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Abstract 

The small protein ubiquitin acts as a versatile cellular signal that controls a wide 

range of biological processes. The specificity of ubiquitin signalling is achieved by 

alternative conjugation signals and interactions with ubiquitin-binding proteins. Despite 

tremendous advancements in our understanding of ubiquitin function, the molecular 

details of recognition are still not fully elucidated. In this regard, solution NMR 

spectroscopy studies show promise to shed light into transient molecular interactions 

and conformational dynamics governing ubiquitin-mediated signalling.      

The traditional methods of studying proteins are implemented within dilute 

solutions with less than 10 g/L of total protein concentration. This low concentration 

allows to obtain good signals but may not adequately represent a biological 

environment. One distinctive feature of cellular systems is that the cytoplasm is deeply 

crowded with macromolecules (50-400 g/L) which affect several protein attributes. 

Macromolecular crowding can result in non-specific interactions between the protein of 

interest and the target protein. The broad aim of our study is to understand the effects of 

macromolecular crowding on ubiquitin recognition. We focused on the ubiquitin-UBA 

interaction, investigating the perturbations induced by the presence of a synthetic 

crowding agent in comparison with dilute solution by NMR. We analysed differences in 

binding affinity, structure and dynamics of the complex dissolved in the different 

media. 

Protein-protein interactions are a prime target for drug development and chemical 

biology research. Mechanisms of protein recognition have been extensively studied for 

single-domain proteins, but are less well characterized for dynamic multidomain 

systems. PolyUb represent an important multidomain system that requires recognition 

by structurally diverse ubiquitin-interacting proteins. Thus, the development of 

chemical species able to selectively recognize polyUb has become a subject of strong 

interest. Clearly, nanoparticles (NPs)  present several advantages for protein 

recognition, including a large surface available for interaction. In our project, we aimed 

to explore NP systems for the development of polyUb-specific receptors. We 

investigated the binding specificity of chemically diverse NPs towards structurally 
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distinct polyUb. Solution NMR spectroscopy was chosen as the central experimental 

technique due to its ability to provide site-resolved information on reversibly binding 

protein-NP pairs. Our results constitute the basis for an improved understanding of 

polyUb recognition by artificial receptors and for the development of NP-based 

therapeutic strategies.  

Given the central role of the Ub network in cellular physiology, misregulation is 

often associated with diseases, including cancer, immune disorders, and 

neurodegeneration. Due to a possible participation of the frameshift Ub mutant Ubb
+1

 in 

the molecular events leading to neurotoxicity and neurodegeneration in Alzheimer’s 

disease, there is large interest in elucidating the structural details of this aberrant protein 

and the consequent functional differences with respect to the wild-type protein. In our 

work, we investigated structural and dynamic features of Ubb
+1

 using NMR methods 

that are particularly suited to explore protein molecules containing flexible domains 

such as the C-terminal extension of Ubb
+1

.  
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Sommario 

La proteina ubiquitina agisce come un segnale cellulare versatile in grado di 

controllare un'ampia gamma di processi biologici. La specificità del segnale 

dell'ubiquitina è ottenuta mediante segnali di coniugazione alternativi e interazioni con 

proteine leganti l'ubiquitina. Nonostante gli enormi progressi nella comprensione della 

funzione dell'ubiquitina, i dettagli del riconoscimento molecolare non sono ancora del 

tutto chiariti. A questo proposito, gli studi di spettroscopia NMR in soluzione hanno 

fornito promettenti informazioni su interazioni molecolari transitorie e dinamiche 

conformazionali che governano la segnalazione mediata da ubiquitina. 

I metodi tradizionali di studio delle proteine vengono effettuati in soluzioni diluite, 

le quali presentano meno di 10 g / L di concentrazione proteica totale. Questa bassa 

concentrazione consente di ottenere buoni segnali ma potrebbe non rappresentare 

adeguatamente un ambiente biologico. Una caratteristica distintiva dei sistemi cellulari 

è dovuta al citoplasma molto affollato di macromolecole (50-400 g/L) che influisce su 

diverse caratteristiche delle proteine. L'affollamento macromolecolare può determinare 

interazioni non specifiche tra la proteina di interesse e la proteina bersaglio. L'obiettivo 

generale del nostro studio è comprendere gli effetti dell'affollamento macromolecolare 

sul riconoscimento dell'ubiquitina. Ci siamo concentrati sull'interazione ubiquitina-

UBA, studiando, mediante spettroscopia NMR, le perturbazioni indotte dalla presenza 

di un agente affollante sintetico rispetto alla soluzione normalmente diluita. Abbiamo 

analizzato le differenze nell'affinità di legame, nella struttura e nella dinamica del 

complesso immerso nelle diverse soluzioni. 

Le interazioni proteina-proteina sono un obiettivo primario per lo sviluppo di 

farmaci e nella ricerca chimico-biologica. I meccanismi di riconoscimento proteico sono 

stati ampiamente studiati per le proteine a singolo dominio, ma sono meno caratterizzati 

per sistemi dinamici multidominio. Le catene di poliubiquitina (polyUb) rappresentano 

un importante sistema multidominio, le quali richiedono di essere riconosciute da parte 

di proteine strutturalmente diverse. Pertanto, lo sviluppo di specie chimiche in grado di 

riconoscere selettivamente le polyUb è diventato un argomento di forte interesse. 
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Chiaramente, le nanoparticelle (NP) presentano numerosi vantaggi per il riconoscimento 

delle proteine, inclusa una grande superficie disponibile per l'interazione. Nel nostro 

progetto intendiamo esplorare i sistemi NP per lo sviluppo di recettori specifici per le 

polyUb. Abbiamo quindi studiato la specificità di legame di NP chimicamente diverse 

verso polyUb strutturalmente distinte. La spettroscopia NMR in soluzione è stata scelta 

come tecnica sperimentale centrale grazie alla sua capacità di fornire informazioni sito 

specifiche sulle coppie, a interazione reversibile, proteina-NP. I nostri risultati 

costituiscono la base per una migliore comprensione del riconoscimento delle polyUb 

da parte di recettori artificiali e per lo sviluppo di strategie terapeutiche basate su NP. 

Dato il ruolo centrale della rete Ub nella fisiologia cellulare, la sua errata 

regolazione è spesso associata a malattie, tra cui cancro, disordini immunitari e 

neurodegenerativi. A causa di una possibile partecipazione del mutante Ub di 

frameshift, noto come Ubb
+1

, agli eventi molecolari che portano a neurotossicità e a 

processi neurodegenerativi nella malattia di Alzheimer, vi è un grande interesse nello 

studiare i dettagli strutturali di questa proteina aberrante e le conseguenti differenze 

funzionali rispetto alla proteina nativa. Nel nostro lavoro abbiamo studiato le 

caratteristiche strutturali e dinamiche della proteina Ubb
+1

 usando metodi NMR, i quali 

risultano particolarmente adatti per esplorare molecole proteiche contenenti domini 

flessibili come l'estensione C-terminale di Ubb
+1

. 
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1) Structural overview of ubiquitin 

Protein modifications via phosphorylation, acetylation, methylation and 

glycosylation are well recognized as biologically significant signals for mediating 

cellular response to external factors. In the late 1970’s, Hershko, Ciechanover, and Rose 

found that a heat-stable protein, ubiquitin (Ub), covalently attaches to proteins in rabbit 

reticulocyte lysates and signals for proteolysis
1
. Biochemical studies thereafter have 

determined that the covalent linkage of substrate proteins to Ub, termed ubiquitination, 

signals for a multitude of cellular outcome
1
. 

Ubiquitin is an 8.5 kDa regulatory protein found in almost all tissues in many 

eukaryotic organisms. It contains a highly conserved sequence of 76 amino acids that is 

identical in a wide variety of sources 

including humans, fish, and insects
2
. Ub is a 

highly stable protein that adopts a compact  

β-grasp fold (Figure 1), consisting of 3.5 

turns of an amphipathic α-helix and a short 

310-helix packed against a five-stran β-sheet 

with seven reverse turns. The surface of Ub is 

complex, with multiple functionalities, which 

explains its high degree of amino acid 

sequence conservation. The first loop 

containing    Leu-8 is able to adopt different conformations important for interaction 

with distinct Ub binding proteins. Another region, consisting of Ile-44, Leu-8, Val-70 

and His-68, called the Ile-44 hydrophobic patch, interacts with the proteasome and other 

Ub binding proteins
3
. In addition to a core of sixteen-seventeen hydrophobic residues, 

there is extensive intramolecular hydrogen bonding. Altogether the properties of tight 

packing, a large hydrophobic core and extensive hydrogen bonding apparently confer 

structural stability, explaining its heat stable properties.  

Because Ub itself possesses 7 surface Lys residues, it can undergo iterative 

ubiquitination to result in the formation of polyubiquitin chains (polyUb) of varying 

Figure 1. Solution structure of Ubiquitin. 

Pdb code 1d3z. 
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length and Lys linkages. All Ub-mediated cellular events involve the covalent linkage 

of the C-terminal Gly (Gly76) of Ub to the ε-amine of a specific Lysine residue on the 

surface of the substrate protein. The remarkable versatility and complexity of Ub 

signaling is acquired from these variations. Thus, the outcome of ubiquitination depends 

on whether a protein is attached to a single Ub or a polyUb chain and the specific lysine 

involved in forming the chains
4
.    

        

1.1) Polyubiquitin chains 

Modification of substrate proteins with monoUb or polyUb signals for various 

cellular outcomes depends on the nature of the modification. PolyUb chains function as 

signalling molecules in the regulation of a host of cellular processes, ranging from 

progression through the cell cycle, to transcriptional activation, antigen processing, and 

vesicular trafficking of 

proteins
5–8

.  The diversity in 

signalling has been 

attributed to the different 

conformations adopted by 

polyUb chains as a result of 

various lysine linkages and 

chain lengths.  

One Ub is generally 

attached through an 

isopeptide bond involving 

the free carboxyl group in 

its C-terminal glycine 

residue and the ɛ-amino 

group in the side chain of a lysine residue in the target protein. In addition to a single 

Ub modification  (monoubiquitination) or modification by one Ub at multiple sites of 

the same substrate (multi-monoubiquitination), substrates can be modified by Ub chains 

(polyubiquitination) (Figure 2).     

Figure 2. Representation of the diversity of ubiquitinated 

products 
6 
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There are seven potential lysine residues (K6, K11, K27, K29, K33,K48 and K63) 

on Ub that can participate in chain linkage formation
9
. Five Ub lysine residues (K6, 

K11, K29, K48 and K63) are known to be sites of initiation and these linkages exist in 

vivo as anchored and unanchored species. Thus, the different Ub-Ub linkages form 

distinct conformations and consequently utilize a distinct set of downstream interacting 

proteins that “interpret” the diverse Ub signals
10

. The functional outcome of 

polyubiquitinaton of a target protein depends on the length of the polyUb tag and the 

  

lysine residue involved in the Ub_Ub linkage
11

. The type and number of polyUb chains 

that are conjugated to a target are highly regulated to generate distinct signals that affect 

different physiological processes.  

Figure 3: Di-ubiquitin linked via Lys48 versus Lys63 a) Ubiquitin structure,sidechains of 

Lys48 and Lys63 shown as blue sticks. b) crystal structure of Lys48-linked Ub2 with 

sidechains of Leu8, Ile44, Val70 shown as cyan ball and stick model on distal Ub and yellow 

on the proximal Ub. Red sticks designate position of sidechains of Gly76 and Lys48. c) 

solution structure of Lys63-linked Ub2 with sidechains of Leu8, Ile44, Val70 shown as cyan 

ball and stick model on distal Ub and yellow on the proximal Ub. Red sticks designate 

position of sidechains of Gly76 and Lys63.  

a)                            b) 
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Residue K48 is a major site of chain initiation and K48 linkages are highly 

abundant, being the predominant signal for proteins destined for degradation by the 

proteasome (Figure 3). The first polyUb structure, determined in 1992, was Lys48-

linked Ub2 crystallized at pH 4.5. The Ub moieties adopted a closed conformation 

involving direct contacts between the hydrophobic patches (Leu8, Ile44, Val70) of the 

Ubs. The other principal and relatively abundant polyUb chain has K63 linkages (Figure 

3). The solution structure at pH 6.8 reveals an extended conformation where the 

hydrophobic patches on each Ub do not interact and are solvent exposed. Ub2 linked via 

Lys63 adopts a more extended conformation than Ub2 linked via Lys48
12

. K63 linkages 

do not seem to play a role in protein turnover and have been implicated in receptor 

endocytosis and sorting, translation, DNA damage repair, the stress response and 

signalling through the TRAF pathway of NF-kB.  

It is believed that the specificity of the recognition signal carried by a particular 

polyUb chain is determined by the unique conformations that a particular chain can 

adopt, which in turn are dictated by the linkage type
13

.  

This tagging process leads to their recognition by the 26S proteasome, a very large 

multicatalytic protease complex that degrades ubiquitinated proteins to small peptides
14

. 

The rapid degradation of ubiquitinated proteins is catalyzed by the 26S proteasome 

(Figure 4). This structure is found in the nucleus and the cytosol of all cells and 

constitutes approximately 1 to 2% of cell mass
15

. The 26S complex is composed of a 

central barrel-shaped 20S proteasome with a 19S regulatory particle at either or both of 

its ends
16

. After the ubiquinated protein binds to the 19S component, the polyUb chain 

is cleaved off the substrate and disassembled. The protein is unfolded somehow by the 

six ATPases in the base of the particle
17

. Linearization of the folded protein is essential 

for it to be translocated through the gated entry channel into the 20S particle. After the 

substrate enters the 20S’s central chamber, the polypeptide is cleaved by its six 

proteolytic sites on the inner face of the changer, forming small peptides that range from 

three to 25 residues in length 
18

. 
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Figure 4. The ubiquitin (Ub)-proteasome pathway (UPP) of protein degradation. Ub is 

conjugated to proteins that are destined for degradation by an ATP-dependent process that 

involves three enzymes. A chain of five Ub molecules attached to the protein substrate is 

sufficient for the complex to be recognized by the 26S proteasome. In addition to ATP-

dependent reactions, Ub is removed and the protein is linearized and injected into the central 

core of the proteasome, where it is digested to peptides. The peptides are degraded to amino 

acids by peptidases in the cytoplasm or used in antigen presentation.
6
 

 

1.2) Enzymatic Conjugation in vivo and in vitro 

The covalent attachment of Ub to the substrate protein is an obligatory step in all 

Ub-mediated events. The process of Ub conjugation (ubiquitination) occurs via tightly 

regulated enzymatic steps catalyzed by a series of Ub activating (E1), conjugating (E2) 

and ligase (E3) enzymes
1,19,20

 (Figure 5). In the first step, the conserved C-terminal 

glycine of Ub is essential for activation by E1. This charged C-terminal residue 

eventually becomes conjugated to the lysyl ε-amino group of target proteins to form 

isopeptide linkages and subsequent conjugates. The E1 for Ub contains two active sites 

and activates the C-terminus of Ub via a two-step, intra-molecular, ATP-dependent 

reaction. Initially, a tightly enzyme-bound Ub adenylate (with PPi from ATP) is formed.  
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Figure 5: Protein ubiquitylation.(A) Cascade of E1, E2, and E3 enzymes thatcatalyze the 

formation of an isopeptide bond between a substrate proteinand ubiquitin (Ub). (B) Structure of 

Ub (PDB entry 1ubq) showing the sevenlysines (K6, K11, K27, K29, K33, K48, and K63) and 

the types of polymericUb (polyUb) chains that form due to the presence of these residues.The 

lines between Ub subunits in the chains denote an isopeptide linkage,and the numbers indicate 

the lysine used to link subunits together.In the case of a branched heterotypic chain, a single 

subunit is modifiedwith two or more Ub molecules via two or more isopeptide linkages. 

Biochemistry. 2014 Aug 5;53(30):4979-4989 

This intermediate is then converted to form AMP and a covalent enzyme-ubiquitin 

thioester. Activation of a second Ub molecule gives a complex with one equivalent each 

of Ub thioester and tightly bound Ub adenylate per subunit of enzyme. Activated Ub is 

then transferred to an active site Cys residue of a Ub-carrier protein, E2. These enzymes 

perform the second step in conjugation reactions by forming a thioester linkage with the 
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C-terminal glycine. E2 enzymes function alone and in conjunction with E3 ligases to 

catalyze the attachment of Ub to acceptor lysine residues of target proteins to form 

isopeptide bonds. Mass spectrometric analysis of Ub conjugates in S. cerevisiae has 

determined that polyUb chains are found in relative abundance Lys48 > Lys63 and 

Lys11 >> Lys33, Lys29, Lys27, and Lys6 
21

. An essential step necessary to allow in 

vitro biochemical and structural studies of polyUb is the production of their chains in 

high quantities and purity. PolyUb chains have been obtained either by chemical 

synthesis of suitable functionalized precursors or by enzymatic assembly. The specific 

enzymes for the formation of most Ub chain types are known and well characterized, 

allowing an enzymatic procedure. A rather convenient enzymatic method for the 

production of K48-linked Ub chains of selected length was reported in 1997 by Pickart 

and coworkers
22

. The method was later extended to K63-linked chains, and detailed 

protocols were published
23,24

. It relies on the ability of an E2 Ub conjugating enzyme to 

form a specific type of isopeptide bond between two Ub molecules. An E1 enzyme 

activates Ub for the reaction, and the specific E2 catalyzes the conjugation. ATP is 

consumed to form the charged E1. Specificity for a given chain type is achieved by the 

choice of a specific E2 (or E2/E3 couple). Two Ub reactants are used: one reversibly 

capped at its C terminus and the other blocked at its lysine site. The authors defined as 

the “proximal end” of a chain an unconjugated G76 residue because it serves for the 

attachment of a proximal Ub residue. 

Accordingly, the “distal end” of a chain is the unconjugated lysine residue (Figure 

6A). The Ub mutant blocked at the proximal site (also referred to as proximally blocked 

Ub) is Ub-D77 because the presence of an extra amino acid after G76 impairs 

conjugation through the C terminus of a proximal Ub. The distally blocked Ub is 

obtained by mutating to cysteine or arginine the lysine involved in the formation of the 

specific chain type by the selected E2, so that the covalent binding of a distal Ub is 

impaired. For example, in the case of K48-linked chains, recombinant E2-25K, able to 

specifically form K48-linked chains, is used to catalyze the reaction between equal 

amounts of Ub-D77 and Ub-K48R mutants (Figure 6B). Thus, diUb is formed in almost 

equimolar concentration with respect to the monoUb reactants. The reaction will not 

proceed with the formation of longer chains unless the doubly blocked diUb is 
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conveniently deprotected. A purification step (often cation exchange chromatography) 

will separate the product from unreacted Ub molecules. 

 

Figure 6. (A) Scheme of K48-linked diUb. Chain elongation can occur at the “proximal end” on 

binding of a proximal Ub or at the “distal end”on covalent conjugation of a distal Ub. (B) 

Production of K48-linked diUb using Ub mutants. (Faggiano et al., 2016) 

 

2) Ubiquitin Associated Domains 

The variety of cellular events that involve Ub-mediated regulation suggests the 

existence of several proteins in the cell that interact with polyUb chains. Indeed, a 

number of different Ub interacting proteins that possess both an Ub binding domain and 

a variable effector domain have been found. A complex network of Ub-associated 

(UBA) and Ub-like (UBL) domains have been implicated in the Ubiquitin Proteasome 
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Pathway (UPP), however the functional roles of these proteins require further 

characterization. Indeed, a number of different Ub interacting proteins that possess both 

an Ub binding domain and a variable effector domain have been found
16

. The various 

Ub binding motifs include UBA (ubiquitin associated). The UBA domain was originally 

identified by sequence analysis as a domain present in enzymes of the Ub-proteasomal 

pathway and has been subsequently found in several other proteins involved in Ub-

mediated signalling pathways 
11

. At least 15 proteins in fission yeast have been found to 

contain putative UBA domains
25

. 

The UBA domain is a short sequence motif of 45 amino acid residues that occurs 

frequently in proteins found in all eukaryotes. UBA motif can bind directly to Ub and/or 

poly-Ub, leading to an inhibition of the degradation of target substrates through the 

proteasome
26

. The UBA construct used in this study contains a full-length UBA2 

domain from HHR23A (human isoform A of Rad23). HHR23A is one of the human 

homologues of the yeast Rad23 and Rhp23. All of the Rad23 homologues share a 

common domain structure, including a ubiquitin-like domain at the N-terminus and two 

copies of a highly conserved domain termed the Ub associated domain (UBA) located 

in the middle [UBA(1)] and at the C-terminus [UBA(2)] of the protein
27

. The solution 

structure of HHR23A revealed that the domain forms a compact three helix bundle with 

an unusually large hydrophobic surface patch (Figure 7).  

 

 

 

 

                                            

                                           

Figure 7. Solution structure of UBA2. Pdb code 1F4I. 

 

UBA has been frequently used as a model domain to investigate biomolecular 

recognition by Ub and polyUb
28

. In particular, UBA was found to bind differently to 
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K48- an K63linked polyUb, enabling to explain the molecular determinants of substrate 

specificity by polyUb 
29

 (Figure 8). 

 

 

 

 

 

 

 

 

Figure 8. NMR model of the hHR23 UBA domain bound to Lys48-linked diubiquitin, pdb code 

1zo6 

  

3) Protein degradation and inhibition by the frameshift ubiquitin mutant Ubb
+1

  

The selective degradation of cellular proteins is a precisely regulated process 

required for various cellular functions including apoptosis, biogenesis of organelles, cell 

cycle and division, DNA transcription, modulation of cell surface receptors, ion 

channels and the secretory pathway, stress response to extracellular modulators and 

viral infection, and likely many other still undiscovered pathways. Responsibility for the 

breakdown of many short-lived regulatory proteins, enzymes, and structural proteins 

falls upon the ubiquitin/proteasome system. PolyUb chains act as a universal 

recognition signal that targets proteins for proteasomal degradation
30

.  

Regulation of the levels of cellular proteins is critical for maintaining cellular 

homeostasis. For example, most neurodegenerative diseases are characterized by 

abnormal protein folding, processing, and/or aggregation
31

 
32

. Specifically, impaired 

degradation leads to Alzheimer’s and Parkinson's diseases
33

, while overactive protein 

degradation has been linked to Cystic Fibrosis
34

. Also, the development of several types 

of cancer has been attributed to defects in the ubiquitin-proteasome pathway, which is 

integral to the destruction of cyclins that mediate cell cycle progression; such defects 

can lead to uncontrolled cell division and tumorogenesis
5
.  
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In Alzheimer’s disease 

(AD) and Down syndrome 

(DS) patients, intracellular 

and extracellular deposits of 

proteins in tangles, neuropil 

threads, and neuritic plaques 

are correlated with neuronal 

dysfunction leading to 

dementia
35

. Ub is the first 

identified member of a large 

family of highly conserved 

eukaryotic proteins, which 

all share a similar structure 

and a carboxy-terminal 

diglycine motif
36

.  Ub 

affects protein stability and 

protein sorting, small Ub 

like modifier molecules 

control nuclear transport, and interferon-stimulated gene-15 is involved in inflammatory 

and immune responses
36

.   

Ub immunopositive inclusions have been found in Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Lewy body disease, polyglutamine diseases such as 

Huntington’s disease and spinocerebellar ataxia, amyotrophic lateral sclerosis, 

progressive supranuclear palsy, Pick’s disease and frontotemporal dementia
37

. An 

alteration in the UPS is likely to affect cellular functioning because the system not only 

has a pivotal role in protein quality control but also regulates numerous other cellular 

functions through the degradation of specific cell surface, cytoplasmic and nuclear 

proteins
35

.  

Ubb
+1

 was first identified as a frameshift mutant of the Ub B protein in the brains of 

neurodegenerative disease patients and is composed of a Ub moiety (75 residues) with a 

Figure 9. NMR structure of Ubb
+1

. The 20 lowest energy 

structures were superimposed using the backbone atoms in the 

Ub region (residues 1–74). Blue (residues 1–74) and yellow-

red (residues 75–95) lines indicate the Ub and C-terminal tail 

regions, respectively. The yellow (residues 75–88) and red 

(residues 89–95) lines indicate the residual structured and 

unstructured regions, respectively(Sunggeon Ko et al.,2010) 
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19-residue C-terminal extension (Figure 9). The genes from which Ubb
+1

 mRNAs are 

transcribed contain several GAGAG motifs, and dinucleotide deletions (_GA) from 

within the GAGAG motif result in an abnormal C-terminal sequence.  

