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Abstract9

We formulate and prove a shape theorem for a continuous-time continuous-space stochas-10

tic growth model under certain general conditions. Similarly to the classical lattice growth11

models the proof makes use of the subadditive ergodic theorem. A precise expression for12

the speed of propagation is given in the case of a truncated free branching birth rate.13
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1 Introduction15

16

Shape theorems have a long history. Richardson [Ric73] proved the shape theorem for the17

Eden model. Since then, shape theorems have been proven in various settings, most notably for18

first passage percolation and permanent and non-permanent growth models. Garet and Marc-19

hand [GM12] not only prove a shape theorem for the contact process in random environment,20

but also have a nice overview of existing results.21

Most of literature is devoted to discrete-space models. A continuous-space first passage22

percolation model was analyzed by Howard and Newman [HN97], see also references therein.23

A shape theorem for a continuous-space growth model was proven by Deijfen [Dei03], see also24
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Gouéré and Marchand [GM08]. Our model is naturally connected to that model, see the end of25

Section 2.26

Questions addressed in this article are motivated not only by probability theory but also27

by studies in natural sciences. In particular, one can mention a demand to incorporate spatial28

information in the description and analysis of 1) ecology 2) bacteria populations 3) tumor growth29

4) epidemiology 5) phylogenetics among others, see e.g. [WBP+15], [TSH+13], [VDPP15], and30

[TM15]. Authors often emphasize that it is preferable to use the continuous-space spaces R2
31

and R3 as the basic, or ‘geographic’ space, see e.g. [VDPP15]. More on connections between32

theoretical studies and applications can be found in [MW03].33

The paper is organized as follows. In Section 2 we describe the model and formulate our34

results, which are proven in Sections 3 and 4. Technical results, in particular on the construction35

of the process, are collected in the Section 5.36

2 The model, assumptions and results37

We consider a growth model represented by a continuous-time continuous-space Markov birth38

process. Let Γ0 be the collection of finite subsets of Rd,39

Γ0(Rd) = {η ⊂ Rd : |η| <∞},

where |η| is the number of elements in η. Γ0 is also called the configuration space, or the space40

of finite configurations.41

The evolution of the spatial birth process on Rd admits the following description. Let B(X)42

be the Borel σ-algebra on the Polish space X. If the system is in state η ∈ Γ0 at time t, then43

the probability that a new particle appears (a “birth”) in a bounded set B ∈ B(Rd) over time44

interval [t; t+ ∆t] is45

∆t

∫
B

b(x, η)dx+ o(∆t),

and with probability 1 no two births happen simultaneously. Here b : Rd × Γ0 → R+ is some46

function which is called the birth rate. Using a slightly different terminology, we can say that47

the rate at which a birth occurs in B is
∫
B b(x, η)dx. We note that it is conventional to call the48

function b the ‘birth rate’, even though it is not a rate in the usual sense (as in for example ‘the49

Poisson process (Nt) has unit jumps at rate 1 meaning that
P{Nt+∆t−Nt=1}

∆t = 1 as ∆t → 0’)50

but rather a version of the Radon–Nikodym derivative of the rate with respect to the Lebesgue51

measure.52

Remark 2.1. We characterize the birth mechanism by the birth rate b(x, η) at each spatial53

position. Oftentimes the birth mechanism is given in terms of contributions of individual parti-54

cles: a particle at y, y ∈ η, gives a birth at x at rate c(x, y, η) (often c(x, y, η) = γ(y, η)k(y, x),55

where γ(y, η) is the proliferation rate of the particle at y, whereas the dispersion kernel k(y, x)56

describes the distribution of the offspring), see e.g. Fournier and Méléard [FM04]. As long57

as we are not interested in the induced genealogical structure, the two ways of describing the58
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process are equivalent under our assumptions. Indeed, given c, we may set59

b(x, η) =
∑
y∈η

c(x, y, η), (1)

or, conversely, given b, we may set60

c(y, x, η) =
g(x− y)∑

y∈η
g(x− y)

b(x, η), (2)

where g : Rd → (0,∞) is a continuous function. Note that b is uniquely determined by c, but61

not vice versa.62

We equip Γ0 with the σ-algebra B(Γ0) induced by the sets63

Ball(η, r) =
{
ζ ∈ Γ0

∣∣|η| = |ζ|, dist(η, ζ) < r
}
, η ∈ Γ0, r > 0, (3)

where dist(η, ζ) = min

{
|η|∑
i=1
|xi − yi|

∣∣∣∣∣η = {x1, ..., x|η|}, ζ = {y1, ..., y|η|}

}
. For more detail on64

configuration spaces see e.g. Röckner and Schied [RS99] or Kondratiev and Kutovyi [KK06].65

In particular, the dist above coincides with the restriction to the space of finite configurations66

of the metric ρ used in [RS99], and the σ-algebra B(Γ0) introduced above coincides with the67

σ-algebra from [KK06].68

We say that a function f : Rd → R+ has an exponential moment if there exists θ > 0 such69

that70 ∫
Rd

eθ|x|f(x)dx <∞.

Of course, if f has an exponential moment, then automatically f ∈ L1(Rd).71

Assumptions on b. We will need several assumptions on the birth rate b.72

Condition 2.2 (Sublinear growth). The birth rate b is measurable and there exists a function73

a : Rd → R+ with an exponential moment such that74

b(x, η) ≤
∑
y∈η

a(x− y). (4)

Condition 2.3 (Monotonicity). For all η ⊂ ζ,75

b(x, η) ≤ b(x, ζ), x ∈ Rd. (5)

The previous condition ensures attractiveness, see below.76

Condition 2.4 (Rotation and translation invariance). The birth rate b is translation and

rotation invariant: for every x, y ∈ Rd, η ∈ Γ0 and M ∈ SO(d),

b(x+ y, η + y) = b(x, η),

b(Mx,Mη) = b(x, η).

Here SO(d) is the orthogonal group of linear isometries on Rd, and for a Borel set B ∈ B(Rd)

and y ∈ Rd,

B + y = {z | z = x+ y, x ∈ B}

MB = {z | z = Mx, x ∈ B}.
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Condition 2.5 (Non-degeneracy). Let there exist c0, r > 0 such that77

b(x, η) ≥ c0 wherever min
y∈η
|x− y| ≤ r. (6)

Remark 2.6. Condition 2.5 is used to ensure that the system grows at least linearly. The78

condition could be weakened for example as follows:79

For some r2 > r1 ≥ 0 and all x, y ∈ Rd,80

b(y, {x}) ≥ c01{r1 ≤ |x− y| ≤ r2}.

Respectively, the proof would become more intricate.81

Remark 2.7. If b is like in (7) and f has polynomial tails, then the result of Durrett [Dur83]82

suggests that we should expect a superlinear growth. This is in contrast with Deijfen’s model, for83

which Gouéré and Marchand [GM12] give a sharp condition on the distribution of the outbursts84

for linear or superlinear growth.85

Examples of a birth rate are86

b(x, η) = λ
∑
y∈η

f(|x− y|), (7)

and87

b(x, η) = k ∧

(
λ
∑
y∈η

f(|x− y|)

)
, (8)

where λ, k are positive constants and f : R+ → R+ is a continuous, non-negative, non-increasing88

function with compact support.89

We denote the underlying probability space by (Ω,F , P ). Let A be a sub-σ-algebra of F .90

A random element A in Γ0 is A -measurable if91

Ω 3 ω → A = A(ω) ∈ Γ0 (9)

is a measurable map from the measure space (Ω,A ) to (Γ0,B(Γ0)). Such an A will also be92

called an A -measurable finite random set.93

The birth process will be obtained as a unique solution to a certain stochastic equation. The94

construction and the proofs of key properties, such as the rotation invariance and the strong95

Markov property, are given in Section 5. We place the construction toward the end because it is96

rather technical and the methods used there do not shed much light on the ideas of the proofs of97

our main results. Denote by (ηs,At )t≥s = (ηs,At , t ≥ s) the process started at time s ≥ 0 from an98

