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Abstract. We present a semantics and answer set programs for rela-
tional peer data exchange systems. When a peer answers a query, it ex-
changes data with other peers in order to supplement or modify its own
data source. The data exchange relationships between peers are specified
by logical sentences called data exchange constraints and trust relation-
ships, which together determine how data is moved around (in order
to keep them satisfied). This process determines virtual, alternative in-
stances for a peer that can be specified as the models of an answer set
program. The peer consistent answers to a query that are returned by
a peer are those that are invariant under all these instances. The logic
program can be used to compute peer consistent answers.

1 Introduction

A peer data exchange system (PDES) can be seen as a set of information agents,
each of them being the owner of a data source. When one of them receives a query,
in order to answer it, its data is completed or modified according to relevant data
that the other agents may have. More precisely, a peer data exchange system
(PDES) is a finite set P = {P1, . . . Pn} of peers, each of them with a local
relational database instance. A peer P may be directly related to another peer P’
by means of a set Σ(P, P’) of data exchange constraints (DECs), which are first-
order sentences expressed in terms of the two participating database schemas.
DECs between two peers are expected to be satisfied by the combination of the
two local instances.1 However, this condition is taken into account only when
local queries are answered. That is, each peer will not update its physical instance
according to its DECs and other peers’ instances. Instead, if a peer P is answering
a query, it may, at query time import data from other peers to complement its
data and/or ignore part of its own data. In which way a peer uses the data from
other peers depends on its DECs, the peers’ instances, and its trust relationships
to other peers: a peer P may trust its data the same as or less than other peers’
data.

In this paper we present in simple terms and by means of examples a formal
semantics for such a system of peers who exchange data for query answering. The
1 For simplicity, but without loss of generality, local schemas are pairwise disjoint.
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most important role of a semantics in this case is to characterize in precise terms
what are the intended and correct answers to a query posed to and answered
by a peer in the system. We propose a model-theoretic semantics, that is a
collection of possible and admissible models over which the system is interpreted.
The expected answers from a peer to a query are those that are certain wrt a
set of database instances associated to that peer. Furthermore, our declarative
semantics can be made executable, by using logic programs with stable model
semantics [12] to specify the intended models. The precise formal semantics was
presented in detailed technical terms in [3].

If for peer P it holds Σ(P, P’) �= ∅, i.e. there are DECs from P to P’, we say
that P’ is a neighbor of P. Clearly, DECs for a peer P can be inconsistent wrt
(not satisfied by) the combination of its instance and those of its neighbors. A
virtual combined instance for P that solves these inconsistencies by performing
a minimal set of changes on the database relations is called a neighborhood
solution instance for P. By restricting it to the schema of P, we get a solution
instance for P. There might be more than one solution instance for a peer, and
all of them are taken into consideration when answering queries posed to P: The
peer consistent answers from P are those that are shared (or returned) by all
the different solution instances. That is, a cautions (a.k.a. skeptical or certain)
semantics is applied to query answering.

Each peer P can be seen as an ontology consisting of the database instance
plus metadata that describes the database schema, local integrity constraints
(ICs), its set Σ(P) =

⋃
P’∈P Σ(P, P’) of DECs, and its trust relationships. These

ontologies may be pairwise inconsistent due to the DECs and the database facts.
We could easily extend our framework to handle DECs that contain views, i.e.
defined relational predicates. This kind of consistency issues also emerge when
aligning ontologies [13]. Our notion of DEC corresponds to concept inclusion in
the ontological scenario. However, the DECs we can handle can be much more
general than inclusions. In our case, it has to be emphasized that, whenever
possible, inconsistencies are solved at query time.

Example 1. Peers P1 and P2 have relational schemas R(P1) = {R1, S1}, R(P2) =
{R2, S2}, resp. Here, P1 is connected to peer P2 by Σ(P1, P2) = {∀xy(R2(x, y) ∧
S2(y, z) → R1(x, y, z)), ∀x(S1(x) → S2(5, x))}, and it trusts P2 more than itself.

