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Abstract 7 

This study was conducted to assess the techno-economic feasibility of converting the Canadian 8 

housing stock (CHS) into net/near zero energy buildings by introducing and integrating high 9 

efficient and renewable/alternative energy technologies in new construction and existing houses. 10 

Performance assessment of energy retrofit and renewable/alternative energy technologies in 11 

existing houses in regional and national scale is necessary to devise feasible strategies and 12 

incentive measures. The Canadian Hybrid Residential End-Use Energy and GHG Emissions 13 

model (CHREM) that utilizes a bottom-up modeling approach is used to investigate the techno-14 

economic feasibility of air to water heat pump retrofit in the Canadian housing stock. The 15 

proposed energy retrofit includes an air to water heat pump, auxiliary boiler, thermal storage 16 

tank, hydronic heat delivery and domestic hot water (DHW) heating. Energy savings, GHG 17 

emission changes and economic feasibility of the air source heat pump retrofit are considered in 18 

this study. Results show that there is a potential to reduce 36% of energy consumption and 23% 19 

of GHG emissions of the CHS if all eligible houses undertake the retrofit. Economic analysis 20 

indicates that the feasibility of air to water heat pump systems is strongly affected by the current 21 

status of primary energy use for electricity generation and space and DHW heating as well as 22 

energy prices and economic conditions. Legislation, economic incentives and education for 23 

homeowners are necessary to enhance the penetration level of air to water heat pump retrofits in 24 

the CHS. 25 
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Highlights 28 

• Techno-economic feasibility of air to water heat pump is assessed for Canadian houses. 29 

• A state-of-the-art housing stock model is used for techno-economic analysis. 30 

• AWHP retrofit reduced 36% of end-use energy consumption in the Canadian housing 31 

stock. 32 

• AWHP retrofit decreased 23% of GHG emission of the Canadian housing stock. 33 

• Aerothermal energy captured by HP can be assumed as renewable energy in most 34 

provinces 35 

Nomenclature 36 

ACSH Annual cost savings for the house due to energy savings in a uniform series, 37 

continuing for n periods ($/year) 38 

ATTCCH Average tolerable capital cost per house ($) 39 

CO2e  Equivalent CO2 emitted per unit input energy (kg/kWh) 40 

c  Specific heat (kJ/kgK) 41 

E  Energy saving per period for each fuel type (unit depends on fuel type) 42 

ERES   Thermal energy considered from renewable sources (PJ) 43 

e  Fuel cost escalation rate (decimal) 44 

F  Fuel price per unit of each fuel type ($/unit) 45 

hstore  Storage tank height (m) 46 

KAB  Heat exchange coefficient between water and working fluids (kW/K) 47 
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i  Interest rate (decimal) 48 

M  Mass of control volume (kg) 49 

ṁ  Mass flow rate (kg/s) 50 

NH  Number of houses that received the upgrade 51 

n  Acceptable payback period (year) 52 

PC  Compressor power (kW) 53 

Pel,pump.SH  Pump power in space heating loop (W) 54 

Pel,pump.DHW  Pump power in DHW loop (W)  55 

Pnom,burner  Nominal power of auxiliary boiler (W) 56 

Qusable   Gross final thermal energy delivered by heat pump (kJ) 57 

RHamb  Relative humidity of ambient air (%) 58 

SPF   Seasonal performance factor 59 

TCC  Tolerable capital cost ($) 60 

TCCH  Tolerable capital cost of the retrofit for the house ($) 61 

Tamb  Ambient temperature (K) 62 

Tc   Reference temperature for boiler efficiency (K) 63 

Tr  Return water temperature (K) 64 

tdef  Defrost time (s) 65 

ttr   Duration of transient operation of boiler (s) 66 

UA  Heat loss coefficient (kW/K) 67 

Vstore  Storage tank volume (m3) 68 

Greek letters 69 
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η  Ratio between total gross production of electricity and the primary energy 70 

consumption for electricity generation 71 

ηb   Boiler efficiency (%) 72 

η0   Full load boiler efficiency at the reference temperature (%) 73 

φ   Slope of the boiler efficiency curve (degree) 74 

Δt   Simulation time step (s) 75 

Abbreviations 76 

AB  Alberta 77 

AL  Appliances and lighting 78 

ASHP-WH Air source heat pump water heating 79 

AT  Atlantic Provinces 80 

AWHP  Air to water heat pump 81 

BC  British Columbia 82 

CHREM Canadian Hybrid Residential End-Use Energy and GHG Emissions model 83 

CHS  Canadian housing stock 84 

COP  Coefficient of performance 85 

CSDDRD Canadian Single-Detached Double/Row Database 86 

DHW  Domestic hot water 87 

EIF  Emission intensity factor 88 

GHG  Greenhouse gas 89 

ICE  Internal combustion engine 90 

MB  Manitoba 91 

NB  New Brunswick 92 
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NF  Newfoundland and Labrador 93 

NG  Natural gas  94 

NS  Nova Scotia 95 

NZEB  Net zero energy building 96 

OT  Ontario 97 

QC  Quebec 98 

PCM  Phase change material 99 

PE  Prince Edward Island 100 

PR  Prairie Provinces 101 

SDHW  Solar domestic hot water 102 

SE  Stirling engine 103 

SK  Saskatchewan 104 

SNEBRN Smart Net-Zero Energy Buildings Strategic Research Network 105 

1. Introduction  106 

Shrinking the energy footprint of residential buildings is a promising option to reduce national 107 

greenhouse gas (GHG) emissions. While developing and implementing improved building codes 108 

for new construction is necessary, it is not sufficient to achieve this goal. A housing policy with 109 

focus on retrofitting existing houses is an essential part of a strategic plan to reduce the GHG 110 

emissions associated with the housing stock [1]. While the most feasible and effective retrofit 111 

options might be improving building skin, installing high efficiency heating systems and 112 

incorporating renewable energy systems [2], adding an air to water heat pump (AWHP) system 113 

to a house could also be a suitable option to reduce energy consumption [3]. AWHP system can 114 

provide space and domestic hot water (DHW) heating energy requirement from a single source. 115 
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While the AWHP system is well established in Europe and Japan, it is relatively new to the 116 

Canadian market [4]. Thus, an accurate and comprehensive study is needed to investigate the 117 

feasibility of integrating AWHP systems into the Canadian housing stock (CHS). Recently, such 118 

studies have been conducted for various regions of the world. For example, Kelly and Cockroft 119 

[5] developed a numerical model to evaluate the performance of AWHP retrofit into a building 120 

in Scotland. The simulation results were validated by laboratory data and the model was 121 

integrated into a whole building performance simulation software. The model was well 122 

representative of the AWHP operating conditions in the field trial. An equivalent condensing 123 

natural gas boiler and an electric heating system were used as alternative heating systems for the 124 

building, and annual energy consumption of the three systems were compared. The results 125 

showed that GHG emissions of AWHP were lower compared to that of the condensing natural 126 

gas boiler and the electric heating system. While the operating cost of the AWHP exceeds that of 127 

the gas condensing boiler, incentives available for renewable thermal energy may make up the 128 

difference. In another study, Kelly et al. [6] used the AWHP model to estimate the effectiveness 129 

of integrated AWHP and thermal storage tank with phase change material (PCM) to restrict the 130 

AWHP operation to the off-peak periods. The results showed that through manipulation of the 131 

PCM chemistry, heat storage tank volume could be reduced by 50% with a minimum impact on 132 

heat supply to the building in the UK climate. Cabrol and Rowley [7] used a numerical model to 133 

study the performance of air source heat pump water heating (ASHP-WH) system with hydronic 134 

heat delivery in various UK locations. A sensitivity analysis was conducted to evaluate the 135 

impact of the building construction materials and off-peak period operation. The GHG emissions 136 

and operating cost of ASHP-WH were found to be lower compared to those of an equivalent size 137 

gas boiler, and the annual coefficient of performance (COP) of the ASHP-WH was found to be 138 
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about 3.5 and 4 for cold and mild UK climates, respectively. Johnson [8] found that in the UK 139 

context the heat pump GHG emissions due to electricity consumption were higher compared to 140 

gaseous fuels and lower compared to heating oil. Using a model for ASHP-WH system model 141 

based on measured data from a field trial campaign Madonna and Bazzocchi [9] found that 142 

climate has a significant role on the performance of ASHP-WH, and depending on climate, the 143 

energy requirement for space heating could be reduced by up to 79% in new buildings in Italy. A 144 

study by Hewitt et al. [10] that investigated AWHP retrofit options for existing houses in the UK 145 

recommended using variable speed compressor, advanced evaporators and improving heat 146 

delivery system to enhance the performance of AWHP in the European maritime climate 147 

conditions. Bertsch and Groll [11] designed, simulated, constructed and tested an ASHP water or 148 

air heating system with an operating range of -30○C to 10○C and return water temperature of 149 