The generation of this mutant Ub protein is unusual - the mutation is found in the 

messenger RNA, but not in the DNA sequence of the Ub-B gene. The mutant Ub results 

from a dinucleotide deletion near the 39 end of the mRNA transcript which shifts the 

reading frame for translation. The dinucleotide deletion event in the mRNA has been 

termed ‘‘molecular misreading’’, though the mechanism by which the deletion occurs 

remains elusive
38

. Misreading is a rare event, which was initially proposed to become 

more common with ageing; as adult neurones are post-mitotic they are likely to be 

particularly vulnerable to any deleterious effects of molecular misreading
38

. The 

products of misreading known as ‘+1 proteins’ potentially contribute to the initiation of 

neuropathological events; for example, APP+1, a mutant form of amyloid precursor 

protein (APP) has been implicated in the pathogenesis of AD
39

. Normally these aberrant 

proteins are removed by the Ub-proteasome system (UPS), which executes the 

proteolytic degradation of aberrant proteins via a Ub-tagging mechanism.  

Ubb
+1

 inhibits the 26S proteasome in a dose-dependent manner, resulting in the 

accumulation of aberrant proteins
40

 (Figure 10). The aberrant C terminus of Ubb
+1

 

prevents the protein from covalently modifying other proteins as its Gly76 is no longer 

present, although Ubb
+1

 itself can still act as an acceptor of Ub and become covalently 

ubiquitinated with wild-type Ub. This effectively allows Ubb
+1

 to ‘cap’ poly-Ub chains 

making them unanchored, that is, nonsubstrate linked. These molecules are reportedly 

refractory to the deubiquitinating enzyme system. Consequently, when Ubb
+1

-anchored 

polyUb is targeted to the 26 S proteasome, it acts as a functional antagonist, inhibiting 

the activity of the proteasome and leading to neurotoxicity
40

. 
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4) Synthetic cellular environment: macromolecular crowding  

The intracellular environment is complex and difficult to study directly. The cellular 

environment significantly modulates the behavior of macromolecules, affecting their 

structure, dynamics, and stability
41

. It is widely recognized that the crowded conditions 

found in cellular environments can significantly impact the equilibria and kinetics of 

biochemical processes. Usually, in vitro protein studies are performed in dilute aqueous 

solutions, with a total protein concentration less than 10 g/L. The high concentrations of 

macromolecules found in the cell result in non-specific interactions between the protein 

of interest and the crowder components
42

. In reality, the characteristics of a cellular 

environments are macromolecular crowding, local viscosity, compartmentalization, and 

confinement
43

. The cytoplasmic medium is deeply crowded with concentrations of 

Figure 10. Ubb
+1

 is a frameshift ubiquitin mutant. (A) Top, the Ubb
+1

 frameshift ubiquitin 

(Ub) mutant protein lacks the C-terminal Gly76 residue which allows wild-type Ub to 

conjugate to substrate proteins (bottom). (B) Ubb
+1

 can still act as an acceptor for the 

conjugation of wild-type Ub (in this example using Lys48 and forming a homotypic chain) and 

allows Ubb
+1

 to effectively ‘cap’ free poly-Ub chains.  
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macromolecules up to 400 g/L
4344

. Such high concentration of macromolecules (reduced 

available space), referred to as crowding, inevitably influences the probability of 

intermolecular encounters and shifts 

the binding equilibria (Figure 11). 

Studies based on simplified cell 

mimics could provide important 

insights into protein chemistry in 

native-like environments. The 

physical and chemical properties of 

molecular surfaces determine the 

nature of the interactions and dictate 

the attributes of molecular 

recognition
45

. Actually, weak 

nonspecific interactions could support 

or hinder functional intracellular communication.  Furthermore, transient interactions 

with cytoplasmic components significantly and differently affect protein mobility
46

. To 

explain the effects of macromolecular crowding, two different types of interactions can 

be defined: hard and soft interactions. Hard interactions are referred to as a volume 

exclusion, in which the crowder agent is considered as inert: the crowder agent occupies 

a solution space that, in the absence of crowder, is available for the protein
47

.  The 

solution volume to which the centre of mass of the protein does not have access due to 

the presence of the crowder is defined as covolume
48

. 

Synthetic crowding agents such as Ficoll behave as relatively inert cosolutes and are 

convenient systems to investigate the effects of hard repulsion. Ficoll® is an important 

branched polysaccharide polymer with a variety of applications in biology and 

biophysics, it is highly soluble, it exhibits an average molecular mass of ~70 kDa and 

forms, at high concentrations, network-like structures of different viscosities
49

(Figure 

12). Soft interactions refer to the chemical interactions between the biomolecular 

crowding agent and the protein, considering the chemical nature of the molecules 

involved rather than simple steric hindrance
50

. 

Figure 11. Representation of a crowding 

environment. Ubiquitin is shown in green and 

UBA2 in red.  
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An experimental study of transient interactions in the extremely complex and 

heterogeneous intracellular environment is a very challenging task. NMR spectroscopy 

is a particularly attractive tool for studying a protein’s behavior in cells, because it 

provides information at the residue level. The success of in cell NMR however is still 

hampered by serious technical problems, including the difficulty to produce or 

internalize sufficient amounts of isotope-labelled proteins in living cells. Therefore, the 

use of cell-mimicking model systems still constitutes a preferred tool to decipher 

mechanistic aspects of protein function.  

In part of this PhD thesis, we use cell mimics to provide novel insights into 

ubiquitin-effector protein interactions.  

 

5) Biomolecular NMR spectroscopy 

5.1) Protein NMR spectra 

Nuclear magnetic resonance, or NMR is a phenomenon that occurs when the nuclei 

of certain atoms are immersed in a static magnetic field and exposed to a second 

oscillating magnetic field. In a general NMR experiment the sample nuclei are oriented 

by a strong magnetic field (in the order units of Tesla), absorb radiation at characteristic 

radiofrequencies (about 50-1000 MHz) and undergo an energetic transition between two 

states. The behaviour of the magnetization decay (FID, free induction decay), necessary 

to reach the equilibrium state, is converted from the acquired time-domain data to the 

frequency-domain signal by Fourier Transform. Nuclei of the same element in different 

environments give rise to distinct spectral lines because they adsorb radiation at 

FIGURE 12. Poly(sucrose-co-epichlorhydrin) (Ficoll (74 kDa)) a macromolecular cosolutes 

(crowders) that mimic the intracellular milieu.  
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characteristic frequencies. The parameters that can be measured from the resulting 

spectra give information on molecular structure, conformation and dynamics. A very 

wide range of different elements have nuclei suitable for NMR spectroscopy. Hydrogen 

(
1
H, the proton) is the most sensitive nucleus detected by NMR and it is by far the most 

important nucleus for the study of biological molecules. Other nuclei especially relevant 

for NMR analysis of proteins are nitrogen (
15

N isotope) and carbon (
13

C isotope) which 

unfortunately represent only 0.4% and 1%, respectively, of the naturally occurring 

isotopes. The main problem in NMR study of proteins is that these big molecules 

contain thousands of protons that determine the overlapping of signals in the 
1
H 

spectrum. The most powerful approach to overcome this problem is the isotope 

labelling with 
15

N and 
13

C which, together with multidimensional heteronuclear NMR, 

which are crucial to extend NMR analysis to larger molecules. The isotope labelling, 

together with the availability of amount of proteins in the order of milligrams, has been 

possible thanks to the development of molecular biology techniques and to the ability of 

setting up over-expression systems. 

Within the arsenal of NMR experiments, 
1
H,

15
N-HSQC spectra are an invaluable 

tool for protein analysis. Monitoring the perturbations of chemical shifts (chemical shift 

perturbation, CSP), linewidths and/or intensity changes of HN and 15N resonances 

upon binding is commonly used to map residues involved in binding sites and/or 

conformational rearrangements. We use Heteronuclear Single Quantum Coherence (1H-

15N HSQC) experiments, which are the simplest and most useful two dimensional (2D) 

pulse sequence, to study chemical shift variations of protein signals in a residue-specific 

manner. The HSQC experiment is used in the field of protein NMR, especially for 

correlating the 
15

N nucleus with its attached proton in the amidic groups of protein 

backbone, by exploiting the coupling between the two nuclei (JHN= 92 Hz). The 
1
H-

15
N 

HSQC represents the fingerprint of a protein, because the number and the position of 

each signal is specific for each protein sample. 
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5.2) Binding and exchange 

The variation of resonance frequency of a nuclear spin, in the presence of an 

external magnetic field, allows the study of protein attributes by NMR spectroscopy. 

Chemical shift changes are sensitive indicators of interactions among biomolecules in 

simple buffer and in the presence of the crowder agents. The chemical shift (the 

resonance frequency position) of a given nucleus reports on its local chemical 

environment, the signal intensity depends on the number of nuclei resonating at a given 

frequency. Chemical shift values are quoted as parts per millions, or ppm. The chemical 

shift is a fundamental parameter in protein NMR and determined the NMR sensitivity as 

it gives separately detectable signals for the hundreds of protons that can therefore be 

distinguished and assigned. High NMR sensitivity of the NMR chemical to structure 

and environment is very much evident in proteins. Chemical shift dispersion arises 

because different residues experience different microenvironments: internal residues in 

globular proteins are shielded from the solvent and more in contact with other residues. 

Chemical shift dispersion is also observed among protons within the same residue, due 

to different local electron distribution. Protein NMR signals are expected to be 

perturbed by the presence of NPs or other ligands dispersed in the solution, depending 

on the nature of the protein–NP interaction and the physico-chemical properties of the 

particles. 

Chemical exchange refers to any dynamic process in which a nucleus exchanges 

between two or more environments in which its NMR parameters (chemical shift, scalar 

or dipolar coupling, relaxation) differ.  This has an important effect on the NMR spectra 

of an exchanging system. For example we consider the HSQC spectrum of a protein as 

ligand is titrated in. When the exchange rate is slow on the chemical shift timescale, or 

in other words when koff is significantly slower than the difference in Hz between the 

chemical shifts of free and bound protein, then as ligand is titrated in, the free signal 

gradually disappears and the bound signal appears, the intensities of the two peaks 

reflecting the concentrations of free and bound protein. On the other hand, when 

exchange is fast, i.e. when koff is much greater than the chemical shift difference, then 

the signals will move smoothly from their position in the free spectrum to those in the 
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bound spectrum, with the frequency of the signal at any titration point being the 

weighted average of free and bound shifts (Figure 13). 

 

Figure 13. The dependence of two-dimensional NMR peak shape on exchange rate.  

(Left) Fast exchange: peaks move smoothly from free (blue) to bound (red). In the limit of very 

fast exchange, peaks have the same shape throughout. As they move out of this limit, peaks may 

become broader when in equilibrium between free and bound, and then sharpen up again close 

to saturation. (Right) Slow exchange: the free peak (blue) decreases in intensity as the bound 

peak (red) increases (Mike P. Williamson, 2013). 

 

5.3) Protein dynamics and spin relaxation 

Protein dynamics can affect a wide range of functions, such as ligand binding, 

protein folding, aggregation, misfolding, effectiveness of small molecules inhibitors, 

etc. The term “protein dynamics” refers to time dependent fluctuations in structure. For 

obtaining dynamic information, we use the measurement of 
15

N relaxation rates, since 

they can be related to global or local motions according to well-established theories
49

. 

Relaxation is the phenomenon by which the equilibrium is regained, i.e. it is relaxation 

which drives the spin to the equilibrium state along the direction of the applied 

magnetic field. It is possible to obtain information about the physical properties of a 

molecule and the sample (i.e. crowding) by studying the relaxation phenomena. 

Usually, NMR allows to investigate a wide range of time scales (picoseconds to 

milliseconds) based on the measurement of 
15

N T1 (longitudinal relaxation time 

constant) and 
15

N T2 (transverse relaxation time constant)
51

. If the sample is allowed to 
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be unperturbed for a long time in the magnetic field, it reaches a state of thermal 

equilibrium. This implies that all coherences are absent (M0) and that the population are 

given by the Boltzmann distribution, at the temperature of the molecular environment:  

 

 

 

 

Where N is the population in each state, T is the absolute temperature in Kelvin and 

K is the Boltzmann constant. Then, a radiofrequency (RF) pulse perturbs this 

equilibrium state, thus exciting the spin system and creating a coherence. Longitudinal 

relaxation time (T1) is the time in which it is restored the equilibrium state (z-

magnetization is returned to its equilibrium value), hence the spin gives back to the 

surrounding lattice the energy obtained from the RF pulse. Thus, R1 (1/T1) is the rate at 

which z magnetization is replaced and depends on the probability that the local field has 

a component oscillating at the Larmor frequency. Fluctuating fields parallel to the main 

magnetic field are responsible for the adiabatic contributions to the relaxation, 

generating variations in the total field along the z direction. Transverse relaxation time 

(T2) defines the rate with which the magnetization, after being perturbed, decays in the 

plane perpendicular to the direction of the static magnetic field B0. The main cause of 

transverse relaxation is loss of the phase coherence of spins obtained after a pulse 

resulting from local magnetic field fluctuations (mostly in the xy plane) affecting the 

Larmor frequency of individual spins. In fact, the local field varies from spin to spin, so 

the precession frequency is slightly different for each spins. The rate at which the 

coherence is lost is called R2 (1/T2).
52

 
53

 

The extreme narrowing limit is when, at very short rotational correlation times, T1 

and T2 are equal. When the correlation time increases, T1 passes through a minimum 

and then increases. Instead, transverse relaxation constant continues decreasing. R2 is 

also affected by conformational exchange phenomena in addition to fast dynamics.  

The Nuclear Overhauser Enhancement or Effect (NOE) is a further important 

relaxation phenomenon in liquid-state NMR for the characterization of the structure and 
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dynamics of biomacromolecules. The heteronuclear NOE (hnNOE) results from 

through-space magnetization transfer via dipolar coupling between different types of 

nuclei. Experimentally, this typically involves transfer from 
1
H to a directly attached 

15
N or 

13
C “heteronucleus.” The hnNOE ranges from−4 to 1 for {

1
H}–

15
N and from 1 to 

3 for {
1
H}– 

13
C and both are reduced in the presence of internal flexibility via 

J(ωH+ωX)−J(ωH−ωX). The {
1
H}–

15
N hnNOE can fall below zero due to the negative 

sign of the 15N gyromagnetic ratio γ. 

5.4) Paramagnetic NMR 

The association of paramagnetic complexes with a target protein or ligand, can be 

conveniently probed by monitoring paramagnetic-induced perturbations of NMR 

signals due to the altered spin relaxation properties of the nuclei around the 

paramagnetic metal center
54

. Paramagnetic metals have a small ad positive 

susceptibility to magnetic fields. These materials are slightly attracted by magnetic 

fields and do not retain the magnetic properties when the external field is removed. 

Paramagnetic properties are due to the presence of unpaired electrons, and to the 

realignment of the electron orbit caused by the external magnetic field.  

Paramagnetic metals have large magnetic moments and relaxation times varying 

from 10
-13

–10
-8

 sec (depending on the atomic number of the metal). The proximity of 

unpaired electrons to a nuclear spin generates local magnetic fields that are a potential 

source of paramagnetic relaxation enhancements. Interactions between the unpaired 

electron spin on a metal centre and the nuclear spins of surrounding atoms can shorten 

nuclear T1 and T2 relaxation times by many orders of magnitude
55

. The magnetic 

moment of the electron is very much greater than that of the proton, so the local field 

generated by an electron is correspondingly much greater.  

In the proximity of the paramagnetic metal, longitudinal and transverse protein 

nuclear relaxation rates (R1 and R2 respectively) are the sum of a diamagnetic, R1,2dia, 

and paramagnetic, ∆R1,2para contribution. As shown in following equation, the relaxation 

rate enhancement effects depend on the metal-to nucleus distance, and they tend to 

vanish rapidly. 
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Where K1 and K2 are dipolar constants specific for 

longitudinal and transverse relaxation rates, respectively, 

and depend on operating frequencies and the correlation 

time. 

 

Effect on transversal relaxation rates can be indirectly obtained from changes in the 

NMR peak intensities of spectra of the paramagnetic sample, Ipara, compared with 

those of a diamagnetic reference, Idia according to the general relationship given by 

Equation below. 

The first term of the product accounts for the intensity change produced by 

relaxation enhancement during the acquisition time of the NMR experiment (signal 

linewidth) and the second term refers to the effect operating during the time t of the 

pulse sequence in which the magnetization of the observed nucleus is in the transverse 

plane. 
54

 

  

In the presence of paramagnetic metal ions the nmr lines became broader on 

decreasing the distance between the metal and the observed nucleus. Therefore, 

generally there is a sphere around the metal ion in which proton NMR lines are to broad 

to be detected. The size of this shell depends on the nuclear relaxing capability of the 

metal ion, which in turn depends on the number of the unpaired electron, on the electron 

relaxation time, and on the rotational correlation time of the molecule.  

In this PhD project, we use NMR spectroscopy to calculate R1, R2, NOE and 

paramagnetic relaxation enhancement of 15N-enriched protein Ubiquitin and Ubb
+1

. 
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6) Nanoparticle receptors  

Modulation of protein-protein interactions is a long-term goal in chemical biology. 

Selective binding of proteins by artificial receptors is a method of choice to interfere in 

cellular processes with encouraging applications in diagnostics and therapeutics. NP-

based receptors are promising candidates for targeting protein surfaces, however this 

topic remains largely unexplored, particularly with respect to dynamic multidomain 

proteins. The rapid development of novel nanoparticulate materials for applications in 

many areas of bioscience necessitates an improved characterization of the nano-bio 

interfaces
56

. Rationalizing how nanoparticles (NPs) interact with biological systems 

constitutes an essential step toward the identification of biocompatible and bioadverse 

interactions
57

. In a biological medium, NPs may interact with biomolecules such as 

proteins, nucleic acids, lipids, and metabolites due to their nano-size and large surface-

to-mass ratio. Of particular importance is the adsorption of proteins on the NP surface, 

as they profoundly influence NP biodistribution and bioreactivity. accumulating 

evidence indicates that proteins may display preferential orientations with respect to the 

NP surface, mediated by specific noncovalent chemical interactions. Therefore, 

understanding how NPs impact protein-based recognition processes will require 

knowledge about the presentation of functional biomolecular motifs at the NP-

biomolecule interface. 

Modulation of interactions among biomacromolecules using nanoparticle(NP)-

based receptors capable of biomolecular recognition offers new possibilities for 

applications in therapeutics, diagnostics, and sensing. Indeed, specific noncovalent 

binding among biomolecules is critical in all cellular activities, and pathological 

conditions almost invariably involve some degree of protein miscommunication
58

. 

Therefore, protein-protein interactions (PPI) are a prime target for drug development 

and chemical biology research
59

. The development of small organic molecule 

modulators of PPI encounters difficulties owing to the fact that interaction surfaces 

between protein and ligand are small (300-1000 Å) compared to those involved in PPI 

(1500-3000 Å)
59

. Dynamic proteins are particularly challenging for the design of 

artificial receptors. PolyUb are multidomain proteins, found in dynamic conformational 
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ensembles, able to regulate a plethora of life-essential pathways. NPs are attractive 

receptors for such targets due to the large surface available for interaction and for 

countless modification possibilities.  

In our project we aim at identifying the molecular determinants of polyUb 

recognition by selected NPs. We focus on lipid vesicles, silica nanoparticles and 

micelles as highly versatile candidate receptors. Lipid vesicles were used as model 

systems of lipid-based NPs to establish the conditions for obtaining lipid-protein 

recognition. Lipid-based membranes have attracted considerable attention due to their 

potential application as tools to probe cellular and molecular interactions and as 

bioactive coatings for biosensor or medical implant applications
60

 
61 62

.  

 

Liposomes are the most used membrane mimetic system, distinguishing variety of 

vesicle types exists, differing in the degree of multilayering, size, lipid composition, net 

charge, and behaviour in transition phase. Liposomes are artificial spherical vesicles 

formed by self – assembly of lipids, consisting of a closed lipid bilayer which 

encompasses an aqueous core
63

. On the basis of their internal organization they can be 

divided into different classes. Among them, the most frequently used are the small 

unilamellar vesicles (SUVs) (diameter range from 15nm to 50nm) and large unilamellar 

Figure 14. Examples of available lipids to be used for the production of LNPs and 

morphology of LNPs. 
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vesicles (LUVs) (diameter range from 50nm to 200nm). A vast literature describes the 

preparation and characterization of lipid vesicles
64

 
65

. We are currently using the thin-

film hydration method for the production of LNP in aqueous solution,
66

 followed by 

downsizing by sonication (to obtain 30nm unilamellar vesicles) and extrusion (100 nm 

vesicles). The lipid head groups may carry positive or negative net charges, or neutral 

dipoles. Liposomes used in the clinic generally contain phosphatidylcholine and 

cholesterol, which were thus incorporated in our formulations. The fluidity of the lipid 

bilayer can be modulated by changing phosphatidylcholine/cholesterol molar ratios and 

by varying the content of saturated/unsaturated fatty acyl chains. Charged liposomes are 

obtained by replacing part of the neutral lipids with anionic (e.g. phosphatidylglycerol) 

or cationic (e.g.DOTAP) molecules. In our work, we investigated the binding specificity 

of chemically diverse vesicles towards structurally distinct polyUb using site-resolved 

solution NMR experiments for observation of protein signals, together with ancillary 

biophysical techniques.  

Silica nanoparticles (SNP) are attracting considerable interest for several 

biomedical applications due to their low toxicity, biocompatibility and scalable 

synthetic availability. The many possible surface modifications of silica nanoparticles 

allow precise control of surface chemistry to modulate drug or chemical loading, 

nanoparticle dispersion, blood circulation, and site specific targeting. The ability to 

combine these properties makes silica nanoparticles a desirable platform for biomedical 

imaging, assaying, therapeutic delivery, monitoring, and ablative therapies
57

. We used 

SNP to probe the interaction of polyUb with particles of similar size as SUV but 

different surface properties. 

As a micellar system, we selected an amphiphlic molecule incorporating the 

heptadentate ligand 6-amino-6-methylperhydro-1,4 diazepinetetraacetic acid (AAZTA), 

which is able to chelate gadolinium ions. This complex displays excellent relaxation 

enhancement properties and it shows good thermodynamic and kinetic stability. 

Gianolio et al. have conjugated the Gd-AAZTA complex with a long aliphatic chain 

(C17). The presence of the aliphatic chain induces the formation of micelles (average 

diameter 5.5 nm) already at submillimolar concentrations (0.108 mM). 
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Unraveling the basis of molecular recognition in the polyUb/NP system will pave 

the way to the development of polyUb-targeted NP-based receptors aimed at interfering 

with fundamental cellular communication pathways. 

 

7) Aim of the thesis project and brief summary of the research articles 

The aim of this doctoral project is to provide new atomic-level insights into the 

determinants of molecular recognition of the protein ubiquitin. We focused on the 

transient interactions of monoubiquitin with a representative domain of a receptor 

protein under macromolecular crowding, we explored the structural, dynamic and 

interaction properties of an aberrant mutant involved in neurodegenerative diseases, and 

we investigated the adsorption of polyUb chain isomers to nanoparticle receptors. In our 

work, we made extensive use of solution NMR spectroscopy in order to study transient 

interactions and conformational dynamics at atomic resolution. 

The traditional methods of studying proteins are, in general, implemented within 

diluted solutions with less than 10 g/L of total protein concentration. This low 

concentration allows to obtain good signals but more biological information is needed
44

. 

One of the distinctive features of cellular systems is that the cytoplasmic medium is 

deeply crowded with significant concentrations of macromolecules (50-400 g/L) which 

affect several protein attributes. This high concentration of macromolecules in the cell 

interior is known as crowding
67

. The presence of high concentrations of crowding 

agents in the biological systems can result in non-specific interactions between the 

protein of interest and the target protein. The broad aim of the study is to understand the 

effects of crowding on protein-protein interactions. In particular, we focused on the Ub-

UBA association and investigated the perturbations induced by the presence of an 

‘inert’ synthetic crowding agent (Ficoll 70) in comparison with dilute solution.  We 

wished to determine the differences in binding affinity, structure and dynamics of the 

complex dissolved in the different media. The Ub-UBA system is relatively small and 

therefore suitable for detailed NMR investigation, our primary method of investigation. 