If a query is posed to P1, it has to adjust its own data so that the DECs with
P2 are satisfied. To check the satisfaction, peer P1 will ask P2 for its data. Since P2
has no DECs with other peers, it will return to P1 its physical data, without any
modification. Here, the data in P1 together with the data in P2 do not to satisfy
the first DEC. In general, such an inconsistency could be solved by virtually
removing 〈d, 5〉 from R2 or 〈5, 3〉 from S2, or inserting 〈d, 5, 3〉 into R1. But,
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since P1 trusts more the data of P2, the natural choice is to add 〈d, 5, 3〉 to R1.
In the same way, the inconsistency wrt the second DEC is solved by virtually
removing tuple 〈7〉 from S1. In this case, there is only one neighborhood solution
(instance) centered around P1:

Its restriction to P1 is the solution instance for P1, and it is used to answer the
queries posed to P1. Thus, the query Q1(x) : ∃yzR1(x, y, z) returns {〈c〉, 〈f〉, 〈d〉}.

If we modify this example by making P1 trust P2 as much as itself, there are
several possible solutions for P1, obtained by virtually modifying both peers’
data. The inconsistencies wrt the first DEC would be solved by either removing
〈d, 5〉 from R2, or 〈5, 3〉 from S2 or inserting 〈d, 5, 3〉 into R1, and the inconsis-
tencies wrt the second DEC would be solved by either removing 〈7〉 from S1 or
inserting 〈5, 7〉 into S2. There are six neighborhood solutions:

In the first neighborhood solution, 〈5, 3〉 was removed from S2 to solve the first
inconsistency. This created a new inconsistency wrt the second DEC, which was
solved by removing 〈3〉 from S1.

The expected answers to query Q1(x) would now be 〈c〉, 〈f〉, that are the
usual answers to Q1(x) shared by the six solutions for P1. �

The definition of a solution instance for P may suggest that P can physically
change other peers’ data, but this is not the case. Actually, the notion of so-
lution is used as an auxiliary notion to characterize the semantically correct
answers from P’s point of view. We try to avoid as much as possible the gener-
ation of material solutions instances, and ideally, P should be able to obtain its
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peer consistent answers just by querying the already available local instances.
This resembles the approach to consistent query answering (CQA) in databases
(cf. [4] for a survey): consistent answers to a query posed to a database that
may be inconsistent wrt to certain ICs are those that are invariant under all re-
pairs, i.e. the minimally repaired and consistent versions of the original instance.
There are mechanisms for computing consistent answers that avoid or minimize
the physical generation of repairs. In this paper, we show how disjunctive logic
programs with stable models semantics [12] (or answer set programs) can be
used to characterize and obtain peer consistent answers.

This paper is based on [3], which considerably extends and develops the se-
mantics first suggested in [2]. To simplify and shorten the presentation we do
not consider here local ICs, DECs with existential quantifiers nor null values
in database instances. We refer to [3] for these extensions and for a general
treatment of the subject.

2 A Semantics for PDESs

We assume that each peer P owns a database instance D(P) conforming to a
schema R(P), and R(P) ∩ R(Q) = ∅ for P �= Q. The schemas determine FO
languages, e.g. L(P), L(P, Q). Each peer P, has a collection of (possibly empty)
sets Σ(P, Q) of sentences of L(P, Q), which contain the DECs from P to peer Q.
It could be Σ(P, Q) �= Σ(Q, P). Σ(P) :=

⋃
Q Σ(P, Q). There is also a relation

trust ⊆ P × {less, same} × P , with exactly one triple of the form 〈P, ·, Q〉 for
each non empty Σ(P, Q). P owns (or stores) those triples of the form 〈P, ·, ·〉. The
intended semantics of 〈P, less(same), Q〉 ∈ trust is that P trusts itself less than
(the same as) Q. Here, we assume Σ(P, P) = ∅ (otherwise, see [3]).