50○C for northern US climates. The issues related with the low temperature, high lift operation of 150 

the heat pump were dealt with through design choices. The cost of the proposed ASHP system 151 

was found to be lower compared to an equivalent ground source heat pump. Ibrahim et al. [12] 152 

developed a simulation model to study the performance of ASHP-WH system and its potential 153 

for energy savings and GHG emissions reductions in Lebanon. The results showed that COP 154 

would vary in the range of 2.9 to 5 for the various climatic conditions of Lebanon. Lund et al. 155 

[13] evaluated the role of district heating in the future renewable energy systems of Denmark 156 

assuming that Danish energy supply will be entirely from renewable resources by 2060. 157 

Assuming a 75% reduction in space heating demand individual heat pump systems were found to 158 

be the best alternative to existing fossil fuel systems. The European Parliament and Council also 159 

identified the aerothermal, geothermal and hydrothermal energy production of heat pump 160 
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systems as renewable energy under specific circumstances as published in the Directive 161 

2009/28/EC [14]. 162 

To achieve substantial reductions in national energy consumption, massive energy retrofits in 163 

building stocks are required. The unique challenges that such massive retrofits require have 164 

recently been the focus of researchers. For example, Dall’O’ et al. [15] presented a method to 165 

estimate the energy savings due to retrofitting existing houses in a building stock and applied it 166 

for five municipalities in the province of Milan, Italy. Amstalden et al. [16] studied the cost-167 

effectiveness of energy retrofit options from house owners’ point of view in the Swiss housing 168 

sector, including the effect of various incentives. They concluded that energy price has the most 169 

significant impact on the profitability of retrofit options and efficiency retrofits were 170 

economically viable with the current energy prices and future energy cost elevations would 171 

improve the feasibility of energy retrofits. Tommerup and Svendsen [17] assessed the 172 

performance of energy saving measures for existing Danish houses. The study was conducted for 173 

two typical buildings and results showed that retrofits were economically viable in 30 years in 174 

the presence of sufficient education and training for house owners. Nemry et al. [18] studied the 175 

life cycle impact of 72 building types with different construction properties in various 176 

geographical locations of European Union countries. The results showed that heating demand 177 

was the dominant energy consumption component in the life cycle energy consumption of both 178 

existing and new buildings. It was also found that in most buildings at least 20% energy savings 179 

were cost effective with infiltration reduction by sealing and additional roof and façade 180 

insulation.  181 

In order to focus efforts and resources to reduce residential energy consumption and GHG 182 

emissions an accurately designed strategy with specific goals is required. For this purpose, so far, 183 
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a wide range of retrofit options including envelope modifications such as glazing and window 184 

shading upgrades, as well as installation of solar domestic hot water (SDHW) systems, phase 185 

change material (PCM) thermal energy storage, internal combustion engine (ICE) and Stirling 186 

engine (SE) based cogeneration systems and solar combisystem were studied [19-27] as part of a 187 

national effort in Canada [28]. In this work, the techno-economic feasibility of AWHP system 188 

retrofit in the Canadian housing stock is studied.  189 

2. Methodology 190 

Under the current circumstances where GHG emissions are considered to be as important as 191 

energy consumption and costs, the evaluation of the feasibility of an energy retrofit measure for a 192 

house has to consider house energy consumption, associated GHG emissions and energy costs 193 

before and after the retrofit. To evaluate the feasibility of massive implementation of energy 194 

efficient retrofits in a regional or national housing stock, a representative and accurate housing 195 

stock model is necessary to predict the system-wide energy savings, emission reductions and 196 

economic feasibility. Comprehensive reviews of housing stock models and modeling efforts are 197 

presented in Swan and Ugursal [29] and Kavgic et al. [30].  198 

2.1. Housing stock model 199 

In this work the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model 200 

(CHREM) [31, 32] is used. CHREM is based on the Canadian Single-Detached Double/Row 201 

Database (CSDDRD) [33]. CSDDRD statistically represents the CHS with close to 17,000 202 

unique houses that were extracted from the latest data available from the EnerGuide for Houses 203 

database, Statistics Canada housing surveys and other available housing databases. 204 

A high-resolution building energy simulation program ESP-r [34] is used as the simulation 205 

engine of CHREM. ESP-r is an integrated modeling tool for evaluation of the thermal, visual and 206 
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acoustic performance as well as energy consumption and GHG emissions of buildings which 207 

employs a finite difference control volume approach for energy simulation. The building domain 208 

is discretized into control volumes and each control volume contain finite difference nodes. 209 

Control volumes represent a wide range of building components such as air volume in thermal 210 

zones, opaque and transparent structures, solid-fluid interfaces and plant components. Governing 211 

equations are discretized based on the Crank-Nicolson finite difference method for all nodes in 212 

the control volume. The system of algebraic equations is solved using a simultaneous direct 213 

solution approach based on matrix partitioning and Gaussian elimination in each time step [35, 214 

36]. The system of linearized mass balance equations is solved using the Newton-Raphson 215 

iterative method. ESP-r has been validated through a vast amount of research results [37].  216 

CHREM consists of six components that work together to provide predictions of the end-use 217 

energy consumption and GHG emission of the CHS. These components are: 218 

• The Canadian Single-Detached & Double/Row Housing Database [33], 219 

• A neural network model of the appliances and lighting (AL) and DHW energy 220 

consumption of Canadian households [38], 221 

• A set of AL and DHW load profiles representing the usage profiles in Canadian 222 

households, 223 

• A high-resolution building energy simulation software (ESP-r) that is capable of 224 

accurately predicting the energy consumption of each house file in CSDDRD, 225 

• A model to estimate GHG emissions from marginal electricity generation in each 226 

province of Canada and for each month of the year [39], 227 

• A model to estimate GHG emissions from fossil fuels consumed in households. 228 



11 
 

The energy savings and GHG emissions reductions associated with any energy efficiency 229 

upgrade or renewable/alternative energy technology, such as AWHP systems, can be estimated 230 

using CHREM as follows:  231 

(i) Identify houses suitable to receive the upgrade/technology: For AWHP system retrofit, 232 

only houses with a basement or a mechanical room would be suitable. Therefore, a search 233 

has to be conducted in the CSDDRD to identify such houses. 234 

(ii) Modify the input files of the selected houses to add the upgrade/technology for use in the 235 

ESP-r energy simulations. 236 

(iii) Estimate the energy consumption and GHG emissions reductions (or increases) of the 237 

CHS with the adopted upgrade/technology by comparing the energy consumption and 238 

GHG emissions with the “base case” (i.e. current) values. The change in GHG emissions 239 

due to a change in electricity consumption is estimated using the marginal GHG emission 240 

intensity factors given by Farhat and Ugursal [39]. Since CSDDRD is representative of 241 

the CHS, the CHREM estimates can be extrapolated to the entire CHS using scaling 242 

factors [31, 32]. 243 

Since its initial development, the modeling capability of CHREM has been gradually expanded, 244 

to include PCM thermal energy storage, SDHW heating system, ICE and SE engine based 245 

cogeneration and solar combisystem [19-27]. 246 

The schematic of the AWHP retrofit considered in this work for existing houses is given in 247 

Figure 1. The system is capable to deliver heat for space and DHW heating. Cooling is not 248 

considered in this study because adding an air handling unit to use the chilled water for space 249 

cooling purposes will substantially increase retrofit costs to compromise economic feasibility. 250 
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Also, an AWHP system cannot provide hot water for DHW heating and chilled water for space 251 

cooling simultaneously. Thus only space and DHW heating features are considered for retrofit. 252 