Ss-measurable finite random set A. Here (Ss)s≥0 is a filtration of σ-algebras to which (ηs,At )t≥s99

is adapted; it is introduced after (74). Furthermore, (ηs,At )t≥s is a strong Markov process with100

respect to (Ss)s≥0 - see Proposition 5.8.101

The construction method we use has the advantage that the stochastic equation approach102

resembles graphical representation (see e.g. Durrett [Dur88] or Liggett [Lig99]) in the fact that103

it preserves monotonicity: if s ≥ 0 and a.s. A ⊂ B, A and B being Ss-measurable finite random104

sets, then a.s.105

ηs,At ⊂ ηs,Bt , t ≥ s. (10)
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This property is proven in Lemma 5.10 and is often refered to as attractiveness.106

The process started from a single particle at 0 at time zero will be denoted by (ηt)t≥0; thus,107

ηt = η
0,{0}
t . Let108

ξt :=
⋃
x∈ηt

B(x, r) (11)

and similarly109

ξs,At :=
⋃

x∈ηs,At

B(x, r),

where B(x, r) is the closed ball of radius r centered at x (recall that r appears in (6)).110

The following theorem represents the main result of the paper.111

Theorem 2.8. There exists µ > 0 such that for all ε ∈ (0, 1) a.s.112

(1− ε)B(0, µ−1) ⊂ ξt
t
⊂ (1 + ε)B(0, µ−1) (12)

for sufficiently large t.113

Remark 2.9. Let us note that the statement of Theorem 2.8 does not depend on our choice114

for the radius in (11) to be r; we could just as well take any positive constant, for example115 ⋃
x∈ηt

B(x, 1)

In particular, µ in (12) does not depend on r.116

The proof of Theorem 2.8 and the outline of the proof are given in Section 3. It is common117

to write the ball radius as the reciprocate µ−1, probably because µ comes up in the proof as the118

limiting value of a certain sequence of random variables after applying the subadditive ergodic119

theorem; see e.g. Durrett [Dur88] or Deijfen [Dei03]. We decided to keep the tradition not only120

for historic reasons, but also because µ comes up as a certain limit in our proof too, even though121

we do not obtain µ directly from the subadditive ergodic theorem. The value µ−1 is called the122

speed of propagation. The subadditive ergodic theorem is a cornerstone in the majority of shape123

theorem proofs, and our proof relies on it.124

Formal connection to Deijfen’s model. The model introduced in [Dei03] with deterministic125

outburst radius, that is, when in the notation of [Dei03] the distribution of ourbursts F is the126

Dirac measure: F = δR for some R ≥ 0, can be identified with127

ζRt =
⋃
x∈ηt

B(x,R)

for the birth process (ηt) with birth rate128

b(x, η) = 1{∃y ∈ η : |x− y| ≤ R}.

Explicit growth speed for a particular model. The precise evaluation of speed appears to129

be a difficult problem. For a general one dimensional branching random walk the speed of130

propagation is given by Biggins [Big95]. An overview of related results for different classes of131

models can be found in Auffinger, Damron, and Hanson [ADH15].132

Here we give the speed for a model with interaction.133
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Theorem 2.10. Let d = 1 and134

b(x, η) = 2 ∧

(∑
y∈η

1{|x− y| ≤ 1}

)
. (13)

Then the speed of propagation is given by135

µ−1 =
144 ln(3)− 144 ln(2)− 40

25
≈ 0.73548... (14)

Section 4 contains the proof of Theorem 2.10.136

3 Proof of Theorem 2.8137

Outline of the proof. The proof can roughly be divided into three parts. In the first part we138

show that the system grows not faster than linearly, which is the content of Proposition 3.1.139

The proof of Proposition 3.1 relies on Lemma 5.10, which allows a comparison of birth processes140

with different rates, and on the results on the spread of the supercritical branching random walk141

by Biggins [Big95].142

In the second part we show that the system grows at least linearly. Strictly speaking, in this143

part we only give exponential estimates on the probability of certain linearly growing balls not144

to be filled with the particles of our system (Lemma 3.5) as opposed to an a.s. statement about145

the entire trajectory as in Proposition 3.1. This is however sufficient for our purposes. The146

main ingredients here are exponential estimates for the Eden model (or first passage percolation147

model), comparison of the Eden model with our process, and once again Lemma 5.10. The Eden148

model is described on page 7.149

In the third part, the most technical in our opinion, we actually prove the theorem using the150

previous two parts. We define a specially designed collection of stopping times {Tλ(x), x ∈ Rd}151

and {Tλ(x, y), x, y ∈ Rd} depending on an additional parameter λ > 0 (see (24) and (25)). The152

strong Markov property of (ηt) (Proposition 5.8 and Corollary 5.9) allows us to apply Liggett’s153

subadditive ergodic theorem to show that for any x ∈ Rd, (Tλ(tx))t≥0 grows linearly with t154

((32) and Lemma 3.8). We then move on to prove that the limit lim
t→∞

Tλ(tx)
t does not depend on155

x (Lemma 3.9) and is strictly positive (Lemma 3.10). The bulk of the final part of the proof of156

Theorem 2.8 is contained in Lemmas 3.12 and 3.13, where we show the necessary a.s. inclusions157

dropping λ along the way.158

Proposition 3.1. There exists Cupb > 0 such that a.s. for large t,159

ηt ⊂ B(0, Cupbt) (15)

Remark. The index ‘upb’ hints on ‘upper bound’.160

Proof. It is sufficient to show that for e = (1, 0, ..., 0) ∈ Rd there exists C > 0 such that161

a.s. for large t162

max{〈x, e〉 : x ∈ ηt} ⊂ Ct. (16)
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Indeed, if (16) holds, then by Proposition 5.7 it is true if we replace e with any other unit vector163

along any of the 2d directions in Rd, and hence (15) holds too.164

For z ∈ R, y = (y1, ..., yd−1) ∈ Rd−1 we define z ◦y to be the concatenation (z, y1, ..., yd−1) ∈165

Rd. In this proof we denote by (η̄t) the birth process with η̄0 = η0 and the birth rate given by166

the right hand side of (4), namely167

b̄(x, η) =
∑
y∈η

a(x− y). (17)

Since b(x, η) ≤ b̄(x, η), x ∈ Rd, η ∈ Γ0, we have by Lemma 5.10 a.s. ηt ⊂ η̄t for all t ≥ 0.168

Thus, it is sufficient to prove the proposition for (η̄t). The process (η̄t) with rate (17) is in fact a169

continuous-time continuous-space branching random walk (for an overview of branching random170

walks and related topics, see e.g. Shi [Shi15]). Denote by η̄et the element-wise projection of η̄t171

onto the line determined by e; that is η̄et = {x ∈ R1 | x = 〈y, e〉 for some y ∈ ηt}. The process172

(η̄et ) is itself a branching random walk, and by Corollary 2 in Biggins [Big95], the position of173

the rightmost particle Xe
t of (η̄et ) at time t satisfies174

lim
t→∞

Xe
t

t
→ γ (18)

for a certain γ ∈ (0,∞). The conditions from the Corollary 2 from [Big95] are satisfied because175

of Condition 2.2. Indeed, (η̄et ) is the branching random walk with the birth kernel176

āe(z) =

∫
y∈Rd−1

a(z ◦ y)dy,

that is, (η̄et ) is the a birth process on R1 with the birth rate177

b̄(x, η) =
∑
y∈η

āe(x− y), x ∈ R, η ∈ Γ0(R).

