≤

∫
R
f yλ,νy′

λ,ν dx + ⟨η, yλ,ν⟩2

≤
1
2

f ′


∞

yλ,ν2
2 + ∥η∥2

yλ,ν2

and

2λ
σ 2

j(σ 2

2
yλ,ν

)
1
+


(
H∗

(
σ 2

2
yλ,ν

))′

2

2

+ ν

H∗

(
σ 2

2
yλ,ν

)2

2

≤

⟨
η,H∗

(
σ 2

2
yλ,ν

)⟩
2
+

2
σ 2

∫
R
f
(
j
(
σ 2

2
yλ,ν

))′

dx

≤ ∥η∥∞

H∗

(
σ 2

2
yλ,ν

)
1
+

2
σ 2

f ′


∞

j(σ 2

2
yλ,ν

)
1
.

Taking into account (32) and thatyλ,ν2 ≤
(
λ−

1
2

f ′


∞

)−1
∥η∥2, we getj(σ 2

2
yλ,ν

)
1
+


(
H∗

(
σ 2

2
yλ,ν

))′

2

2

+ ν

H∗

(
σ 2

2
yλ,ν

)2

2
≤ C

(
∥η∥2

2 + ∥η∥2 ∥η∥∞ + 1
)
,

for all λ ≥ λ1 > 0, for some λ1 > 0 independent of λ and ν. We
have therefore the estimateyλ,ν2

2 + ν
y′

λ,ν

2
2 +

j(σ 2

2
yλ,ν

)
1

+


(
H∗

(
σ 2

2
yλ,ν

))′

2

2

+ ν

H∗

(
σ 2

2
yλ,ν

)2

2

≤ C
(
∥η∥2

2 + ∥η∥2
∞

+ 1
)
, ∀λ ≥ λ1 .

(46)

Here and everywhere in the following C is a positive constant
independent of λ and ν.

Now taking into account (32) we have also by (46) thatH∗

(
σ 2

2
yλ,ν

)2

1
≤ C

(
∥η∥2

2 + ∥η∥2
∞

+ 1
)
, ∀λ ≥ λ1 . (47)

By (46)–(47) it follows that {yλ,ν}ν>0 is weakly compact in L2(R)
and for each φ ∈ C∞

0 (R), φ ≥ 0,
{
φH∗

(
σ2

2 yλ,ν
)}

is bounded in

W 1,1(R). Hence on a subsequence {ν} → 0, we have

yλ,ν → yweakly in L2(R)

φH∗

(
σ 2

2
yλ,ν

)
→ ξ strongly in L2(R).

(48)

Taking into account that the map z → φH∗

(
σ2

2 z
)

is maximal

monotone in L2(R) we infer that ξ = φH∗

(
σ2

2 y
)
, a.e. in R.

We note also that as seen earlier, we have by (27) that

λ
yλ,ν1 ≤ ∥η∥1 + ⟨fy′

λ,ν, sgn yλ,ν⟩2 ≤ ∥η∥1 +
f ′


∞

yλ,ν1 .

Henceyλ,ν1 ≤
(
λ−

f ′

1

)−1
∥η∥1 ,∀ν > 0

and so by (48) we see that y ∈ L1(R). Now letting ν → 0 in (27) it
follows by (48) that

λ y −

(
H∗

(
σ 2

2
y
))′′

− f y′
= η in D′(R),

for λ > λ1, λ1 independent of η ∈ L1(R) ∩ L∞(R). Moreover, by
(34), the map η → y is Lipschitz in L1(R), with Lipschitz constant
(λ − λ1)−1, then y solves (25) for all η ∈ L1(R), and (26) follows.
This completes the proof of Lemma 3.1. □

Proof of Theorem 2.2 (Continued). Coming back to Eq. (23), by
Lemma 3.1 and (14), it follows that the operator A + B is quasi-
m-accretive in L1(R). Then by the Crandall & Liggett theorem,
see Barbu (2010), p. 147, the Cauchy problem (23) has a unique
mild solution y ∈ C([0, T ]; L1(R)), that is

y(t) = lim
ϵ→0

yϵ(t) in L1(R), ∀t ∈ [0, T ],

yϵ(t) = yiϵ for t ∈ [iϵ, (i + 1)ϵ], i = 0, . . . ,N =

[
T
ϵ

]
− 1

1
ϵ
(yi+1
ϵ − yiϵ) + (A + B)(yi+1

ϵ ) = g1 i = 0, . . . ,N

y0ϵ = y0 .