To assess the techno-economic feasibility of AWHP integration into the CHS in this work, first 253 

an AWHP modeling capability was added to CHREM as discussed in sections 2.2.1-2.2.7. Then 254 

a set of criteria was established to identify houses in CHREM that are suitable for AWHP 255 

retrofit. These criteria are presented and discussed in Section 2.3. The method used to estimate 256 

GHG emissions is presented in Sections 2.4. Methodologies for accounting of renewable energy 257 

from heat pump and economic feasibility analysis are elaborated in Sections 3 and 4, 258 

respectively.  259 

2.2.1. Air to water heat pump 260 

The AWHP model used in this work was developed and added to the ESP-r plant components by 261 

Kelly and Cockroft [5]. This model incorporates three control volumes: a functional volume and 262 

two lumped mass volumes as shown in Figure 2. The functional control volume represents the 263 

working fluid loop and auxiliary parts, and calculates the COP of the heat pump and compressor 264 

power consumption based on the ambient temperature, return water temperature and the control 265 

signal. The total power use of the heat pump is the cumulative power consumption of compressor 266 

and auxiliary components. The empirical expressions used for the COP and compressor power 267 

consumption of an AWHP are given in Equations (1) and (2): 268 

COP=a0+a1(Tr-Tamb)+a2(Tr-Tamb)2  (1) 

PC=b0eb1(Tr-Tamb)  (2) 

where Tr, Tamb and PC represent the return water temperature (K), ambient temperature (K) and 269 

compressor power (kW), respectively. In each time step of the simulation, the COP and PC are 270 

calculated based on the instantaneous water and ambient temperatures. The constants factors (a0-271 
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2 and b0-1) are derived based on the empirical data of the AWHP and the values used in this work 272 

are given in Table 1. The nominal heat supply of the heat pump is then determined as the 273 

compressor power consumption multiplied by the COP. 274 

To model the condenser of the AWHP two lumped capacitance control volumes are used. The 275 

lumped capacitance volume (A) represents the working fluid side of the condenser and the 276 

lumped capacitance volume (B) represents the water side of the condenser. The nominal heat 277 

supply of the AWHP is transferred to the lumped capacitance volume (A). Heat losses from the 278 

condenser to the environment are considered in the energy balance of lumped capacitance 279 

volume (A). Heat transfer between the working fluid and water is estimated by a heat exchange 280 

coefficient between lumped mass volumes (A) and (B). The energy balance equations for lumped 281 

mass volumes (A) and (B) are given in Equations (3) and (4), respectively: 282 

MAcA
dTA
dt

=PC×COP-UA(TA-Tamb)-KAB(TA-TB)  (3) 

MBcB
dTB
dt

=KAB(TA-TB)-ṁcw(Tw-TB)  (4) 

where M is the mass of control volume (kg), c is the specific heat (kJ/kgK), UA is the heat loss 283 

coefficient (kW/K), KAB is the heat exchange coefficient between water and working fluids 284 

(kW/K) and ṁ is the water mass flow rate (kg/s). The values of these parameters used in this 285 

work are given in Table 1. 286 

At low ambient temperature and high relative humidity the evaporator coil may operate below 287 

the frost temperature of ambient air. Under these circumstances the frost may accumulate on the 288 

evaporator coil surface and reduce the heat transfer between refrigerant and the outside air. Thus, 289 

the defrost cycle is considered to melt the frost [3]. A defrost algorithm predicts the status of the 290 

AWHP in a case that ambient temperature drops below the frost temperature. If the ambient 291 

temperature remains below the frost temperature for a long time a defrost lockout duration is 292 
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considered to dictate an interval between the defrost cycles. If the defrost cycle is turned on the 293 

heat supply of heat pump is set to zero. The duration of the defrost cycle is defined using 294 

Equation 5. 295 

 tdef=t0+t1×RHamb  (5) 

where tdef is the defrost time (s) and RHamb is the relative humidity of ambient air (%). t0 (s) and 296 

t1 (s/%) are empirical coefficients determined by experimentation. The values used here are 297 

given in Table 1. The typical duration of defrost cycle is between 4 to 10 minutes [3]. 298 

2.2.2. Auxiliary boiler  299 

The boiler model that was developed and added to the ESP-r plant domain by Hensen [40] is 300 

used. The model can be used for both non-condensing and condensing auxiliary boilers. The 301 

governing equations, including conservation of mass and energy, are solved in each time step. 302 

The control signal that defines the ON/OFF status of the boiler is set the beginning of each time 303 

step, and the boiler remains in that status during a time step. In the case that boiler temperature 304 

exceeds the maximum allowable temperature limit, the control signal is discarded and boiler is 305 

turned off to determine the new boiler temperature for that time step. 306 

The heat supply of the boiler is determined based on the fuel consumption, fuel heating value 307 

and boiler efficiency. Boiler efficiency is a function of temperature with the condensing effect 308 

considered for gas-fired boilers as shown in Equation 6: 309 

ηb=�η0- tan φ×(Tc-T1)�  (6) 

where ηb is the boiler efficiency (%), η0 is the full load boiler efficiency (%) at the reference 310 

temperature, φ is the slope of the efficiency curve (%/K), Tc is the reference temperature (K), T1 311 

is the return water temperature (K). During the start-up and shutdown periods the boiler 312 

efficiency is reduced by the �∆t-ttr
∆t
� factor, where ttr is the duration of transient operation (i.e. 313 
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start-up and shutdown) and Δt is the simulation time step (s). For a condensing boiler, the 314 

reference temperature is the condensing temperature. The values used a given in Table 1. 315 

2.2.3. Thermal storage tank 316 

The thermal storage tank model developed and incorporated into the ESP-r by Thevenard and 317 

Haddad [41] is used. The model represents a stratified tank with two immersed heat exchangers. 318 

The tank is divided into N control volumes, and mass and energy balance equations are solved 319 

for each control volume. The energy balance equation for each control volume considers heat 320 

losses to the environment, convection and conduction heat transfer with the adjacent control 321 

volumes as well as heat transfer due to water flow at inlet/outlet, where applicable.  322 

Asaee et al. [27] used the approach suggested by Weiss [42] to define thermal storage tank size 323 

for residential solar combisystems. Since the tank height affects stratification and due to similar 324 

temperature ranges found in the thermal storage tanks of solar combisystems and AWHP 325 

systems, the same approach is used here to estimate the thermal storage tank height as shown in 326 

Equation 7.  327 

hstore=max �min �2.2,1.78+0.39 ln Vstore
m3 � ,1.25�  (7) 

where hstore is the storage tank height (m) and Vstore is the storage tank volume (m3). 328 

2.2.4. Heat delivery system 329 

The heat delivery system is assumed to be hydronic, consisting of piping, pumps and radiators.  330 

The radiator and pump models developed and added to the ESP-r plant database by Hensen [40] 331 

are used. Radiator heat emission is estimated based on the nominal heat emissions at reference 332 

conditions and actual temperature conditions of radiator and environment based on radiator type, 333 

dimensions, connection method and room characteristics. The electricity consumption of the 334 
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circulation pump defined based on actual mass flow rate, pressure drop, fluid density and pump 335 

efficiency with heat losses from the pump added to the energy balance. 336 

The number of radiators for each thermal zone is chosen to satisfy the design heating load and 337 

nominal radiator capacities selected from the Express Radiant Ltd product catalogue [43]. The 338 

hot water circulation pump power is estimated using empirical equations that Asaee et al. [27] 339 

used to estimate pump power in space and DHW heating loop for solar combisystem applications 340 

based on recommendations by Weiss [42]:. 341 

Pel,pump.SH=90W+2×10-4Pnom,burner  (8) 

Pel,pump.DHW=49.4W×exp �0.0083 Pnom,burner

kW
�  (9) 

where Pel,pump.SH is the pump power in space heating loop (W), Pel,pump.DHW is the pump power in 342 

DHW loop (W) and Pnom,burner is the nominal power of auxiliary boiler (kW). 343 

2.2.5. Domestic hot water system 344 

The AWHP system architecture shown in Figure 1 uses a combination of three-way diverting 345 

valve and three-way converting valve to maintain the DHW temperature in the desired range. 346 

Since the DHW heating coil is sized for maximum water draw calculated for the house, this 347 

architecture prevents overheating the DHW when the water draw is less than the nominal value. 348 