The results obtained in the study (Research Article 1)
42

 showed that the stereospecific 

complex of ubiquitin and the ubiquitin-associated domain (UBA) is minimally 
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perturbed by the crowding agent Ficoll. However, in addition to the primary canonical 

recognition patch on ubiquitin
12

, secondary patches were identified, indicating that in 

cell-mimicking crowded solution, UBA contacts ubiquitin at multiple sites. 

Specific noncovalent binding among biomolecules is critical in all cellular 

activities
58

. Pathological conditions almost invariably involve some degree of protein 

miscommunication. Therefore, protein-protein interactions (PPIs) are a prime target for 

drug development and chemical biology research
59

. The development of small organic 

molecule modulators of PPIs encounters several difficulties owing to the fact that 

interaction surfaces between protein and ligand are small compared to those involved in 

PPIs
59

. Nanoparticles (NPs) offer an additional intriguing possibility to target proteins, 

as they display large surfaces that can be decorated with an ample choice of 

functionalities
68

. 

Mechanisms of protein recognition have been extensively studied for single-domain 

proteins, but are less well characterized for dynamic multidomain systems. PolyUb 

represent an important multidomain system that requires recognition by structurally 

diverse ubiquitin-interacting proteins.
7
 Fundamental cellular pathways are regulated by 

eight structurally distinct polyUb types, two of which have been extensively studied. 

Lysine(K)48-linked polyUb target proteins for proteasomal degradation, whereas K63-

linked polyUb have multiple non-degradative roles
13

.  

In our project, we aim to explore NP systems for the development of polyUb chain-

specific receptors. We selected lipid vesicles as highly versatile systems to be used as a 

model platform for understanding the determinants of recognition. We investigated the 

binding specificity of chemically diverse NPs towards structurally distinct polyUb. The 

results of this project (Research Article 2) constitute the basis for an improved 

understanding of polyUb recognition by artificial receptors and for the development of 

NP-based therapeutic strategies. 

Dysfunction of Ub-related enzymes and pathways has been linked to the 

pathogenesis of severe human diseases, including Alzheimer's (AD), Parkinson's (PD), 

Huntington's (HD) diseases, Amyotrophic Lateral Sclerosis (ALS), cancer, metabolic 
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syndromes, and genetic disorder. In particular, a mutated version of Ub, named Ubb
+1

, 

was found specifically accumulated in neurofibrillary tangles, neuropil threads and 

dystrophic neurites in brain tissues of AD patients. Ubb
+1

 maintains the well-structured 

globular domain of Ub and its lysine side chains can act as acceptors for polyUb chain 

linkage. However, as a result of the lack of the C- terminal Gly76, Ubb
+1

 does not 

modify substrate proteins and instead terminates the elongation of polyUb chains. The 

resulting Ubb
+1

-capped polyUb chains (polyUbb
+1

) were shown to inhibit the 

proteasome, and were recalcitrant to disassembly mediated by deubiquitinating 

enzymes.  

Due to a possible participation of Ubb
+1

 in the molecular events leading to 

neurotoxicity and neurodegeneration in AD, there is large interest in elucidating the 

structural details of this frameshift mutant Ub protein and the consequent functional 

differences with respect to the wild-type protein. In our work (Research Article 3), we 

investigated structural and dynamic features of Ubb
+1

 using NMR spectroscopy 

methods that are particularly suited to explore protein molecules containing flexible 

domains such as the C-terminal extension of Ubb
+1

. Calorimetry measurements were 

carried out to evaluate the contribution of the tail to the protein’s thermal stability in 

both its monomeric and dimeric forms. Finally, the ability of Ubb
+1

 to interact with 

different biomolecules, in particular the UBA2 domain of the human homologue of the 

yeast DNA repair protein RAD23 (HHR23A) and membrane mimics, was explored and 

characterized. 
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2.1) Materials for protein expression 

2.1.1) Plasmids 

The plasmid pET3a is a 4640bp expression vector based on the strong T7 promoter 

which is recognized by T7 RNA polymerase. T7 RNA polymerase is so selective and 

active that, when fully induced, almost all of resources of the cell are converted to target 

gene expression: the desired product can often account for more than 50% of the total 

cell protein. We use this plasmid for the expression of wild-type ubiquitin, D77, K48R 

and K63R ubiquitin. 

The Figure 15 shows the vector map of pET3a and the elements characterizing this 

vector. 

 

 

 

 

 

 

 

                                              Figure 15. pET3a vector map 

2.1.2) Bacterial strains 

The plasmid pET3a were inserted in the Rosetta(DE3) host strains. They are BL21 

derivatives designed to enhance the expression of eukaryotic proteins that contain 

codons rarely used in Rosetta. These strains supply tRNAs for 7 rare codones (AGA, 

AGG, AUA, CUA, GGA, CCC, and CGG) on a compatible chloramphenicol-resistant 

plasmid. 
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2.1.4) Heat shock transformation 

The following protocol has been used to transform Rosetta competent cells through 

heat shock: 

• 50μl of competent cells stored at -80°C were placed in ice for thawing 

• 30-50ng of DNA were added and the culture was incubated in ice for 30 minutes 

• the heat shock was carried out by placing the culture in a water bath at 42°C for 45    

seconds without shaking 

• the culture was immediately placed in ice for 2 minutes 

• 500μl of LB medium without antibiotic was added directly to the cells and then 

the culture was incubated at 37°C for 1 hour with shaking (200-250rpm) 

• the cells were plated on selective LB agar and incubated overnight at 37°C 

 

2.2) Protein sample preparation 

2.2.1) Glycerol stock 

After transformation, bacterial colonies with plasmid coding for mutant protein 

were grown in 5ml LB medium with antibiotic at 37°C for 6 hours. A cell solution with 

a final concentration of 30% glycerol was prepared, vortexed and cooled in liquid 

nitrogen. Glycerol stocks were stored at -80°C. 

2.2.2) Culture growing media 

The following media have been used for Rosetta growth. Sterilisation was achieved 

in autoclave and media for bacterial growth were prepared as follows if not otherwise 

specified. Selective media were prepared adding chloramphenicol, ampicillin or 

kanamycin.  

Luria-Bertani (LB) medium 

Compound* Quantity 

Triptone 10g 

Yeast extract 5g 

NaCl 10g 

pH was adjusted to 7.0. After sterilisation,antibiotic was added. 
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The M9 medium is used to achieve uniform 
15

N isotope incorporation in proteins. This 

medium is prepared as follows:   

 

For 1 L final volume: 

Compound Quantity 

Sterile water 780ml 

M9 salts 200ml 

MgSO4 (stock solution 1M) 2ml 

ZnSO4 (stock solution 50mM) 2ml 

CaCl2 (stock solution 0,1M) 1ml 

FeCl3 (stock solution 10mM) 100μl 

Glucose (stock solution 20%) 40ml 

NH4Cl* 1g 

 

M9 salts (5x) 

For 1L final volume: 

Compound Quantity 

Na2HPO4 33,9g 

KH2PO4 15g 

NaCl 2,5g 

The solution was sterilized by autoclave. 

 

2.2.3) Protein expression and cell lysis 

The expression of unlabelled proteins was achieved by adding 10ml of the starter 

culture to 1 litre of LB medium, then incubated in a shaker at 37°C till an OD600 value 

of 0.6 was reached. Protein expression was induced adding IPTG at a final 

concentration of 0.5mM and leaving the culture in the shaker at the best temperature 

and time found in the preliminary protein expression evaluation. After a centrifugation 

step at 8000g for 15 minutes, the pellet was resuspended in 2.5ml/g pellet of lysis buffer 

and sonicated at the maximum sonicator power for 7 cycles of 1 minute(except for the 
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enzyme where we add more lysozyme), alternating the sample sonication time to an 

equal period on ice. The lysate was then centrifuged for 10 minutes at 10000 g at 4°C 

and the supernatant solution was collected. The supernatant, containing the soluble 

protein fraction, was then loaded on the first purification column. M9 medium was used 

for expression of 15N labelled proteins and the same purification protocol was 

performed. 

 

Lysis buffer Ub, K63R, K48R, D77, GB1, UBA2: 

Tris-HCl 50mM, pH 7.6 

Triton X-100 0.02% (v/v) 

PMSF 1mM 

      Lysozyme 0.4mg/ml 

DNasi 1 (20µg/ml)  

MgCl2 10mM 

 

Lysis buffer Ubc13, E1, E2: 

Tris-HCl 20mM, pH 7.4 

NaCl 150mM 

Triton X-100 0.02% (v/v) 

PMSF 1mM 

Lysozyme 0.4mg/ml 

DNasi 1 (20µg/ml)  

MgCl2 10mM 

 

Due to the high sensibility of the enzyme Mms2, for the lysis buffer we used a 

different protocol with less stringent condition in respect to the previous purification. 

The buffer is composed as follow: 

 

Lysis buffer Mms2: 

Tris-HCl 20mM, pH 8.0 

NaCl 50mM  
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inibitori di Proteasi (50µl) 

0.1% Nonidet P-40 

Lysozyme 0.4mg/ml   

DNasi 1 20µg/ml  

MgCl2 10mM 

 

2.3) Protein and enzyme purification 

Ub was purified by precipitation of bacterial proteins through addition of a few 

drops of 70% perchloric acid until pH drops to 4.5 while stirring to cell lysate. 

Centrifuge suspension at 18,000 rpm for 20 minutes. The supernatant was dialyze 

against 50 mM Sodium Acetate, pH 4.5 overnight. The supernatant was loaded into a 15 

mL SP column pre-equilibrated with 50mM Sodium Acetate pH 4.5. The column was 

washed by adding 1-2 column volumes of 50mM Sodium Acetate, pH 4.5. Ubiquitin 

was elutes with a 200mL linear gradient from 0-0.5M NaCl in 50mM Sodium Acetate 

pH 4.5. Finally, ubiquitin was dialyse into 10mM KPi pH 6.8 buffer.  

UBA(2) domain of hHR23A was produced as GST-fusion protein as described by 

Raasi et al.(JMB, 2004, 341, 1367) and purified using Glutathione Sepharose (GE 

Healthcare) according to standard protocols. The GST tag was then removed by 

cleavage with thrombin followed by gel-filtration on a Superdex-75 (GE Healthcare). 

UBA2 was then dialyzed into final NMR buffer.  

GB1 (streptococcal protein GB1 domain) protein was produced in BL21(DE3) 

Escherichia coli cells as His-tagged recombinant protein in fusion with C-terminal 

Green Fluorescent Protein (GFP). Protein purification was performed by IMAC 

chromatography using a Ni
2+

 charged-chelating sepharose (GE Healthcare). Next, GFP 

was cleaved from His-GB1 by TEV protease (Sigma Aldrich) and removed by size 

exclusion chromatography (Sephacryl S-100 HR, GE Healthcare).  

E2-25k, Ubc13 were expressed as GSTfused proteins in the medium described 

above. Cell lysis was performed in PBS buffer, pH 7.4 complete with protease 

inhibitors, lysozyme and Dnase1. The lysate was centrifuged and the soluble extract 

was filtered and loaded onto Glutathione Sepharose beads (Molecular Probes, 10 ml 

bead suspension per liter culture) preequilibrated with PBS buffer, pH 7.4.                  
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The unbound proteins were washed out with 6-8 bed volumes of PBS buffer, and the 

fusion protein was eluted with 50mM Tris pH 8, 10mM glutathione. GST-E2 was used 

as a fusion protein; however, the GST tags of Ubc13 were cleaved using thrombin.  

E1, Mms2 were expressed as His-tagged recombinant protein. Protein purification 

was performed by IMAC chromatography using a Ni
2+

 charged-chelating sepharose 

(GE Healthcare). The elution was made with 50mM imidazole, Tris20mM NaCl0.5M 

buffer.  

Protein samples were concentrated using centrifugal filter units (Millipore). All 

samples for NMR measurements were prepared in 10 mM potassium phosphate buffer 

at pH 6.8, also containing 0.02% NaN3 and 8% D2O. 

2.3.1) Chromatography resins and columns 

Ion exchange chromatography resin: it has been used the weak anion exchanger 

DE52 preswollen microgranular diethylaminoethyl (DEAE) cellulose (Whatman). 80g 

of resin were resuspended in 200ml of 0.2M Tris-acetate pH 7.8. After sedimentation 

the supernatant was removed and the resin washed twice with 200ml of 50mM 

ammonia acetate pH 4.5. The resin was then poured into a XK 26/40 (GE Healthcare) 

column and extensively washed with 50mM ammonia acetate pH 4.5, 0.02% NaN3 as 

running buffer. The cleared cellular lysate was loaded directly into the column and the 

protein was eluted with several column volumes of running buffer. The chromatography 

was performed at a constant flow rate of 1ml/min using ÄKTAprime (GE Healthcare) 

and the proteins elution profile was followed monitoring the absorbance at 280nm 

(Abs280). Fractions of 2ml were collected and analyzed by SDS-PAGE. After use the 

resin was regenerated according to the manufacturer’s instructions. 

Size exclusion chromatography resin: 500ml of Sephacryl S-100 High Resolution 

resin, designed for separating peptides and small proteins, were poured into a XK26/100 

(GE Healthcare) column and extensively washed with 50mM Tris-HCl pH 7.2, 0.2M 

NaCl, 0.02% NaN3 (running buffer) by using ÄKTAprime (GE  healthcare). Fractions 

containing the protein of interest were concentrated to 5ml with an Amicon® or 

Centricon concentrator. The protein sample was then injected in the column and the 

chromatography was performed at a constant flow rate of 1 ml/min using ÄKTAprime 
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(GE Healthcare). The proteins elution profile was followed monitoring the absorbance 

at 280nm (Abs280). Fractions of 10ml were collected and analyzed by SDS-PAGE. 

After use the resin was regenerated according to the manufacturer’s instructions.  

Nickel affinity chromatography: Chelating Sepharose, when charged with Ni
2+

 

ions, selectively binds to proteins if complex forming amino acid residues, in particular 

hystidines, are exposed on the  protein surface. The matrix Chelating Sepharose Fast 

Flow (Amersham Biosciences), which is able to bind metal cations around neutral pH 

values, was packed into a XK16/20 column (GE Healthcare). First the resin was 

charged with Ni
2+

 using 1-2 volumes of a solution of 0.25M NiSO4, then the 

equilibration was achieved with 5 volumes of 20mM Tris-HCl pH 7.5, 0.5 M NaCl, 10 

mM imidazole, 0.02% NaN3 (binding buffer). The protein elution was performed 

applying a step imidazole gradient from 10mM to 0.5M, exploiting the ability of this 

compound to compete with the (His) 6 tag for Ni
2+

 binding. Fractions of 2ml were 

collected and analyzed by SDS-PAGE. 

Glutathione Sepharose chromatography resins: 20mL of  Glutathione Sepharose 

resin  (GE Health care) were packed in a XK 16/20 (GE Healthcare) column.  The resin 

is first washed with 10-20 volumes of bidistilled water and successively with the proper 

buffer. The protein elution was performed adding 10mM Glutathion in the proper 

buffer, at pH 8. 

His-tag removal: After affinity chromatography the protein was buffer exchanged 

by dialysis, with the buffer 20mM Tris, 150mM NaCl, 0.02% NaN3 at pH 7.5. (His)6 

tag was removed at 20° o/n, by adding thrombin at a final concentration of 4U/mg and 

CaCl2 at a final concentration of 2.5mM. Successively, an aliquot of the sample, before 

and after the cleavage, was analyzed by SDS-PAGE to verify the removal of the tag. 

2.3.2) Instruments 

To concentrate the proteins the Amicon® concentrator (50ml) with regenerated 

cellulose membranes (YM series) of 3000Da cutoff and disposable Centricon of 

3000Da cutoff were used. 

      Liquid chromatograpy was carried out using AKTA Prime Automated Liquid 

Chromatography System (GE Healthcare). 
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 For protein gel electrophoresis the power supply EPS 301(Pharmacia Biotech) and 

the Mini- PROTEAN® 3 cell (Biorad) was used while for separation DNA fragments, 

electrophoresis was performed on HE33 Mini-Sub® (Hoefer Inc. USA).  

Media sterilization was achieved using an Alfa 10 plus (PBI) autoclave. 

Bacterial growth were performed using a FOC 225E refrigerated incubator (VELP 

scientifica) and bacterial lysis were carried out with the sonicator Sonoplus HD 2070 

(Bandelin Electronic). 

 Centrifugation steps were carried out using centrifuges J2-HS (Beckman), 

Centrifuge 5804R and MiniSpin® plus (Eppendorf) and a Biofuge Fresco (Heraesus 

instruments). 

 

2.3.3) SDS-PAGE 

Protein purity was evaluated using Sodium Dodecyl Sulphate PolyAcrylamide Gel 

Electrophoresis (SDS-PAGE). Every protein sample (10ul) was heated at 95°C for 5 

minutes after the addition of 5 ul of reducing loading buffer. Samples were loaded into a 

separate well of a discontinuous 17% polyacrylamide gel together with 5 μL of 

molecular weight marker (GE Healthcare) loaded in a separate well internal referencing 

and to identify the proteins of interest after separation. Gels were run at 120 V for 

approximately one hour until the bromophenol blue exits the running gel. After running 

the gels were  immersed in the staining solution for 20 minutes and destained overnight 

with bidistilled hot water. 

Reducing loading buffer 

Compound  Quantity 

Tris-HCl pH 6.8  50mM 

DTT  100mM 

SDS  2% 

glycerol  10% 

bromophenol blue  0.1% 
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Polyacrylamide gel 

Stacking gel solution 

For a final 2ml: 

Compound  Quantity 

Acrylamide mix (30% stock solution)  330μl 

Tris-HCl pH 6.8 (1M stock solution)  250μl 

SDS (10% stock solution)  20μl 

Ammonium persolfate (10% stock solution)  20μl 

TEMED  2μl 

Running gel solution 

For a final 5ml at 17% of acrylammide: 

Compound  Quantity 

Acrylamide mix (30% stock solution)  2ml 

Tris-HCl pH 6.8 (1M stock solution)  1ml 

SDS (10% stock solution)  40μl 

Ammonium persolfate (10% stock solution)  40μl 

TEMED  2μl 

 

Running buffer 

Compound  Quantity 

Tris-HCl pH 8.3  25mM 

glycine  192mM 

SDS  0.1% 
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Staining solution 

For a final 1L: 

Compound  Quantity 

Ethanol  500ml 

Acetic acid  200ml 

Comassie Brilliant Blue  3g 

 

2.4) Synthesis of polyUb chains 

2.4.1) Notation and design of segmentally isotope-enriched polyUb chains 

To overcome the spectroscopic equivalence of all ubiquitin monomers comprising 

the polyUb chain, chains with only one Ub unit isotope labeled (15N) in a given sample 

were synthesized. The following notations are used throughout to refer to Ub2 isotope 

labeled at different Ub units. Ub2s are referred to as ‘Ub2-P’ and ‘Ub2-D’ for Ub2 

samples isotope labeled at the proximal and distal positions (with respect to a possible 

substrate) respectively. Ub2-Pchains were synthesized using isotope labeled D77 Ub 

(proximal Ub) and unlabelled K48R or K63R Ub (distal Ub), and Ub2-D chains were 

synthesized using unlabeled D77 Ub and isotope labeled K48R or K63R Ub.  

2.4.2) Synthesis of Ub2 chains 

Lys48- and Lys63-linked Ub2 were synthesized following the protocol in above. 

(Petrowski et al., 1997) 
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Typically, 2ml reactions with a total of 30mg Ub were set up and incubated overnight at 

37°C. The formation of Ub2 was confirmed by SDS polyacrylamide gel electrophoresis 

and the Ub2 was separated from unreacted monoUb and other components of the 

reaction mixture using cation exchange chromatography as follows. The pH of the 

mixture was dropped to ~4 by the addition of 2-3 drops of undiluted acetic acid. The 

reaction mixture was then applied to a SP Sepharose Fast Flow column (1ml) pre-

equilibrated in 50mM ammonium acetate, pH 4.5. Components of the reaction mixture 

such as E1 and E2, did not bind the column, and the Ub2 was separated from monoUb 

using a salt gradient over 40 column volumes to a final salt concentration of 0.4M. 1-1.2 

ml fractions were collected and checked on a 15% SDS gel. The fractions corresponding 

to Ub2 were pooled, concentrated in Amicon filtration units and exchanged into the 

desired buffer 

2.4.3) Estimation of protein concentration 

The absorbance at a wavelength of 280nm was detected using Nanodrop 

spectrometer. Protein concentration (c) was calculated from the Beer-Lambert equation: 

Abs = ε × l × c  

A theoretical extinction coefficient at a wavelength of 280nm measured in water 

(ε280nm) was estimated for each construct using the ProtParam Tool from the Expasy 

Tools server (http://www.expasy.ch/tools/protparam.html). 

 

http://www.expasy.ch/tools/protparam.html
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2.4.4) Buffer exchange 

Prior to storage, purified samples were buffer exchanged into a buffer suitable for 

NMR Experiments, in our case we use KPi10mM pH 6.8.  

After chromatography purified protein samples were concentrated to 0.5mM in the 

proper Buffer. Then they were frozen with liquid nitrogen and stored at -20°C. A 

protein concentration in the mM range is usually required for NMR purpose. However 

in this case a concentration 0.5mM (or lower) has been kept to avoid aggregation and 

precipitation. 

2.4.5) Sample quality control 

Unlabelled purified proteins were checked by 
1
H mono-dimensional NMR 

experiment to asses the protein folding and presence of contaminants. For 
15

N and/or 

13
C isotope labelled proteins basic bi-dimensional heteronuclear NMR experiments 

were performed to confirm the isotope inclusion and to evaluate the goodness of the 

protein preparation. 

 

2.5) Materials for liposome preparation and monitoring 

2.5.1) Lipids and materials 

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (POPG), 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-3 

trimethylammonium-propane chloride salt (DOTAP), 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE), and cholesterol (Chl) were purchased from Avanti 

Polar. Ludox® TMA colloidal silica nanoparticles were purchased from Sigma-Aldrich. 

All other reagents necessary for this study were from Sigma-Aldrich. 

2.5.2) Instruments 

Large unilamellar vesicles (LUVs) were formed by pressure extrusion using Avanti 

Polar Device “Mini-Extruder” (Alabaster, AL). Polycarbonate membranes with a pore 

size of  400nm and 100nm were from Whatman (GE Healthcare). 
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Small unilamellar vesicles (SUVs) were prepared using probe tip sonicator 

(Misonix, NY). Liposomes were characterized in terms of their sizes and charge using 

dynamic light scattering with a Zetasizer Nano ZS instrument (Malvern Instruments, 

USA) operating at λ = 633nm. 

2.5.3) Liposome preparation protocol 

Properties of lipid formulations can vary depending on the composition (cationic, 

anionic, neutral lipid species) and dimension, however, the same preparation method 

can be used for all lipid vesicles regardless of composition. The general elements of the 

procedure used, involve three steps: preparation of lipid for hydration, hydration of lipid 

film and sizing to a homogeneous distribution of vesicles.  

2.5.4) Preparation of Lipid for Hydration 

Powdered pure phospholipids or mixtures were dissolved in a chloroform solution 

to assure a clearly homogeneous solution and dried as a thin film in round-bottom glass 

flask by rotary evaporation for 2 hours. However, often a small amount of methanol is 

also required to solubilize polar lipids, such as phospholipids. During this process the 

temperature was maintained at around 30°C. 

2.5.5) Hydration of lipid film 

Hydration of the dry lipid film was accomplished simply by adding 30mM 

phosphate solution (Na2HPO4/NaH2PO4), 0.1M NaCl, pH 7 to a final concentration of 

~120 mM lipid. The film was then dispersed by gently mixing. After addition of the 

hydrating medium the temperature of the hydrating solution should be above the gel-

liquid crystal transition temperature (Tc or Tm) of the lipid with the highest Tm before 

adding to the dry lipid. For that reason the lipid suspension was maintained above the 

DMPG and DMPC lipid phase transition temperature (23°C). The product of hydration 

is a large multilamellar vesicle (LMVs) analogous in structure to an onion, with each 

lipid bilayer separated by a water layer. Once a stable, hydrated LMV suspension has 

been produced, the particles can be downsized by a variety of techniques, including 

sonication or extrusion. All the next steps were performed above the Tm of the lipid 

unless otherwise specified. 
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2.5.6) Small unilamellar vesicles (SUVs) preparation 

SUV were prepared using probe tip sonicator (Misonix, NY) without cooling at 40 

Watt for 10 minutes. The sonication continued until the solution became clear, in order 

to assure that the vesicles had the smallest possible size. Sonication tips also tend to 

release titanium particles into the lipid suspension. After sonication SUV solutions were 

centrifuged to sediment small metal pieces released by the sonication tip. 