Note that ae(z) = a(z) if d = 1. Hence, in the notation of [Big95] for θ < 0178

m(θ, φ) =

∫
R×R+

e−θze−φτ āe(z)dzdτ =
1

φ

∫
R

e−θ|z|āe(z)dz =
1

φ

∫
R

e−θ|z|dz

∫
y∈Rd−1

a(z ◦ y)dy

179

=
1

φ

∫
Rd

e−θ|〈x,e〉|a(x)dx ≤ 1

φ

∫
Rd

e−θ|x|a(x)dx,

and thus α(θ) < ∞ for a negative θ satisfying
∫
Rd

e−θxa(x)dx < ∞ (the functions m(θ, φ) and180

α(θ) are defined in [Big95] at the beginning of Section 3).181

Since (16) follows from (18), the proof of the proposition is now complete.182

Next, using a comparison with the Eden model (see Eden [Ede61]), we will show that the183

system grows not slower than linearly (in the sense of Lemma 3.5 below). The Eden model is184

a model of tumor growth on the lattice Zd. The evolution starts from a single particle at the185

origin. A site once occupied stays occupied forever. A vacant site becomes occupied at rate186

λ > 0 if at least one of its neighbors is occupied. Let us mention that this model is closely187
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related to the first passage percolation model, see e.g. Kesten [Kes87] and Auffinger, Damron,188

and Hanson [ADH15]. In fact, the two models coincide if the passage times ([Kes87]) have189

exponential distribution.190

For z = (z1, ..., zd) ∈ Zd, let |z|1 =
d∑
i=1
|zi|.191

Lemma 3.2. Consider the Eden model starting from a single particle at the origin. Then there192

exists a constant C̃ > 0 such that for every z ∈ Zd and time t ≥ 4e2

λ2(e−1)2 ∨ C̃|z|1,193

P{z is vacant at t} ≤ e−
√
t. (19)

Proof. Let σz be the time when z becomes occupied. Let v be a path on the integer lattice194

of length m = length(v) starting from 0 and ending in z, so that v0 = 0, vm = z, vi ∈ Zd
195

and |vi − vi−1| = 1, i = 1, ...,m. Define σ(v) as the time it takes for the Eden model to move196

along the path v; that is, if v0, ..., vj are occupied, then a birth can only occur at vj+1. By197

construction σ(v) is distributed as the sum of length(v) independent unit exponentials (the so198

called passage times; see e.g. [Kes87] or [ADH15]). We have199

σz = inf{σ(v) : v is a path from 0 to z}.

Hence σz is dominated by the sum of |z|1 independent unit exponentials, say σz ≤ Z1+...+Z|z|1 .200

We have the equality of the events201

{z is vacant at t} = {σz > t}.

Note that Eeλ(1− 1
e

)Z1 = e. Using Chebyshev’s inequality P{Z > t} ≤ Eeλ(1− 1
e

)(Z−t), we get202

P{σz > t} ≤ P{Z1 + ...+ Z|z|1 > t} ≤ E exp{λ(1− 1

e
)(Z1 + ...+ Z|z|1 − t)}

203

=
[
Eeλ(1− 1

e
)Z1

]|z|1
e−λ(1− 1

e
)t = e|z|1e−λ(1− 1

e
)t.

Since204

1

2
λ(1− 1

e
)t ≥

√
t,

for t ≥ 4e2

λ2(e−1)2 , we may take C̃ = 2e
λ(e−1) .205

We now continue to work with the Eden model.206

Lemma 3.3. For the Eden model starting from a single particle at the origin, there are constants207

c1, t0 > 0 such that208

P{there is a vacant site in B(0, c1t) ∩ Zd at t} ≤ e−
4√t, t ≥ t0 (20)

Proof. By the previous lemma for c1 <
1
C̃

,209

P{there is a vacant site in B(0, c1t) ∩ Zd at t}
210

≤
∑

z∈B(0,c1t)∩Zd

P{z is vacant at t}
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211

≤ |B(0, c1t)|e−
√
t,

where |B(0, c1t)| is the number of integer points (that is, points whose coordinates are integers)212

inside B(0, c1t). It remains to note that |B(0, c1t)| grows only polynomially fast in t.213

Definition 3.4. Let the growth process (αt)t≥0 be a ZZd

+ -valued process with214

α(z)→ α(z) + 1 at rate λ1
{ ∑

y∈Zd:
|z−y|≤1

α(y) > 0
}
, z ∈ Zd, α ∈ ZZd

+ ,
∑
y∈Zd

α(y) <∞, (21)

where λ > 0.215

Clearly, Lemma 3.3 also applies to (αt)t≥0, since it dominates the Eden process. Recall that216

r appears in (6), and (ξt) is defined in (11).217

Lemma 3.5. There are c, s0 > 0 such that218

P{B(0, cs) 6⊂ ξs} ≤ e−
4√s, s ≥ s0. (22)

Proof. For x ∈ Rd let zx ∈ r
2dZ

d be uniquely determined by x ∈ zx + (− r
4d ,

r
4d ]d. Recall219

that c0 appears in Condition 2.5. Define220

b̄(x, η) = c01{zx ∼ zy for some y ∈ η}, (23)

where zx ∼ zy means that zx and zy are neighbors on r
2dZ

d. Let (η̄t)t≥0 be the birth process221

with birth rate b̄. Note that by (6) for every η ∈ Γ0,222

b̄(x, η) ≤ b(x, η), x ∈ Rd,

hence a.s. η̄t ⊂ ηt by Lemma 5.10, t ≥ 0. Then the ‘projection’ process defined by223

ηt(z) =
∑
x∈η̄t

1{x ∈ z + (− r

4d
,
r

4d
]d}, z ∈ r

2d
Zd,

is the process (αt)t≥0 from Definition 3.4 with λ = c0

(
r

2d

)d
and the ‘geographic’ space r

2dZ
d

224

instead of Zd, that is, taking values in Z
r
2d

Zd

+ instead of ZZd

+ . Since ηt(zx) > 0 implies that225

x ∈ ξt, the desired result follows from Lemma 3.3 and the fact that Lemma 3.3 also applies to226

(αt)t≥0.227

Notation and conventions. In what follows for x, y ∈ Rd we define228

[x, y] = {z ∈ Rd | z = tx+ (1− t)y, t ∈ [0, 1]}.

We call [x, y] an interval. Similarly, open or half-open intervals are defined, for example229

(x, y] = {z ∈ Rd | z = tx+ (1− t)y, t ∈ (0, 1]}.

We also adopt the convention B(x, 0) = {x}.230
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For x ∈ Rd and λ ∈ (0, 1) we define a stopping time Tλ(x) (here and below, all stopping231

times are considered with respect to the filtration (St) introduced after (74)) by232

Tλ(x) = inf{t > 0 : |ηt ∩B(x, λ|x|)| > 0}, (24)

and for x, y ∈ Rd, we define233

Tλ(x, y) = inf
{
t > Tλ(x) : |ηTλ(x),{zλ(x)}

t ∩B(y + zλ(x)− x, λ|y − x|)| > 0
}
− Tλ(x), (25)

where zλ(x) is uniquely defined by {zλ(x)} = η
Tλ(x)

∩B(x, λ|x|). Note that {zλ(x)} is a STλ(x)-234

measurable finite random set. Also, Tλ(0) = 0 and Tλ(x, x) = 0 for x ∈ Rd. To reduce the235

number of double subscripts, we will sometimes write z(x) instead of zλ(x).236

Since for q ≥ 1{
x1 + x2 : x1 ∈ B(x, λ|x|), x2 ∈ B((q − 1)x, λ(q − 1)|x|)

}
= B(qx, λq|x|),

we have by attractiveness (recall (10))237

Tλ(qx) ≤ Tλ(x) +
(

inf{t > 0 : |η
Tλ(x),ηTλ(x)

t ∩B(qx, λq|x|)| > 0} − Tλ(x)
)

238

≤ Tλ(x) +
(

inf{t > 0 : |ηTλ(x),{zλ(x)}
t ∩B(zλ(x) + (q − 1)x, λ(q − 1)|x|)| > 0} − Tλ(x)

)
,

that is,239

Tλ(qx) ≤ Tλ(x) + Tλ(x, qx), x ∈ Rd \ {0}. (26)

Note that by the strong Markov property (Proposition 5.8 and Corollary 5.9),240

Tλ(x, qx)
(d)
= Tλ((q − 1)x). (27)

The following elementary lemma is used in the proof of Lemma 3.7.241

Lemma 3.6. Let B1 = B(x1, r1) and B2 = B(x2, r2) be two d-dimensional balls.242

(i) There exists a constant cball(d) > 0 depending on d only such that if B1 and B2 are two243

balls in Rd and x1 ∈ B2 then244

Vol(B1 ∩B2) ≥ cball(d)
(
Vol(B1) ∧Vol(B2)

)
, (28)

where Vol(B) is the d-dimensional volume of B. (ii) The intersection B1 ∩ B2 contains a ball245

of radius r3 provided that246

2r3 ≤ (r1 + r2 − |x1 − x2|) ∧ r1 ∧ r2.