A universal data exchange constraint (UDEC) between peers P, Q is a first-
order (FO) sentence of the form:

∀x̄(
n∧

i=1

Ri(x̄i) −→ (
m∨

j=1

Qj(ȳj) ∨ ϕ)), (1)

where the Ri, Qj are relations in R(P)∪R(Q), ϕ is a formula containing built-in
atoms2 only, and x̄i, ȳj ⊆ x̄.

Query answering is, informally, as follows: When a peer P is posed a query in
its local language L(P), it may have to determine, on the basis of its DECs, if its
neighbors have data that is relevant to answer the query. So, it submits queries to
its neighbors, whose answers may be used to answer the original query. However,
before answering the query, P has to locally solve inconsistencies wrt to its DECs,
its own data, and the data imported from the other peers. Inconsistencies are
solved taking into account P’s trust relationships. This leads to a set of virtual
instances, the minimal repairs of P’s local instance previously extended with
its peers’ data. In them, together with the neighbors’ instances, P’s DECs are

2 For example, x = 5, y �= z and z < 2.
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satisfied. The answers returned by P to the user are those that are true in the
restrictions to R(P) of all those instances.

As expected, the solution instances for a peer will be determined not only by
its relationships with its neighbors, but also by the neighbors of its neighbors,
etc. An accessibility graph G(P) can be used to represent the connections via
DECs between peers. It contains a vertex for each peer P ∈ P and a directed
edge from Pi to Pj if Σ(Pi, Pj) �= ∅. An edge from Pi to Pj is labeled with
“<” when 〈Pi, less, Pj〉 ∈ trust, or with “=” when 〈Pi, same, Pj〉 ∈ trust.3 P’ is
accessible from P if there is a path in G(P) from P to P’ or P’=P. P’ is a neighbor
of P if there is an edge from P to P’. With AC(P) and N (P) we denote the sets
of peers that are accessible from P and the neighbors of P including P itself,
respectively. G(P) is the restriction of G(P) to AC(P).

Example 2 (extension of example 1). The DECs are Σ(P1, P2)= {∀xyz (R2(x, y)
∧ S2(y, z) → R1(x, y, z)), ∀x (S1(x) → S2(5, x))}, Σ(P2, P3) = {∀xy (S2(x, y)
→ R3(x, y))}, and Σ(P4, P3) = {∀xyz (R3(x, y) → R4(x, y, 3))}. Here, N (P1) =
{P1, P2}.

If a query is posed to P1, it will send queries to P2, to check the satisfaction of
the DECs in Σ(P1, P2). But, in order for P2 to answer those queries, it will send
queries to peer P3 to check the DECs in Σ(P2, P3). Since P3 is not connected to
any other peer, it will answer P2’s queries using its material instance D(P3). Thus,
the solutions for P1 and the peer consistent answers from P1 will be affected by
the peers in AC(P1) = {P1, P2, P3}. Solutions for P4 will be affected by AC(P4) =
{P4, P3}. �

The data distributed across different peers has to be appropriately gathered
to build solution instances for a peer, and different semantics may emerge as
candidates, depending on the granularity of the data sent between peers. Here
we present one according to which the data that a peer P receives from a neighbor
Q to build its own solutions is the intersection of the solutions for Q. In other
terms, a peer passes certain data to a neighbor. After P collects this data, P uses
its DECs to determine its own solutions. This is a recursive definition since the
solutions for the neighbors have to be determined first, under the same semantics.

3 In case a peer P trusts itself more than another peer, the information of the latter
is irrelevant to P.



Information Sharing Agents in a Peer Data Exchange System 75

Base cases of the recursion are peers with no relevant DECs. As a consequence,
this semantics requires an acyclic accessibility graph.

A database instance D of a schema S can be seen as a finite set of ground
facts. If R is a predicate in S, D|{R} denotes the extension of R in D. If
R(P) ⊆ S, D|P is the restriction of D to R(P). Below, Δ(·, ·) is used for the
symmetric difference of sets.