2.5.7) Large unilamellar vesicles (LUVs) preparation 

LUV were formed by pressure extrusion using Avanti Polar device. Through the 

extrusion technique a lipid suspension is forced through a polycarbonate filter with a 

defined pore size to yield particles having a diameter near the pore size of the filter 

used. In order to obtain LUVs with a mean diameter of 100nm repeated extrusions of 

the multilamellar liposomes were performed through polycarbonate membranes with a 

pore size of 1μm, followed by extrusion through 400nm and 100nm pore size 

membranes. 

2.5.8) Liposome storage 

Storage time depends on a number of factors including temperature, pH, medium, 

etc. POPG SUVs and LUVs were stored at 30°C above the phase transition temperature 

for few days. Small unilamellar vesicles are much more unstable than large unilamellar 

vesicles. Beyond 24 hours SUVs size increases due to aggregation events and other 

sonication process was performed in order to assure the original vesicle diameter. 

2.5.9) Checking liposome size and stability 

Liposomes were characterized in terms of their sizes and over time stability using 

dynamic light scattering with a Zetasizer Nano ZS instrument (Malvern Instruments, 

USA) backscattering (173°C) at λ = 633nm at 30°C. Samples were loaded into 

disposable cells and diluted to 100uM with 30mM phosphate buffer pH 7.0. Standard 

Operating Procedures (SOP) were performed repeating data acquisition 5 times.  

 

 



   CHAPTER 2: Material and Methods 
 

61 
 

2.6) Protein analysis 

2.6.1) Differential scanning calorimetry (DSC) 

Thermal denaturation data were acquired with a Nano DSC instrument (TA  

instruments Inc.) at a scan rate of 1 K min
-1

. Samples contained 0.1 mM protein 

dissolved in 100 mM sodium phosphate, pH 7.4, 100mM NaCl. Before measurements, 

sample and reference solutions were properly degassed in an evacuated chamber for 10 

minutes at room temperature and carefully loaded into the cells to avoid bubble 

formation. Calorimetric cells (operating volume 300µL) were kept under a pressure of 3 

atmospheres. Exhaustive cleaning of the cells was undertaken before each experiment. 

A background scan collected with buffer in both cells was subtracted from each scan.  

2.6.2) Fluorescence spectroscopy 

Fluorescence measurements were performed on a FP-8200 spectrophotometer 

(JASCO) in Na2HPO4/ NaH2PO4 buffer (10mm, pH 6.8). Dansyl-DHPE spectra were 

recorded (emission 450–600 nm, 5 nm bandwidth; excitation 336nm, 2.5nm 

bandwidth). All measurements were performed in triplicate, accumulated, and 

smoothed. Fluorescence shift was measured from the barycentric mean fluorescence 

(lbcf), defined as [Equation]: 

 

 

Fixed liposome concentration of 10µM were titrated with an increasing amount of 

ubiquitin and poly-ubiquitin up to a final [Lipo]/[Ub] molar ration of 1:30.  

 

2.7) NMR spectroscopy experiments 

NMR experiments were acquired at 25 °C on a Bruker Avance III spectrometer, 

operating at 
1
H Larmor frequency of 600.13MHz, equipped with a triple resonance TCI 

cryogenic probe. NMR data were processed with Topspin 3.2 (Bruker) or NMRpipe and 

analyzed with the software Sparky (T. D.Go ddard and D. G. Kneller, University of 

California, San Francisco). All samples for NMR measurements were prepared in 
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10mM potassium phosphate aqueous buffer at pH 6.8, also containing protease 

inhibitors (Sigma) and 8% D2O. 

One-dimensional 
1
H-NMR experiments were acquired with a standard pulse 

sequence incorporating the excitation sculpting water suppression scheme. A total of 

128 transients were acquired over a spectral width of 12019 Hz, using a recycle delay of 

2s. The spectra were processed applying an exponential window function prior to the 

Fourier transformation. 

Typical sensitivity enhanced 
1
H-

15
N heteronuclear single quantum coherence 

(HSQC) were conducted by acquiring 256 complex points in the T1 dimension, 1024 in 

the T2 dimension. A total number of 4-8 transients were acquired for each spectrum 

with an interscan delay of 1.2s. Standard sequence schemes with pulsed field gradients 

were used to achieve suppression of the solvent signal and cancellation of spectral 

artifacts. Data were processed using the Bruker software TOPSPIN 3.2 (Bruker, 

Karlsruhe) and analyzed with the program CARA (The Computer Aided Resonance 

Assignment Tutorial) by R. Keller (http://www.nmr.ch). 

Protein–ligand NMR titration experiments were conducted with 
15

N-labeled 

Ubiquitin od polyUb with an increasing amounts of Uba2, liposomes or nanoparticle, 

using different ligand/protein molar ratios, and 
1
H,

15
N HSQC spectra were recorded at 

each ligand addition. 

Chemical shift perturbations (CSP) were reported as weighted average chemical 

shift differences ΔδHN for each backbone amide to account for differences in spectral 

widths between 
1
H and 

15
N resonances, and calculated as CSP = [(ΔδH)

2
 + (ΔδN/5)

2
]

0.5
 

where ΔδH and ΔδN correspond to the change in 
15

N and the 
1
H chemical shifts, 

respectively.  

Backbone amide transverse relaxation (
15

NR2) experiments were measured in 

gradient-selected sensitivity-enhanced and interleaved mode (64 transients, interscan 

delay of 3.0 s). Backbone amide longitudinal relaxation (
15

N-R1) rates were measured 

with the same parameters. Relaxation constant values T1 and T2 were determined by 

fitting peak volumes obtained by CARA to a two-parameter single exponential function 

with the software RELAXFIT. 

http://www.nmr.ch/
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Steady-state {
1
H}

15
N heteronuclear nuclear Overhauser effects (hetNOE) were 

measured with a 6 s recycle delay. hetNOE values were calculated taking the ratio of 

peak intensities in saturated and reference spectra. 

The dissociation constant value for the interaction was obtained by fitting 

experimental binding isotherms obtained from 
1
H-

15
N HSQC-based titration 

experiments, assuming a one-site binding model and by use of the Matlab program 

Kdfit.  

Transverse 1HN PRE rates, (
1
HN-R2p) were obtained as the difference in 

1
HN-R2 

measured on samples containing or not containing 2 mM gadodiamide. In principle, the 

difference removes contributions to 
1
HN-R2 relaxation common to both states, including 

exchange contributions. The deviation of 
1
HN-R2p from a linear concentration 

dependence was estimated by: 

 

 

 

 

 

and r1 = 0, r2 = 0.5, r3 = 1, corresponding to the different molar ratios. 
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ABSTRACT 

Despite significant advancements in our understanding of ubiquitin-mediated 

signaling, the influence of the intracellular environment on formation of transient 

ubiquitin-partner complexes remains poorly explored. In our work, we introduced 

macromolecular crowding as a first level of complexity towards the imitation of a 

cellular environment in the study of such interactions. Using NMR spectroscopy, we 

found that the stereospecific complex of ubiquitin and ubiquitin-associated domain 

(UBA) was minimally perturbed by the crowding agent Ficoll. However, in addition to 

the primary canonical recognition patch on ubiquitin, secondary patches were identified, 

indicating that in cell-mimicking crowded solution, UBA contacts ubiquitin at multiple 

sites. 
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INTRODUCTION 

Ubiquitin (Ub) is a prototypical small protein modifier regulating a vast number of 

fundamental cellular events
1,2

. The addition of a single Ub molecule to a target protein 

(monoubiquitination) can alter protein activity and localization, while the conjugation of 

distinct types of Ub chains (polyubiquitination) is implicated in a variety of processes 

such as proteasomal degradation, DNA repair, and immune signaling 
2–5

. Differentially 

ubiquitinated substrates are recognized by an ample variety of Ub-binding proteins, 

which propagate the Ub signal eliciting specific cell responses 
6,7

. Ub receptors contain 

modular elements, referred to as Ub-binding domains (UBD), able to specifically 

associate with the protein modifier. The binding of individual UBD to monoUb is 

generally weak but high-avidity interactions can be established by polyUb chains 
8–11

. 

Intense work has been carried out during the past two decades to elucidate the structural 

determinants of Ub-UBD recognition, however further scrutiny is required to obtain a 

full understanding of the specificity of Ub-mediated signaling. 

In spite of the complexity of Ub recognition by effector proteins, the simplicity of 

monomeric Ub’s architecture is startling. Composed of only 76 amino acids, highly 

conserved throughout eukaryotes, Ub is among the smallest proteins found in a cell. The 

polypeptide chain adopts a compact globular β-grasp fold, exposing a surface area of 

less than 5,000 Å
2
. A solvent-exposed hydrophobic area, centered around residues 

Leu8, Ile44, and Val70 (Ile44 patch
4,12

), stands out from the predominantly polar 

protein surface. The Ub backbone is generally considered rigid, with the exception of 

the C-terminus and of the β1- β2 loop. However, a certain degree of structural plasticity 

allows a mechanism of dynamic adaptation to operate during molecular recognition 

events 
13

. Interactions with many ubiquitin-binding proteins involve the Ile44 patch 
4
, 

albeit distinct residues form the interaction surface with different protein partners. 

Furthermore, additional protein recognition sites have been identified, including the C-

terminus, the α/β2 groove, the Ile36, the Asp58, and the Phe4 patches 
11,14

. 

Given that a finely tuned surface chemistry dictates the determinants of Ub-UBD 

recognition, a definitive description of the corresponding modes of interaction requires 

evaluation of all factors potentially affecting the binding phenomena in the native 
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environment. While our current understanding of Ub-UBD associations relies on 

interaction studies performed on binary protein mixtures in buffered aqueous solution, it 

has become clear that the complex cellular environment can exert significant influence 

on biomolecular properties and interactions 
15–17

. A prominent feature of the cellular 

interior is intense macromolecular crowding caused by elevated concentrations of large 

biological molecules that occupy a significant fraction (10-40%) of the cell volume 
18

. 

Macromolecular crowders, or cosolutes, alter a protein’s effective concentration, 

increase solution viscosity, originate excluded-volume effects, and may engage in 

unspecific or specific chemical interactions with the protein solutes 
19–24

. The impact of 

tight molecular packing on the formation of Ub-UBD complexes has remained 

unexplored so far.   

In our work, we introduced macromolecular crowding as a first level of complexity 

towards the imitation of a cellular environment in the study of Ub-UBD interactions. 

Steric repulsions and depletion forces are predicted to perturb conformational equilibria 

and diffusive dynamics, to shift equilibrium states, and change the probability of 

intermolecular collisions 
19

. However, the extent to which these phenomena reshape the 

protein-protein interaction landscape, influencing the relative orientations of 

components in non-covalent assemblies and the specificity of transient associations, 

remains elusive. Here, we investigated the interaction between Ub and the Ub-

associated C-terminal domain (UBA2) of the human homologue of the yeast DNA 

repair protein RAD23 (HHR23A) in the presence of a non-interacting hydrophilic 

polymeric crowding agent. UBA2 is a compact three-helix bundle displaying a Ub 

recognition site, encompassing the non-adjacent helices α1 and α3, that associates 

weakly (Kd ~0.4 mM) with the Ile44 patch of Ub 
25–27

. The Ub-UBA2 interaction can be 

considered paradigmatic in the study of analogous Ub-UBD pairs.  

We used NMR spectroscopy to explore the UBA2 interaction sites on the surface of 

Ub. NMR allows the exploration of interactions over a broad range of affinities, 

yielding atomic-resolution insights into dynamic biochemical equilibria
22

. By 

complementing traditional chemical shift perturbation mapping with solvent 

paramagnetic relaxation enhancement analysis 
28,29

, a robust identification of binding 

surfaces was obtained. In addition to the well-characterized Ile44 patch, secondary 
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patches were found, indicating that in cell-mimicking crowded solution, UBA2 contacts 

Ub at multiple sites. Identification of such transient specific associations adds further 

detail to our description of protein-protein interactions in the complex cellular interior. 

 

EXPERIMENTAL SECTION 

A description of materials and protein preparation procedures can be found in the Supporting 

Information. 

NMR experiments 

All experiments were recorded at 25 °C on a Bruker Avance III spectrometer, operating 

at 
1
H Larmor frequency of 600.13 MHz, equipped with a triple resonance TCI 

cryogenic probe. NMR data were processed with Topspin 3.2 (Bruker) or NMRpipe 
30

, 

and analyzed with the software Sparky (T. D. Goddard and D. G. Kneller, University of 

California, San Francisco).  

15
N relaxation experiments were performed on samples containing 0.37 mM [

15
N]-

Ub in the absence of crowder, in 200g/L Ficoll, or in 200g/L sucrose solution. 

Longitudinal relaxation rates, 
15

N-R1, were measured using relaxation delays in the 

interval 0.01-1.26s for Ub in uncrowded solution and in the range 0.01-1.44s for Ub in 

200g/L Ficoll or sucrose. Transverse relaxation rates, 
15

N-R2, were measured with a 

CPMG-based pulse program, using relaxation delays in the range 8-208ms for Ub in 

simple buffer, 8-176ms for Ub in 200g/L sucrose, and 8-104ms for Ub in 200g/L Ficoll.  

Proton transverse relaxation rates, 
1

HN-R2, were measured on a 0.5 mM [
15

N]Ub 

sample using the pulse program described by Iwahara et al. 
31

, kindly provided to us by 

the author. To remove 
3
JHN-Hα modulation of peak intensities, a selective HN 180° pulse 

(REBURP of 2ms) centered at 8.2 ppm was used in the INEPT period. For each titration 

point (1:0, 1:0.5 and 1:1), measured in the presence or absence of gadodiamide, seven 

relaxation delays were acquired and the signal intensity decays were fitted to a single 

exponential function to obtain the corresponding rates. Delays between 11.7 and 52.5 

(45.3)ms were used for samples without (with) gadodiamide.  Residues affected by 

signal overlap or with insufficient signal-to-noise ratio were excluded from the analysis.  
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Data analysis 

Amide chemical shift perturbation was calculated as: CSP = [(ΔδH)
2
 + (ΔδN/5)

2
]

0.5
, 

where ΔδH and ΔδN are the chemical shift changes measured in the 
1
H and 

15
N 

frequency dimensions, respectively.  

Volume occupancy by Ficoll was calculated from a reported partial specific volume 

of 650cm
3
/g 

32
, a value in agreement with our experimental verification of volume 

change upon dissolution of a known mass of solute. The volume fraction occupied by 

the crowder, C, in a 200g/L Ficoll solution was determined to be 13%, assuming no 

volume changes resulted from perturbations of solvent molecules.    

Dissociation constant values were obtained by fitting experimental binding isotherms 

according to a one-site binding model using the Matlab program Kdfit 
26

. Titration data 

were analyzed assuming that the observed CSP is a weighted average between the value 

corresponding to the free (CSP = 0) and ligand-bound (CSP = CSPbound) states, so that 

CSP = CSPbound  fbound, where fbound is the relative population of the bound state of the 

molecule under observation, related to the dissociation constant Kd according to the 

following expression 
26

: 

 
2

4 / (2 )bound P L d P L d P L Pf C C K C C K C C C        
 

  

where CP and CL are the total concentrations of Ub and UBA2, respectively. The 

analytical concentration of the initial Ub solution was 500M and that of the titrant 

stock solution was 10mM. Dilution-corrected values for CP and CL were used at 

successive titration steps. Reported values are the average of Kd values determined from 

seven binding isotherms and the corresponding standard deviation. 

Relaxation rate values were obtained from fitting of signal intensity decays with a 

single exponential function. The rotational correlation time, τR, was estimated with the 

program ROTDIF 
33

 from the experimental 
15

N-R1 and 
15

N-R2 relaxation rate values, 

assuming a constant NOE value of 0.74 for all residues displaying secondary structure 

and using an isotropic model. Relative solution viscosities were estimated using the 

Stokes-Einstein-Debye equation: τR = 4ηr
3
/(3kT), where η is the solution viscosity, r 

the hydrodynamic radius of Ub (assumed constant in all experimental conditions), k the 
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Boltzmann constant and T the temperature. Using the measured τR values, we 

determined the following ratios: η
Ficoll

/η
sucrose

 = 1.19, η
Ficoll

/η
buffer

 = 2.3 for 200g/L 

crowder solutions.
 

Transverse 
1
HN PRE rates, (1HN-R2p) were obtained as the difference in 1HN-R2 

measured on samples containing or not containing 2mM gadodiamide. In principle, the 

difference removes contributions to 1HN-R2 relaxation common to both states, including 

exchange contributions
31

. The deviation of 1HN-R2p from a linear concentration 

dependence was estimated by: 

22 2( ) ppR r R    

where 

 2 3 2 1
2 2 1 2 1

3 1

( ) ( )
( )

p p
p p

R r R r
R r r R r

r r


  


 

and r1 = 0, r2 = 0.5, r3 = 1, corresponding to the UBA2/Ub molar ratios. 

The uncertainties of Δ, σΔ, were obtained by propagation of errors on relaxation rates 
34

. 

Protein structures were visualized with PyMOL (The PyMOL Molecular Graphics 

System, Version 1.1r1, LLC). 

 

RESULTS 

The structures of Ub and of the Ub/UBA2 complex are retained in crowded 

solution  

Macromolecular crowding of the interior of cells can be conveniently modelled by 

use of a variety of crowding agents, including biomacromolecules and synthetic 

polymers 
35,36

. Depending on the chemical nature of cosolutes, macromolecular 

crowding effects may include both steric repulsions as well as nonspecific chemical 

interactions. Here, we selected the macromolecular crowder Ficoll (70 kDa), a nearly 

spherical and densely branched hydrophilic neutral polymer that is reported not to 

interact with most proteins 
17,35

 and in particular with Ub 
37

. Experiments were 

conducted after dissolving the protein(s) in 200 g/L Ficoll solution, approximately 
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corresponding to the concentration of macromolecules in the average eukaryotic 

cytoplasm. 

Our preliminary investigation concerned the possible effects of Ficoll on the 

structural and dynamic properties of Ub. We therefore recorded two-dimensional 

proton-nitrogen correlation (
1
H,

15
N-HSQC) NMR spectra of 

15
N-enriched Ub, these 

experiments being exquisitely sensitive to binding events and structural changes. The 

spectral fingerprint of Ub in Ficoll solution, reporting separate signals for individual 

amino acid residues of the polypeptide, displayed all peaks in the same positions as 

those observed in uncrowded solution: amide chemical shift perturbation (CSP) values 

were close to zero for all residues (Fig. 1A), in agreement with the findings of Cino et 

al. 
38

 and Abriata et al. 
37

. This observation indicates that Ficoll did not perturb the 

overall structure of Ub. 
15

N-spin relaxation rate measurements were then carried out to 

explore possible changes in Ub main chain dynamics. Data reported in Fig. 1B,C show 

a significant decrease in longitudinal relaxation rate (
15

N-R1) values and increase in 

transverse relaxation rates (
15

N-R2), due to a slower molecular rotational diffusion 

resulting from increased viscosity (we calculated a global rotational correlation time, τR, 

of 4.0ns and of 9.2ns for Ub in uncrowded solution and in 200g/L Ficoll, respectively). 

It can be noted that 
15

N-R1 values exhibit lesser variation along the polypeptide 

sequence in the presence of crowder, and in particular, residues in the β1- β2 loop and 

in the C-terminus display 
15

N-R1 values similar to or even larger than those observed in 

the rigid elements. Although it is possible that the observed trend reflects some reduced 

local dynamics in crowded solution, an increase of the longitudinal relaxation rate is 

predicted to take place in flexible regions upon increase in τR if the correlation time for 

local motion is in the range of hundreds of picoseconds or slower 
39

. 

In order to obtain mechanistic information on UBA2 binding to Ub under 

macromolecular crowding conditions, titration experiments were conducted by 

acquiring a series of 
1
H,

15
N-HSQC spectra in the presence and absence of 200g/L 

Ficoll. Unlabelled UBA2 was added stepwise to [
15

N]Ub, and individual peaks were 

monitored throughout the titration (Fig. 2). The directions of peak movements along the 

titration in crowding conditions were unchanged compared to those in dilute solution 

(Fig. 2A,B), indicating that Ficoll did not perturb the mode of binding of Ub to UBA2. 
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Despite the increase in solution viscosity when the polymer was present, we noted that 

binding still occurred in the fast exchange regime on the chemical shift time scale, 

indicating that the dissociation rate was not slowed down considerably in crowded 

solution. The CSP patterns along the protein sequence in the presence of Ficoll closely 

resembled those measured in the absence of crowder (Fig. 2C), suggesting that the 

average structure of the complex was not affected by the presence of crowder 

molecules. The backbone regions most affected by UBA2-binding in both solution 

conditions contain residues surrounding Leu8, Ile44 and Val70, the key residues 

forming the well-characterized Ile44 hydrophobic patch 
12,14,26

. 

Titration experiments in 200g/L Ficoll solution pointed out that binding site 

saturation was reached at a lower nominal concentration of UBA2 than in uncrowded 

solution. Indeed, by fitting the binding isotherms of selected residues (Fig. 2D,E) we 

determined Kd = 412 ± 52μM for the Ub/UBA2 interaction in buffer, while in the 

presence of Ficoll the corresponding value was 226 ± 48μM. Accounting for the actual 

protein concentrations (corrected for the volume occupied by Ficoll particles, see 

Materials and Methods for details) would result in at most 10-15% increase of the Kd. 

Therefore, our data indicate that the apparent affinity of the complex increased in the 

presence of crowder. After repeating the titration experiment in 200g/L sucrose (the 

monomeric counterpart of Ficoll) (Fig. S1), the Kd was found to be 381 ± 52μM, 

indicating that the macromolecular nature of Ficoll was responsible for the increased 

affinity.  

 

Solvent paramagnetic relaxation enhancement analysis reveals secondary UBA2 

footprints on the surface of Ub  

After assessment of formation of the stereospecific Ub/UBA2 complex in crowded 

solution, we set to perform a more comprehensive evaluation of the protein-protein 

contacts, possibly including less represented binding sites. To this aim we measured 

solvent paramagnetic relaxation enhancements (PRE), a sensitive NMR approach based 

on the use of soluble paramagnetic relaxation agents to reveal changes in 

macromolecular surface accessibility occurring during dynamic events such as protein 
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complex formation. Due to their inherently large sensitivity (caused by the large 

magnetic moment of unpaired electrons), paramagnetic probes have been used 

successfully to characterize the structure of protein-protein complexes 
40,41

, formation of 

encounter complexes 
42

, and transient interactions 
43

. In particular, Johansson et al. 
34

, 

were able to identify residues of human growth hormone that are involved in either 

unspecific or specific protein self-interactions based on the PRE profile of amide 

protons induced by gadodiamide (a gadolinium-based paramagnetic relaxation agent, 

also referred to as Gd-DTPA-BMA). Gadodiamide-induced PRE effects on Ub were 

previously interpreted according to a relaxation model where the relaxation agent forms 

an unspecific, yet rotationally correlated, complex with the protein 
44

. 

In our work, we measured the amide proton transverse relaxation rates, 1HN-R2, on 

Ub in isolation, and in the presence of UBA2 at 1:0.5 and 1:1 molar ratios. To 

determine solvent PRE for 1HN of Ub, we repeated the same set of measurements in the 

presence of gadodiamide. A relaxation agent concentration of 2mM was chosen to allow 

measurement of sufficiently large 1HN-R2 without excessively compromising the quality 

of signals for samples containing 200g/L of Ficoll (where resonances were already 

broadened compared to dilute solution conditions). Transverse 
1
HN PRE rates, 1HN-R2p, 

were calculated as the difference in 1HN-R2 between samples with and without 

gadodiamide.  