Proof. (i) Without loss of generality we can assume that r1 ≤ r2. Indeed, if r1 > r2,247

then x2 ∈ B1, so we can swap B1 and B2. Let B′1 = B(x′1, r1) be the shifted ball B1 with248

x′1 = x1 + r1
x2−x1
|x2−x1| (see Figure 1). The intersection B′1 ∩ B1 is a subset of B2 and is a union249

of two identical d-dimensional hyperspherical caps with height r1
2 . Using the standard formula250

for the volume of a hyperspherical cap, we see that we can take251

10



X1

B1

X ′1

B′1

X2

B2

Figure 1: for Lemma 3.6 (i)

cball(d) =
V (B′1 ∩B1)

V (B1)
= 2

Γ(d2 + 1)
√
πΓ(d+1

2 )

π
3∫

0

sind(s)ds.

(ii) We have B3 ⊂ B1 ∩ B2, where B3 = B(x3, r3) and x3 is the middle point of the interval252

[x1, x2] ∩B1 ∩B2.253

Lemma 3.7. For every x ∈ Rd and λ > 0 there exist Ax,λ, qx,λ > 0 such that254

P{Tλ(x) > s} ≤ Ax,λe−qx,λ
4√s, s ≥ 0. (29)

Proof. Let255

τx = inf{s > 0 : x ∈ ξs}

(recall that (ξt) is defined in (11)), that is τx is the moment when the first point in the ball256

B(x, r) appears. By Lemma 3.5 for s ≥ s0 ∨ |x|c257

P{τx > s} ≤ P{x /∈ ξs} ≤ P{B(0, |x|) * ξs} ≤ P{B(0, cs) * ξs} ≤ e−
4√s. (30)

In the case r ≤ λ|x| we have a.s. Tλ(x) ≤ τx, and the statement of the lemma follows from258

(30) since for s ≥ s0 ∨ |x|c259

P{Tλ(x) > s} ≤ P{τx > s} ≤ e− 4√s.

Let us now consider the case r > λ|x|. Denote by x̄ ∈ B(x, r) the place where the particle260

is born at τx. For t ≥ 0 on {t > τx} we have261 ∫
y∈B(x,λ|x|)

b(y, ηt)dy ≥
∫

y∈B(x,λ|x|)

b(y, {x̄})dy ≥
∫

y∈B(x,λ|x|)

c01{y ∈ B(x̄, r)}dy,

11



so that by Lemma 3.6 on {t > τx}262 ∫
y∈B(x,λ|x|)

b(y, ηt)dy ≥
∫

y∈B(x,λ|x|)

c01{y ∈ B(x̄, r)}dy

263

= c0Vol(B(x, λ|x|) ∩B(x̄, r)) ≥ c0cball(d)Vol(B(x, λ|x|)) = c0cball(d)Vdλ
d|x|d,

where Vd = Vol(B(0, 1)), hence

P{Tλ(x)− τx > s′} ≤ P{inf{t > 0 : η
τx,{x̄}
t ∩B(x, r) 6= ∅} − τx > s′} ≤ e−c0cball(d)Vdλ

d|x|ds′ .

Combining this with (30) yields the desired result.264

Let us fix an x ∈ Rd, x 6= 0, and define for k, n ∈ N, k < n,265

sk,n = Tλ(kx, nx). (31)

Note that the random variables sk,n are integrable by Lemma 3.7. The conditions of Liggett’s266

subadditive ergodic theorem, see [Lig85], are satisfied here. Indeed, condition (1.7) in [Lig85]267

is ensured by (26), while conditions (1.8) and (1.9) in [Lig85] follow from (27) and the strong268

Markov property of (ηt) (Proposition 5.8 and Corollary 5.9). Thus, there exists µλ(x) ∈ [0,∞)269

such that a.s. and in L1,270

s0,n

n
→ µλ(x). (32)

Lemma 3.8. Let λ > 0. For every x 6= 0,271

lim
t→∞

Tλ(tx)

t
= µλ(x). (33)

Proof. We know that for every x ∈ Rd \ {0}272

lim
n→∞

Tλ(nx)

n
= µλ(x). (34)

Denote σn = inf
y∈[nx,(n+1)x]

Tλ(y). Since there are only a finite number of particles born in a273

bounded time interval, this infinum is achieved. So, let z̃n be such that ησn \ ησn− = {z̃n}. By274

definition of σn, the set275

{y ∈ [nx, (n+ 1)x] | z̃n ∈ B(y, λ|y|)}

is not empty. {z̃n} is an Sσn-measurable finite random set, so we can apply Corollary 5.9 here.276

Define now another stopping time277

σ̃n = inf{t > 0 : ξ
σn,{z̃n}
t ⊃ B(z̃n, λ|x|+ |x|+ 2r)}.

Let us show that278

sup
y∈[nx,(n+1)x]

Tλ(y) ≤ σ̃n. (35)

For any y ∈ [nx, (n+ 1)x],279

|y − z̃n| ≤ |z̃n − nx| ∨ |z̃n − (n+ 1)x| ≤ λ(n+ 1)|x|+ |x|.

12



Therefore the intersection of the balls B(z̃n, λ|x|+ |x|+ 2r) and B(y, λ|y|) contains a ball B̃ of280

radius r by Lemma 3.6, (ii), since281

λ|x|+ |x|+ 2r + λ|y| − λ(n+ 1)|x| − |x| ≥ λ|x|+ 2r + λn|x| − λ(n+ 1)|x| = 2r.

Since the radius of B̃ is r and ξ
σn,{z̃n}
σ̃n

⊃ B(z̃n, λ|x|+ |x|+ 2r) ⊃ B̃,282

η
σn,{z̃n}
σ̃n

∩ B̃ 6= ∅,

and hence283

ησ̃n ∩ B̃ 6= ∅. (36)

Since B̃ ⊂ B(y, λ|y|) for all y ∈ [n|x|, (n+ 1)|x|], (36) implies (35).284

For q ≥
(
λ|x|+ |x|+ 2r

)
∨ cs0, by Lemma 3.5285

P{σ̃n − σn ≥
q

c
} = P{B(z̃n, λ|x|+ |x|+ 2r) * ξ

σn,{z̃n}
q
c
+σn

}
286

≤ P{B(z̃n, q) * ξ
σn,{z̃n}
q
c
+σn

} ≤ e− 4
√

q
c ,

hence287

P{σ̃n − σn ≥ q′} ≤ e−
4√q′ , q′ ≥

(λ|x|+ |x|+ 2r

c

)
∨ s0. (37)

By the Borel–Cantelli lemma288

P{σ̃n − σn >
√
n for infinitely many n} = 0,

and since σn ≤ Tλ(nx) ≤ σ̃n, a.s. for large n289

σ̃n < Tλ(nx) +
√
n

and290

σn ≥ Tλ(nx)−
√
n.

By (35)291

lim sup
n→∞

sup
y∈[nx,(n+1)x]

Tλ(y)

n
≤ lim sup

n→∞

σ̃n
n
≤ lim sup

n→∞

Tλ(nx) +
√
n

n
≤ µλ(x),

and292

lim inf
n→∞

inf
y∈[nx,(n+1)x]

Tλ(y)

n
= lim inf

n→∞

σn
n
≥ lim sup

n→∞

Tλ(nx)−
√
n

n
≥ µλ(x).

293

Lemma 3.9. The ratio µλ(x)
|x| in (32) does not depend on x, x 6= 0.294

Proof. First let us note that for every x ∈ Rd \ {0} and every q > 0,295

µλ(x) =
µλ(qx)

q
(38)

by Lemma 3.8.296
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On the other hand, if |x| = |y| then by Proposition 5.7297

µλ(x) = µλ(y), (39)

since the distribution of (ηt) is invariant under rotations and we can consider µλ(x) as a func-298

tional acting on the trajectory (ηt)t≥0. The statement of the lemma follows from (38) and299

(39).300

Set301

µλ :=
µλ(x)

|x|
, x 6= 0.

As λ decreases, Tλ(x) increases and therefore µλ increases too. Denote302

µ = lim
λ→0+

µλ. (40)

Lemma 3.10. The constants µλ and µ are strictly positive: µλ > 0, µ > 0.303

Proof. By Proposition 3.1 for x with large |x|,304

η (1−λ)|x|
Cupb

⊂ B(0, (1− λ)|x|),

hence for every λ ∈ (0, 1) for x with large |x|305

Tλ(x) ≥ (1− λ)|x|
Cupb

.

Thus,306

µλ ≥
(1− λ)

Cupb

and307

µ = lim
λ→0+

µλ ≥
1

Cupb
.