To simplify the modeling of this architecture in ESP-r, a fully mixed adiabatic tank with 349 

temperature control as shown in Figure 2 is used. As the DHW draw and equivalent main water 350 

addition is applied to the adiabatic tank, the tank temperature is maintained in the range of 351 

55±0.5○C by circulating hot water from the thermal storage tank to the adiabatic tank. Thus, the 352 

energy balance for the adiabatic tank is the same as for the three-way valve combination.  353 

2.2.6. AWHP system sizing 354 
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The nominal capacity of AWHP components are defined based on the existing heating system 355 

capacity of individual buildings as shown in Table 1. 356 

Since the goal of this study is to push the CHS towards net zero energy buildings (NZEB) by 357 

introducing AWHP retrofit in the existing houses, the COP and power consumption profile are 358 

derived for the AWHP systems that represents the most efficient technologies available in the 359 

market that fits the Canadian climatic conditions. For this purpose a series of AWHP systems 360 

from different manufacturers including Mitsubishi electric, Toshiba, Viessmann, Fujitsu and 361 

Stiebel Eltron are reviewed [44-48]. The COP range reported by the manufacturers for those 362 

AWHP systems is presented in Figure 3. The size and performance parameters of the AWHP 363 

units used in this work are based on the Viessmann Vitocal 350-A as given in Table 1. Operating 364 

temperature, heating capacity and COP of Vitocal 350-A AWHP system is in the similar range 365 

with other reviewed products. All of these systems can operate in the Canadian Climatic 366 

conditions. The cut-out temperature for the AWHP system is -15○C. The control system 367 

deactivates the AWHP at ambient temperature below the cut-out temperature and reverts to the 368 

back-up system. The AWHP size for each house is selected such that the AWHP is capable of 369 

satisfying major part of the design heating load. The capacity of the thermal storage tank is 370 

chosen such that the tank can store the heat generated by the AWHP during a 30 minute long 371 

operation at its maximum output. The fuel used in the auxiliary heating system is chosen based 372 

on the availability of natural gas. Thus, natural gas (NG) fired boilers are assumed to be the 373 

auxiliary heating system in every region of Canada except in the Atlantic region where oil fired 374 

boilers are used. The nominal capacity of auxiliary heating system is chosen to be equal to the 375 

AWHP nominal capacity [49, 50]. 376 

2.2.7. Control algorithms 377 
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Control algorithms for the AWHP system include the loops that operate the heat pump, auxiliary 378 

boiler and pumping system according to the space and DHW temperatures. The detailed control 379 

loop data are presented in Table 2. 380 

Space and DHW heating are supplied in two stages. The first stage is supplied by the heat pump 381 

and the second stage is by auxiliary heat. Due to this dual mode of operation, the water supply to 382 

the space heating radiators is between 50°C and 55°C; i.e. the circulation pump is turned on 383 

when the temperature drops to 50°C and turned off when the temperature reaches 55○C.  384 

The first control loop operates the AWHP to heat the water up to 50○C. The second loop operates 385 

the auxiliary heater. The 50○C hot water leaving the AWHP is heated by the boiler to a 386 

maximum 55○C. With this control scheme, it is ensured that the auxiliary heating system is 387 

operated only when the AWHP is not capable of meeting the demand. 388 

The third control loop maintains the DHW temperature in the adiabatic tank in the range of 389 

55±1○C by running the DHW pump while the fourth loop controls the DHW draw and equivalent 390 

main water supply to the adiabatic tank. 391 

Fifth loop controls the zone temperature by maintaining the space heating pump operation. 392 

CHREM provides for four space conditioning periods (winter - heating only, summer - cooling 393 

only, and shoulder seasons - heating/cooling are both available). However, since cooling is not 394 

available, two periods are used in this work as shown in Table 2:  395 

- September 17 to June 3: heating available, 396 

- June 4 to September 16: heating not available. 397 

During the heating period the space heating pump is controlled to maintain the main zone 398 

temperature in the range of 20−22○C. The main-slave control strategy is used for temperature 399 
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control of other zones excluding the attic which is not conditioned. Since attic is free ventilated, 400 

its temperature follows the ambient temperature. 401 

2.3. Methodology to select eligible houses for the AWHP system retrofit 402 

A basement or a mechanical room is necessary to install an AWHP system into a house. While 403 

the presence of a basement is noted in the CHREM database, the presence of a mechanical room 404 

is not. Therefore, it is assumed in this work that all houses that either have a basement or a 405 

heating system that requires a mechanical room are suitable for AWHP retrofit. Based on this 406 

assumption, all houses that use NG or oil for space heating are considered to be eligible for the 407 

AWHP retrofit. Depending on the type of heating system and the presence of a basement, some 408 

houses that use wood or electricity are also eligible for the retrofit. The percentage of houses 409 

eligible for the retrofit in each province of Canada1 is shown in Table 8. 410 

2.4. Estimation of GHG emissions  411 

CHREM determines the associated GHG emission due to onsite fossil fuel and electricity 412 

consumption separately for each province due to the vast differences in the fuel mix used. GHG 413 

emissions are calculated and reported as “equivalent CO2” (CO2e) emitted per unit input energy. 414 

CO2e is calculated by converting all GHG emissions from  fossil fuel combustion, such as CH4 415 

and N2O, to equivalent CO2 emissions taking into account their global warming potentials as 416 

shown in Equation 10 [32, 39]. 417 

CO2e=CO2+25CH4+298N2O (10) 

Instantaneous GHG emissions due to onsite fuel consumption is calculated in each time step 418 

based on the fuel type and efficiency of the energy conversion device. The emission of CO2 due 419 

                                                 
1 Provinces of Canada, from east to west, are: Newfoundland and Labrador (NF), Prince Edward Island (PE), Nova 
Scotia (NS), New Brunswick (NB), Quebec (QC), Ontario (OT), Manitoba (MB), Saskatchewan (SK), Alberta (AB), 
and British Columbia (BC). NF, PE, NS and NB are collectively referred to as Atlantic Provinces (AT) while MB, SK 
and AB are referred to as Prairie Provinces (PR). 
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to wood combustion is not accounted for in this study because it is assumed that combustion of 420 

wood returns to the atmosphere the CO2 that was recently removed by photosynthesis as the tree 421 

grew [39].  422 

To evaluate the GHG emissions related to electricity consumption the GHG emission intensity 423 

factor (EIF) is used. The GHG EIF is the level of CO2 emissions (kg/kWh) generated for the 424 

generation and delivery of one kWh electricity to the end-user. In Canada electricity generation 425 

is under the jurisdiction of provincial utility companies. Thus, provincial GHG EIF is defined 426 

based on the primary energy mixture used for electricity generation and efficiency of energy 427 

conversion as well as transmission and distribution losses. Also, typically utilities consider 428 

different types of technologies for peak and base electricity generation. Thus, different average 429 

and marginal GHG EIFs associated with base and peak electricity generation are required. The 430 

provincial average and marginal GHG EIF developed by Farhat and Ugursal [39] and given in 431 

Table 3 are used. Average GHG EIFs are used to estimate the emissions due to electricity 432 

consumption of the existing housing stock (base case) while the marginal GHG EIFs are used to 433 

estimate the GHG emission variation due to the change in electricity consumption in retrofitted 434 

houses. 435 

3. Accounting of renewable energy from heat pump 436 

European Parliament and Council in the Directive 2009/28/EC [14] identified the gross final 437 

consumption of energy from renewable resources as the summation of (a) gross final electricity 438 

consumption, (b) heating and cooling gross final energy use and (c) gross final energy use for 439 

transportation from renewable sources. In accordance to part (b) aerothermal, geothermal and 440 

hydrothermal energy of heat pump can be assumed as renewable energy in a case that final gross 441 

thermal energy production significantly exceeds the primary energy consumption for the heat 442 
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pump operations. For this purpose the European Parliament and Council Directive 2009/28/EC 443 

introduced Equation 11 to define the amount of renewable thermal energy captured by heat 444 

pumps.  445 

ERES=Qusable× �1- 1
SPF
�  (11) 

where ERES is the thermal energy considered from renewable sources (kJ), Qusable is the gross 446 

final thermal energy delivered by heat pump (kJ) and SPF is the average seasonal performance 447 

factor. SPF is defined as the ratio of the delivered heat to the electricity consumption of the heat 448 

pump. To fulfill the above mentioned criterion (part (b)) the following condition is defined to 449 

identify eligible heat pumps:  450 

SPF>1.15× 1 η�   (12) 

where η is the ratio between total gross production of electricity and the primary energy 451 

consumption for electricity generation. Asaee et al. [24] evaluated provincial efficiency of utility 452 

electricity generation, inclusive of transmission and distribution losses, from fossil fuels. In each 453 

province the electricity generation is from a mixture of fossil fuels and renewable resources. To 454 

obtain the reference efficiency that represents the total gross electricity production, the efficiency 455 

of electricity generation from fossil fuels is divided by the fossil fuel contribution in the fuel 456 

mixture for utility electricity generation. The reference efficiency is therefore in the range of 0 to 457 