Definition 1. Given a peer P and instances D, D′ on schema
⋃

Q∈N (P) R(Q), D′

is a neighborhood solution for P and D if : (a) D′ |=
⋃

Q∈N (P) Σ(P, Q). (b)
D′|{R} = D|{R} for every predicate R ∈ R(Q) with (P, less, Q) ∈ trust . (c)
There is no instance D′′ satisfying (a), (b), and Δ(D, D′′) � Δ(D, D′). �

A neighborhood solution for P is a database for its whole neighborhood that
satisfies P’s DECs and trust relationships. A neighborhood solution stays close
to the original instances (and stays the same for trustable peers): The data set
that is imported or given up to satisfy the DECs is minimized. N(P, D) is the
set of neighborhood solutions for P, D. The set S(P) of solution instances for P
is recursively defined as follows:

Definition 2. For P with local instance D(P), an instance D over R(P) is a
solution instance for P if: (a) For Σ(P) = ∅, D = D(P); (b) For Σ(P) �= ∅,
D = D|P, where D ∈ N(P, D(P) ∪

⋃
Q∈(N (P)�{P})

⋂
I∈S(Q)I). �

Intuitively, before determining P’s solutions, P has its local instance D(P), and
each neighbor P’ has an instance for P that is the intersection of P’’s solutions.
This produces a combined database D. Neighborhood solutions for P with D can
be determined; and their restrictions to P’s schema become P’s solutions.

The peer consistent answers are the semantically correct answers to a query
returned by a peer who consistently considers the data of- and trust relationships
with its neighbors.

Definition 3. Let Q(x̄) ∈ L(P) be a FO query. A ground tuple t̄ is a peer
consistent answer (PCA) to Q from P iff D |= Q(t̄) for every D ∈ S(P). �

Example 3 (example 2 continued). The solutions for P1 require the solutions for
P2, who needs in its turn the solutions for P3. P3 has no DECs with other peers
and its only neighborhood solution is its instance D(P3). This is sent back to
P2, who needs to repair {R2(c, 4), R2(d, 5), S2(4, 2), S2(5, 3), R3(5, 7), R3(5, 3)}
wrt Σ(P2, P3). As P2 trusts P3 the same as itself, it can modify its own data or
the data it got from P3. P2 has two neighborhood solutions: {R2(c, 4), R2(d, 5),
S2(5, 3), R3(5, 7), R3(5, 3)} and {R2(c, 4), R2(d, 5), S2(4, 2), S2(5, 3), R3(5, 7),
R3(5, 3), R3(4, 2)}, that lead to two solutions for P2: {R2(c, 4), R2(d, 5), S2(5, 3)}
and {R2(c, 4), R2(d, 5), S2(4, 2), S2(5, 3)}.

Peer P2 will send to P1 their intersection: {R2(c, 4), R2(d, 5), S2(5, 3)}. Now,
P1 has to repair {R1(c, 4, 2), R1(f, 3, 5), S1(3), S1(7), R2(c, 4), R2(d, 5), S2(5, 3)}
wrt Σ(P1, P2). Since P1 trusts P2 more, it will solve inconsistencies by modifying
its own data, producing only one neighborhood solution: {R1(c, 4, 2), R1(f, 3, 5),
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R1(d, 5, 3), S1(3), R2(c, 4), R2(d, 5), S2(5, 3)}. Thus, S(P1) = {{R1(c, 4, 2),
R1(f, 3, 5), R1(d, 5, 3), S1(3)}}.