308

Lemma 3.11. Let q,R > 0. Suppose that for all ε ∈ (0, 1) a.s. for sufficiently large n ∈ N309

ηqn
qn
⊂ (1 + ε)B(0, R)

(
(1− ε)B(0, R) ⊂ ξqn

qn

)
. (41)

Then for all ε ∈ (0, 1) a.s. for sufficiently large t ≥ 0

ηt
t
⊂ (1 + ε)B(0, R)

(
(1− ε)B(0, R) ⊂ ξt

t
respectively

)
.

Proof. We consider the first case only – the proof of the other one is similar. Since ε ∈ (0, 1)

is arbitrary, (41) implies that for all ε̃ ∈ (0, 1) a.s. for large n ∈ N,

ηq(n+2)

qn
⊂ (1 + ε̃)B(0, R).

Since a.s. (ηt)t≥0 is monotonically growing, it is sufficient to note that

ηt
t
⊂ (1 + ε)B(0, R) if

η⌈ t
q

⌉
q+q⌊

t
q

⌋
q
⊂ (1 + ε)B(0, R).

310

Recall that c is a constant from Lemma 3.5.311
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Lemma 3.12. Let ε ∈ (0, 1). Then a.s.312

(1− ε)B(0, µ−1) ⊂ ξm
m

(42)

for large m of the form m = (1 +
λµ−1

λ
c )n, n ∈ N.313

Proof. Let λ = λε > 0 be chosen so small that314

(1− ε)µ−1 ≤
1− ε

2

1 +
λµ−1

λ
c

µ−1
λ . (43)

Such a λ exists since315

lim
λ→0+

µ−1
λ

1 +
λµ−1

λ
c

= µ−1.

Choose a finite sequence of points {xj , j = 1, ..., N} such that xj ∈ (1− ε
2)B(0, µ−1

λ ) and316 ⋃
j

B(xj ,
ε

4
c) ⊃ (1− ε

2
)B(0, µ−1

λ ).

Let δ > 0 be so small that (1 + δ)(1− ε
2) ≤ (1− ε

4). Since a.s.317

Tλ(nxj)

n|xj |
→ µλ,

for large n for every j ∈ {1, ..., N}318

Tλ(nxj) ≤ n|xj |(1 + δ)µλ ≤ n(1− ε

2
)(1 + δ) ≤ n(1− ε

4
), (44)

so that the system reaches the ball B(nxj , λn|xj |) before the time n(1 − ε
4). Let Qn be the319

random event320

{Tλ(nxj) ≤ n(1− ε

4
) for j = 1, ..., N} = {ηn(1− ε

4
) ∩B(nxj , λn|xj |) 6= ∅, for j = 1, ..., N}.

Note that P (Qn)→ 1 by (44), and even321

P{
⋃
m∈N

∞⋂
i=m

Qi} = 1. (45)

In other words, a.s. for large i all Qi occur.322

Let z̄(nxj) be defined as z(nxj) on Qn and as nxj on the complement Ω \ Qn (recall323

that z(x) = zλ(x), x ∈ Rd, was defined after (25)). The set {z̄(nxj)} is a finite random324

Sn(1− ε
4

)-measurable set.325

Using Lemma 3.5, we will show that after an additional time interval of length ( ε4 +
λµ−1

λ
c )n326

the entire ball (1− ε
2)nB(0, µ−1

λ ) is covered by (ξt), that is, a.s. for large n327

(1− ε

2
)nB(0, µ−1

λ ) ⊂ ξ
n(1− ε

4
)+( ε

4
+
λµ−1
λ
c

)n
= ξ

n+
λnµ−1

λ
c

. (46)
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Indeed, since328

B(nxj , c
ε

4
n) ⊂ B(z̄(nxj), c

ε

4
n+ λ|xj |n) ⊂ B(z̄(nxj), c

ε

4
n+ λµ−1

λ n),

the series329 ∑
n∈N

P{B(nxj , c
ε

4
n) 6⊂ ξ(n(1− ε

4
),{z̄(nxj)})

n+
λµ−1
λ

n

c

for some j}

330

≤
∑
n∈N

P{B(z̄(nxj), c
ε

4
n+ λµ−1

λ n) 6⊂ ξ(n(1− ε
4

),{z̄(nxj)})

n+
λµ−1
λ

n

c

for some j}

converges by Lemma 3.5, thus a.s. for large n,331

B(nxj , c
ε

4
n) ⊂ ξ(n(1− ε

4
),{z̄(nxj)})

n+
λµ−1
λ

n

c

, j = 1, ..., N. (47)

By (45) a.s. for large n332

B(nxj , c
ε

4
n) ⊂ ξ(n(1− ε

4
),{z(nxj)})

n+
λµ−1
λ

n

c

, j = 1, ..., N. (48)

Hence the choice of {xj , j = 1, ..., N} and (48) yield (46). Because of our choice of λ,333

(1− ε)nB(0, µ−1) ⊂
(1− ε

2)

(1 +
λµ−1

λ
c )

nB(0, µ−1
λ ),

which in conjunction with (46) implies that (42) holds a.s. for large m of the form (1 +
λµ−1

λ
c )n,334

where n ∈ N.335

Lemma 3.13. Let ε ∈ (0, 1). Then a.s. for large n ∈ N336

ηn
n
⊂ (1 + ε)B(0, µ−1). (49)

Proof. Let λ = λε > 0 be so small that337

(1 +
ε

2
)B(0, µ−1

λ ) ⊂ (1 + ε)B(0, µ−1) (50)

Let q ∈ (ε,∞) and A be the annulus338

A := (1 + q)B(0, µ−1
λ ) \ (1 +

1

2
ε)B(0, µ−1

λ ), (51)

and {xj , j = 1, ..., N} be a finite sequence such that xj ∈ A and339 ⋃
j

B(xj , λ|xj |) ⊃ A.

Define F := {ηn ∩ nA 6= ∅ infinitely often}. On F there exists a (random) i ∈ {1, ..., N} such340

that the intersection341

ηn ∩ nB(xi, λ|xi|) (52)

is non-empty infinitely often. Define also342

Fi := {ηn ∩ nB(xi, λ|xi|) 6= ∅ infinitely often} (53)
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Note that F ⊂
N⋃
i=1

Fi.343

On Fi we have

Tλ(nxi) ≤ n

infinitely often, hence our choice of A implies344

lim inf
n→∞

Tλ(nxi)

n|xi|
≤ lim inf

n→∞

n

(1 + 1
2ε)µ

−1
λ n

= µλ
1

(1 + 1
2ε)

.

The last inequality and Lemma 3.8 imply that P (Fi) = 0 for every i ∈ {1, ..., N}. Hence345

P (F ) = 0 too. Setting q = 2µλCupb + 1, so that the radius of the ball on the left-hand side of346

(50)347

qµ−1
λ > 2Cupb,

by Proposition 3.1 and the definition of F we get a.s. for large n,348

ηn
n
⊂ (1 +

1

2
ε)B(0, µ−1

λ ) (54)

and the statement of the lemma follows from (50) and (54).349

Proof of Theorem 2.8. The theorem follows from Lemmas 3.11, 3.12, and 3.13. Note that350

351

ξn
n
⊂ (1 + ε)B(0, µ−1). (55)

is obtained from Lemma 3.13 by replacing ε in (49) with ε
2 .352

353

4 Proof of Theorem 2.10354

We precede the proof of Theorem 2.10 with an auxiliary lemma about Markovian functionals355

of a general Markov chain.356

Let (S,B(S)) be a Polish (state) space. Consider a (time-homogeneous) Markov chain

on (S,B(S)) as a family of probability measures on S∞. Namely, on the measurable space

(Ω̄,F ) = (S∞,B(S∞)) consider a family of probability measures {Ps}s∈S such that for the

coordinate mappings

Xn : Ω̄→ S,

Xn(s1, s2,...) = sn,

the process X := {Xn}n∈Z+ is a Markov chain such that for all s ∈ S

Ps{X0 = s} = 1,

Ps{Xn+mj ∈ Aj , j = 1, ..., l | Fn} = PXn{Xmj ∈ Aj , j = 1, ..., l}.