1. In the case that the electricity generation exceeds the primary energy consumption due to a 458 

vast electricity production from non-fossil fuel sources the reference efficiency value is set to 1. 459 

The provincial fossil fuel contributions and reference efficiencies are given in Table 4. 460 

4. Economic analysis based on tolerable capital cost 461 

Accurate estimation of AWHP system capital costs, at residential as well as commercial scale, is 462 

difficult because installed costs can vary significantly depending on the scope of the plant 463 
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equipment, geographical area, competitive market conditions, special site requirements, and 464 

prevailing labor rates. Therefore the purchase and installation costs of AWHP systems in Canada 465 

vary substantially from manufacturer to manufacturer and location to location. Thus, it is not 466 

practicable to estimate realistic total investment costs for AWHP systems and to conduct a 467 

conventional economic feasibility analysis. Therefore, an alternative approach to conventional 468 

economic feasibility analysis is adopted here which involves the calculation of the “tolerable 469 

capital cost” (TCC) of the upgrades [51]. TCC is the capital cost for an energy saving upgrade 470 

that will be recovered based on the annual savings, the number of years allowed for payback, and 471 

the estimated annual interest and fuel cost escalation rates. Thus, to estimate the tolerable capital 472 

cost of the AWHP upgrade a reverse payback analysis is conducted as follows: 473 

1. The annual fuel and electricity savings for each upgrade is estimated (C$). 474 

2. A realistic cost of money (interest rate) for residential customers borrowing money to 475 

finance the retrofit is assumed. 476 

3. A realistic fuel cost escalation rate for fuels and electricity is assumed. 477 

4. A realistic payback period that would be acceptable for the residential customer is 478 

assumed. 479 

5. A reverse payback analysis is conducted to determine the tolerable capital cost of the 480 

upgrade for each house (TCCH) that will result in the assumed payback period: 481 

TCCH=�
ACSH �1-(1+e)n(1+i)-n

i-e
�        for    i≠e

 
ACSH×n(1+i)-1             for    i=e

  (13) 

  

ACSH=�(F×E)j

m

j=1

 (14) 

 482 

where: 483 
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TCCH  Tolerable capital cost of the retrofit for the house (C$) 484 
n  Acceptable payback period (year) 485 
i  Interest rate (decimal) 486 
e  Fuel cost escalation rate (decimal) 487 
ACSH Annual cost savings for the house due to energy savings in a uniform series, 488 

continuing for n periods (C$) 489 
E Energy saving per period for each fuel type (unit depends on fuel type; kg, liter, 490 

kWh, etc.) 491 
F  Fuel price per unit of each fuel type (C$/unit) 492 
m  Number of different fuels used in a house 493 
 494 

The additional maintenance cost of the AWHP system over and above that of the replaced 495 

system is assumed to be included in the TCC as a present value of the annual maintenance cost 496 

over the lifetime of the AWHP system.  497 

It is not useful or practical to report the TCC for each house in the CSDDRD, or for that matter 498 

within the CHS, because from a macro level of interest, data on individual houses have no utility. 499 

Thus, the “average tolerable capital cost per house” (ATCCH) is used to evaluate the economic 500 

feasibility of the AWHP system retrofit.  ATCCH is calculated by dividing the total tolerable 501 

capital cost by the number of houses: 502 

ATCCH=TTCC/NH (15) 
 503 

where, TTCC is the total tolerable capital cost as a result of the AWHP system upgrade (C$), 504 

calculated as follows: 505 

TTCC=�TCCHi

NH

i=1

 (16) 

 506 

NH = number of houses that received the upgrade.  507 

To take into consideration the uncertainty associated with the future of interest and fuel price 508 

escalation rates, a sensitivity analysis was conducted. The interest rates used in the analysis are 509 

based on the Bank of Canada Prime Rate [52], which was about 1% in June, 2015. Thus, for the 510 
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sensitivity analysis, interest rates of 3%, 6% and 9% are used. These numbers were selected 511 

based on the range of consumer loan rates. 512 

For each province, fuel prices for residential customers for natural gas, heating oil, electricity 513 

and wood were obtained to calculate the energy cost savings due to retrofits. The fuel prices that 514 

are used in this study are presented in Table 5 [53, 54]. 515 

For each fuel type, a set of low, medium and high fuel cost escalation rates shown in Table 6 are 516 

used in the sensitivity analysis. These values are based on the medium rates extracted from the 517 

National Energy Board of Canada [55] and Energy Escalation Rate Calculator [56]. 518 

Payback periods of six and ten years are used in the sensitivity analysis. Both values are 519 

comfortably within the economical lifetime of 15 to 20 years for AWHP systems reported by 520 

Natural Resources Canada [57]. 521 

It is likely that an AWHP retrofit would increase the market value of a house. However, the 522 

estimation of the increase in market value due to such a retrofit is not straightforward due to a 523 

number of reasons including buyer perception and sophistication, market forces, and energy 524 

prices. Due to the complex nature of the impact of upgrades on the market value of a house this 525 

issue was not considered in this work.  526 

5. Results and discussion 527 

The CHREM estimates of the current energy consumption and GHG emissions of the CHS are 528 

given in Table 7. Swan et al. [32] verified the validity of these results by comparing them with 529 

other estimates of Canadian residential energy consumption. 530 

Using the criteria given in Section 2.3, eligible houses for the AWHP retrofit in CHREM were 531 

identified. As shown in Table 8, about 71 percent of the houses in CHREM, representing 532 

approximately 6.3 million existing houses in the CHS are eligible for the AWHP retrofit. After 533 
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identifying the eligible houses for the AWHP retrofit, CHREM was updated to reflect the AWHP 534 

retrofit in these houses and simulations were carried out to evaluate the energy savings and GHG 535 

emissions reduction due to the retrofit. As shown in Table 8, results indicate that 460.5 PJ end-536 

use energy and 15.16 Mt of GHG associated emissions would be saved by retrofitting all eligible 537 

houses in the CHS by AWHP systems. Also as shown in Table 8, the energy savings and GHG 538 

emission reductions vary substantially amongst provinces. This is discussed in detail below.  539 

5.1. Energy savings 540 

The existing annual energy consumption and energy consumption with the AWHP retrofit are 541 

given in Table 9 for each province, disaggregated according to the heating fuel used. As 542 

discussed in Section 2.3, whereas all houses that use NG or oil are eligible for the retrofit, only a 543 

portion of the houses that use electricity and wood are eligible. Thus, the energy consumption of 544 

the houses that are not eligible for the retrofit is shown separately in Table 9.  545 

Since AWHP compressors use electricity, the electricity use in all houses that receive the AWHP 546 

retrofit increase. This increase translates to an increase in the electricity consumption of 547 

retrofitted houses by 188.8 PJ (as shown in Table 10), or close to 85%, from 224.5 PJ to 413.3 548 

PJ. This represents an increase of about 36% in the current electricity consumption of the CHS 549 

(518.3 PJ as shown in Tables 7 and 9). The increase in the electrical consumption is beneficial in 550 

reducing primary energy consumption in provinces where renewable resources are the main 551 

source of electricity generation including NF, QC, MB and BC. However, in provinces that 552 

utility electricity generation heavily relies on fossil fuel thermal power plants, AWHP retrofit 553 

may not significantly affect primary energy savings.  554 

The average SPF and thermal energy from renewable sources of heat pumps (ERES as shown in 555 

Equation 11) are given in Table 11. The SPF is calculated using the average value of SPF in 556 
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individual houses in each province. Comparing the SPF of AWHP and reference efficiencies of 557 

electricity generation (given in Table 4) based on the European Parliament and Council Directive 558 