The function y is a mild solution to (16) in the sense of
Definition 2.1.

Assume now that j(λv) ≤ cλj(v), ∀λ > 0, v ∈ R. Taking into
account that j(v) ≤ j(2v) − vH∗(v),∀v ∈ R , this implies that

H∗(v)v ≤ (C2 − 1) j(v) , ∀v ∈ R . (49)

Assume also that j( σ
2

2 y0) ∈ L1(R). Then, if we take in (19), z i =

σ2

2 yiϵ , we get

2
σ 2 ϵ

(z i+1
− z i) −

(
H∗(z i+1)

)′′
− f

( 2
σ 2 z i+1

)′

+ B
( 2
σ 2 z i+1

)
= g1.

Multiplying by H∗(z i+1) and integrating on Rwe get
2
ϵ

∫
R

1
σ 2

(
j(z i+1) − j(z i)

)
dx +

∫
R

((
H∗(z i+1)

)′
)2

dx

+ 2
∫
R
f
( z i+1

σ 2

)
H∗(z i+1) dx

+ 2
∫
R
B
( z i+1

σ 2

)
H∗(z i+1) dx =

∫
R
g1 H∗(z i+1) dx.

Integrating by parts in
∫
R f

(
zi+1

σ2

)′

H∗
(
z i+1

)
dy, summing up,

after some calculation involving (14) and (49), we get the estimate

2
∫
R

1
σ 2 j(zk+1) dx + ϵ

k∑
i=0

∫
R

((
H∗(z i+1)

)′
)2

dx ≤ C, ∀k,
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which implies the desired conclusion(
H∗

(σ 2

2
y
))

x
∈ L2((0, T ) × R),

j
(σ 2

2
y
)

∈ L∞([0, T ]; L1(R)). □

4. The degenerate 1-D case

Consider here Eq. (16), that is{
yt −

(
H∗

(σ 2

2
y
))

xx
− f yx + B y = g1, in [0, T ] × R

y(0) = y0 ∈ R
(50)

where σ is assumed to satisfy the condition σ ∈ C2
b (R) only.

Moreover, if we consider, as above, the operator A : D(A) ⊂

L1(R) → L1(R), such that

A y = −

(
H∗

(σ 2

2
y
))′′

− f y′ , (51)

D(A) =

{
y ∈ L1(R) ; f y′

+

(
H∗

(σ 2

2
y
))′′

∈ L1(R)
}
,

we have the following holds

Lemma 4.1. A is quasi-m-accretive in L1(R).

Proof. For each ϵ > 0 we consider the operator

Aϵ y = −

(
H∗

(σ 2
+ ϵ

2
y
))′′

− f y′ , (52)

which is quasi-m-accretive, seen Lemma 3.1. Hence, for each η ∈

L1(R) and λ ≥ λ0 the equation

λ yϵ −

(
H∗

(σ 2
+ ϵ

2
yϵ

))′′

− f y′

ϵ = η, in R, (53)

has a unique solution yϵ ∈ L1(R), with H∗

(
σ2

+ϵ
2 yϵ

)
∈ L∞(R).

Dynamic estimates. As in the proof of Lemma 3.1, we have

λ ∥yϵ∥1 ≤ ∥η∥1 +
f ′


1 ∥yϵ∥1 , ∀ϵ > 0 , (54)

that is for λ >
f ′


∞

∥yϵ∥1 ≤ (λ−
f ′


1)

−1
∥η∥1 , ∀ϵ > 0 . (55)

Assume now that η ∈ L1(R) ∩ L∞(R), then, by (53) we see that for
eachM > 0

λ (yϵ − M) −

(
H∗

(σ 2
+ ϵ

2
yϵ

)
− H∗

(σ 2
+ ϵ

2
M

))′′

− f (yϵ − M)′ = η − λM +

(
H∗

(σ 2
+ ϵ

2
M

))′′

= η̃.