Here Aj ∈ B(S), mj ∈ N, l ∈ N, Fn = σ{X1, ..., Xn}. The space S is separable, hence there

exists a transition probability kernel Q : S ×B(S)→ [0, 1] such that

Q(s,A) = Ps{X1 ∈ A}, s ∈ S, A ∈ B(S).
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Consider a transformation of the chain X, Yn = f(Xn), where f : S → R is a Borel-357

measurable function. Here we will give sufficient conditions for Y = {Yn}n∈Z+ to be a Markov358

chain. A very similar question was discussed by Burke and Rosenblatt [BR58] for discrete space359

Markov chains.360

Lemma 4.1. Assume that for any bounded Borel function h : S → S361

Esh(X1) = Eqh(X1) whenever f(s) = f(q), (56)

Then Y is a Markov chain.362

Remark. Condition (56) is the equality of distributions of X1 under two different measures,363

Ps and Pq.364

Proof. For the natural filtrations of the processes X and Y we have an inclusion365

FX
n ⊃ F Y

n , n ∈ N, (57)

since Y is a function of X. For k ∈ N and bounded Borel functions hj : R→ R, j = 1, 2, ..., k,366

Es

 k∏
j=1

hj(Yn+j) | FX
n

 = EXn

k∏
j=1

hj(f(Xj)) =

∫
S
Q(x0, dx1)h1(f(x1))

∫
S
Q(x1, dx2)h2(f(x2))...

∫
S
Q(xn−1, dxn)hn(f(xn))

∣∣∣∣∣
x0=Xn

(58)

To transform the last integral, we introduce a new kernel: for y ∈ f(S) chose x ∈ S with367

f(x) = y, and then for B ∈ B(R) define368

Q(y,B) = Q(x, f−1(B)). (59)

The expression on the right-hand side does not depend on the choice of x because of (56). To369

make the kernel Q defined on R×B(R), we set370

Q(y,B) = 1{0∈B}, y /∈ f(S).

Then, setting zn = f(xn), we obtain from the change of variables formula for the Lebesgue

integral that ∫
S
Q(xn−1, dxn)hn(f(xn)) =

∫
R
Q(f(xn−1), dzn)hn(zn).

Likewise, setting zn−1 = f(xn−1), we get371 ∫
S
Q(xn−2, dxn−1)hn(f(xn−1))

∫
S
Q(xn−1, dxn)hn(f(xn)) =

372 ∫
S
Q(xn−2, dxn−1)hn(f(xn−1))

∫
R
Q(f(xn−1), dzn)hn(zn) =∫

R
Q(f(xn−2), dzn−1)hn(zn−1)

∫
R
Q(zn−1, dzn)hn(zn).
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Proceeding further, we obtain373 ∫
S
Q(x0, dx1)h1(f(x1))

∫
S
Q(x1, dx2)h2(f(x2))...

∫
S
Q(xn−1, dxn)hn(f(xn)) =

374 ∫
R
Q(z0, dz1)h1(z1)

∫
R
Q(z1, dz2)h2(z2)...

∫
R
Q(zn−1, dzn)hn(zn),

where z0 = f(x0).375

Thus,376

Es

 k∏
j=1

hj(Yn+j) | FX
n

 =

377 ∫
R
Q(f(X0), dz1)h1(z1)

∫
R
Q(z1, dz2)h2(z2)...

∫
R
Q(zn−1, dzn)hn(zn).

This equality and (57) imply that Y is a Markov chain.378

Remark 4.2. From the proof it follows that Q is the transition probability kernel for the chain379

{f(Xn)}n∈Z+ .380

Remark 4.3. Clearly, this result holds for a Markov chain which is not necessarily defined on381

a canonical state space because the property of a process to be a Markov chain depends on its382

distribution only.383

x

1

2

x2 x1 x1 + 1x2 + 1

Figure 2: The plot of b(·, ηt).

Proof of Theorem 2.10. Without any loss of generality, we will consider the speed of384

propagation in one direction only, say toward +∞. Let x1(t) and x2(t) denote the positions385

of the rightmost particle and the second rightmost particle, respectively (x2(t) = 0 until first386

two births occurs inside (0,+∞)). Let us observe that b(x, ηt) ≡ 2 on (0, x2(t) + 1], and387

X = (x1(t), x2(t)) is a continuous-time pure jump Markov process on {(x1, x2) | x1 ≥ x2 ≥388

0, x1 − x2 ≤ 1} with transition densities389

(x1, x2)→ (v, x1) at rate 1, v ∈ (x2 + 1, x1 + 1];

(x1, x2)→ (v, x1) at rate 2, v ∈ (x1, x2 + 1];

(x1, x2)→ (x1, v) at rate 2, v ∈ (x2, x1].

(60)

(to be precise, the above is true from the moment the first birth inside R+ occurs).390
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Furthermore, z(t) := x1(t)− x2(t) satisfies391

E{f(z(t+ δ)) | x1(t) = x1, x2(t) = x2} = E{f(z(t+ δ)) | x1(t) = x1 + h, x2(t) = x2 + h}

for every h > 0 and every Borel bounded function f . In other words, transition rates of (z(t))t≥0392

are entirely determined by the current state of (z(t))t≥0. Therefore, by Lemma 4.1, (z(t))t≥0393

is itself a pure jump Markov process on [0, 1] (Lemma 4.1 ensures that the embedded Markov394

chain of (z(t))t≥0 is indeed a discrete-time Markov process). The transition densities of (z(t))t≥0395

are396

q(x, y) = 41{y ≤ x}+ 21{x ≤ y ≤ 1− x}+ 1{y ≥ 1− x}, x ≤ 1

2
, y ∈ [0, 1],

q(x, y) = 41{y ≤ 1− x}+ 31{1− x ≤ y ≤ x}+ 1{y ≥ x}, x ≥ 1

2
, y ∈ [0, 1].

(61)

Note that the total jump rate out of x is q(x) :=
∫ 1

0 q(x, y)dy = 2+x. The process (z(t))t≥0 is397

a regular Harris recurrent Feller process with the Lebesgue measure on [0, 1] being a supporting398

measure (see e.g. [Kal02, Chapter 20]). Hence a unique invariant measure exists and has a399

density g with respect to the Lebesgue measure. The equation for g is400

1∫
0

q(x, y)g(x)dx = q(y)g(y). (62)

Set401

f(x) = g(x)q(x)

 1∫
0

g(y)q(y)dy

−1

, x ∈ [0, 1].

It is clear that f is again a density (as an aside we point out that f is the density of invariant402

distribution of the embedded Markov chain of (z(t))t≥0). Equation (62) becomes403

f(y) =

1∫
0

q(x, y)

q(x)
f(x)ds,

which after some calculations transforms into

f(y) = 2

1
2∫

0

f(x)dx

2 + x
+ 2

1
2∫
y

f(x)dx

2 + x
+ 3

1∫
1
2

f(x)dx

2 + x
+

1−y∫
1
2

f(x)dx

2 + x
, y ≤ 1

2
, (63)

f(y) =

1
2∫

0

f(x)dx

2 + x
+

1−y∫
0

f(x)dx

2 + x
+

1∫
1
2

f(x)dx

2 + x
+ 2

1∫
y

f(x)dx

2 + x
, y ≥ 1

2
. (64)

Differentiating (63), (64) with respect to y, we find that f solves the equation404

df

dx
(x) = −2

f(x)

2 + x
− f(1− x)

3− x
, x ∈ [0, 1]. (65)
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Let

ϕ(x) :=
[
(2 + x)2(3− x)2

]
f(x), x ∈ [0, 1].

Then (65) becomes405

(3− x)
dϕ

dx
(x) + 2ϕ(x) + ϕ(1− x) = 0, x ∈ [0, 1]. (66)

Looking for solutions to (66) among polynoms, we find that ϕ(x) = c(4− 3x) is a solution. By406

direct substitution we can check that407

f(x) =
c(4− 3x)

(2 + x)2(3− x)2
x ∈ [0, 1] (67)

solves (63)-(64). The constant c > 0 can be computed, but is irrelevant for our purposes. Hence,408

after some more computation,409

g(x) =
36(4− 3x)

(2 + x)3(3− x)2
, x ∈ [0, 1]. (68)

Note that we do not prove analytically that equation (63), (64) has a unique solution.410

However, uniqueness for non-negative integrable solutions follows from the uniqueness of the411

invariant distribution for (z(t))t≥0. Let l be the Lebesgue measure on R. By an ergodic theorem412

for Markov processes, see e.g. [Kal02, Theorem 20.21 (i)], for any 0 ≤ p < p′ ≤ 1,413

lim
t→∞

l{s : z(s) ∈ [p, p′], 0 ≤ s ≤ t}
t

→
∫ p′

p
g(x)dx. (69)

Conditioned on z(t) = z, the transition densities of x1(t) are414

x1 → x1 + v at rate 2, v ∈ (0, 1− z];

x1 → x1 + v at rate 1, v ∈ (1− z, 1].
(70)

Hence by (68) the speed of propagation is415

1∫
0

g(z)dz

 1−z∫
0

2ydy +

1∫
1−z

ydy

 =

1∫
0

g(z)(1− z +
1

2
z2)dz =

144 ln(3)− 144 ln(2)− 40

25
.

