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Abstract

We prove that, for every simple polygon P having k ≥ 1 reflex vertices,
there exists a point q ∈ P such that every half-polygon that contains q
contains nearly 1/2(k + 1) times the area of P . We also give a family of
examples showing that this result is the best possible.
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1 Introduction

Winternitz’ Theorem [1, pp. 54–55] is a classic theorem in convex geometry
that has been rediscovered many times [4, 9, 12, 13, 15]. Winternitz’ Theorem
states that, for any convex polygon P , there exists a point q ∈ P such that any
halfspace that contains q contains at least 4/9 of the area of P . The dissection
of a triangle into 9 similar triangles shown in Figure 1 can easily be used to
show that the bound of 4/9 is tight when P is a triangle.

Figure 1: A triangle has maximum halfspace depth 4/9.
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In this paper, we consider a generalization of Winternitz’ Theorem to the
case when P is a simple polygon. A chord of a simple polygon P is a closed line
segment whose interior is contained in the interior of P and whose endpoints are
on the boundary of P . If c is a chord of P then P \ c has two components P+

and P−. We call the closure of these polygons half-polygons of P . We define
the depth of a point q ∈ P as

δP (q) = min{area(h ∩ P ) : h is a half-polygon of P that contains q} .

Winternitz’ Theorem states that, if P is convex then there exists a point q ∈ P
with δP (q) ≥ (4/9) area(P ).

Winternitz’ Theorem is closely related to the Centerpoint Theorem [10, 14]
which states that for any set S of n points in R2 there exists a point q ∈ R2

such that every closed halfplane that contains q contains at least n/3 points
of S. The Centerpoint Theorem is easily derived from Helly’s Theorem [3] by
considering all halfplanes that contain at least 2n/3 points of S and taking q to
be in their common intersection.

Helly’s Theorem also holds for half-polygons of P . In particular, if P1, . . . , Pn

are half-polygons of P and Pi ∩ Pj ∩ Pk 6= ∅ for any 1 ≤ i < j < k ≤ n then⋂n
i=1 Pi 6= ∅. Therefore one might expect that there always exists a point q with

δP (q) greater than or equal to some constant fraction of area(P ), independent
of the number of reflex vertices in P . However, this intuition turns out to be
false.

Theorem 1. For any ε > 0 and any simple polygon P with k ≥ 1 reflex vertices,
there exists a point q ∈ P such that δP (q) ≥ area(P )/2(k + 1)− ε.

The lower bound of Theorem 1 is essentially the best possible:

Theorem 2. For every integer k ≥ 1 and every ε > 0, there exists a poly-
gon P with k reflex vertices, such that no point in P has depth greater than
area(P )/2(k + 1) + ε.

Our results continue an existing line of research relating the combinatorial
and computational properties of polygons to the number of their reflex vertices.
Hurtado and Noy [7] give tight upper and lower bounds on the number of trian-
gulations of a polygon as a function of the number of its reflex vertices. Hurtado,
Noy, and Urrutia [5] prove that the diameter of the flip graph of triangulations
of a polygon is O(n+k2). Bose et al [2] show that the computational complexity
of computing ham-sandwich cuts in simple polygons is Θ(n log k). Hertel and
Mehlhorn [6] give a simple O(n log k) time algorithm for triangulating a simple
polygon. Keil [8] gives an O(k2n log n) time algorithm for finding an optimal
convex partitioning of a simple polygon. The above results, and those of the
current paper, illustrate the importance of the number of reflex vertices as a pa-
rameter when studying combinatorial and computational properties of simple
polygons.

The remainder of the paper is organized as follows: In Section 2 a proof of
Theorem 1 is given. Section 3 presents a family of simple polygons that prove
Theorem 2.
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2 The Lower Bound

For simplicity, we will prove a discrete version of Theorem 1 that is a polygonal
analog of the Centerpoint Theorem. In the discrete version, we are given a
polygon P and a finite set of points N in the interior of P , such that no point
of N is collinear with 2 vertices of P . We call N a general set of points in P .
The N -depth of a point q ∈ P is defined as

δP,N (q) = min{|h ∩N | : h is a half-polygon of P that contains q} .

The following claim generalizes the Centerpoint Theorem. Also, by taking
the point set N to be (sufficiently close to) the vertices of a (sufficiently dense)
grid, the claim establishes Theorem 1.

Claim 1. Let P be a simple polygon having k ≥ 1 reflex vertices and let N
be a general set of points in P . Then there exists a point q ∈ P such that
δP,N (q) ≥ |N |/2(k + 1).

Proof. Refer to Figure 2 for what follows. Divide polygon P into at most k + 1
convex sub-polygons by iteratively adding a chord on each reflex vertex so that
it becomes a convex vertex in each of the two subpolygons generated. Let P ∗ be
a convex sub-polygon that contains at least |N |/(k + 1) points of N . Note that
P ∗ contains at most k′ ≤ k edges e1, . . . , ek′ that are not edges of P . For each
such edge, ei, define Qi as the half polygon of P bounded by the chord of P

that contains the edge ei and that does not contain P ∗. Observe that
⋃k′

i=1 Qi

contains P \ P ∗. In particular, the union of the Qi contain all the point of N
that are not contained in P .