The values of 1HN-R2p determined for Ub display a significant variability along the 

protein sequence (Fig. 3, main panel), in qualitative agreement with the solvent 

accessibility along the Ub backbone (Fig. 3, top panel). In particular, residues 8-14, 

located in or adjacent to the β1- β2 loop, residues 45-49 forming the β3- β4 loop, and 

the C-terminal tail showed the largest 1HN-R2p values, while residues 20-30 displayed 

the smallest PRE effects. We then examined the PRE trends upon subsequent additions 

of UBA2. In Ficoll solution, at Ub:UBA2 1:0.5 molar ratio, 
1
HN-R2p values increased 

for all of the residues (Fig. 4A,B, red plots). As explained by Johansson et al. for their 

system 
34

, the observed increase in PRE with increasing total protein concentration (that 

of UBA2 in the present case) can be attributed to a reduced rate of diffusion of the 

relaxation agent along the protein surface, which in turn is caused by increased 

molecular crowding associated with more frequent non-specific transient collisions.  
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However, at a higher Ub:UBA2 molar ratio (1:1), the 1HN-R2p values were found to 

consistently increase for a subset of residues (Fig. 4A, red plots), while another set of 

residues displayed no increase or an increase smaller than that observed between 1:0 

and 1:0.5 Ub:UBA2 molar ratios (Fig. 4B, red plots). The non-linear trend of 1HN-R2p 

values (which we refer to as a ‘roof’ pattern) can be explained by the progressive 

formation of long-lived specific protein-protein associations that reduce access of 

gadodiamide to residues at or near the binding interface. To quantify this effect, we 

calculated the deviation of 1HN-R2p values from a linear concentration dependence (Δ), 

as described previously 
34

. We excluded from this analysis all of the residues that in free 

Ub displayed a 1HN-R2p value smaller than 8s
-1

 (Fig. S3), indicative of a buried position. 

Δ values were considered significant if the parameter exceeded twice its uncertainty (i.e. 

Δ/rΔ > 2, 
34

).   

As a control, we repeated the experiment using protein GB1 (not a partner of Ub) in 

place of UBA2 (Fig. 4A,B, green plots). In this case, we observed modest variations of 

Ub’s 1HN-R2p values, attributable to less frequent protein-protein collisions at the 

surface of Ub, when in the presence of a non-interacting protein. 

Residues displaying a significant Δvalue were: 2, 4, 8, 10, 11, 14, 20, 32-36, 40, 41, 

43-46, 51, 54, 55, 58-60, 63, 67-69. These residues were mapped onto the Ub structure 

with distinct colors representing different surface patches (Fig. 5A,B). Notably, residues 

displaying the largest Δvalues (> 5s
-1

) were residues 8, 14, 35, 36, 43, 44, 46, 59, 63, 67, 

69, which include those forming the Ile44 patch. Therefore, this analysis revealed 

additional specific contact surfaces containing residues Phe4, Ile36, and Asp58, which 

were identified in alternative binding interfaces used by Ub to recognize different 

binding partners 
11,45,46

. Some of the identified contact residues in the secondary patches 

(e.g. 32-36) also show a small CSP (Fig. 2C, 5C). Others, occupying positions 58-60 in 

a region between strands β4 and β5, do not exhibit significant CSP (Fig. 2C, 5C), 

probably due to the small population of the corresponding complex. 

It must be noted that the approach described above proved unsuccessful in 

identifying specific binding patches in the uncrowded solution. Indeed, 1HN-R2p values 

obtained upon addition of UBA2 in the same concentration range as explored with 

Ficoll, did not display the typical ‘roof’ pattern even in the case of residues belonging to 
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the Ile44 patch (Fig. S4). Given the small size of the chosen test proteins, it is possible 

that Ub/UBA2 collisions and reorientations in dilute conditions are too fast to be 

detectable by our PRE method. 

 

DISCUSSION 

Ubiquitin function is determined by covalent modification of protein substrates as 

well as by non-covalent recognition of partner protein surfaces. Owing to its small size, 

a large part of Ub’s amino acid residues are exposed to the exterior and are potentially 

available for biomolecular recognition. Among these, a prominent role is played by 

residues forming the Ile44 patch, which centralizes most of the interactions with Ub 

binding domains 
4,11

. Remarkably, this region is able to attract UBDs displaying highly 

divergent structural traits, such as single helices, multiple helices, and even  sheets 
14

. 

The interactive capacity and binding versatility of the Ile44 patch is ensured by a finely 

tuned combination of rigidity and plasticity 
13,47

. In contrast to the high level of detail 

obtained in the description of protein binding at the Ile44 region, the role of the 

remainder of Ub’s surface in protein-protein association events remains less well 

characterized. 

Monomeric Ub and individual Ub moieties in polyUb chains offer limited contact 

size for binding, and most Ub-UBD interactions are characterized by low affinity in 

vitro. Weak transient protein-protein interactions can be influenced by the 

heterogeneous and crowded intracellular environment to a larger extent than high-

affinity associations 
48

, however investigations of Ub-UBD binding in cell-mimicking 

media are lacking. In our work, we aimed at assessing the effect of macromolecular 

crowding on the interaction between Ub and a representative UBD, UBA2, that was 

previously shown to target the canonical Ile44 patch on Ub 
26,41

. Because of the multiple 

possible perturbations originating from macromolecular crowders, we focused our study 

on a hydrophilic sucrose polymer, Ficoll 70, eliciting viscosity and excluded-volume 

effects 
35

, but not establishing chemical interactions with the test proteins. 

Ub experienced minimal perturbations in the presence of up to 200g/L Ficoll (a 

concentration close to the total macromolecular concentration in the average eukaryotic 
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cytoplasm), except for viscosity-dependent hydrodynamic properties. Similarly, the 

overlapping features of site-resolved NMR spectral fingerprints collected with 

saturating amounts of UBA2 in dilute and in crowded solutions indicated that the 

structure of the Ub/UBA2 complex was retained. Thus, the Ile44 region mediates 

specific Ub/UBA2 recognition in buffer as well as in crowded solution. The most 

prominent crowding-induced perturbation concerns the apparent binding affinity, which 

was found increased with respect to uncrowded solution. By comparing the results 

obtained in polymeric (Ficoll) and non-polymeric (sucrose) crowder solutions, we found 

that the macromolecular nature of the cosolute was responsible for the increased 

complex stability. Protein-protein associations are predicted to be favored under 

macromolecular crowding conditions according to excluded volume and depletion force 

theories 
49–53

. Depletion forces stabilize equilibrium-state and transition-state 

complexes, enhancing binding affinity and association rates 
48,51

. Macromolecular 

crowding may also decrease dissociation rates by increasing rebinding probability from 

the encounter complex 
48

. On the other hand, diffusion and collision between 

associating molecules are slower under macromolecular crowding (the viscosity of a 

Ficoll solution is higher than that of a sucrose solution at equal mass concentration, see 

Materials and Methods, and Fig. 1, S2) resulting in decreased association rate if the 

reaction is diffusion-limited, or unperturbed on-rate if it is under transition-state control 

48
. Although the precise influence of viscosity on formation of the Ub/UBA2 complex 

remains unknown, it appears that depletion attraction is a major contributor to the 

observed increase of binding affinity in Ficoll solution.     

In addition to the identification of the primary recognition interface, we explored the 

possibility to detect UBA2 binding to alternative surface patches. Indeed, transient 

complexes play an important role in macromolecular associations, and repositioning of 

binding partners after preliminary collisions efficiently leads to formation of longer-

lived assemblies 
54

. Furthermore, it is expected that alternative encounters are 

particularly evident in low-affinity protein-protein complexes 
55

, such as Ub-UBD, due 

to the high concentration of UBD necessary to obtain saturation of the primary binding 

site. Paramagnetic relaxation enhancement approaches have established capability to 

detect ultra-weak interactions 
42,43,56

. Here, we adopted the solvent PRE method in place 
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of covalent conjugation by paramagnetic tags in order to avoid potential artifacts due to 

chemical modification of a small-sized protein. From the systematic analysis of 
1
H 

PREs of Ub at increasing concentrations of UBA2 in Ficoll solution, a differential 

behaviour of surface residues was observed. Specific interactions, revealed by a non-

linear increase in PRE attributed to the exclusion of the paramagnetic molecular probe 

from the protein-protein interface, were detected for residues of the primary binding site 

at the Ile44 patch and for residues previously identified in non-canonical binding 

surfaces on Ub 
11,14,45,46

. For example, a ‘polar’ surface centered on Asp58, involving 

Ub residues 51, 54, 55, and 57-60, was recognized as a novel interaction interface in 

Ub-Rabex5 complex in addition to the canonical Ile44 hydrophobic area 
57,58

. Also, in 

Ubch5b-Ub-NEDD4L complex, Ub contacts the E3 partner via the Ile36 patch (Ile36-

Leu71-Leu73) and other residues including Gly35, Gln40 and Leu69 
59

. Binding of 

linear ubiquitin chains by NEMO involves distinct patches on the Ub surface: while the 

distal Ub binds via its C-terminal tail and the Ile44 area, the proximal Ub employs 

residues Gln2, Phe4, Lys6, Gly10, Thr12, Ile13, Thr14, Glu16, Glu64, and Thr66 
60

.  

Thus, our data suggest that, in equilibrium conditions, low-populated specific 

UBA2/Ub associations coexist with the main stereospecific complex. It remains to be 

established whether these interactions are unintended (noise) or productive (part of the 

signal, i.e. functional encounter complexes), and whether they are specific of the 

investigated UBA2 or paradigmatic for all UBDs. By investigation of further (larger) 

protein pairs it should become possible to determine if macromolecular crowding 

affects the relative free energies of primary and secondary interactions, a notion that 

could be exploited to select among alternative bound conformations.  

 

CONCLUSIONS 

Weak protein-protein interactions, such as those between Ub and UBD, are 

potentially prone to be influenced by macromolecular crowding, a distinctive feature of 

the intracellular environment. In our work we found that high concentrations of a 

crowding agent did not influence the preferential binding of UBA2 to the canonical 

Ile44 patch of Ub. On the other hand, from a more comprehensive exploration of 
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Ub/UBA2 contacts based on a solvent PRE approach, secondary contact surfaces were 

detected. The regions were classified as specific based on the non-linear PRE trend 

observed at varying UBA2 concentration, although the absence of strong concomitant 

CSP hinted at ultra-weak affinity of the corresponding interactions and/or a significant 

heterogeneity of the ensemble of complex conformations. Thus, Ub/UBA2 complexes 

populate high energy local minima of the free energy landscape which may be in 

equilibrium with the low energy minimum corresponding to the stereospecific complex. 

Alternatively, the identified patches may mediate formation of futile complexes that are 

in competition with the main conformation. It is probably not accidental that other UBD 

target these regions, which can thus be considered pivotal for biomolecular recognition. 

In the broader context, identification of weak secondary interaction surfaces in cell-

mimicking crowded solutions by use of PRE methods could improve our understanding 

of dynamic protein-protein interaction networks and, ultimately, of the molecular-level 

structural organization of the intracellular milieu.   
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FIGURE  

 

Figure 1. NMR analysis of 
15

N-Ub in crowded solution. A) Amide chemical shift perturbations 

(CSP) obtained from 
1
H,

15
N-HSQC spectra of [

15
N]Ub in the presence of 200 g/L of Ficoll with 

respect to [
15

N]Ub in buffer. The CSP data are plotted as a function of residue number. B,C) 

15
N–spin relaxation rates of [

15
N]Ub with/without Ficoll. Shown are 

15
N-R1 (B) and 

15
N-R2 (C) 

values as a function of residue number, obtained with (red) and without (black) 200 g/L Ficoll at 

25 °C. 



   CHAPTER 3: Publications 
 

84 
 

Figure 2. Ub-UBA2 titration monitored by 
1
H,

15
N-HSQC. A, B) Overlay of portions of 

15
N-Ub 

spectra collected in buffer without (A) and with (B) 200 g/L Ficoll, upon successive additions of 

UBA2. The displayed spectra correspond to UBA2/Ub molar ratios of 0 (black), 0.25 (blue), 0.5 

(cyan), 1 (purple), 2 (green), 3 (tomato), 5 (orange), 7 (red). C) Plot of the chemical shift 

perturbation (CSP) data from 
1
H,

15
N-HSQC spectra of [

15
N]Ub in the presence of 7-fold molar 

excess UBA2 with respect to free [
15

N]Ub, in the absence (black) and presence (red) of 200 g/L 

Ficoll. D,E) Ub/UBA2 binding isotherms for selected Ub residues based on CSP data collected 

in buffer without (D) and with (E) 200 g/L Ficoll. Residue numbers are indicated in the legend. 

 

 

 

 

 

 

Figure 3. Solvent PRE on Ub. Main panel: 
1
HN-R2p rates of Ub in phosphate buffer solution 

without (black) and with 200 g/L Ficoll (red). Top panel: black bars indicate Ub residues whose 

backbone nitrogen atoms display significant (> 0.3 Å
2
) solvent accessible surface area 



   CHAPTER 3: Publications 
 

85 
 

(calculations performed using the software GetArea 
121

 with the protein structure, PDB: 1ubq 

122
). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Solvent PRE on Ub upon UBA2 addition. A) In red, 
1
HN-R2p rates of a representative 

group of Ub residues, that increase linearly by addition of UBA2 to Ub. The dashed line 

corresponds to the least-squares linear fit over three experimental points. As control, 
1
HN-R2p 
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rates measured upon addition of GB1 to Ub, are reported in green. Rates are plotted versus the 

protein/Ub molar ratio. B) 
1
HN-R2p rates of representative Ub residues, whose value at 1:0.5 was 

above the linear trace connecting points 1:0 and 1:1, are shown in red. The dashed line 

corresponds to the least-squares linear fit over three experimental points. 
1
HN-R2p rates measured 

upon addition of GB1 to Ub are shown in green. Rates are plotted versus the protein/Ub molar 

ratio. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mapping of interaction surfaces on Ub. Surface residues (
1
HN-R2p(0) > 8 s

−1
) 

displaying Δ/rΔ > 2 are mapped onto the Ub structure (PDB: 1ubq 
122

), represented with a 

ribbon (A) or surface (B) models; two groups are identified: the red area surrounding the Ile44 

patch and the blue surfaces comprising the additional contact sites. C) CSP mapping: Ub 

residues displaying CSP > 0.1 ppm upon addition of a seven-fold molar excess of UBA2 are 

colored in green. All data refer to experiments performed in 200g/L Ficoll solution. Residues 

Leu8, Ile44, and Val70, belonging to the canonical Ile44 patch, are represented in sticks in 

panels A and C.  
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Identification of primary and secondary UBA footprints on the surface of 

ubiquitin in cell-mimicking crowded solution 

Francesca Munari
1
, Andrea Bortot

1
, Serena Zanzoni

1
, Mariapina D’Onofrio

1
, David 

Fushman
2
 and Michael Assfalg
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Materials 

Deuterium oxide (99.9%) and 
15

NH4Cl were purchased from Spectra2000 s.r.l. 

(Roma, IT). Ficoll® (Poly(sucrose-co-epichlorhydrin)) PM 70 (#F2878) from Sigma–

Aldrich. Gadodiamide (gadolinium(III) 5,8-bis(carboxylatomethyl)-2-[2-

(methylamino)-2-oxoethyl]-10-oxo-2,5,8,11-tetraazadodecane-1-carboxylate hydrate) 

was purchased from Selleck Chemicals. 

Protein expression and purification 

Recombinant human Ub and the UBA2 domain of HHR23A were expressed 

overnight at 20 °C in Escherichia coli Rosetta cells induced with 0.4mM IPTG.  

Ub was purified by precipitation of bacterial proteins through addition of perchloric 

acid to cell lysate. After centrifugation and dialysis of the supernatant in ammonium 

acetate pH 4.5, Ub was further purified by cation exchange chromatography on SP-

Sepharose (GE Healthcare). Fractions of Ub eluted with a 0-0.5 M NaCl gradient were 

collected and dialyzed into the final NMR buffer. 

UBA2 was produced as GST-fusion protein as described by Raasi et al.(JMB, 2004, 

341, 1367) and purified using Glutathione Sepharose (GE Healthcare) according to 

standard protocols. The GST tag was then removed by cleavage with thrombin followed 

by gel-filtration on a Superdex-75 (GE Healthcare). UBA2 was then dialyzed into final 
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NMR buffer. 
15

N-labelled samples were produced in M9 minimal medium 

supplemented with 1g/L 
15

NH4Cl as sole source of nitrogen.  

GB1 (streptococcal protein G B1 domain) protein was produced in BL21(DE3) 

Escherichia coli cells as His-tagged recombinant protein in fusion with C-terminal 

Green Fluorescent Protein (GFP). Protein purification was performed by IMAC 

chromatography using a Ni
2+

 charged-chelating sepharose (GE Healthcare). Next, GFP 

was cleaved from His-GB1 by TEV protease (Sigma Aldrich) and removed by size 

exclusion chromatography (Sephacryl S-100 HR, GE Healthcare).  

Protein samples were concentrated using centrifugal filter units (Millipore). All 

samples for NMR measurements were prepared in 10mM potassium phosphate buffer at 

pH 6.8, also containing 0.02% NaN3 and 8% D2O. 

 

 

 

 

 

 

 

 

 

Figure S1. NMR binding isotherms of  Ub/UBA2  in sucrose. 
15

N-Ub/UBA2 binding isotherms 

for selected Ub residues based on CSP data collected in 200g/L sucrose. Residue numbers are 

indicated in the legend. 
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Figure S2. NMR relaxation data for Ub in sucrose. A) Main-chain 
15

N–R1 values of [
15

N]Ub in 

200g/L sucrose solution. B) Main-chain 
15

N–R2 values of [
15

N]Ub in 200g/L sucrose solution. 

 

 

 

 

 

 

 

 

 

 

Figure S3. Analysis of Δ values. Plot of Δ values against residue number. Error bars are  

values. Δ is the deviation from a linear concentration dependence of 
1
HN-R2p values. 

Measurements were performed in A) uncrowded solution, B) 200g/L Ficoll. Only values for 

exposed residues (
1
HN-R2p(0) > 8 s

-1
) are shown. Δ values exceeding 5 s

-1
 are highlighted in red. 
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Figure S4. 
1
HN-R2p rate analysis for Ub/UBA2 in uncrowded solution. Data are shown for the 

same residues as in Figure 4A,B. 
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Specific interaction sites determine differential adsorption of protein structural 

isomers to nanoparticle surfaces  
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a
 S. Zanzoni,

a
 M. D’Onofrio

a
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a 

 

Department of Biotechnology, University of Verona, 37134 Verona (Italy) 

 

Abstract 

In biological milieus, nanoparticles (NPs) elicit bioactivity upon interaction with 

proteins. As a result of post-translational modification, proteins occur in a variety of 

alternative covalent forms, including structural isomers, which present unique molecular 

surfaces.  We aimed at a detailed description of the recognition of protein isomeric 

species by NP surfaces. The transient adsorption of isomeric Ub dimers to NPs was 

investigated by solution NMR spectroscopy. Lys63-linked Ub2 and Lys48-linked Ub2 

adsorbed to large anionic NPs with different affinity, while the binding strength was 

similar in the case of smaller particles. After incorporation of paramagnetic tags into 

NPs, the observed site-resolved paramagnetic footprints provided a high-resolution map 

of the different protein surfaces binding to NPs. The described approach could be 

extended to further protein isoforms and more specialized NP systems, allowing better 

control of interactions between NPs and protein targets. 
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Introduction 

Continuous progress in nanotechnological research has aroused tremendous interest in 

the interactions between biomacromolecules and nanoscale objects.
[1–4]

 Noncovalent 

protein-nanoparticle (P-NP) interactions play fundamental roles in numerous recent 

technological developments, particularly in the fields of biomedicine and sensing.
[2,3,5–8]

 

Indeed, selective binding of biomacromolecule surfaces by NPs provides a means to 

elicit specific responses and to control biomolecular communication.
[9]

 Clearly, NPs 

present several advantages for protein recognition, including a large surface available 

for interaction, however achieving the specificity found in natural protein-protein (P-P) 

interactions represents a major challenge.   

NPs devoid of complex decorations expose relatively featureless surfaces which 

appear unsuitable for complementary surface interactions with biomacromolecules. Yet, 

several examples have been presented in which proteins adsorb to non-functionalized 

NP surfaces via preferential binding sites, thereby providing evidence that even simple 

NPs are capable of establishing specific interactions with biomacromolecules.
[10–16]

 This 

notion has important implications for the design of nano-medical tools as well as non-

medical devices,
[1,6]

 but many aspects of specific P-NP interactions remain to be 

addressed and a more fundamental understanding of the principles underlying nano-bio 

complexations is required.       

In order to be able to control the orientation of protein molecules relative to NP 

substrates, the overall complexity of protein surface recognition needs to be taken into 

account. Natural proteins present an extremely diversified array of surface features, 

leading to unique P-P interfaces for each molecular pair or assembly.
[17–19]

 The chemical 

diversity of protein surfaces results from unique combinations of amino acids forming 

polypeptide chains as well as from a huge number of possible covalent modifications of 

amino acid side chains. Post-translational modifications such as phosphorylation, 

acetylation, methylation, and ubiquitination introduce chemical groups at distinct sites 

on a protein structure, generating multiple protein products and structural isomers.
[20]

 

The specificity of P-P (and predictably of P-NP) interactions crucially depends on the 

differential recognition of isomeric species by their receptors. Additionally, dynamic 
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aspects of molecular recognition must be considered, as these may significantly 

contribute to shape the interaction energy landscape.
[21,22]

 

In our work, we strived to add new insight into protein-NP recognition mechanisms. 

While recent studies described the adsorption of monomeric globular proteins to NP 

surfaces,
[10–16]

 here we addressed  the specificity of protein-NP interactions in relation to 

protein structural isomerism and conformational dynamics. The small protein ubiquitin 

(Ub) represents an ideal model system for such investigations for several reasons. First, 

Ub was shown to interact specifically with a number of NPs.
[10–12]

 Second, the covalent 

conjugation of Ub to protein substrates is a major post-translational modification 

mechanism (ubiquitination).
[23]

 Third, ubiquitination can modify Ub itself, generating 

polymeric Ub named polyUb chains. Ub units in polyUb are linked by isopeptide bonds 

and generate polyUb isomers that differ in the site of covalent conjugation.
[23]

 Fourth, 

polyUb isomers exhibit different conformational dynamics and elicit profoundly 

different functional responses.
[24]

  

For our investigation, two isomeric forms of dimeric Ub (Ub2) were presented with a 

small collection of bare NPs. Among these, lipid nanovesicles (LNV) constitute a 

highly versatile NP system, they can be easily assembled in a wide range of sizes and 

obtained in a variety of chemical formulations. LNV are largely employed for 

biomedical applications and represent models for lipid-coated NPs. We also used silica 

NP (SNP), and micelles obtained from an amphiphilic synthetic derivative. In order to 

gain atomic level information on adsorption mechanisms, we adopted NMR 

spectroscopy. In particular, 1D 
1
H-NMR was used to estimate the relative strength of 

the interactions, and site-resolved paramagnetic-NMR was used to identify binding 

sites. Ub2 constitutional isomers were found to adsorb differently to anionic LNV of 

100 nm size, while differences were less pronounced with the other formulations. The 

paramagnetic footprints provided insight into the adsorption mechanisms. 
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Results 

Preparation and description of NPs and protein products 

We selected lipid nanovesicles, LNV, as our main NP model system due to the 

straightforward preparation procedure, the possibility to control particle size and 

physicochemical properties, as well as to incorporate spectroscopic molecular probes. 

Large unilamellar vesicles (LUV) and small unilamellar vesicles (SUV) were prepared 

by mixing phospholipids of defined surface charge with cholesterol, thereby obtaining 

LNV in the size range of 30-120 nm with strongly or moderately negative surface 

charge, or positive charge (Figure 1, Supplementary Figure S1, and Table 1). In order to 

produce LNV of smaller size, an amphiphilic compound made from a C17 aliphatic 

chain conjugated to an hydrophilic cage (C17-AAZTA) was used to form micelles of 7 

nm diameter (Scheme S1, Figure S1, Table 1). The AAZTA cage can host metal ions 

which can act as spectroscopic probes. Finally, we purchased silica nanoparticles (SNP) 

of similar size as SUV, bearing negative surface charge (Supp. Figure S1, Table 1). 