Remark 4.4. We see from the proof that the speed can be computed in a similar way for the416

birth rates of the form417

bk(x, η) = k ∧

(∑
y∈η

1{|x− y| ≤ 1}

)
, (71)

where k ∈ (1, 2). However, the computations quickly become unwieldy.418

5 The construction and properties of the process419

Here we proceed to construct the process as a unique solution to a stochastic integral equation.420

First such a scheme was carried out by Massoulié [Mas98]. This method can be deemed an421

analog of the construction from graphical representation. We follow here [Bez15].422

21



Remark 5.1. Of course, the process starting from a fixed initial condition we consider here423

can be constructed as the minimal jump process (pure jump type Markov processes in the424

terminology of [Kal02]) as is done for example in [EW03]. Note however that we use coupling425

of infinitely many processes starting at different time points from different initial conditions, so426

we here employ another method.427

Recall that428

Γ0(Rd) = {η ⊂ Rd : |η| <∞},

and the σ-algebra on Γ0 was introduced in (3). To construct the family of processes (ηq,At )t≥q,429

we consider the stochastic equation with Poisson noise430

|ηt ∩B| =
∫

(q,t]×B×[0,∞)

1[0,b(x,ηs−)](u)N(ds, dx, du) + |ηq ∩B|, t ≥ q, B ∈ B(Rd), (72)

where (ηt)t≥q is a cadlag Γ0-valued solution process, N is a Poisson point process on R+ ×431

Rd × R+, the mean measure of N is ds × dx × du. We require the processes N and η0 to be432

independent of each other. Equation (72) is understood in the sense that the equality holds a.s.433

for every bounded B ∈ B(Rd) and t ≥ q. In the integral on the right-hand side of (72), x is434

the location and s is the time of birth of a new particle. Thus, the integral over B from q to t435

represents the number of births inside B which occurred before t.436

Let us assume for convenience that q = 0. We will make the following assumption on the437

initial condition:438

E|η0| <∞. (73)

We say that the process N is compatible with an increasing, right-continuous and complete439

filtration of σ-algebras (Ft, t ≥ 0) if N is adapted, that is, all random variables of the type440

N(T̄1, U), T̄1 ∈ B([0; t]), U ∈ B(Rd × R+), are Ft-measurable, and all random variables of441

the type N(t + h, U) − N(t, U), h ≥ 0, U ∈ B(Rd × R+), are independent of Ft, N(t, U) =442

N([0; t], U).443

Definition 5.2. A (weak) solution of equation (72) is a triple ((ηt)t≥0, N), (Ω,F , P ), ({Ft}t≥0),444

where445

(i) (Ω,F , P ) is a probability space, and {Ft}t≥0 is an increasing, right-continuous and446

complete filtration of sub-σ-algebras of F ,447

(ii) N is a Poisson point process on R+ × Rd × R+ with intensity ds× dx× du,448

(iii) η0 is a random F0-measurable element in Γ0 satisfying (73),449

(iv) the processes N and η0 are independent, N is compatible with {Ft}t≥0,450

(v) (ηt)t≥0 is a cadlag Γ0-valued process adapted to {Ft}t≥0, ηt
∣∣
t=0

= η0,451

(vi) all integrals in (72) are well-defined,452

E

t∫
0

ds

∫
Rd

b(x, ηs−) <∞, t > 0,

(vii) equality (72) holds a.s. for all t ∈ [0,∞] and all Borel sets B.453
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Let

S 0
t = σ

{
η0, N([0, q]×B × C), (74)

q ∈ [0, t], B ∈ B(Rd), C ∈ B(R+)
}
,

and let St be the completion of S 0
t under P . Note that {St}t≥0 is a right-continuous filtration454

(see Remark 6.2).455

Definition 5.3. A solution of (72) is called strong if (ηt)t≥0 is adapted to (St, t ≥ 0).456

Remark 5.4. In the definition above we considered solutions as processes indexed by t ∈ [0,∞).457

The reformulations for the case t ∈ [0, T ], 0 < T < ∞, are straightforward. This remark also458

applies to many of the results below.459

Definition 5.5. We say that joint uniqueness in law holds for equation (72) with an initial460

distribution ν if any two (weak) solutions ((ηt), N) and ((η′t), N
′) of (72), Law(η0) = Law(η′0) =461

ν, have the same joint distribution:462

Law((ηt), N) = Law((η′t), N
′).

Theorem 5.6. Pathwise uniqueness, strong existence and joint uniqueness in law hold for463

equation (72). The unique solution is a Markov process.464

Proof. Without loss of generality assume that P{η0 6= ∅} = 1. Define the sequence of465

random pairs {(σn, ζσn)}, where466

σn+1 = inf{t > 0 :

∫
(σn,σn+t]×B×[0,∞)

1[0,b(x,ζσn )](u)N(ds, dx, du) > 0}+ σn, σ0 = 0,

and467

ζ0 = η0, ζσn+1 = ζσn ∪ {zn+1}

for zn+1 = {x ∈ Rd : N({σn+1} × {x} × [0, b(x, ζσn)]) > 0}. The points zn are uniquely468

determined a.s. Furthermore, σn+1 > σn a.s., and σn are finite a.s by (6). We define ζt = ζσn469

for t ∈ [σn, σn+1). Then by induction on n it follows that σn is a stopping time for each n ∈ N,470

and ζσn is Fσn-measurable. By direct substitution we see that (ζt)t≥0 is a strong solution to471

(72) on the time interval t ∈ [0, lim
n→∞

σn). Although we have not defined what is a solution, or472

a strong solution, on a random time interval, we do not discuss it here. Instead we are going to473

show that474

lim
n→∞

σn =∞ a.s. (75)

The process (ζt)t∈[0, lim
n→∞

σn) has the Markov property, because the process N has the strong475

Markov property and independent increments. Indeed, conditioning on Iσn ,476

E
[
1{ζσn+1=ζσn∪x for some x∈B} | Iσn

]
=

∫
B

b(x, ζσn)dx∫
Rd

b(x, ζσn)dx
,
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thus the chain {ζσn}n∈Z+ is a Markov chain, and, given {ζσn}n∈Z+ , σn+1 − σn are distributed477

exponentially:478

E{1{σn+1−σn>a} | {ζσn}n∈Z+} = exp{−a
∫
Rd

b(x, ζσn)dx}.

Therefore, the random variables γn = (σn − σn−1)
∫
Rd

b(x, ζσn)dx constitute an independent of479

{ζσn}n∈Z+ sequence of independent unit exponentials. Theorem 12.18 in [Kal02] implies that480

(ζt)t∈[0, lim
n→∞

σn) is a pure jump type Markov process.481

The jump rate of (ζt)t∈[0, lim
n→∞

σn) is given by482

c(α) =

∫
Rd

b(x, α)dx.

Condition 2.2 implies that c(α) ≤ ||a||1 · |α|, where ||a||1 = ||a||L1(Rd). Consequently,483

c(ζσn) ≤ ||a||1 · |ζσn | = ||a||1 · |η0|+ n||a||1.