2009/28/EC guidelines indicate that heat generation of AWHP can be considered as renewable 559 

energy in Canada except in provinces that electricity generation is significantly from fossil fuel 560 

resources (NS, NB, PE, SK, and AB). About 91%, 64%, 64%, 78% and 96% of electricity 561 

generation is from fossil fuels in NS, NB, PE, SK and AB, respectively. Thus, thermal energy 562 

from renewable sources (ERES) is not calculated for theses provinces. It should be noted that 563 

ERES only includes the amount of thermal energy captured from the ambient that can be 564 

considered as renewable energy. However, in cases that electricity generation is mainly from 565 

renewable resources (such as NF, QC, MB and BC) the total gross heat delivered (Qusable) by the 566 

heat pump is renewable energy. Results indicate that AWHP capture about 130.9 PJ additional 567 

renewable energy, equivalent to 10% of the total existing energy consumption of the CHS 568 

(1291.8 PJ as shown in Table 7). 569 

An AWHP system utilizes an auxiliary heating system that uses NG or oil as fuel source. 570 

However, the NG and oil consumption is drastically reduced in eligible houses due to AWHP 571 

retrofit. Thus, the current end-use energy consumption of eligible houses (981.3 PJ as shown in 572 

Table 8) is reduced by about 47% due to AWHP retrofits (520.8 PJ as shown in Table 8). 573 

However, the primary energy use increases in provinces with relatively low reference efficiency 574 

of electricity generation, i.e. in NS, NB, PE, SK and AB. 575 

Annual end-use energy savings due to AWHP upgrade is summarized in Table 11. AWHP 576 

retrofit yields 36% energy savings in the CHS. The lowest energy savings is associated with QC 577 

because of the small penetration level of AWHP system in this province (19% houses in QC are 578 

eligible). On the other end of the spectrum, the penetration level of AWHP system is above 90% 579 
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in OT, SK and AB (as shown in Table 7) resulting in more than 40% energy savings in these 580 

provinces.  581 

5.2. GHG emissions reduction 582 

The GHG emission reductions due to AWHP retrofit in all eligible houses based on the energy 583 

source in each province are presented in Table 10. 584 

As to be expected, GHG emissions associated with electricity use increase due to AWHP retrofit 585 

in the CHS. As shown in Table 3 the GHG EIF are small in NF and QC where major share of 586 

electricity generation is from renewable resources. Thus, the GHG emission variations are 587 

negligible despite the increase of electricity consumption in these provinces. The total GHG 588 

emission increase (19.12 Mt of CO2e) associated with electricity use is about 75% of national 589 

GHG emissions (25.3 Mt of CO2e) associated with electricity use in the CHS. This significant 590 

increase of GHG emissions is associated with 36% increase in the electricity use in the CHS as 591 

mentioned in the previous section. Close to half of GHG emissions increase (19.12 Mt of CO2e) 592 

due to AWHP retrofit in the CHS is from AB (8.35 Mt of CO2e). Thus, AB has the least 593 

favourability for the AWHP retrofit from this point of view.  594 

Although AWHP retrofit yields a significant increase of GHG emissions associated with 595 

electricity use, close to 86% of GHG emissions associated with onsite fossil fuel consumption is 596 

reduced in the CHS. This occurs because of fuel shift from NG and oil as discussed in previous 597 

section.   598 

As shown in Table 11 AWHP retrofit result in a 23% reduction of GHG emissions in the CHS. 599 

While the smallest value of GHG emission reductions occur in NB, overall GHG emissions 600 

increase in NS, SK and AB. Unfavourable results of GHG emission variation in NS, SK and AB 601 

are in agreement with prior observations regarding the primary energy consumption as discussed 602 
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in previous section. Since, fossil fuels are the main source of electricity generation in these 603 

provinces, AWHP retrofit adds extra emissions. The low value of GHG emission reduction in 604 

NB is because of the fuel shift from wood to electricity. As discussed earlier CO2 emission of 605 

wood combustion is considered as a complement of the natural carbon cycle and no GHG 606 

emissions is attributed to wood burning heating systems. Since close to 30% of total energy use 607 

(39.1 PJ as shown in Table 6) of existing houses in NB is supplied from wood (10.7 PJ as shown 608 

in Table 6) this fuel shift strongly affects the total GHG emissions of eligible houses. As shown 609 

in Table 9 about 6.8 PJ (equivalent of 17% of total energy use) of energy supply from wood is 610 

replaced by electricity in NB. This effect is as to be expected since marginal electricity 611 

generation in NB has the highest GHG EIF in the Canadian electricity market as shown in Table 612 

6. On the other hand provinces that have a high renewable electricity generation provide 613 

substantial GHG emission reductions due to AWHP retrofit. 614 

5.3. Economic analysis 615 

The results of economic analysis for AWHP retrofit using two payback periods, three interest 616 

rate scenarios and three fuel escalation rates in each province in the CHS based on the tolerable 617 

capital cost are given in Table 12.  618 

The operating cost of AWHP system is higher compared to that of the existing systems for space 619 

and DHW heating in OT and PR region (excluding MB). Thus TCC is not given for OT, SK and 620 

AB provinces in Table 12. Also, TCC in MB is fairly small compared other provinces. The 621 

higher operating costs in these provinces are due to significantly lower price of NG (8.23, 7.77 622 

and 4.62 C$/GJ as shown in Table 5) compared to price of electricity (24.25, 42.00, 43.19 C$/GJ 623 

as shown in Table 5) in MB, SK and AB, respectively. As shown in Table 5 similar to the one in 624 

the PR region, the electricity price (39.72 C$/GJ) is much higher than NG price (7.99 C$/GJ) in 625 
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OT. Thus, TCC for AWHP in OT is not sufficient to justify the initial investment cost in the 626 

absence of incentive programs. 627 

The major share of space and DHW heating energy is currently supplied from oil in AT and QC 628 

regions. Due to comparable price of oil (~30 C$/GJ as shown in Table 5) and electricity (~22−45 629 

C$/GJ as shown in Table 5) in these provinces, the highest TCC for AWHP retrofit is observed 630 

in NF, NS, PE, NB and QC. 631 

The high TCC with short payback period may increase a homeowner’s willingness to invest in 632 

the AWHP retrofit. However, the investment cost might be higher than the TCC in some 633 

provinces. In that case incentive programs and subsidies might be helpful if the provincial or 634 

federal governments decide to promote the AWHP retrofit in the housing stock. However, the 635 

subsidy program might not be the only tool for the government to motivate homeowners for 636 

energy retrofits. Tommerup  and Svendsen [17] argue that legislation is an effective and vital 637 

part of strategies in this regard, since a rational reaction to traditional market forces is not 638 

expected in the energy saving market. The value of TCC per house has less utility for provincial 639 

and national decision makers to develop strategies to enhance the penetration level of AWHP 640 

retrofit in the housing stock. Thus, TTCC for AWHP retrofit in the CHS is estimated and results 641 

for various scenarios are presented in Figure 4. Under the most favourable condition (10 years 642 

payback period, 3% interest rate and high fuel escalation rate) the total Canadian (excluding OT 643 

and PR) homeowners can invest about 22 Billion Canadian Dollars in AWHP retrofit. If the 644 

economic conditions varies or the investment cost is higher compared to the TTCC subsidies 645 

may cover the shortfall.  646 

6. Conclusion 647 
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Techno-economic impact of air to water heat pump (AWHP) system on the energy consumption 648 

and GHG emissions of the Canadian housing stock (CHS) is presented and discussed. The 649 

AWHP system delivers aerothermal energy to the water for space and domestic hot water 650 

(DHW) heating purposes. The study was conducted using the Canadian Hybrid Residential End-651 

use Energy and GHG emissions (CHREM) model. A high resolution and versatile whole 652 

building performance simulation software, ESP-r, was used to model the AWHP system 653 

components (i.e. heat pump, auxiliary boiler, thermal storage tanks, pumps and radiators). 654 