Similarly, the neighborhood solutions for P4 are {R4(5, 3, 3),R4(5,7, 3),R3(5, 7),
R3(5, 3)} and {R4(5, 3, 3), R3(5, 3)}. Thus, S(P4) = { {R4(5, 3, 3), R4(5, 7, 3)},
{R4(5, 3, 3)} }. Thus, if Q(x, y, z): R4(x, y, z) is posed to P4, its first solution
instance returns {〈5, 3, 3〉, 〈5, 7, 3〉}, and the second, {〈5, 3, 3〉}. Then, the only
PCA is {〈5, 3, 3〉}. �

In order to answer a query, a peer may not need the whole intersection of so-
lutions for its neighbors, but only the portions of them that are relevant to its
DECs and the query at hand. This relevant and certain data can be obtained as
PCAs to appropriate queries submitted to its neighbors [3].

3 Answer Set Programs and a Peer’s Solutions

Solutions for a peer can be specified as the stable models of disjunctive logic
programs (DLPs) [12], also called answer set programs [11]. These programs use
annotation constants to indicate if an atom has to be virtually inserted or deleted
to restore consistency:

Annotation Atom The tuple P (ā) is ...
t P (ā, t) advised to be made true
f P (ā, f) advised to be made false
t� P (ā, t�) true or becomes true
t�� P (ā, t��) true in the solution

Here, P is a predicate obtained from the database predicate P by adding a
new argument to accommodate annotations. Each peer P has a local, facts-free
program that depends on its DECs. P, when posed a query, will run it with a
query program, using as facts those in its local instance and the relevant ones
from the intersections of the solutions of its neighbors. To get the latter, P sends
to each neighbor P’ queries of the form Q : R(x̄), where R is a relation of P’
that appears in Σ(P, P’). In order to return to P the PCAs to its queries, the
neighboring peers have to run their own programs. As before, they will need
PCAs from their own neighbors; etc. This recursion will eventually reach peers
that have no DECs, who will offer answers from their original instances to queries
by other peers. Now, propagation of PCAs goes backwards until reaching P, and
P gets the facts to run its program and obtain the PCAs to the original query.

Example 4 (example 3 continued). If P1 is posed the query Q0(x) : S1(x), it
will need data from the intersection of the solutions of P2, to check the satis-
faction of Σ(P1, P2). Thus, it will send to P2 the queries Q1(x, y) : R2(x, y) and
Q2(x, y) : S2(x, y), expecting for PCAs to them. Now, P2 sends to P3 a single
query, Q3(x, y) : R3(x, y). Since P3 has no DECs, it returns Q3 = {〈5, 7〉, 〈5, 3〉},
directly from D(P3). Thus, P2 has the following answer set program:
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S2(x, y, f) ∨ R3(x, y, t) ← S2(x, y, t�), notR3(x, y).
S2(x, y, f) ∨ R3(x, y, t) ← S2(x, y, t�), R3(x, y, f).
R2(x, y, t�) ← R2(x, y, t).
R2(x, y, t�) ← R2(x, y).
← R2(x, y, t), R2(x, y, f).
R2(x, y, t��) ← R2(x, y, t�),notR2(x, y, f).

⎫
⎪⎪⎬

⎪⎪⎭

Similarly for
S2 and R3

R2(c, 4). R2(d, 5). S2(4, 2). S2(5, 3). R3(5, 7). R3(5, 3).

The facts of this program are those in P2’s instance and the PCAs from P3. The
first two rules enforce the satisfaction of the DEC ∀xy (S2(x, y) → R3(x, y)), e.g.
the first rule specifies that if S2(x, y) is true and R3(x, y) is not in P2’s database,
then either S2(x, y) is deleted (f) or R3(x, y) is inserted (t). The other rules
capture the semantics of the annotations. The fifth rule, i.e. the program de-
nial constraint, prevents a database atom from being both inserted and deleted.
Atoms annotated with t�� in a stable model of the program correspond to those
in the associated solution for P2. Stable models and solutions are in 1-1 corre-
spondence. The program above is run by P2 with the queries posed by P1, e.g. for
Q1 with query rule Ans1(x, y) ← R2(x, y, t��). P2 sends to P1 the PCAs {〈c, 4〉,
〈d, 5〉} for Q1, and {〈5, 3〉} for Q2. Now, P1 has all the facts for its program:

R1(x, y, z, t) ← R2(x, y, t�), S2(y, z, t�), not R1(x, y, z).
R1(x, y, z, t) ← R2(x, y, t�), S2(y, z, t�), R1(x, y, z, f).
S1(x, f) ← S1(x, t�), not S2(5, x).
S1(x, f) ← S1(x, t�), S2(5, x, f).