We see that
∑

n
1

c(ζσn ) =∞ a.s., hence Proposition 12.19 in [Kal02] implies that σn →∞.484

We have proved the existence of a strong solution. The uniqueness follows by induction on485

jumps of the process. Namely, let (ζ̃t)t≥0 be a solution to (72). From (vii) of Definition 5.2 and486

the equality487 ∫
(0,σ1)×Rd×[0,∞]

1[0,b(x,η0)](u)N(ds, dx, du) = 0,

it follows that P{ζ̃ has a birth before σ1} = 0. At the same time, the equality488 ∫
{σ1}×Rd×[0,∞]

1[0,b(x,η0)](u)N(ds, dx, du) = 1,

which holds a.s., yields that ζ̃ too has a birth at the moment σ1, and in the same point of space489

at that. Therefore, ζ̃ coincides with ζ up to σ1 a.s. Similar reasoning shows that they coincide490

up to σn a.s., and, since σn →∞ a.s.,491

P{ζ̃t = ζt for all t ≥ 0} = 1.

Thus, pathwise uniqueness holds. Joint uniqueness in law follows from the functional de-492

pendence between the solution to the equation and the ‘input’ η0 and N .493

Proposition 5.7. If b is rotation invariant, then so is (ηt).494

Proof. It is sufficient to note that (Mdηt), where Md ∈ SO(d), is the unique solution to495

(72) with N replaced by M−1
d N defined by496

M−1
d N([0, q]×B × C) = N([0, q]×M−1

d B × C), q ≥ 0, B ∈ B(Rd), C ∈ B(R+).

M−1
d N is a Poisson point process with the same intensity, therefore by uniqueness in law497

(Mdηt)
d
= (ηt).498
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Proposition 5.8. (The strong Markov property) Let τ be an (St, t ≥ 0)-stopping time and499

let η̃0
d
= ητ . Then500

(ητ+t, t ≥ 0)
d
= (η̃t, t ≥ 0). (76)

Furthermore, for any D ∈ B(DΓ0 [0,∞)),

P{(ητ+t, t ≥ 0) ∈ D | Sτ} = P{(ητ+t, t ≥ 0) ∈ D | ητ};

that is, given ητ , (ητ+t, t ≥ 0) is conditionally independent of (St, t ≥ 0).501

Proof. Note that502

|ητ+t ∩B| =
∫

(τ,τ+t]×B×[0,∞)

1[0,b(x,ηs−)](u)N(ds, dx, du) + |ητ ∩B|, t ≥ 0, B ∈ B(Rd).

Since the unique solution is adapted to the filtration generated by the noise and initial503

condition, the conditional independence follows, and (76) follows from the uniqueness in law.504

We rely here on the strong Markov property of the Poisson point process, see Proposition 6.1505

below.506

Corollary 5.9. Let τ be an (St, t ≥ 0)-stopping time and {y} be an Sτ - measurable finite507

random singleton. Then508

(η
τ,{y}
τ+t − y)t≥0

(d)
= (ηt)t≥0.

Proof. This is a consequence of Theorem 5.6 and Proposition 5.8.509

Consider two growth processes (ζ(1))t and (ζ(2))t defined on the common probability space510

ans satisfying equations of the form (72),511

|ζ(k)
t ∩B| =

∫
(q,t]×B×[0,∞)

λ1
[0,bk(x,ζ

(k)
s− )]

(u)N(ds, dx, du) + |ζ(k)
q ∩B|, k = 1, 2. (77)

Assume that and the rates b1 and b2 satisfy the conditions of imposed on b in Section 2. Let512

(ζ
(k)
t )t∈[0,∞) be the unique strong solutions.513

Lemma 5.10. Assume that a.s. ζ
(1)
0 ⊂ ζ(2)

0 , and for any two finite configurations η1 ⊂ η2,514

b1(x, η1) ≤ b2(x, η2), x ∈ Rd. (78)

Then a.s.515

ζ
(1)
t ⊂ ζ(2)

t , t ∈ [0,∞). (79)

Proof. Let (σn)n∈N be the ordered sequence of the moments of births for (ζ
(1)
t ), that is,516

t ∈ (σn)n∈N if and only if |ζ(1)
t \ζ

(1)
t− | = 1. It suffices to show that for each n ∈ N, σn is a moment517

of birth for (ζ
(2)
t )t∈[0,∞) too, and the birth occurs at the same place. We use induction on n.518

Here we deal only with the base case, the induction step is done in the same way. Assume

that

ζ(1)
σ1
\ ζ(1)

σ1− = {x1}.
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The process (ζ(1))t∈[0,∞) satisfies (77), therefore N({x} × [0, bk(x1, ζ
(1)
σ1−)]) = 1. Since

ζ
(1)
σ1− = ζ

(1)
0 ⊂ ζ(2)

0 ⊂ ζ(2)
σ1−,

by (78)

N1({x} × {σ1} × [0, bk(x1, ζ
(2)
σ1−)]) = 1,

hence

ζ(2)
σ1
\ ζ(2)

σ1− = {x1}.

519

6 Appendix. The strong Markov property of a Poisson point520

process521

We need the strong Markov property of a Poisson point process. Denote X := Rd×R+ (compare522

the proof of Proposition 5.8), and let l be the Lebesgue measure on X. Consider a a Poisson523

point process N on R+ ×X with intensity measure dt × l. Let N be compatible with a right-524

continuous complete filtration {Ft}t≥0, and τ be a finite a.s. {Ft}t≥0-stopping time . Introduce525

another Point process N on R+ ×X,526

N([0; s]× U) = N((τ ; τ + s]× U), U ∈ B(X)).

Proposition 6.1. The process N is a Poisson point process on R+ ×X with intensity dt × l,527

independent of Fτ .528

Proof. To prove the proposition, it suffices to show that529

(i) for any b > a > 0 and open bounded U ⊂ X, N((a; b), U) is a Poisson random variable530

with mean (b− a)l(U), and531

(ii) for any bk > ak > 0, k = 1, ...,m, and any open bounded Uk ⊂ X, such that ((ai; bi) ×532

Ui)∩((aj ; bj)×Uj) = ∅, i 6= j, the collection {N((ak; bk)×Uk)}k=1,m is a sequence of independent533

random variables, independent of Fτ .534

Indeed, N is determined completely by values on sets of type (b− a)β(U), a, b, U as in (i),535

therefore it must be an independent of Fτ Poisson point process if (i) and (ii) hold.536

Let τn be the sequence of {Ft}t≥0-stopping times, τn = k
2n on {τ ∈ (k−1

2n ; k
2n ]}, k ∈ N. Then

τn ↓ τ and τn− τ ≤ 1
2n . Note that the stopping times τn take countably many values only. The

process N satisfies the strong Markov property for τn: the processes Nn, defined by

Nn([0; s]× U) := N((τn; τn + s]× U),

are Poisson point processes, independent of Fτn . To prove this, take k with P{τn = k
2n } > 0537

and note that on {τn = k
2n }, Nn coincides with process the Poisson point process Ñ k

2n
given by538

Ñ k
2n

([0; s]× U) := N

(
(
k

2n
;
k

2n
+ s]× U)

)
, U ∈ B(Rd).
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Conditionally on {τn = k
2n }, Ñ k

2n
is again a Poisson point process, with the same intensity.539

Furthermore, conditionally on {τn = k
2n }, Ñ k

2n
is independent of F k

2n
, hence it is independent540

of Fτ ⊂ F k
2n

.541

To prove (i), note that Nn((a; b) × U) → N((a; b) × U) a.s. and all random variables542

Nn((a; b)×U) have the same distribution, therefore N((a; b)×U) is a Poisson random variable543

with mean (b − a)λ(U). The random variables Nn((a; b) × U) are independent of Fτ , hence544

N((a; b)× U) is independent of Fτ , too. Similarly, (ii) follows. �545

Remark 6.2. We assumed in Proposition 6.1 that there exists an increasing, right-continuous546

and complete filtration {St}t≥0 compatible with N . Let us show that such filtrations exist.547

Introduce the natural filtration of N ,548

S̄ 0
t = σ{Nk(C,B), B ∈ B(Rd), C ∈ B([0; t])},

and let S̄t be the completion of S̄ 0
t under P . Then N is compatible with {S̄t}. We claim549

that {S̄t}t≥0, defined in such a way, is right-continuous (this may be regarded as an analog550

of Blumenthal’s 0-1 law). Indeed, as in the proof of Proposition 6.1, we can check that Ña is551

independent of S̄a+. Since S̄∞ = σ(Ña)∨ S̄a, σ(Ña) and S̄a are independent and S̄a+ ⊂ S̄∞,552

we see that S̄a+ ⊂ S̄a. Thus, S̄a+ = S̄a.553
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