Moreover, by (5), we also have

η̃(x) ≤ η − Mλ+ M2
∥(H∗)′′∥∞∥σσ ′

∥∞

+M∥(H∗)′∥∞∥σσ ′′
+ (σ ′)2∥∞ ≤ 0

forM and λ large enough (independently of ϵ). This yields

λ
(yϵ − M)+


1 ≤

f ′


∞

(yϵ − M)+

1 .

Hence yϵ ≤ M in R for λ >
f ′


∞
. Similarly, it follows that

λ (yϵ + M) −

(
H∗

(σ 2
+ ϵ

2
yϵ

)
− H∗

(
−
σ 2

+ ϵ

2
M

))′′

+ f (yϵ + M)′

= η + λM +

(
H∗

(
−
σ 2

+ ϵ

2
M

))′′

= η + λM ≥ 0,

if M is large enough, but independent of ϵ. Therefore, if multi-
plying the equation by (yϵ + M)− and integrating on R, we get(yϵ + M)−


1 ≥ 0 which implies yϵ ≥ −M in R.

By (53) and the inequality (see Benilan et al., 1975)
(
I −

d2

dx2

)−1

z


W1,∞(R)

≤ ∥z∥1

we see that
{
H∗

(
σ2

+ϵ
2 yϵ

)
+

∫ x
0 f yϵ dx

}
ϵ>0

is bounded inW 1,∞(R).

Hence
(
H∗

(
σ2

+ϵ
2 yϵ

))′

bounded in L1(R)∩L∞(R), so that
{
ηϵ =

H∗

(
σ2

+ϵ
2 yϵ

)}
is compact in Cb(R). It follows that on a subsequence

ϵ → 0, we have

yϵ → y, weakly in all Lp, 1 < p ≤ ∞ ,

ηϵ → ζ , strongly in Cb(R) ,

where ζ = H∗

(
σ2

2 y
)
in R. Letting ϵ → 0 in (53), we get

λ y −

(
H∗

(σ 2

2
y
))′′

+ f y′
= η, in D′(R).

Next for η ∈ L1(R) we choose {ηn} ⊂ L1(R) ∩ L∞(R), ηn → η in
L1(R) and we have

λ yn −

(
H∗

(σ 2

2
yn

))′′

+ f y′

n = ηn , ∀n,

getting

λ ∥yn − ym∥1 ≤ ∥ηn − ηm∥1 +
f ′


∞

∥yn − ym∥1 , ∀n,m.

Hence, for λ >
f ′


∞

we have for n → ∞

yn → y, strongly in L1(R)(
H∗

(σ 2

2
yn

))
→

(
H∗

(σ 2

2
y
))
, a.e. in R

f y′

n → f y′, in D′(R) .

This yields

λ y −

(
H

(σ 2

2
y
))′′

− f y′
= η, in D′(R).

Hence forλ ≥ λ0, y ∈ L1(R) is the solution to equationλ y+A y = η

as claimed. As seen earlier this implies that the operator A + B is
quasi-m-accretive in L1(R). □

Then by the existence theorem for the equation{
∂y
∂t

+ A y + B y = 0
y(0) = y0,

we get

Theorem 4.1. There is a unique mild solution y ∈ C([0, T ]; L1(R))
to Eq. (50).

As in previous case Theorem 4.1 implies via (13) the existence
of a mild solution ϕ to Eq. (1) satisfying (20). We omit the details.

5. Conclusions

In this paper it is shown, via nonlinear semigroup theory in
L1, both the existence and the uniqueness of a mild solution for
the dynamic programming equation for stochastic optimal control
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problem with control in the volatility term. Latter problem is
related to the analysis of controlled stochastic volatility models,
within the financial frameworks, whose related computational
study is the subject of our ongoing research.
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