R2(x, y, t�) ← R2(x, y, t).
R2(x, y, t�) ← R2(x, y).
← R2(x, y, t), R2(x, y, f).
R2(x, y, t��) ← R2(x, y, t�),notR2(x, y, f).

⎫
⎪⎪⎬

⎪⎪⎭

Similarly for
S2 and R1

R1(c, 4, 2). R1(f, 3, 5). R1(d, 5, 3). S1(3). R2(c, 4). R2(d, 5). S2(5, 3).

The first two rules enforce the satisfaction of the DEC ∀xyz (R2(x, y) ∧ S2(y, z)
→ R1(x, y, z)); and the third and fourth rules, the second DEC ∀x (S1(x) →
S2(5, x)).

Now, P1 is able to peer consistently answer the original query Q0 : S1(x) by
running the query rule Ans0(x) ← S1(x, t��) together with the program above
that specifies its solutions. The ground Ans0-atoms in the intersection of all
stable models, in this case only Ans0(3, t��), are the cautions answers from the
solution program. They correspond to the PCAs, in this case only 〈3〉. �

4 Discussion

We have illustrated the semantics on the bases of universal DECS. However, the
semantics can be extended to DECs that include referential DECs. For example,
we could have a peer system with the following sets of DECs:
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P1 : Σ(P1, P2) = {∀xy (R1(x, y) → R2(x, y)), ∀xy (R2(x, y) → R1(x, y))},
Σ(P2, P1) = {∀x(S2(x) → ∃yS1(x, y))}.

In this case, inconsistency wrt the latter DEC can be restored by introducing
null values (into the second argument of S1). A repair semantics based on null
values for sets of ICs that include referential ICs was introduced and analyzed in
[5]. This semantics can be adapted to the case of DECs in a peer data exchange
system [3]. The solutions for a peer can be specified by means of answer set pro-
grams. Actually, in the case the DECs are ref-acyclic, i.e. without cycles through
referential DECs, there is a 1-1 correspondence between solution instances and
models of the program. For example, P1 above is ref-acyclic, whereas the follow-
ing system P2 is not: Σ(P1, P2) = {∀xy (R1(x, y) → ∃z R2(x, z)), ∀xy (R2(x, y)
→ R1(x, y))}. Sets of universal DECs are always ref-acyclic.

The problem of deciding peer consistent query answering is ΠP
2 -complete in

data [3], which matches the complexity of cautious query evaluation from DLPs.
However, it is possible to identify syntactic classes of PDESs for which peer con-
sistent query answering has a lower complexity [3]. It is also possible to identify
cases in which the requirement of an acyclic accessibility graph can be relaxed [3].
This is the usual unrestricted import case, where the DECs are such that data is
only imported into the peer (nothing is deleted), and all peers trust other peers
more than themselves. In this case, peers always have solution instances, and the
solution program can be replaced by a non-disjunctive program. In particular,
the problem of determining if a tuple is a peer consistent answer to a query is
in coNP [3].

It is possible to relax the conditions of ref-acyclicity and acyclicity of the peer
graph, still providing a sensible semantics, and correct and complete solution-
programs can be given. This is the case when, for example the cycles in the
graph are not be relevant to the query. Even if the DECs are not ref-acyclic,
depending on the interaction with the trust relationships, the solution program
can capture exactly the set of solution instances.

Logic programs can be used to compute solutions for a peer and also PCAs.
Techniques to partially compute solution instances can be useful, since we are
not interested in them per se, but in the PCAs. In order to reduce the number
of rules and the amount of data that are needed to run the combined query and
solution program, it is possible to apply certain techniques developed for CQA.
Among them we find magic sets for stable model semantics, and the identification
of predicates that are relevant to queries and constraints [8, 9].