Monomeric human Ub was produced by recombinant expression. Ub is a small 76-

amino acid polypeptide which folds into a highly stable -grasp conformation. A 

solvent-exposed hydrophobic area, centered around residues Leu8, Ile44, and Val70 

(Ile44 patch, yellow in Figure 2),
[24,25]

 stands out from the predominantly polar protein 

surface. The side chains of seven lysine residues are on the surface and each one can 

potentially participate in the formation of an isopeptide bond with the carboxyl group of 

another Ub molecule (Figure 2B), forming polyUb chains. We selected Lys48- and 

Lys63-linked polyUb since these linkages are the most characterized and relevant of all 

types of conjugation in natural chains. Ub dimers, Ub2, were produced by enzyme-

catalyzed synthesis combining mutants Ub(K48R or K63R) and Ub(D77) in order to 

prevent the formation of longer polyUb chains. 
K63

Ub2 adopts an extended 

conformation, in which the only intersubunit contact is the covalent linkage (Figure 

2C).
[26]

 
K48

Ub2 occurs mainly as a compact structure, with extensive contacts between 

the Ub units, and buried Ile44 patches. This dimer undergoes rapid conformational 

equilibrium between the closed state and a more open state that does not present a 

significant intersubunit interface (Figure 2D).
[27]
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Strength of protein-NP interactions 

Protein NMR spectra are expected to be perturbed when proteins adsorb to NPs.
[28]

 The 

most dramatic effect is the strong broadening or cancellation of protein signals upon 

association with NPs, which originates from the reduced tumbling rate of the protein 

when forming a larger assembly. In case of dynamic association equilibria, the type of 

perturbation to the observable signal is determined by the chemical exchange regime, 

but signal intensities are always reduced. If the interaction takes place in the slow 

exchange regime, it becomes possible to use signal intensities to quantify the adsorbed 

protein molecules.
[29]

 In the faster regimes, signal intensities are not linearly dependent 

on the population fraction of the observed species, but their reduction upon successive 

addition of NPs can be semi-quantitatively related to binding strength, as shown by 

lineshape simulation analysis (Supp. Figure S2). The analysis of one-dimensional 
1
H-

NMR spectra is a straightforward and rapid approach to rank protein-NP pairs based on 

their relative affinity. 
1
H-NMR experiments were performed on the same samples used 

for heteronuclear NMR experiments, enabling a direct link between binding curves and 

perturbation analysis. Herein, binding curves that showed hyperbolic behaviour were 

fitted to determine pseudo-association constants, K, whose values were used to estimate 

the apparent relative binding strength f63/48 = 
K63

K/
K48

K of protein isomers to the same 

substrate.    

Titration experiments were performed by recording 
1
H-NMR spectra on protein 

samples at successive additions of NPs. The downfield portion of the 
1
H-NMR spectra 

displayed signals exclusively from protein molecules, while no signals of NPs appeared 

in this region. The spectral envelopes were integrated and binding curves were obtained 

for each combination of protein and NP (Figure 3). After mixing 

(POPG:POPC:Chl)LUV with Ub, the protein signal intensity decrease appeared rather 

modest (Figure 3A), indicative of weak binding. The presence of an additional 

negatively charged residue at the C-terminus in the mutant Ub(D77) further reduced the 

interaction. Since the two investigated Ub2 isomers bear the same mutation at the C-

terminus, it was interesting to observe that 
K63

Ub2 retained affinity for LUVs, while 

almost no perturbation was observed in 
K48

Ub2 spectra. Using more negatively charged 

LUVs, (POPG:Chl)LUV, all proteins were found to be attracted more strongly, except 
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for Ub(D77) (Figure 3B), which was experiencing electrostatic repulsion due to the 

negative charge of the terminal aspartate. Again, the 
K63

Ub2 species displayed higher 

affinity for the NP surface than its isomer 
K48

Ub2 (f63/48 = 2.77). The same trend was 

also found with smaller particles, (POPG:Chl)SUV, although in this case the binding 

curves for the two dimeric Ub forms appeared less separated (Figure 3C) and the 

relative binding strength was f63/48 = 1.61. Fluorescence titration data for the binding to 

(POPG:Chl)LUV confirmed the result of NMR titrations (Supp. Figure S3).  

Similar to the case of (POPG:Chl)SUV, both monomeric and dimeric Ub were 

attracted by SNP displaying negative -potential and almost identical size as SUVs 

(Figure 3D). The relative affinity of 
K48

Ub2 and 
K63

Ub2 was similar (f63/48 = 1.54) to that 

observed with SUV. When C17-AAZTA micelles, displaying the same -potential as 

SUV, were presented to dimeric Ub, we observed no difference in the behaviour of the 

two isomers (Figure 3E), as indicated by the value f63/48 = 0.96. Finally, we investigated 

the interaction of positively charged (DOTAP:DOPE)LUV with both monomeric and 

dimeric Ub. While there was almost no adsorption of wild-type Ub, the other protein 

molecules displayed significant interaction with the NPs (Figure 3F). However, the 

binding curves departed significantly from a hyperbolic trend after the first few titration 

steps, and intensities reached a plateau with only partial signal cancellation. This 

behaviour can be ascribed to the loss of colloidal stability and particle precipitation. 

Thus, it remained unclear whether Ub2 species interacted similarly or differently with 

these NPs. 

Identification of NP binding sites on protein surfaces 

Given the observation that Ub species could interact differently with the diverse NPs, 

we set to explain the specificity of binding by determining the protein surface regions 

contacting the NPs. Site-resolved perturbations can be observed in heteronuclear 

correlation NMR spectra such as 
1
H,

15
N-HSQC. Although the signals of NP-bound 

proteins are generally invisible due to excessive line broadening, bound states can be 

accessible to NMR experiments in case of transient association equilibria due to 

exchange-mediated signal averaging.
[30,31]

 Under favorable conditions, chemical shift 

(peak position) changes are detectable, providing a straightforward means to identify 
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residues whose chemical environment is perturbed upon interaction of the protein with 

the NP.
[28,31,32]

 While powerful, the chemical shift approach has the drawback that it 

does not allow to distinguish primary from secondary interactions, nor P-P interfaces 

from P-NP binding sites. Thus, we adopted the recently described paramagnetic 

perturbation mapping method.
[31]

 In this approach, paramagnetic relaxation agents are 

incorporated into the NPs, and paramagnetic-induced spin relaxation enhancements 

(PRE) are detected. PRE effects are distance dependent and thus contain information 

about the protein residues that get closer to the NP surface. 

We focused our binding site investigation on two LNVs that elicited different binding 

behaviour of 
K48

Ub2 and 
K63

Ub2. The two protein isomers had very distinct affinity for 

(POPG:Chl)LUV, while they produced identical binding curves when mixed with C17-

AAZTA micelles. Importantly, paramagnetic probes could be introduced easily into 

both NPs: in the case of LUV, part of the cholesterol molecules were replaced by doxyl 

cholestane, while in the case of micelles, diamagnetic Y
3+

-bound C17-AAZTA 

compounds were in part replaced by Gd
3+

-bound analogues.
[33]

 Both the aminoxyl 

radical and the trivalent Gd ion have isotropic or nearly isotropic magnetic 

susceptibility tensors, thereby causing negligible paramagnetic shifts.
[34–37]

 The 

unpaired electrons, however, relax slowly and determine strong PRE on nearby nuclear 

spins.
[34,35]

 Residue-specific PRE effects observed in protein spectra after addition of 

paramagnetic-labelled NPs can be ascribed exclusively to direct protein-NP interactions. 

PRE effects were monitored by evaluating HSQC peak intensity attenuations, with 

respect to the corresponding diamagnetic references, at varying protein:lipid molar 

ratios. For each titration series, the protein:lipid molar ratios that showed clear 

attenuation patterns and that were obtained with good signal/noise were selected for 

detailed analysis (Figure 4). The addition of paramagnetic LUV to [
15

N]Ub caused 

region-specific HSQC peak intensity attenuations (Figure 4A). The smallest intensity 

ratios (Ipara/Idia <0.8, where Ipara is measured in the presence of paramagnetic LUV, and 

Idia in the presence of diamagnetic LUV) were found for residues 8, 9, 44, 46, 47, 49, 

69, 71, 72, 73, forming three sub-regions (displayed in orange in Figure 5A) that 

overlapped with the Ile44 patch. These experiments were repeated with dimeric Ub. In 

order to resolve the spectroscopic equivalence of the two Ub units, only the proximal 
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unit (carrying a free C-terminus) was 
15

N-labelled. By inspecting the intensity 

attenuation profiles of 
K63

Ub2, it appeared that the strongest attenuations were localized 

in all of the sub-regions I-III, including residues 8-11, 47-49, 71, 73-76 (Figure 4B), 

again partly overlapping with the Ile44 patch (Figure 5B). In the case of 
K48

Ub2, the 

strongest attenuations were observed for residues 44, 46, 47, 49, 71-73, while no effect 

was observed in sub-region I at any protein:lipid ratio (Figure 4C, 5C). 

Finally, both dimeric Ub were presented with paramagnetic C17-AAZTA micelles. The 

attenuation profiles appeared rather similar in this case. Significant intensity 

attenuations were found for residues in the polypeptide stretches corresponding to sub-

regions I-III (Figure 4D). 

Discussion 

Recent studies demonstrated the possibility to obtain high-resolution details about nano-

bio interfaces.
[10,30,31,38–40]

 It emerged that simple protein molecules could adsorb to NPs 

via specific binding sites, in analogy with the mode of recognition of natural protein 

partners. In the present work, we considered additional layers of complexity in protein-

NP recognition by interrogating the adsorption mechanisms of dynamic isomeric 

protein species to diverse NP surfaces. Both structural isomerism and conformational 

dynamics potentially modulate protein-NP interactions and their elucidation should 

enable better control of binding specificity and selectivity. 

The protein Ub undergoes transient association to negatively charged NPs without 

experiencing significant conformational changes.
[38]

 Adsorption is mediated by a 

preferential binding surface of Ub that coincides approximately with the canonical 

hydrophobic patch involved in the recognition of many Ub-binding partners.
[38]

 The 

presence of several cationic amino acid side chains in this area suggests that the 

interaction is supported by electrostatic attraction. Since Ub can form polymers, it 

represents an ideal system to study the effects of intersubunit linkage and 

conformational dynamics on its adsorption to NP surfaces. 

 We mixed Ub dimers with a diverse set of NPs and evaluated the binding strength 

based on protein signal intensities as a function of NP concentration (Figure 3). With 
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the smallest particles of this study, C17-AAZTA micelles, we observed identical binding 

curves for the two isomers 
K48

Ub2 and 
K63

Ub2, indicating that they bound with the same 

affinity. The 
K63

Ub2 species displayed stronger affinity to negatively charged SNP than 

K48
Ub2. With particles of different chemical composition and electrokinetic surface 

potential but similar size, (POPG:Chl)SUV, the relative binding affinity was almost 

unchanged. However, the difference in binding was even more evident when using 

LUVs, with  f63/48 = 2.77 for (POPG:Chl)LUV and f63/48 = 7.14 for 

(POPG:POPC:Chl)LUV. These data indicate that the tendency of Ub dimers to bind to 

NPs is related to the topology of the Ub chain, i.e. the position of the isopeptide bond,. 

In fact, the two Ub2 species are constitutional isomers, therefore the differences must 

originate from structural diversity. It appears that small, featureless NPs are not capable 

to differentially recognize the isomers, while larger particles characterized by low 

surface curvature are less ideally suited to bind 
K48

Ub2 in comparison to 
K63

Ub2. 

Interestingly, both Ub2 species also associated with positively charged NPs, although 

we could not establish if there was any preferential binding due to the loss of colloidal 

stability at increasing NP concentration. 

In order to understand the molecular determinants of the differential recognition of Ub 

dimers by negatively charged NP surfaces, residue-resolved NMR experiments were 

performed. We introduced paramagnetic tags into LUVs and micelles, and analyzed the 

PRE effects at individual amino acid positions in terms of intensity attenuations. Based 

on the observed intensity profiles, we found that the interactions of monomeric and 

dimeric Ub to LNVs involved defined surface regions (Figure 4, 5), consistent with 

specific P-NP binding. Residues experiencing the strongest effects invariably localized 

to a surface area almost coincident with the Ile44 patch. In fact, the perturbations 

mapped to two close regions and residues between them experienced minor or no PRE 

effect. Based on the limited size of the individual surface areas and on previous studies 

on Ub/NP interactions,
[31,38]

 it can be concluded that the two patches do not constitute 

separate binding sites but they belong to the same interface. The reduced PRE effects on 

residues Arg42 or Val70, located between patches, is attributable to the positioning of 

the corresponding amide atoms deeper inside the protein framework  resulting in a 

larger distance from the NP surface in the bound state. It must also be noted that, on 
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average, we expect a NP-bound protein molecule to experience the PRE effect 

predominantly from a single paramagnetic center. 

The intensity attenuation profiles determined for Ub2 species in the presence of 

micelles appeared almost identical, explaining the observed comparable binding 

affinity. On the contrary, differences could be observed for Ub2 isomers binding to 

LUVs. First, perturbations were absent for 
K48

Ub2 in sub-region I, while they were 

present in the case of 
K63

Ub2. Second, PRE effects could be detected in the C-terminal 

amino acids of 
K63

Ub2 but not of 
K48

Ub2. It should be emphasized that 
K48

Ub2 adopts 

preferentially a compact conformation in which the Ile44 patch is not accessible. The 

observation of perturbations in this area indicates that the binding competent 

conformation is an extended one in which the interdomain interface is lost. Opening of 

the compact structure must occur through conformational isomerization. Yet, the 

absence of observable intensity attenuations in  the proximal domain’s sub-region I  

indicates that the linkage topology determines a reduced accessibility of that area, 

resulting in decreased affinity of this dimer compared to its structural isomer. The 

modified orientation of 
K48

Ub2 compared to 
K63

Ub2 might also explain the different 

attenuation pattern at the C-terminus. The dissimilar patterns observed in the case of 

micelles and of LUVs suggest that NP surface curvature had a major influence on the 

involved contact surfaces of the Lys48-linked dimer. Therefore, in agreement with 

several previous studies, our results confirm that NP size and surface charge have a 

profound impact on protein adsorption.
[16,41,42]

        

Selectivity of P-NP interactions can be attained by optimal tuning of the interaction 

forces. The adsorption of Ub to LNVs bearing different surface charge suggests that 

Coulombic forces contribute significantly to such interactions, and indeed the identified 

recognition sites display positive electrostatic potential.
[18]

 Electrostatic interactions 

have been shown to play an important role in the binding of several proteins to surface-

charged NPs or NPs modified with charged ligands.
[3,43–45]

 Importantly, such 

interactions have been found to provide a significant level of selectivity, whose 

molecular basis is protein charge anisotropy.
[46–48]

 Region-specific short-range 

(hydrogen bonding, dipole-dipole, hydrophobic) forces may further enhance the 

selectivity of the interactions.
[49]

 Herein, we have shown that NMR perturbation 
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mapping can serve as a fundamental tool to describe surface chemistry anisotropy and 

to identify recognition patches on the surfaces of closely related protein molecules, such 

as isomeric products of post-translational modification, also in the presence of 

conformational dynamics.  

It is important to remark that it remains as yet unknown whether Ub dimers form 

compact monolayers around the NP surface, in analogy with the monomeric 

protein,
[11,29]

 or rather more complex adsorbed layers are formed. Indeed, in addition to 

steric repulsion between protein molecules, it is possible that intermolecular interactions 

are established at the NP surface. In the latter case, the linkage topology could have 

significant influence on the supramolecular arrangements because it would constrain the 

relative orientation of interaction sites. 

Finally, we note that the possibility to exploit NMR perturbation mapping is 

dependent on the exchange regime of the P-NP interaction. Associations of weak and 

moderate strength (down to the low micromolar range
[50]

) are readily accessible, while 

strong interactions would remain excluded because they normally entail slow exchange 

kinetics. Because general paradigms concerning protein-targeted NPs are yet to be 

established, the range of application of the approach remains undetermined. In its 

current implementation, the described methodology appears suitable for a number of 

applications such as sensing, diagnostics, and bioanalytics, while its potential as a 

complementary tool for the improvement of NP-based drugs is linked to the specific 

features of the target biological pathways. 

Conclusions 

It is now widely accepted that most nanomaterials display bioactivity as a consequence 

of their interaction with biomolecules,
[1,51,52]

 however the specificity and selectivity of 

such interactions remain poorly explored. The capability of NPs to distinguish closely 

related covalent forms of proteins, such as structural isomers, has important 

implications for the design of nanomaterials and could be exploited for the development 

of NP devices eliciting specific biological responses.  

Distinct covalent forms of proteins, produced by post-translational modification, 

display different recognition properties and perform different functions.
[53]

 This notion 
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is well exemplified by the Ub system, in which differently conjugated polymeric chains 

have unique binding features and play distinct roles in cellular biology.
[24,54]

 In our 

work, we found that structural isomers of polyUb interacted with negatively charged NP 

surfaces through preferential binding sites. Interestingly, the adsorption of structural 

isomers of Ub2 to large NPs involved different surface patches, resulting in reduced 

binding affinity of 
K48

Ub2 compared to 
K63

Ub2. We further showed that recognition of 

K48
Ub2 required the dynamic interconversion between the prevalent ‘closed’ 

conformation and the binding competent ‘open’ state.      

In conclusion, by use of NMR experiments, we were able to provide site-resolved 

binding information on complex protein-NP adsorption equilibria. We provided 

evidence of the role of structural isomerism and conformational isomerization in the 

regulation of adsorption, contributing to a better understanding of the principles 

governing protein recognition by NP surfaces.  

In our work, we used a simplified model system with charged nanoparticles to 

illustrate the differential binding of protein isomers, however the approach could be 

applied to more specialized NP systems, exploiting the possibility to tailor functional 

groups at the NP surface to increase biomolecular binding specificity and selectivity. In 

the particular case of Ub, appropriately designed NPs could act as artificial receptors for 

certain isomeric forms, with possible applications in biomedicine and bioanalytics. 

Experimental Section 

Materials 

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (POPG), 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) chloride salt, 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE), and cholesterol (Chl) were purchased from Avanti 

Polar. Ludox® TMA colloidal silica nanoparticles and 3β-doxyl-5α-cholestane (DCh) 

were purchased from Sigma-Aldrich. 6-amino-6-methylperhydro-1,4-

diazepinetetraacetic acid (AAZTA) was kindly provided by Prof. Silvio Aime 
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(University of Torino). All other reagents necessary for this study were from Sigma-

Aldrich. 

Polyubiquitin synthesis and SDS-PAGE analysis 

Unlabeled and uniformly 
15

N-labeled recombinant Ub and protein mutants, Ub(K48R), 

Ub(K63R) and Ub(D77), were expressed and purified as described.
[26]

 Segmentally 

isotope-labeled Ub2 chains were synthesized as described in Varadan et al.
[27]

 using 

enzymes E1 and E2 in overnight reactions at 37 °C added with ATP, TCEP, and an 

ATP reconstituting cocktail. Recombinant human His-tagged E1 and GST-tagged E2-

25K enzymes were used to obtain Lys48-linked Ub2 while recombinant human His-

tagged E1, yeast His-tagged Mms2 and yeast GST-tagged Ubc13 enzymes were used to 

produce Lys63-linked Ub2 molecules. Products of polyUb synthesis were inspected by 

SDS-PAGE. Proximal 
15

N-labeled Ub2 (here referred to as Ub2-P) was synthesized by 

using 
15

N Ub(D77) and unlabeled Ub (K48R or K63R). Ub2 was separated from 

unreacted Ub monomers at the end of the reaction by cation-exchange chromatography 

and the Ub2 concentration was determined from UV absorbance. 

Preparation of nanoparticle suspensions 

Lipid vesicles were prepared by dissolving powdered pure phospholipids in 

chloroform/methanol (2:1, v/v) to form a homogeneous solution. The lipid mixture was 

dried under a nitrogen gas flux in a round-bottom glass flask and the resulting lipid film 

was then dispersed in 10 mM phosphate buffer (K2HPO4/KH2PO4) at pH 6.8, to a final 

stock concentration of 120 mM in lipid. Large unilamellar vesicles, LUV, were formed 

by pressure extrusion using a hand-held miniextruder (Avanti, Alabaster, AL), by 

repeated passage through polycarbonate filters of 100 nm pore size after prefiltering 

through membranes of 1 m and 400 nm pore sizes. The following LUV formulations 

were prepared: POPG:POPC:Chl (40:40:20, w/w), POPG:Chl (80:20, w/w), 

DOTAP:DOPE (50:50, w/w). Paramagnetic LUV were prepared with the following 

composition: POPG:Chl:DCh (80:10:10, w/w), simply replacing cholesterol molecules 

with the aminoxyl derivative in the initial lipid mixture. Small unilamellar vesicles, 

SUV, were prepared using a probe tip sonicator (Misonix, NY) without cooling at 40 W 

until the solution became clear. After sonication, SUV solutions were centrifuged to 
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sediment small metal pieces released by the sonication tip. The vesicle dispersions were 

stored in the dark at room temperature until analysis.  

Ludox® TMA silica nanoparticles were obtained from the commercial source as 36 

wt% suspension in H2O. The nanoparticle suspensions were diluted with ultrapure water 

(Milli-Q) to the desired concentration (30–40 mg/mL), dialyzed for 24 h at 4 °C against 

10 mM potassium phosphate buffer, pH 6.8, with a 10-kDa regenerated cellulose 

membrane, and finally filtered with 0.22 μm Durapore membrane. Nanoparticle 

concentration in the purified sample was determined by weighing a dried aliquot of the 

solution. 

The gadolinium- and yttrium-bound amphiphilic AAZTA derivatives, prepared as 

described previously,
[55]

 were kindly supplied by Prof. Silvio Aime. The C17-AAZTA 

micelles were obtained by dissolving the powder in 10 mM potassium phosphate 

buffered solution, pH 6.8, at a concentration higher than the critical micellar 

concentration (cmc = 0.108 mM). Appropriate mixtures of Y
3+

-bound and Gd
3+

-bound 

molecules were used. 

Dynamic light scattering 

The size and polydispersity of NPs were determined using dynamic light scattering 

(DLS). DLS measurements were performed with a Zetasizer Nano ZS instrument 

(Malvern Instruments, USA) operating at λ = 633 nm with backscatter detection at 173°. 

The colloidal solutions were allowed to equilibrate for 10 min at the measurement 

temperature of 25 °C before starting acquisition.  

All samples displayed monomodal and monodisperse size distributions. NP size was 

obtained after cumulant fit of autocorrelation functions and is given as intensity-

weighted harmonic mean particle diameter (Z-Average). Each value corresponds to the 

average of three separate measurements and the experimental uncertainty is indicated as 

standard deviation. 

For -potential measurements, NP dispersions in 10 mM potassium phosphate buffer 

were placed in a zeta dip cell. Measurements were performed with automatically 

determined number of runs and applied voltage. All measurements were of good 
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technical quality based on inspection of phase and frequency plots. -potential was 

evaluated from electrophoretic mobility applying the Henry equation. 

NMR spectroscopy 

NMR experiments were run at 600.13 MHz on an Avance III 600 spectrometer (Bruker) 

equipped with a triple resonance TCI cryoprobe and z-axis gradient. 

The protein concentration was 0.2 mM in experiments with lipid vesicles and 0.1 mM 

in experiments with TMA NPs. The measurement temperature was 25 °C. 

One-dimensional 
1
H-NMR experiments were acquired with a standard pulse sequence 

incorporating the excitation sculpting water suppression scheme. A total of 128 

transients were acquired over a spectral width of 12019 Hz and 32768 complex points, 

using a recycle delay of 2 s. The spectra were processed applying an exponential 

window function prior to the Fourier transformation. 

Typical 
1
H,

15
N-HSQC experiments were recorded with a data matrix consisting of 

2048 (F2, 
1
H) × 128 (F1, 

15
N) complex points. The number of scans was 8 and the 

relaxation delay 2 s. Spectral windows of 7211 (F2) and 2189 (F1) Hz were used.  