CHREM is based on the Canadian Single-Detached Double/Row Database (CSDDRD) which 655 

statistically represents the CHS with close to 17,000 unique houses. A selection criteria was 656 

defined and houses eligible for the AWHP retrofit were identified in CSDDRD. The AWHP 657 

retrofit was introduced into all eligible houses and the simulation was conducted to obtain the 658 

energy consumption, GHG emissions and annual energy cost. The results were compared with 659 

the base case to evaluate techno-economic impact of AWHP retrofit in the CHS. Tolerable 660 

capital cost (TCC) of the retrofit which is the maximum capital cost for an energy saving 661 

upgrade based on the annual savings, the number of years allowed for payback, and the 662 

estimated annual interest and fuel cost escalation rates. 663 

The results indicate that about 71 percent of the houses in CHREM, representing approximately 664 

6.3 million existing houses in the CHS are eligible for the AWHP retrofit. The AWHP retrofit 665 

reduces about 520.8 PJ equivalent of 36 percent end-use energy consumption in the CHS if all of 666 

the eligible houses receive the upgrade. The AWHP system retrofit is effective in reducing 667 

primary energy consumption in provinces where renewable resources are the main source of 668 

electricity generation including NF, QC, MB and BC. Comparing the seasonal performance 669 

factor (SPF) of AWHP and reference efficiencies of electricity generation based on the European 670 
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Parliament and Council Directive 2009/28/EC guidelines indicate that heat generation of AWHP 671 

can be considered as renewable energy in Canada except in provinces that electricity generation 672 

is significantly from fossil fuel resources (NS, NB, PE, SK, and AB). Onsite fossil fuel (i.e. oil 673 

and NG) consumption is significantly reduced in the CHS after retrofit. The energy savings 674 

cause 15.16 Mt of GHG associated emission reductions in the CHS. Economic analysis indicate 675 

that the AWHP system retrofit is not feasible in OT, MB, SK and AB in absence of 676 

governmental subsidies and incentive programs.  677 

This study is a part of the efforts to develop strategies, approaches and incentive measure to 678 

approach net/near zero energy status for existing Canadian houses by introducing and integrating 679 

high efficient and renewable/alternative energy technologies in new construction and existing 680 

houses. The project was defined under the Smart Net-Zero Energy Buildings Strategic Research 681 

Network (SNEBRN) umbrella to assess the techno-economic feasibility of converting the 682 

Canadian housing stock (CHS) into net/near zero energy buildings. Performance assessment of 683 

energy retrofit and renewable/alternative energy technologies in existing houses in regional and 684 

national scale is necessary to devise feasible strategies and incentive measures. 685 
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Highlights 

• Techno-economic feasibility of air to water heat pump is assessed for Canadian houses. 

• A state-of-the-art housing stock model is used for techno-economic analysis. 

• AWHP retrofit reduced 36% of end-use energy consumption in the Canadian housing 

stock. 

• AWHP retrofit decreased 23% of GHG emission of the Canadian housing stock. 

• Aerothermal energy captured by HP can be assumed as renewable energy in most 

provinces 



Figure captions: 

Fig. 1. A typical house with air to water heat pump retrofit. 

 

Fig. 2. Air to water heat pump modeling approach in ESP-r. 

 

Fig. 3. COP range of various commercially available AWHP systems [44-48]. 

 

Fig. 4. Total national excluding PR provinces tolerable capital cost due to air to water heat pump 
upgrade for different interest rates and fuel cost escalation rates (Low, Medium and High as per 
Table 6). 

 



 



 



 



 



Table 1. Parameters of AWHP system components based on the existing heating system capacity 

ASHP system components Parameter Unit 
Existing heating system 
nominal capacity (kW) Reference 

>21 11-16 <11 

COP 
a0 -- 5.2202 5.0948 5.6818 

[44] 

a1 K-1 -0.077 -0.0583 -0.0864 
a2 K-2 4×10-4 3×10-4 5×10-4 

Compressor power rating b0 kW 10.424 7.3568 5.6681 
b1 K-1 -0.007 -0.006 -0.007 

Fan power Pfan W 480 230 190 

Duration of defrost 
t0 s 360 

[3, 44] t1 s/% 2.4 

NG fired boiler 
Pnom,buner kW 19 19 18 

[49] (tan φ)T>50○C ○C-1 -0.15 
(tan φ)T≤50○C ○C-1 -0.25 

Oil fired boiler Pnom,buner kW 18 18 11 [50] tan φ ○C-1 -0.15 
Thermal storage tank  Vstore USG 400 260 200  

Radiator 

Munit kg 49 

[43] 

Cavg J/kgK 1350 
Q0 W 967 
Ts,0 ○C 55 
Tr,0 ○C 35 
Tenv,0 ○C 21 

 

 



Table 2. Control strategy for AWHP, space heating and DHW supply 

Control loop Actuator 
Period 

Sensor location 
Setpoint 

start end on off 

Two stage 
heating 

ASHP 1 Jan 31 Dec Thermal storage tank 
outlet to zone 45 50 

Boiler 1 Jan 31 Dec Boiler outlet 50 55 
DHW heating 
and supply 

DHW Pump 1 Jan 31 Dec DHW tank 54 56 
DHW tank 1 Jan 31 Dec DHW draw -- -- 

Space heating Radiator 
pump 

17 Sep  3 Jun Zone main 1 20 22 
4 Jun 16 Sep  0 1* 

* The heating system will not turn on due to the low temperature setpoint during the 
cooling only season  

 

 



Table 3. The average and marginal GHG intensity factors (g CO2e/kWh) for each province of 
Canada [39] 

Electrical generation characteristics Canadian provincial GHG EIF (CO2e per kWh) 
NF NS PE NB QC OT MB SK AB BC 

Annual EIFAverage 26 689 191 433 6 199 13 789 921 22 
Annual EIFMarginal 22 360 6 837   1 225  18 
           
Monthly EIFMarginal Jan     23 395   825  
 Feb     0 352   825  
 Mar     0 329   795  
 Apr     0 463   795  
 May     0 501   795  
 Jun     0 514   780  
 Jul     0 489   780  
 Aug     0 491   780  
 Sep     0 455   780  
 Oct     0 458   795  
 Nov     0 379   825  
 Dec     4 371   825  
            
Transmission and distribution 
losses 9% 4% 6% 6% 4% 6% 12% 6% 4% 3% 

 

 



Table 4. Average seasonal performance factor (SPF) of AWHP retrofits in the CHS and 
reference efficiency electricity generation and distribution losses in Canada [24] 

 Fossil fuel 
contribution (%) 

Reference 
efficiency  1.15×1/η Province 

NF 2.4 1 1.15 
NS 90.8 0.35 3.28 
PE 63.4 0.57 2.02 
NB 63.4 0.57 2.02 
QC 0.4 1 1.15 
OT 19.1 1 1.15 
MB 0.3 1 1.15 
SK 78.1 0.41 2.80 
AB 95.9 0.32 3.59 
BC 3 1 1.15 

 

 



Table 5. Fuel prices in each province of Canada 
 unit NF PE NS NB QC OT MB SK AB BC 

Electricity1 cents/kWh 13.17 16.95 16.22 13.36 7.89 14.30 8.73 15.12 15.55 9.55 
C$/GJ 36.58 45.06 47.08 37.11 21.92 39.72 24.25 42.00 43.19 26.53 

Natural gas2 
cents/m3 N/A N/A N/A N/A 46.41 29.87 30.77 29.05 17.26 42.45 
C$/GJ N/A N/A N/A N/A 12.41 7.99 8.23 7.77 4.62 11.35 

Home 
heating oil3  

cents/litre 114.9 110.2 113.1 119.3 121.2 127.2 117.6 113.9 N/A 128.3 
C$/GJ 29.63 28.42 29.17 30.76 31.25 32.80 30.33 29.37 N/A 33.08 

Wood4 
C$/tonne 156.3 156.3 156.3 218.8 159.4 187.5 162.5 156.3 312.5 150 

C$/GJ 11.20 11.20 11.20 15.69 11.43 13.44 11.65 11.20 22.40 10.75 
1 Hydro-Quebec [53] 
2 Statistics Canada handbook [54] 
3 Statistics Canada Handbook [54] 
4 Local companies 

 

 



Table 6. Real fuel escalation type for each fuel type 
 Low Medium High 
Electricity* 2 6 10 
Natural gas‡ 2 5 8 
Light fuel oil‡ 6 10 14 
Mixed wood§ 3 6 9 
* National Energy Board of Canada [55] 
‡ Energy Escalation Rate Calculator (EERC) [56] 
§ Equal to interest rate as there is no source for its escalation rate 