We can handle local ICs for peers, in addition to the DECs a peer may have
with other peers. The semantics for peer solution instances can be uniformly
and smoothly extended to include these local ICs. The latter will also determine
the solutions for a peer, for they have to be satisfied when the local instance is
virtually updated due to the presence of other peers [3]. This extension can be
obtained by having “local” sets of DECs of the form Σ(P1, P1). For example,
∀xyz(R1(x, y, z) → S1(z)) ∈ Σ(P1, P1) ⊆ L(P1) could be an integrity constraint
on the schema R(P1) of P1.
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For comparison with related work around PDESs, we should mention [10, 7],
whose semantics for PDESs have some similarities with ours (but no trust re-
lationships). For example, in [10] DECs are of the form cqi → cqj , where cqi

and cqj are conjunctive queries over Pi and Pj’s schemas, resp. However, their
semantics for data exchange is based on epistemic logic. There are no trust rela-
tionships, but implicitly, peers trust themselves less than other peers. Local ICs
violations are avoided by ignoring a peer that is inconsistent wrt its local ICs.
New atoms are added into a peer by interaction with other peers only if this
does not produce a local IC violation.

Each peer is considered as a local virtual data integration system with GAV
local mappings [6], in this case: ∀xyz(S1

s (x, y, z) → S1(x, y, z)), ∀xyz(R2
s(x, y) ∧

R2
s(y, z) → R2(x, y, z)), ∀xyz(R3

s(x, y, z) → R3(x, y, z)). The predicates of the
form Ps correspond to local sources, and those of the form P i correspond to the
mediated schema provided by peer Pi. The DECs establish mapping between
the latter. In this case: ∀xy(R2(x, y, z) → ∃wR1(x, y, w)), ∀xy(R3(x, y, y) →
∃uvR3(u, x, v)).

For query answering, the following epistemic theory is used:

K1(∀xyz(S1
s (x, y, z) → S1(x, y, z)))

∀xy(K2(R2(x, y, z)) → K1(∃wR1(x, y, w)))

}

Specification of P1

K2(∀xyz(R2
s(x, y) ∧ R2

s(y, z) → R2(x, y, z)))
∀xy(K3(R3(x, y, y)) → K2(∃uvR3(u, x, v)))}

}

Specification of P2

K3(∀xyz(R3
s(x, y, z) → R3(x, y, z))) } Specification of P3

Kiφ is interpreted as φ is known by peer Pi. The idea behind using the epistemic
theory is that data that is known (or certain) is passed from local sources to
mediated schemas and from peers to other peers. A tuple t̄ is a peer consistent
answer to a query Q posed to peer Pi if KiQ(t̄) is a logical consequence of the
epistemic theory.

An advantage of this approach is that the semantics can be applied in the
presence of cycles. However, possibly the whole epistemic theory has to be used
by a peer Pi to do query answering, which requires not only data, but also the
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mappings and DECs; and this not only of its neighbors, but of all accessible
peers.

Our approach can be easily and uniformly adapted in order to make each peer
a local data integration system. For this, the specifications and answer set pro-
grams for virtual data integration introduced in [1] can be used in combination
with those presented here.

We emphasize that the DECs we can handle are more general that those found
in related work, including mappings between ontologies, which -when the latter
are merged- requires addressing the inconsistencies that naturally emerge [13].
In particular, our DECs may have relations of both peers on the two sides of the
implication. In [2] a fully developed example of this kind can be found.

Our semantics allows for inconsistent peers and inconsistencies between peers,
without unraveling logical reasoning or having to exclude peers whose data par-
ticipates in inconsistencies. In this sense, we may say that our semantics is incon-
sistency tolerant. Actually, it is even more than this: inconsistency is the driving
and guiding force behind the process of data exchange.
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