Let Q be any of the Qi, for 1 ≤ i ≤ k′, that maximizes |Qi ∩ N |. Observe
that |(P ∗ ∪ Q) ∩ N | ≥ 2|N |/(k + 1). We will show how to find a point q in
P ∗ ∪Q such that

δP∗∪Q,N∩(P∗∪Q)(q) ≥ |N |/2(k + 1) .

The Claim then follows from the fact that P ∗ ∪Q ⊆ P and N ∩ (P ∗ ∪Q) ⊆ N ,
so that δP,N (q) ≥ δP∗∪Q,N∩(P∗∪Q)(q).

Let r1r2 be a maximal line segment that is on the boundary of both P ∗ and
Q. Define r′1r

′
2 to be a chord of P ∗ parallel to r1r2 and that separates exactly

|N |/(k+1) points of N∩P ∗ from r1r2. The chord r′1r
′
2 separates P ∗∪Q into two

sub-polygons, P ′ and Q′, where P ′ ⊆ P ∗. Observe that |Q′ ∩N | ≥ |P ′ ∩N | =
|N |/(k + 1)

The point, q, of high depth we are searching for will be on the segment r′1r
′
2.

The remainder of the proof uses a fairly standard technique that can be used,
for example, to prove the Planar Ham Sandwich Theorem [11]. However, unlike
most applications of this technique we do not have the continuity that is usually
required to use this technique. We therefore take special care to explain it in
detail.

For 0 < t < 1, let qt = (1 − t)r′1 + tr′2. Let Ct be the chord of P ′ ∪ Q′ that
contains qt and that bisects P ′ ∩ N . If |P ′ ∩ N | is odd, the Ct is unique and
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Figure 2: The Proof of Claim 1.

always contains a point of N . Otherwise, we can make Ct unique by defining it
to be equidistant from the nearest points of P ′ ∩N on its left and right.

Let Q′
t denote the component of Q′\Ct that contains r′1 and let Q

′
t = Q′\Q′

t.
Observe that, for all sufficiently small ε > 0, Q′

ε ∩ N = ∅ and Q′
1−ε = Q′ ∩ N .

Furthermore, |Q′
t ∩ N | is an increasing function of t. Therefore, there is some

value t∗, 0 < t∗ < 1, such that, for all δ > 0, |Q′
t∗+δ ∩ N | ≥ |N |/2(k + 1) and

|Q′
t∗−δ ∩N | ≥ |N |/2(k + 1).
We claim that δN,P (qt∗) ≥ |N |/2(k + 1). To see why this is so, observe that

Ct∗ partitions P ′ into two half-polygons, P ′
1 and P ′

2, each of which contains
|N |/2(k + 1) points. Any half-polygon that contains qt∗ but does not contain
either P ′

1 or P ′
2 must contain at least one of Q′

t∗+δ or Q
′
t∗−δ for some δ > 0.

Therefore, δN,O(qt∗) ≥ |N |/2(k + 1).

3 The Upper Bound

Next we proceed with the proof of Theorem 2.

Proof (of Theorem 2). Refer to Figure 3. Our construction is parameterized by
a value c < 1/2. The construction begins by constructing a spiral, with k + 1
segments s1, . . . , sk+1, where segment si has length 1 + di/2e c and creates an
angle of π/2 with si+1. Next, we expand the segments s1, . . . , sk inwards so that
each segment si becomes a rectangle Ri of the same length as si, but whose area
is c. It is easy to verify that the union of these rectangles is a simple polygon
with k reflex vertices. Furthermore, the area of the intersection of any two
rectangles Ri and Ri + 1 is at most c2. Finally, we replace each reflex vertex
with two convex vertices and one reflex vertex as shown in Figure 3.b. Suppose
the reflex vertex v occurs at the intersection of a horizontal rectangle H and
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Figure 3: The construction for the proof of Theorem 2 with c = 1/4.

a vertical rectangle V . Then the location of the vertex is chosen so that its
y-coordinate bisects H and its x-coordinate bisects V . By choosing the two
convex vertices sufficiently close together, this decreases the area of P by at
most δ for any constant δ > 0. Denote the resulting simple polygon by P .

Consider the path, shown in Figure 3.b, that passes through every reflex
vertex and nearly bisects R1 and Rk+1. This path partitions P into k + 2
pieces. One of these pieces has area at most c(k + 1)/2 and the other k + 1
pieces have area at most c/2. Each of the small pieces is a half-polygon of P , so
any point q contained in such a piece has δP (q) ≤ c/2. On the other hand, any
point contained in the large piece is also contained in a half-polygon of p whose
area is at most c/2. Therefore, δP (q) ≤ c/2 for any q ∈ P . Finally, observe that
the area of P is at least

area(P ) ≥ (k + 1)c− k(c2 + δ) ≥ (k + 1)(c− c2 − δ)

Therefore,
δP (q)

area(P )
≤

(
1

2(k + 1)

) (
1

1− c− δ/c

)
.

Selecting δ = c2 and c sufficiently small completes the proof.
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