 

 



Table 7. CHREM estimates of annual energy consumption and GHG emissions for the CHS as a 
function of energy source 

 Energy (PJ)  GHG emissions (Mt of CO2e) 
Province Electricity NG Oil Wood Total  Electricity NG Oil Total 
NF 15.2 0.0 9.6 3.3 28.1  0.12 0.0 0.67 0.8 
NS 17.7 0.0 22.6 6.0 46.3  3.77 0.0 1.6 5.4 
PE 1.8 0.0 4.0 1.5 7.3  0.1 0.0 0.28 0.4 
NB 18.7 0.0 9.7 10.7 39.1  2.39 0.0 0.69 3.1 
QC 205.3 1.0 30.3 10.4 247.0  0.36 0.05 2.14 2.6 
OT 137.2 337.4 47.4 0.0 522.0  8.07 17.12 3.36 28.6 
MB 18.9 33.6 0.0 0.0 52.5  0.07 1.7 0.0 1.8 
SK 10.6 40.2 0.0 0.0 50.8  2.46 2.04 0.0 4.5 
AB 28.3 119.8 0.0 0.0 148.1  7.56 6.08 0.0 13.6 
BC 64.6 83.9 0.0 2.1 150.6  0.41 4.25 0.0 4.7 

           
Canada 518.3 615.9 123.6 34.0 1291.8  25.3 31.2 8.7 65.3 

 

 



Table 8. Energy savings and GHG emission reductions for the CHS due to AWHP retrofit 

Province Eligible houses  Total energy 
saved (PJ) 

Average energy saving 
per house (GJ) 

Total GHG 
reduced (Mt) 

Average GHG reduction 
per house (kg) Number Percent 

NF 88,207 50 8.3 94 0.59 6,709 
NS 205,592 69 17.1 83 -0.04 -173 
PE 38,997 87 2.9 74 0.17 4,336 
NB 122,070 51 11.4 93 0.14 1,150 
QC 385,809 19 24.7 64 1.77 4,579 
OT 3,084,282 90 234.1 76 11.79 3,823 
MB 243,288 72 17.2 71 1.16 4,781 
SK 287,895 91 21.3 74 -0.58 -2,025 
AB 970,120 100 65.2 67 -3.47 -3,573 
BC 876,761 79 58.3 66 3.62 4,131 
       
Canada 6,303,021 71 460.5  15.16  

 

 



Table 9. CHREM estimates of annual energy consumption (PJ) with existing (Exist) and AWHP 
retrofit (AWHPR) in houses eligible (EL) and houses not eligible (N-E) for AWHP retrofit 

 Electricity 
NGa Oila 

Wood Total 
 

N-E 
EL 

N-E 
EL 

N-E 
EL 

Province Exist AWHPR Exist AWHPR Exist AWHPR Exist AWHPR Exist AWHPR 
NF 10.9 4.3 7.4 0.0 0.0 9.6 0.9 0.6 2.7 0.0 11.5 16.6 8.3 
NS 9.1 8.6 15.6 0.0 0.0 22.6 2.2 2.3 3.7 0.0 11.4 34.9 17.8 
PE 0.4 1.4 2.7 0.0 0.0 4.0 0.6 0.7 0.8 0.0 1.1 6.2 3.3 
NB 12.7 6.0 8.8 0.0 0.0 9.7 2.3 3.9 6.8 0.0 16.6 22.5 11.1 
QC 181.7 23.6 24.9 1.0 8.2 30.3 0.0 7.5 2.9 0.0 189.2 57.8 33.1 
OT 40.6 96.6 206.5 337.4 40.8 47.4 0.0 0.0 0.0 0.0 40.6 481.4 247.3 
MB 12.1 6.8 13.2 33.6 10.0 0.0 0.0 0.0 0.0 0.0 12.1 40.4 23.2 
SK 3.1 7.5 16.6 40.2 9.8 0.0 0.0 0.0 0.0 0.0 3.1 47.7 26.4 
AB 0.0 28.3 59.7 119.8 23.2 0.0 0.0 0.0 0.0 0.0 0.0 148.1 82.9 
BC 23.2 41.4 57.9 83.9 9.5 0.0 0.0 1.7 0.4 0.0 24.9 125.7 67.4 
              
Canada 293.8 224.5 413.3 615.9 101.5 123.6 6.0 16.7 17.3 0.0 310.5 981.3 520.8 
a Since entire houses with existing oil or NG fired heating system is eligible for AWHP retrofit, NG and oil 
consumption in not eligible houses is not shown 

 

 



Table 10. Annual energy savings and GHG emission reductions due to AWHP retrofits in the 
CHS 

 Energy savings (PJ)  GHG emission reductions (Mt of CO2e) 
Province Electricity NG Oil Wood Total  Electricity NG Oil Total 
NF -3.1 0.0 8.7 2.7 8.3  -0.02 0.00 0.61 0.59 
NS -7.0 0.0 20.4 3.7 17.1  -1.47 0.00 1.43 -0.04 
PE -1.3 0.0 3.4 0.8 2.9  -0.07 0.00 0.24 0.17 
NB -2.8 0.0 7.4 6.8 11.4  -0.38 0.00 0.52 0.14 
QC -1.3 -7.2 30.3 2.9 24.7  0.00 -0.36 2.13 1.77 
OT -109.9 296.6 47.4 0.0 234.1  -6.54 15.00 3.33 11.79 
MB -6.4 23.6 0.0 0.0 17.2  -0.03 1.19 0.00 1.16 
SK -9.1 30.4 0.0 0.0 21.3  -2.12 1.54 0.00 -0.58 
AB -31.4 96.6 0.0 0.0 65.2  -8.35 4.88 0.00 -3.47 
BC -16.5 74.4 0.0 0.4 58.3  -0.14 3.76 0.00 3.62 
           
Canada -188.8 514.4 117.6 17.3 460.5  -19.12 26.01 8.27 15.16 

 

 



Table 11. Average seasonal performance factor, thermal energy considered from renewable 
sources, annual energy savings and GHG emission reductions due to AWHP retrofits in the CHS 

 SPF  ERES (PJ) Energy 
Savings (%) 

GHG emission 
reductions (%) Province 

NF 2.04 3.4 30 75 
NS 1.87 N/A 37 -1 
PE 1.83 N/A 40 44 
NB 1.89 N/A 29 5 
QC 1.83 10.6 10 69 
OT 1.80 90.5 45 41 
MB 1.95 5.4 33 66 
SK 1.71 N/A 42 -13 
AB 1.70 N/A 44 -25 
BC 2.59 21 39 78 
     
Canada  130.9 36 23 

 

 



Table 12. Average TCC per house (C$/house) 
  Interest rate 

  3% 6% 9% 

Province 
Payback 

(yr) 
Fuel cost escalation rate 

Low Medium High Low Medium High Low Medium High 

NF 10 14,904 17,743 21,196 12,612 14,893 17,656 10,791 12,643 14,875 
6 7,996 8,766 9,613 7,206 7,878 8,615 6,528 7,117 7,763 

NS 10 13,540 16,204 19,453 11,419 13,557 16,153 9,739 11,470 13,564 
6 7,035 7,731 8,495 6,331 6,937 7,603 5,728 6,258 6,840 

PE 10 8,190 9,778 11,703 6,867 8,136 9,669 5,822 6,846 8,079 
6 4,014 4,394 4,811 3,602 3,933 4,295 3,249 3,539 3,855 

NB 10 17,375 20,390 24,017 14,773 17,203 20,112 12,700 14,677 17,034 
6 9,742 10,607 11,553 8,796 9,552 10,377 7,984 8,647 9,369 

QC 10 17,296 20,818 25,155 14,701 17,540 21,018 12,634 14,945 17,762 
6 9,667 10,683 11,809 8,728 9,615 10,597 7,921 8,700 9,560 

MB 10 819 612 297 703 536 284 610 474 271 
6 501 438 360 454 399 331 413 365 306 

BC 10 3,123 3,300 3,447 2,682 2,826 2,947 2,328 2,447 2,546 
6 1,910 1,972 2,031 1,731 1,785 1,837 1,576 1,624 1,670 
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