Titration data analysis 

NMR signal intensities, I, were measured on protein samples containing increasing 

amounts of NPs. I was obtained as the total integral of the 
1
H-NMR spectral envelope in 

the amide proton region and plotted as a function of molar ratios. Titration data were 

found to display hyperbolic-like behaviour and were analyzed by least-squares fitting of 

the following function, corresponding to a Langmuir binding model:  

 
2

1 1 4 / (2 )P L P L P L Py C C K C C K C C C  
       
 

 

where y = 1-I/I0, with I and I0 corresponding to the intensity determined in the presence 

or absence of NPs, respectively. y would correspond to the fraction of bound protein in 

the absence of broadening of the free protein signal due to exchange. K is a fitting 

parameter correlated with the binding strength and corresponding to the association 

constant if y is equal to the bound protein fraction. CP and CL are the total 

concentrations of protein and lipid (or NP), respectively. The concentration of the initial 
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protein solutions was 200 or 100 M. Dilution-corrected values for CP and CL were 

used at successive titration steps.  

The stoichiometry was not introduced as fitting parameter to simplify the analysis. 

Ratios of K values are reported throughout the text in place of the single values of K 

because this parameter does not represent the actual association constant. K ratios were 

used as a semi-quantitative measure of relative binding strength. Fitting of experimental 

data was performed with the software GraphPad Prism 5.00 (GraphPad Software Inc., 

La Jolla, CA, USA). 

The first titration points (where the exchange rates are lowest) for each protein:NP pair 

were used to obtain a crude estimate of the maximum adsorption capacity (the 

maximum number of protein molecules bound per NP, Nmax).
[29]

 We found that 

experimentally-derived values were generally in agreement with those calculated from 

simple geometric considerations, suggesting that compact monolayers of proteins 

formed around NP surfaces. 
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FIGURES 

Figure 1. Illustration of nanoparticles used in this study. LUV, large unilamellar vesicles; SUV, 

small unilamellar vesicles; SNP, silica nanoparticles. POPG, POPC, DOPE, and DOTAP are 

diacyl phospholipids. AAZTA is a multidentate ligand able to chelate inorganic cations. 

Cholesterol, incorporated in negatively charged lipid vesicles, is not drawn for simplicity. 

Figure 2. Illustration of the structures of monomeric and dimeric ubiquitin. Molecular surfaces 

and secondary structure cartoon representations of: A) ubiquitin (Ub), C) lysine-63-linked di-
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ubiquitin (
K63

Ub2); D) lysine-48-linked di-ubiquitin (
K48

Ub2). The chemical formula of the 

isopeptide linkage between Ub units is displayed in B). The I44 hydrophobic patches are 

highlighted in yellow. The distal Ub unit in Ub2 is displayed in light gray, the proximal unit (free 

C-terminus) is in dark gray. Residues forming the Ile44 patch, Lys63, and Lys48 are represented 

in sticks. Atomic coordinates were obtained from the Protein Data Bank (PDB id: 1d3z, solution 

structure of Ub; 2jf5 crystal structure of 
K63

Ub2; 2pe9, solution structure of open state of 
K48

Ub2; 

1akk, crystal structure of closed state of 
K48

Ub2). 

 

Figure 3. NMR binding isotherms. Protein NMR signal intensities were monitored upon stepwise 

addition of NPs and reported as 1-(I/I0), where I is the total integral of the 
1
H-NMR spectral 

envelope in the amide region, determined in the presence of NPs, and I0 is the corresponding 

value measured in the absence of NPs. Data are reported as a function of total NP concentration, 

CNP, or total lipid concentration, CL, over total protein concentration, CP. Protein products 
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(indicated in the legend) were presented with distinct NP formulations: A) 

POPG:POPC:Chl(40:40:20) LUV; B) POPG:Chl(80:20) LUV; C) POPG:Chl(80:20) SUV; D) 

silica NP; E) C17-AAZTA:Y micelles; F) DOTAP:DOPE(50:50) LUV. Each data set (A-E) was 

obtained in duplicate and experimental points are presented as the mean  σ. Continuous curves 

are the best-fit lines calculated according to a Langmuir association model for each data set. In 

panel F, the fitted curves were determined using only data corresponding to CL/CP < 40 due to the 

departure of the second part of the titration from a hyperbolic trend. 

Figure 4. Paramagnetic perturbations. Backbone amide 
1
H,

15
N-HSQC peak intensity 

perturbations measured on 100 μM protein in the presence of (POPG:Chl)LUVs (A-C) or C17-

AAZTA micelles (D). Residue-specific intensity ratios, Ipara/Idia, were calculated from peak 

heights measured in the presence of paramagnetic NPs (Ipara) and in the presence of identical 
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amounts of diamagnetic NPs (Idia). Protein samples were: A) Ub; B) 
K63

Ub2-P; C) 
K48

Ub2-P; D) 

K63
Ub2-P or 

K48
Ub2-P. An illustration of protein samples is displayed next to each panel (D: distal 

domain, P: proximal domain, grey shading: 
15

N-labelled unit). Protein:lipid molar ratios were 

1:20 (A), 1:1 (B), 1:20 and 1:80 (C), 1:4 (D). Sub-regions of the NP contact surface are labelled I, 

II, III. 

Figure 5. Paramagnetic perturbation mapping. Molecular surfaces and secondary structure 

cartoon representations of: A) ubiquitin (Ub), C) 
K63

Ub2; D) 
K48

Ub2. The patches formed by 

residues that experienced strong PRE effects are colored in orange. Sub-regions of the NP contact 

surface are labelled I, II, III. The distal Ub unit in Ub2 is displayed in light gray, the proximal unit 

is in dark gray. Lys63 is colored in blue, Lys48 in green. Proximal units have approximately the 

same orientation in all panels. B) Enlarged view of the Ub region containing residues that 

experienced PRE effects (displayed as sticks); the residues belonging to the Ile44 patch are in 

sticks and labelled; Arg42 is in grey sticks. The source of atomic coordinates is indicated in the 

caption to Figure 2. 
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Table 1. Hydrodynamic diameter and electrokinetic surface potential () of nanoparticles.  

Nanoparticles diameter (nm) PdI
[A]

 -potential 

(mV) 

POPG:Chl LUV 118.6  1.3 0.067 -85.5  2.8 

POPG:POPC:Chl LUV 115.7  1.6 0.068 -65.9  0.9 

DOTAP:DOPE LUV 105.7  1.0 0.287 +75.8  5.0 

POPG:Chl SUV 34.5  0.3 0.192 -56.2  2.3 

SNP (TMA LUDOX) 31.8  1.2 0.175 -23.4  0.8 

C17-AAZTA micelle 6.8  1.4 0.040 -57.2  2.5 
 

[a] polydispersity index 
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Specific Interaction Sites Determine Differential Adsorption of Protein 
Structural Isomers on Nanoparticle Surfaces 
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Scheme S1. Molecular structure of C17-AAZTA. 

Figure S1. Nanoparticle size distribution  

Figure S2. Lineshape simulation. 

Figure S3. Fluorescence titration data. 
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Scheme S1. Molecular structure of the amphiphilic compound C17-AAZTA. 
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Figure S1. Nanoparticle size distribution. Histograms are hydrodynamic 

diameter distribution plots determined by dynamic light scattering. Error bars are 

standard deviations obtained from three independent measurements. 
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Figure S2. Lineshape simulation. The NMR signal of a protein binding to a larger 

particle was simulated according to a two-state association model. The following kinetic 

and equilibrium constant values were used: koff = 5.1x10
4
 s

-1
, kon = 4x10

9
 M

-1
 s

-1
,         

Ka = 8x10
4
 M

-1
 (left panel); koff = 4.6x10

5
 s

-1
, kon = 4x10

9
 M

-1
 s

-1
, Ka = 9x10

3
 M

-1
 

(middle panel). Relaxation rate values were set to: R2
free

 = 20 s
-1

, R2
bound

 = 200 s
-1

. The 

chemical shift difference was set to zero to show the behaviour in the absence of 

chemical exchange line broadening. The right panel displays the normalized simulated 

peak heights against particle/protein molar ratio and illustrates how different intensity 

curves relate to binding affinity. The data points in magenta and green correspond to the 

normalized peak maxima of the first two panels, the blue triangles correspond to a 

binding equilibrium with Ka value intermediate between those of the magenta and green 

datasets. Solid lines are best-fit curves of a hyperbolic function (Langmuir association 

model) to the simulated data points. Simulations were performed with the program 

LineShapeKin Simulation 4.1. The pseudo-association constant values, K, obtained by 

fitting the simulated data are ranked in the same order as the Ka values used in the 

simulation, demonstrating that K can be used for semi-quantitative comparative analysis 

of the binding strength. 
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Figure S3. Fluorimetric titration. Fluorimetric titration plots display the variation of the 

barycentric mean fluorescence (bcm) of (POPG:Chl)LUVs (10 m lipid, incorporating 

10% fluorescent dansyl-DHPE) upon addition of ubiquitin dimers. Solid lines are best-

fit hyperbolic curves. Fluorescent LUVs were excited at 336 nm, and fluorescence was 

monitored between 450 and 600 nm. The barycentric mean fluorescence is given by the 

expression: bcm=I()/I(). bcm=bcm(0)-bcm (step i) and positive values correspond 

to a blue-shift. Measurements were performed on a FP-8200 spectrophotometer 

(JASCO). 
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Alzheimer's disease-associated ubiquitin mutant Ubb
+1

: properties of the carboxy-

terminal domain and its influence on biomolecular interactions 

 

Francesca Munari, Andrea Bortot, Michael Assfalg, and Mariapina D’Onofrio* 

 

Abstract 

Ubb
+1

, a ubiquitin (Ub) mutant protein originating from misreading of the Ub B 

gene, is found accumulated in brain tissues of Alzheimer’s disease patients. The mutant 

attracts strong interest due to its possible participation in the molecular events leading to 

neurodegeneration. Ubb
+1 

is composed of the globular domain of Ub, linked to a 19-

residue C-terminal peptide. Based on NMR relaxation and solvent accessibility 

measurements we obtained new insight into the molecular properties of Ubb
+1

. We 

further determined the thermal stability of Ubb
+1

 in the monomeric form, and in Lys48- 

and Lys63-linked dimers. Finally, we explored the influence of the C-terminal fragment 

on the interactions of Ubb
+1

 with an isolated UBA2 domain and with membrane mimics. 

Our data indicate that the C-terminal fragment of Ubb
+1

 is overall highly flexible, 

except for a short stretch which appears less solvent-exposed. While influencing the 

hydrodynamic properties of the globular domain, the fragment does not establish long-

lived interactions with the globular domain. It results that the structure and stability of 

Ub are minimally perturbed by the peptide extension. However, binding to UBA2 and 

to membrane mimics are both affected, exemplifying possible changes in biomolecular 

recognition experienced by the disease-associated Ubb
+1

 compared to the wild-type 

protein.    
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1. Introduction 

Ubiquitin (Ub) is a small and highly conserved protein that is covalently linked to 

protein targets to regulate numerous fundamental processes in eukaryotic cells, such as 

progression of cell cycle and division, DNA damage response, organelle biogenesis, 

protein trafficking, and protein turnover [1–3]. Ubiquitin conjugation, which consists in 

the formation of an isopeptide bond between the C-terminus of Ub and the -amino 

group of a specific lysine of the substrate protein, is accomplished by the sequential 

action of Ub-activating (E1), Ub-conjugating (E2), and Ub-ligating (E3) enzymes. Ub 

itself has seven lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, Lys63) that 

can act as acceptor sites, leading to the formation of polyUb chains endowed with a 

variety of linkage types and signaling functions. As an example, Lys48-chains mark 

substrates for rapid proteasomal degradation, while Lys63-chains play a role in 

endocytosis, DNA-damage response, cell signaling [1–3], and autophagic clearance of 

protein aggregates [4]. Ubiquitination is a reversible modification: a variety of 

deubiquitinating enzymes (DUBs) hydrolyze Ub from the target protein, thereby 

remodeling or reversing the polyUb signal [5].  

Dysfunction of Ub-related enzymes and pathways has been linked to the pathogenesis 

of severe human diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's 

(HD) diseases, Amyotrophic Lateral Sclerosis (ALS), cancer, metabolic syndromes, and 

genetic disorder [6–8]. In particular, a mutated version of Ub, named Ubb
+1

, was found 

specifically accumulated in neurofibrillary tangles, neuropil threads and dystrophic 

neurites in brain tissues of AD patients [9]. Ubb
+1

 originates from misreading of the Ub 

B gene: the deletion of a dinucleotide adjacent to the GAGAG motif in the first repeat of 

the Ub transcript leads to the loss of Ub stop codon and the generation of a new one.  

This produces Ubb
+1

, a Ub mutant protein where the carboxy(C)-terminal Gly76 is 

replaced by a tyrosine and linked to a 19-residue peptide [9].  Molecular misreading is a 

rare event that originates from mistakes of RNA polymerase II transcription activity, 

leading to generation of frameshift mRNA and protein mutants in the absence of genetic 

mutation. In physiological conditions, the Ub-proteasome system (UPS) well 

compensates for transcription errors by removing aberrant proteins through degradation. 
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However, proteasomal degradation becomes progressively less efficient with aging, and 

accumulation of frameshift mutant proteins eventually occurs, such as in the case of AD 

[10]. 

Ubb
+1

 maintains the well-structured globular domain of Ub (Fig. 1) [11] and its 

lysine side chains can act as acceptors for polyUb chain linkage [11–14]. However, as a 

result of the lack of the C-terminal Gly76, Ubb
+1

 does not modify substrate proteins and 

instead terminates the elongation of polyUb chains. The resulting Ubb
+1

-capped polyUb 

chains (polyUbb
+1

) were shown to inhibit the proteasome [14,15], and were recalcitrant 

to disassembly mediated by DUBs [14]. Interestingly, it was shown that at low 

expression levels, Ubb
+1

 can be degraded by the 26S-proteasome, however after 

exceeding a threshold level of expression, Ubb
+1

 accumulates and inhibits the 

proteasome in a dose-dependent manner [16]. In neuroblastoma cells, overexpression of 

Ubb
+1

 leads to neuronal cell death [13]. Due to the essential function of the proteasome 

in protein turnover and clearance of misfolded proteins, the inhibition of proteasome by 

Ubb
+1

 species was proposed to be one of the key mechanisms of neuronal toxicity in 

AD. In particular, interaction of Ubb
+1

 with the enzyme E2-25K was suggested to 

modulate Aβ neurotoxicity via proteasomal inhibition [17]. Additionally, it was recently 

suggested that accumulation of extended Ub variants was due to their potent ability to 

inhibit specific DUBs [18]. 

Due to a possible participation of Ubb
+1

 in the molecular events leading to 

neurotoxicity and neurodegeneration in AD, there is large interest in elucidating the 

structural details of this frameshift mutant Ub protein and the consequent functional 

differences with respect to the wild-type protein. In our work, we investigated structural 

and dynamic features of Ubb
+1

 using NMR spectroscopy methods that are particularly 

suited to explore protein molecules containing flexible domains such as the C-terminal 

extension of Ubb
+1

. Calorimetry measurements were carried out to evaluate the 

contribution of the tail to the protein’s thermal stability in both its monomeric and 

dimeric forms. Finally, the ability of Ubb
+1

 to interact with different biomolecules, in 

particular the UBA2 domain of the human homologue of the yeast DNA repair protein 

RAD23 (HHR23A) and membrane mimics, was here explored and characterized. 
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2. Materials and Methods 

2.1 Materials 

Deuterium oxide (99.9%), 
13

C-glucose and 
15

NH4Cl were purchased from 

Spectra2000 s.r.l. (Roma, IT). Gadodiamide (gadolinium(III) 5,8-

bis(carboxylatomethyl)-2-[2-(methylamino)-2-oxoethyl]-10-oxo-2,5,8,11-

tetraazadodecane-1-carboxylate hydrate) was purchased from Selleck Chemicals. 

Powder cholesterol, phosphatidylglycerol and phosphatidylcholine were purchased from 

Sigma.  4,4-dimethyl-4-silapentane-1-sulfonic acid-d6 was purchased from Sigma. 

2.2 Protein expression and purification 

Recombinant human Ub and the UBA2 domain of HHR23A were expressed and 

purified as described previously [19]. Ub mutants K48R, K63R, and D77 were 

produced with the same protocol used for wild-type Ub. Human Ubb
+1

, cloned in pET3 

vector, was obtained from PCR extension of the human Ub sequence. The purification 

of Ubb
+1

 was performed with the same procedure as for Ub, with an additional size 

exclusion chromatography step.  

Homogeneous di-ubiquitin chains (Ub2) were obtained from Ub mutants, following 

the strategy described in [20], in overnight enzymatic reactions at 37 °C complemented 

with ATP, TCEP, and an ATP reconstituting cocktail. Recombinant human His-tagged 

E1 and GST-tagged E2-25K enzymes were used to obtain Lys48-linked Ub2 products: 

Ub(K48R)-
48

Ub(D77) and Ub(K48R)-
48

Ubb
+1

. Recombinant human His-tagged E1, 

yeast His-tagged Mms2 and yeast GST-tagged Ubc13 enzymes were used for to 

produce Lys63-linked Ub2 molecules: Ub(K63R)-
63

Ub(D77) and Ub(K63R)-
63

Ubb
+1

. 

E2-25K, Mms2, and Ubc13 enzymes were produced in Escherichia coli BL21(DE3), 

while E1 was expressed in Rosetta cells. Purification of enzymes by affinity 

chromatography followed standard procedures. Ub2 molecules were separated from 

unreacted Ub monomers by SP cation-exchange chromatography and further purified by 

size exclusion chromatography for calorimetry measurements. Protein samples were 

concentrated using centrifugal filter units (Millipore). 
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2.3 Liposome preparation  

Liposomes were obtained by dissolving cholesterol (Chl) and phosphatidylglycerol 

(POPG) or phosphatidylglycerol/phosphatidylcholine (POPG/POPC) phospholipids in 

chloroform/methanol (2:1, v/v) to form a homogeneous solution. A molar ratio of 

POPG/Chl 80:20 or POPG/POPC/Chl 40:40:20 was used to produce liposomes with 

different surface charge. The lipid mixture was then dried under nitrogen flux and the 

resulting lipid film dispersed in 10 mM potassium phosphate buffer at pH 6.8, to a final 

lipid concentration of ~120 mM. Vesicles were obtained by pressure extrusion with a 

hand-held miniextruder (Avanti, Alabaster, AL), by repeated passage through 

polycarbonate filters of 100 nm pore size, after pre-filtering through membranes of 1 

m and 400 nm pore sizes. The obtained liposomes had hydrodynamic diameter of 120 

nm and polydispersity index < 0.1 as determined by dynamic light scattering  (DLS) 

measurements performed with a Zetasizer Nano ZS instrument (Malvern Instruments, 

USA) at 25 °C. 

2.4 NMR Spectroscopy 

NMR experiments were acquired at 25 °C on a Bruker Avance III spectrometer, 

operating at 
1
H Larmor frequency of 600.13 MHz, equipped with a triple resonance TCI 

cryogenic probe. NMR data were processed with Topspin 3.2 (Bruker) or NMRpipe 

[21] and analyzed with the software Sparky (T. D. Goddard and D. G. Kneller, 

University of California, San Francisco).  

All samples for NMR measurements were prepared in 10 mM potassium phosphate 

aqueous buffer at pH 6.8, also containing protease inhibitors (Sigma) and 8% D2O. 

Sequence-specific backbone resonance assignment of Ubb
+1

 was obtained by 

analysis of CBCA(CO)NH, HNCACB, HNCO and HN(CA)CO spectra.  

Secondary chemical shifts were calculated based on the random coil chemical shifts 

predicted by the Neighbor Corrected Structural Propensity Calculator [22] or the 

Camcoil software [23]. 4,4-dimethyl-4-silapentane-1-sulfonic acid-d6 (DSS-d6) was 

used for chemical shift referencing (0.0 ppm). Chemical shift perturbations were 
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calculated as: CSP = [(ΔδH)
2
 + (ΔδN/5)

2
]

0.5
, where ΔδH and ΔδN were the chemical shift 

changes measured in the 
1
H and 

15
N frequency dimensions, respectively.  

15
N relaxation experiments were performed on 1 mM [

15
N]Ubb

+1
 protein samples. 

15
N longitudinal relaxation rates (R1) were measured using relaxation delays in the 

range 0.01-1.26 s and 
15

N transverse relaxation rates (R2) were measured with 

relaxation delays in the range 8-224 ms. Steady-state {
1
H}

15
N heteronuclear nuclear 

Overhauser effects (hetNOE) were measured with a 6 s recycle delay. hetNOE values 

were calculated taking the ratio of peak intensities in saturated and reference spectra.  

Transverse 
1
HN paramagnetic relaxation rate enhancements (PRE), 

1
HN-R2p, were 

obtained from the difference in 
1
HN-R2 measured on samples containing or not 

containing 2 mM gadodiamide. The measurements were performed as described 

previously [19]. Seven relaxation delays between 11.7 and 79 (60) ms were used in 

experiments acquired on samples without (with) 2 mM gadodiamide and the signal 

intensity decays were fitted to a single exponential function to obtain the corresponding 

rates.  

The solvent accessibility of Ubb
+1

 backbone was also evaluated through 

measurement of exchange  rates between water and NH protons by performing 

CLEANEX-PM-FHSQC experiments [24] using mixing times of 10, 25, 50, 75, 100, 

and 150 ms. The peak intensity (V), measured as a function of mixing time (x), was 

fitted according to the following equation V/V0 = k/(R1A,app+k-R1B,app){exp(-R1B,appx)-

exp[-(R1A,app+k)x]} to obtain k, the normalized rate constant related to the exchange rate 

constant between NH protons and water [24]. V0 is the intensity of the protein signals in 

a reference FHSQC experiment, R1A,app and R1B,app are apparent relaxation rates for 

protein and water, respectively. For R1B,app we used the value of 0.6 s
-1

, in analogy with 

previous work [24]. 

The experimental rotational correlation time constant, τc, was obtained from 
15

N 

relaxation data R1, R2, and hetNOE with the program ROTDIF [25]. Prediction of the c 

of Ubb
+1

 was done with the HYCUD software [26,27]. First, we generated an ensemble 

of 1000 random structures with the EOM program [28], using the crystal structure of 

human Ub [29] and the human Ubb
+1

 sequence as input files. Next, we calculated the 
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effective c of the globular part of the full-length Ubb
+1

 with the HYCUD program [27]. 

By using AER of 2.9 Å and initial c,0 of 4.02 ns (our experimental value for Ub [19]), 

the algorithm predicted that the presence of a completely unrestricted C-terminal tail of 

Ubb
+1

 would raise the c value to 5.7  1.0 ns. 

The dissociation constant value for the Ubb
+1

/UBA2 interaction was obtained by 

fitting experimental binding isotherms obtained from 
1
H-

15
N HSQC-based titration 

experiments, assuming a one-site binding model and by use of the Matlab program 

Kdfit [30]. The initial concentration of 
15

N-Ubb
+1

 was 0.367 mM and that of the titrant 

UBA2 solution was 10 mM. The reported Kd value is the average of values determined 

from binding isotherms of seven residues using dilution-corrected protein 

concentrations. 

2.5 Differential scanning calorimetry (DSC) 

Thermal denaturation data were acquired with a Nano DSC instrument (TA 

Instruments Inc.). Samples were heated from 20 to 100 or 110 °C at a scan rate of 

1 K min
-1

. Selected experiments were also performed at 0.5 K min
-1

 to evaluate the scan 

rate dependence of the thermograms. Reheating runs were carried out to establish the 

operational reversibility of the thermal unfolding processes. Samples contained 0.05-0.1 

mM protein dissolved in 100 mM sodium phosphate, pH 7.4, 100 mM NaCl. Before 

measurements, sample and reference solutions were properly degassed in an evacuated 

chamber for 10 minutes at room temperature and carefully loaded into the cells to avoid 

bubble formation. Calorimetric cells (operating volume 300 L) were kept under a 

pressure of 3 atmospheres. Exhaustive cleaning of the cells was undertaken before each 

experiment. A background scan collected with buffer in both cells was subtracted from 

each scan. Analysis was performed using NanoAnalyze (TA Instruments Inc.). The 

calorimetric enthalpy was determined from the total peak integral after baseline 

correction. The thermal transition midpoint was determined as the temperature 

corresponding to the peak top.  
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3. Results and discussion 

3.1 The C-terminal amino acids of Ubb
+1

 do not exhibit canonical secondary structure 

propensities 

In a recent work, the NMR structure of Ubb
+1

 (incorporating eight exogenous 

residues at the N-terminus) was determined [11]. The structure shows a compact 

globular domain in the region 1-75, corresponding to the Ub moiety, while the 

remainder of the polypeptide chain is undefined due to the lack of structural information 

(Fig. 1). However, a residual structure for residues 75-88 was proposed based on the 

larger values of heteronuclear NOE and smaller values of backbone RMSD in this 

region, compared to the rest of the terminal peptide [11].  

To obtain further insight into the structural properties of the Ubb
+1

 19-residue 

extension, we measured secondary chemical shifts, a very sensitive parameter used to 

probe local conformation [31,32] and structural propensities in unfolded proteins [33]. 

We thus assigned the backbone resonances of Ubb
+1

, produced in the absence of affinity 

tags, by using a series of standard 3D heteronuclear NMR experiments. Then, we 

calculated secondary chemical shifts as the difference between Ubb
+1

 
13

C or 
13

C’ 

chemical shifts and the corresponding random coil values [22,23]. Data shown in Fig. 2 

indicate that both 
13

C’ and 
13

C secondary chemical shifts closely match the  and  

structures of the globular region of Ubb
+1

. By contrast, secondary chemical shift values 

are very close to zero for the 19-residue extension, indicating the absence of  and  

secondary structure propensities. This finding was validated by the use of two 

independent datasets of random coil values [22,23]. 

3.2 The middle region of the C-terminal domain displays reduced solvent 

accessibility and mobility  

15
N-spin relaxation rate constants, R1 and R2, and steady state heteronuclear NOE 

were measured to investigate the backbone dynamics of the 19-residue extension. Data 

reported in Fig. 3 reflect the modular architecture of the protein: the first region 

(residues 1-72) reports on the relatively rigid nature of the globular Ub domain, while 

the C-terminal tail is characterized by increased backbone mobility. From 
15

N relaxation 
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data of Ubb
+1

, we estimated a rotational correlation time constant (c) for the globular 

domain of 5.77 ± 0.04 ns, much higher than the value of 4.02 ns estimated for Ub [19]. 

However, the determined c value is in excellent agreement with the value of 5.7 ± 1.0 

ns predicted using the HYCUD approach [27]. The prediction was made considering a 

completely unrestricted mobility of the C-terminal tail of Ubb
+1

 which exerts a dragging 

effect on the globular part via hydrodynamic coupling. The coincidence of experimental 

and predicted values strongly suggested that interactions between the two protein 

domains were absent.  

While displaying overall larger backbone flexibility, the C-terminal tail did not 

exhibit uniform dynamics, in agreement with previous conclusions [11]. Of particular 

interest were residues  Asp84 and Arg85, which showed {
1
H}

15
N-NOE (hetNOE) 

values that departed from the decreasing trend of the rest of residues in the C-terminal 

tail (Fig. 3A), suggesting the presence of reduced local backbone mobility. 

Interestingly, this feature was in qualitative agreement with the degree of solvent 

accessibility determined by two alternative approaches. In a first approach, we 

measured amide 
1
H paramagnetic relaxation enhancements (PRE) in the presence of the 

soluble paramagnetic agent gadodiamide (Gd-DTPA-BMA) [34]. Fig. 4A shows the 

transverse PRE, 
1
HN-R2p, as a function of the amino acid sequence. Data referred to the 

first part, 1-75, were in agreement with what found previously for Ub [19], with 

residues 8-14, 45-49, and 72-75 showing large 
1
HN-R2p values, indicative of high 

accessibility to the paramagnetic cosolute. Interestingly, the 19-residue extension 

experienced large PRE, although non-uniformly distributed along the chain and with a 

marked dip in the region 78-88 (
1
HN-R2p < 30 s

-1
). Therefore, this region appeared less 

exposed to the solvent than the rest of the tail. The most protected residues of the tail 

were Asp82, Asp84 and Arg85, exhibiting PRE values of 13.9  0.8 s
-1

, 14.3  0.3 s
-1

, 

and 14.3  0.5 s
-1

. 

To support these conclusions, we performed an independent measurement of amide 

proton exchange with bulk solvent based on the CLEANEX-PM-FHSQC experiment. In 

this NMR experiment, solvent accessibility was probed by monitoring water-protein 

proton exchange taking place during a mixing time which followed a selective water 

resonance excitation [24]. Fig. 4B shows the determined water-amide proton exchange 
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rates, k, against the Ubb
+1

 sequence. The majority of residues belonging to the globular 

part were protected from exchange with solvent and therefore did not show measurable 

signals after the given mixing times. However, resonances corresponding to residues 8-

12, 39, 46, 47, 49, 63, and residues within the C-terminal tail were observable, 

indicative of a significant degree of solvent accessibility. For these residues, we 

determined the water-amide proton exchange rates. In the 19-residues extension, amino 

acids 78-87 exhibited the smallest k value (k < 8 s
-1

), confirming that this part of the C-

terminal tail was less exposed to the solvent. In particular, the experiment confirmed 

that residues Asp84 and Arg85, showing k values of 0.9  0.1 s
-1

 and 1.2  0.1 s
-1

, were 

the least solvent-accessible residues of the C-terminal peptide. 

3.2 Ubb
+1

 displays similar thermal stability as Ub in both monomeric and dimeric 

species  

To determine if the 19-residue extension affected the thermal stability of Ub, 

differential scanning calorimetry (DSC) experiments were performed. Ub is a highly 

compact globular protein which undergoes thermal unfolding at elevated temperature 

[35,36]. According to previous investigations, the denaturation mechanism corresponds 

to a fully reversible two-state transition when Ub is dissolved in acidic solution [35]. 

The thermal transition was also found to be reversible in PBS solution, pH 7.4 [37], 

however some authors reported the onset of protein aggregation and significantly 

reduced reversibility in neutral pH solution [35,38]. The thermal unfolding of both 

Lys63- and Lys48-Ub2 was found to be irreversible [37]. In our work, we established 

the calorimetric irreversibility of Ub2 thermal unfolding and the partial reversibility 

(30%) of Ub denaturation (Supplementary Fig. S1). The temperature of the peak 

maximum for Ub displayed an increase of less than 0.5 K when changing the scan rate 

from 0.5 K min
-1

 to 1 K min
-1

, indicating little sensitivity of the endotherm to kinetic 

constraints. However, a slight concentration dependence of the thermograms was 

observed in the range 50-100 M. Thus, comparative analyses between wild type and 

variant proteins were performed at equal scan rates on samples containing identical 

protein concentrations. To avoid the assumptions or simplifications inherent in model-

based analyses, we limited our investigation to a phenomenological analysis of the 
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experimental data (measured calorimetric parameters are reported in Supplementary 

Table S1). Indeed, the midpoint of thermal unfolding curves provides an adequate 

indication of the relative thermal stability of related proteins.[39] 

DSC data indicated that the apparent thermal transition midpoint of Ubb
+1

 was 

unchanged with respect to that of Ub (Tm = 369 K)(Fig. 5 and Table S1). The 

calorimetric enthalpy values of the two variants differed by 5% (Table S1), which is in 

the order of experimental uncertainty. Thus, the terminal polypeptide had essentially no 

influence on the thermal stability of the globular domain. We further inspected the 

thermal behaviour of Ub2 molecules. In agreement with previous work [35], our 

experiments indicated a decreased thermal transition midpoint of both dimeric Ub-
63

Ub 

(Tm = 353 K) and Ub-
48

Ub (Tm = 358 K)(Fig. 5 and Table S1). Because of the reported 

formation of amyloid-like fibril assemblies [35], the stability of polyUb chains is of 

utmost relevance in the context of neurodegenerative diseases. Here, we found that 

substitution of Ub with Ubb
+1

 did not perturb the thermal transition of dimeric species 

and the change in calorimetric enthalpy was less than 5%, again indicating that the C-

terminal tail of Ubb
+1

 does not interact with the globular units. In this respect, it should 

be noted that Ub-Ubb
+1

 dimers are structurally similar to their wild-type counterparts 

[12], therefore no changes are introduced by the extension on the intersubunit interfaces. 

Apparently, the conjugation of the terminal peptide to the flexible C-terminus of Ub has 

no influence on the intramolecular interactions that govern the folding/unfolding 

process.     

3.3 The affinity of Ubb
+1

 for (HHR23A)UBA2 is enhanced compared to that of Ub  

To investigate the influence of the C-terminal extension in Ubb
+1

 on biomolecular 

recognition, we carried out a binding experiment with a model Ub protein partner: the 

Ub-associated C-terminal domain (UBA2) of the human homologue of the yeast DNA 

repair protein Rad23 (HHR23A). Rad23, originally recognized as an important player in 

nucleotide excision repair, mediates targeting of ubiquitinated proteins to the 

proteasome for degradation [40]. Ubb
+1

/UBA2 titration experiments monitored by 
1
H-

15
N HSQC spectra were carried out to describe the UBA2 interaction surface on Ubb

+1
 

and to estimate the dissociation constant, Kd. Fig. 6A shows the chemical shift 
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perturbation (CSP) profile of Ubb
+1

 resonances upon binding to UBA2. The most 

affected regions are centered on residues Leu8, Ile44, and Val70, which form the well-

known hydrophobic patch of the Ub surface, involved in several recognition events. The 

perturbation profile is highly similar to that determined for Ub upon binding to UBA2 

[19] suggesting that the supramolecular arrangement was preserved, and for Ubb
+1

 

binding to E2-25K enzyme which contains a UBA domain [11]. We found that the 19-

residue extension did not experience perturbations, except for residues Glu81 and 

Asp82, for which a small effect was detected. The analysis of binding isotherms based 

on CSP data (Fig. 6B) revealed that the affinity of the Ubb
+1

/UBA2 complex (Kd = 305 

± 18 μM) was slightly larger than that previously determined for the Ub/UBA2 system 

(Kd = 412 ± 52 μM) [19]. This result is consistent with previous findings on the 

interaction between E2-25K and Ubb
+1

, which was found to be stronger than that of  

E2-25K and Ub. The observed increased affinity could be due to a slightly extended 

interaction surface area in the minimum-energy complex and/or to enhanced probability 

of formation of encounter complexes due to transient anchoring of the flexible tail. 

 

3.4 C-terminal amino acids hinder adsorption of Ubb
+1

 to anionic lipid vesicles 

Recently, it was shown that Ub binds transiently to liposomes through its 

hydrophobic patch and adjacent positively charged residues [41]. This finding is of 

interest considering that transient interactions between Ub and membranes might take 

place within cells due to the key role of Ub in regulating the sorting of membrane 

proteins [42] and autophagic processes [43]. Moreover, liposomes have been widely 

used as membrane mimics to investigate the interaction between proteins and 

membranes [31,44–46] We thus explored whether the 19-residue extension of Ubb
+1

 

could affect the Ub/liposome interaction using an NMR-based binding assay where a 

series of 
1
H-spectra of Ub or Ubb

+1
 were acquired in the presence of increasing amounts 

of negatively charged liposomes. Fig. 6C shows that the amide 
1
H signal envelope, 

integrated in the region between 9.0 and 9.8 ppm, progressively decreases as the protein 

molecules bind to the negatively charged liposomes made of POPG and cholesterol at a 

molar ratio of 80:20. In comparison to Ub, the signal intensity loss displayed by Ubb
+1

 

was much less pronounced, indicating a substantially reduced affinity. Similarly, Ub 
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experienced weak binding affinity to liposomes bearing reduced negative charge 

(composed of POPG, POPC and cholesterol at 40:40:20 molar ratio), while almost no 

interaction was observed between these liposomes and Ubb
+1

. Clearly, electrostatic 

attraction plays a fundamental role in the formation of protein-liposome assemblies, 

therefore it seems likely that the reduced affinity of Ubb
+1

 was due to the acidic 

character of the C-terminal peptide (the calculated pI for residues Y76-Q95 is 4.7). 

Thus, translocation of Ubb
+1

 (and of polyUb chains terminated by Ubb
+1

) within the 

cellular milieu and in proximity to lipid membranes may be significantly different 

compared to the wild-type species, possibly resulting in perturbed intracellular 

communication. 

4. Conclusions 

Our findings support the notion that the 19-residue extension of Ubb
+1

 lacks a well 

ordered structure and persistent canonical secondary structure elements. However, we 

observed that the flexible fragment displayed non-uniform structural and dynamic 

properties along its amino acid sequence. In particular, the region Asp78-Asp87 was 

characterized by diminished solvent exposure, with Asp84 and Arg85 being the most 

protected residues against proton exchange with bulk solvent and among the less 

accessible to a paramagnetic molecular probe. The relatively larger hetNOE values of 

Asp84 and Arg85, compared to adjacent residues, further indicated that the polypeptide 

backbone in those positions experienced reduced mobility on the ps-ns timescale. From 

analysis of global dynamics based on 
15

N-spin relaxation data, it emerged that the 

mobility of the C-terminal tail was independent from that of the globular domain, and 

persistent interdomain interactions were absent. Hence, it is possible that a reduction in 

local flexibility might originate from structural constraints imposed by the sequence of 

amino acids, and in particular by the proximity of two proline residues (Pro83 and 

Pro90). Consistently with the above picture and with the absence of structural 

perturbations, inferred from chemical shift analysis, the peptide extension did not affect 

the protein thermal stability in either monomeric or dimeric species. However, 

biomolecular recognition was in part perturbed: the interaction of Ubb
+1

 with 

(HHR23A)UBA2 was characterized by enhanced affinity compared to that of Ub, and 
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the weak association of Ub with anionic lipid surfaces was significantly reduced in the 

case of the variant.  

It can be concluded that the globular architecture of Ub is sufficiently robust not to 

be particularly influenced by the unintended covalent conjugation of a peptide to its 

flexible C-terminus. However, the presence of a fragment that extends by 25% beyond 

the regular polypeptide length is certainly not without consequences, and the selected 

interactions investigated in our work exemplify possible changes in biomolecular 

recognition and diffusive dynamics experienced by disease-associated mutant Ub 

species, compared to wild-type molecules, in physio(patho)logical conditions.  
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FIGURES 

 

 

 

 

 

 

 

 

 

Fig. 1. Illustration of the structure of Ubb
+1

. Cartoon representation of the five lowest energy 

NMR structures of Ubb
+1 

(PDB 2KX0, [11]). The globular domain is colored in orange, the C-

terminal 19-residue fragment is shown in green. The eight exogenous N-terminal residues are 

not displayed as they are absent in our Ubb
+1

 construct. 

Fig. 2. Analysis of Ubb
+1

 chemical shifts. Secondary 
13

C (A) and 
13

C (B) chemical shifts 

(
13

C’ and 
13

C) of Ubb
+1

, obtained with Camcoil random coil values, are plotted versus the 

protein sequence. Secondary 
13

C’ (C) and 
13

C (D) chemical shifts (
13

C’ and 
13

C) of 
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Ubb
+1

, obtained with the Neighbor Corrected Structural Propensity Calculator random coil 

values, are plotted versus the protein sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Analysis of Ubb
+1

 backbone dynamics. 
15

N–spin relaxation rates of [
15

N]Ubb
+1

 are shown 

as a function of residue number: A) steady-state {
1
H}

15
N heteronuclear NOE (hetNOE); B) R2 

and C) R1. Residues affected by signal overlap or with insufficient signal-to-noise ratio were 

excluded from the analysis. 



   CHAPTER 3: Publications 
 

140 
 

 

 

 

 

 

 

 

 

 

Fig. 4. Solvent accessibility of Ubb
+1

. The solvent exposure of Ubb
+1

 has been probed by 

solvent PRE (A) or by measurement of water-amide proton exchange rates (B). In A) the 
1
HN-

R2p rates of Ubb
+1

 obtained with 2 mM gadodiamide are plotted as a function of protein 

sequence. In B) the water-amide proton exchange rates (k) measured through a CLEANEX-PM-

FHSQC experiment are reported versus the protein sequence. Error bars are standard errors 

obtained from data fitting. Residues affected by signal overlap or with insufficient signal-to-

noise ratio were excluded from the analysis. 

 

 

 

 

 

 

 

Fig. 5. Thermal stability measured by calorimetry. Differential scanning calorimetry 

thermograms recorded on samples of A) Ub, black, Ubb
+1

, orange, B) Ub-
48

Ub, black, Ub-

48
Ubb

+1
, orange, C) Ub-

63
Ub, black, Ub-

63
Ubb

+1
, orange. DSC traces are baseline-corrected. 
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Fig. 6. Biomolecular interactions of Ubb
+1

. A) Plot of the chemical shift perturbations (CSP) 

determined from 
1
H,

15
N-HSQC spectra recorded on [

15
N]Ubb

+1
 in the presence of 

(HHR23A)UBA2 at 1:7 molar ratio and in the absence of UBA2. B) Binding isotherms for 

selected Ubb
+1

 residues based on CSP data from a UBA2/ Ubb
+1

 NMR titration experiment. C) 

Binding of Ubb
+1

 or Ub to liposomes monitored through analysis of protein 
1
H signal intensity 

loss as a function of total lipids to protein molar ratio. Titration data for Ub/POPG-Chl 80:20 

(blue), Ubb
+1

/POPG-Chl 80:20 (red), Ub/POPG-POPC-Chl 40:40:20 (black) and  Ubb
+1

/POPG-

POPC-Chl 40:40:20 (green) are shown. 
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Alzheimer's disease-associated ubiquitin mutant Ubb
+1

: properties of the carboxy-

terminal domain and its influence on biomolecular interactions 

 

Francesca Munari, Andrea Bortot, Michael Assfalg, and Mariapina D’Onofrio* 

 

 

 

Figure S1A. Differential scanning calorimetry trace of monoubiquitin (Ub). The black trace 

shows initial heating and the grey line represents reheating. Data were acquired at a scan rate of 

1 K min
-1

. The sample contained 0.07 mM protein dissolved in 100 mM sodium phosphate, pH 

7.4, 100 mM NaCl. 
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Figure S1B. Differential scanning calorimetry trace of Lys48-linked di-ubiquitin (
K48

Ub2). The 

black trace shows initial heating and the grey line represents reheating. Experimental conditions 

were the same as for Figure S1A. 

 

Table S1. Calorimetric parameters determined from DSC thermograms.  

 Tm
(a)

 / K Hcal
(b)

 / kJ mol
-1

 

Ub 369.1 327 

Ubb
+1

 369.3 344 

Ub-
48

Ub 358.1 447 

Ub-
48

Ubb
+1

 358.0 424 

Ub-
63

Ub 353.2 443 

Ub-
63

Ubb
+1

 352.9 425 

a. Temperature of the peak maximum 

b. Determined as the total peak area 
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Conclusions 

In this doctoral project we aimed at contributing to a better understanding of 

ubiquitin(Ub)-mediated signaling by investigating the influence of the intracellular 

environment on the formation of transient Ub-partner complexes. Weak protein-protein 

interactions, such as those between Ub and Ub binding domains, are potentially prone to 

be influenced by macromolecular crowding, a distinctive feature of the intracellular 

milieu. In our work we found that high concentrations of a crowding agent did not 

influence the preferential binding of the representative Ub-binding domain UBA2 to the 

canonical Ile44 patch of Ub. On the other hand, from a more comprehensive exploration 

of Ub/UBA2 contacts based on a solvent PRE approach, secondary contact surfaces 

were detected. The regions were classified as specific based on the non-linear PRE trend 

observed at varying UBA2 concentration, although the absence of strong concomitant 

chemical shift perturbation hinted at ultra-weak affinity of the corresponding 

interactions and/or a significant heterogeneity of the ensemble of complex 

conformations. Thus, Ub/UBA2 complexes populate high energy local minima of the 

free energy landscape which may be in equilibrium with the low energy minimum 

corresponding to the stereospecific complex. Alternatively, the identified patches may 

mediate formation of futile complexes that are in competition with the main 

conformation. It is probably not accidental that other Ub binding domains target these 

regions, which can thus be considered pivotal for biomolecular recognition. In the 

broader context, identification of weak secondary interaction surfaces in cell-mimicking 

crowded solutions by use of PRE methods could improve our understanding of dynamic 

protein-protein interaction networks and, ultimately, of the molecular-level structural 

organization of the cellular interior.    

In a bid to lay the basis for the development of artificial Ub receptors to be used for 

biomedical applications, we studied the binding equilibria between Polyubiquitin 

(polyUb) chains and nanoparticle (NP) surfaces. It is now widely accepted that most 

nanomaterials display bioactivity as a consequence of their interaction with 

biomolecules, however the specificity and selectivity of such interactions remain poorly 

explored. The capability of NPs to distinguish closely related covalent forms of 
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proteins, such as structural isomers, has important implications for the design of 

nanomaterials and could be exploited for the development of NP devices eliciting 

specific biological responses. Distinct covalent forms of proteins, produced by post-

translational modification, display different recognition properties and perform different 

functions. This notion is well exemplified by the Ub system, in which differently 

conjugated polymeric chains have unique binding features and play distinct roles in 

cellular biology. In our work, we found that structural isomers of polyUb interacted 

with negatively charged NP surfaces through preferential binding sites. Interestingly, 

the adsorption of structural isomers of diubiquitin (Ub2) to large NPs involved different 

surface patches, resulting in reduced binding affinity of K48Ub2 compared to K63Ub2. 

We further showed that recognition of K48Ub2 required the dynamic interconversion 

between the prevalent ‘closed’ conformation and the binding competent ‘open’ state. 

Thus, we have extended the scope of solution-state NMR spectroscopy approaches to 

the detailed description of complex protein-NP adsorption equilibria. We provided 

evidence of the role of structural isomerism and conformational isomerization in the 

regulation of adsorption, contributing to a better understanding of the principles 

governing protein recognition by NP surfaces. The here described approach could be 

applied to more specialized NP systems, exploiting the possibility to tailor functional 

groups at the NP surface to increase biomolecular binding specificity and selectivity. In 

the particular case of Ub, appropriately designed NPs could act as artificial receptors for 

certain isomeric forms, thereby providing new strategies for the treatment of human 

diseases such as cancer and neurodegeneration. 

Neurodegeneration in particular has been found to involve dysfunction of the Ub system 

at various levels. For example, Ubb
+1

, a ubiquitin mutant protein originating from 

misreading of the Ub B gene, is found accumulated in brain tissues of Alzheimer’s 

disease patients. The mutant attracts strong interest due to its possible participation in the 

molecular events leading to neurodegeneration. Ubb
+1 

is composed of the globular 

domain of Ub, linked to a 19-residue C-terminal peptide. Based on NMR relaxation and 

solvent accessibility measurements we obtained new insight into the molecular 

properties of Ubb
+1

. We further determined the thermal stability of Ubb
+1

 in the 

monomeric form, and in Lys48- and Lys63-linked dimers. Finally, we explored the 
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influence of the C-terminal fragment on the interactions of Ubb
+1

 with an isolated UBA2 

domain and with membrane mimics. Our findings support the notion that the 19-residue 

extension of Ubb
+1

 lacks a well ordered structure and persistent canonical secondary 

structure elements. However, we observed that the flexible fragment displayed non-

uniform structural and dynamic properties along its amino acid sequence. From analysis 

of global dynamics based on 
15

N-spin relaxation data, it emerged that the mobility of the 

C-terminal tail was independent from that of the globular domain, and persistent 

interdomain interactions were absent. Hence, it is possible that a reduction in local 

flexibility might originate from structural constraints imposed by the sequence of amino 

acids, and in particular by the proximity of two proline residues (Pro83 and Pro90). 

Consistently with the above picture, the peptide extension did not affect the protein 

thermal stability in either monomeric or dimeric species. However, biomolecular 

recognition was in part perturbed: the interaction of Ubb
+1

 with (HHR23A) UBA2 was 

characterized by enhanced affinity compared to that of Ub, and the weak association of 

Ub with anionic lipid surfaces was significantly reduced in the case of the variant. It can 

be concluded that the globular architecture of Ub is sufficiently robust not to be 

particularly influenced by the unintended covalent conjugation of a peptide to its 

flexible C-terminus. However, the selected interactions investigated in our work 

exemplify possible changes in biomolecular recognition and diffusive dynamics 

experienced by disease-associated mutant Ub species, compared to wild-type molecules, 

in physio(patho)logical conditions.  


