
Rapporto di ricerca
Research report

103/2018
February, 14 2018

Dynamic-Consistency Checking
for Conditional Simple Temporal
Networks: Strengthening the
Theoretical Foundations and
Presenting a Faster Algorithm

Luke Hunsberger
Vassar College – Poughkeepsie, NY USA

Roberto Posenato
University of Verona – Verona, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217576762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Recent work on Conditional Simple Temporal Networks (CSTNs) has focused on
checking the dynamic consistency (DC) property for the case where an execution
strategy can react instantaneously to observations. Three alternative seman-
tics for such strategies—IR-dynamic, 0-dynamic, and π-dynamic—have been
presented. However, the most practical DC-checking algorithm has only been
analyzed with respect to the IR semantics. Meanwhile, 0-dynamic strategies
were shown to permit a kind of circular dependence among simultaneous obser-
vations, making them impossible to implement, whereas π-dynamic strategies
prohibit this kind of circularity. Whether IR-dynamic strategies allow this kind
of circularity and, if so, what the consequences would be for the above-mentioned
DC-checking algorithm remained open questions.

This paper makes the following contributions: (1) it shows that IR-dynamic
strategies do allow circular dependence and, thus, that the IR semantics does
not properly capture instantaneous reactivity; (2) it shows that one of the
constraint-propagation rules from the IR-DC-checking algorithm is unsound with
respect to the IR semantics; (3) it presents a simpler DC-checking algorithm,
called the π-DC-checking algorithm, that uses half of the rules from the earlier
algorithm, and that it proves is sound and complete with respect to the π-DC
semantics; (4) it empirically evaluates the new algorithm. Thus, the paper places
practical DC checking for CSTNs in the case of instantaneous reaction on a solid
theoretical foundation.

1 Overview

A Conditional Simple Temporal Network (CSTN) is a data structure for reasoning
about time in domains where some constraints may apply only in certain scenarios.
For example, a patient who tests positive for a certain disease may need to receive
care more urgently than someone who tests negative. Conditions in a CSTN are
represented by propositional letters whose truth values are not controlled, but
instead observed in real time. Just as doing a blood test generates a positive or
negative result that is only learned in real time, the execution of an observation
time-point in a CSTN generates a truth value for its corresponding propositional
letter. An execution strategy for a CSTN specifies when the time-points will be
executed. A strategy can be dynamic in that its decisions can react to information
from past observations. A CSTN is said to be dynamically consistent (DC) if
it admits a dynamic strategy that guarantees the satisfaction of all relevant
constraints no matter which outcomes are observed during execution.

Different varieties of the DC property have been defined that differ in how
reactive a dynamic strategy can be. Originally, Tsamardinos et al. [1] stipulated
that a strategy can react to an observation after any arbitrarily small, but
positive delay. Comin et al. [2] defined ε-DC, which assumes that a strategy’s
reaction time is bounded below by some ε > 0. Finally, three different versions
of DC for strategies that can react instantaneously (i.e., after zero delay) have
been defined: IR-DC [3]; 0-DC and π-DC [4].

Although several approaches to DC-checking algorithms have been presented
to address the different flavors of DC [1, 5, 6, 2], the approach based on the
propagation of labeled constraints is the only one that has been demonstrated to
be practical [3, 7]. Three variations of their DC-checking algorithm have been
presented: one for DC, one for ε-DC, and one for IR-DC. This paper focuses on
their IR-DC-checking algorithm.

Subsequently, Cairo et al. [4] showed that the ε-DC semantics, in the case
where ε = 0, did not properly capture instantaneous reaction because it allows a
kind of circular dependence among simultaneous observations. To correct this
flaw, they presented the π-DC semantics that requires a strategy to specify an
order-of-dependence among simultaneous observations. Whether the IR-DC
semantics allows this kind of circularity and, if so, what the consequences would
be for the IR-DC-checking algorithm, remained open questions.

This paper makes the following contributions: (1) it shows that IR-dynamic
strategies do allow circular dependence and, thus, that the IR semantics does
not properly capture instantaneous reactivity; (2) it shows that one of the
propagation rules from the IR-DC-checking algorithm is unsound with respect to
the IR semantics; (3) it presents a simpler DC-checking algorithm, called the π-
DC-checking algorithm, that uses half of the rules from the earlier algorithm, and
that it proves is sound and complete with respect to the π-DC semantics; (4) it
empirically evaluates the new algorithm. Thus, the paper places practical DC
checking for CSTNs in the case of instantaneous reaction on a solid theoretical
foundation.

1

P?0 = Z Q?p

YW¬p Vpq

Up¬q0

〈−10, p¬q〉
〈−

10
, p
q〉

〈−10, p〉

〈3
, p〉

〈−7,¬p〉

〈12,¬p〉

〈−
10,¬

p〉
〈5,
¬p〉

〈−7,
p〉

Figure 1: A sample CSTN

2 Background

Dechter et al. [8] introduced Simple Temporal Networks (STNs) to facilitate
representing and reasoning about temporal constraints. An STN comprises
real-valued variables, called time-points, and binary difference constraints on
those variables. Typically, an STN includes a special time-point, Z, whose value
is fixed at zero. A consistent STN is one that has a solution as a constraint
satisfaction problem.

Tsamardinos et al. [1] presented CSTNs, which augment STNs to include
observation time-points and their associated propositional letters. In a CSTN,
the execution of an observation time-point P? generates a truth value for its
associated propositional letter p. In addition, each time-point in a CSTN can
be labeled by a conjunction of propositional literals that specifies the scenarios
in which that time-point must be executed. Since constraints among labeled
time-points may similarly be applicable only in certain scenarios, later work
generalized CSTNs to also include labels on constraints [9, 10].

Fig. 1 shows a sample CSTN in its graphical form, where the nodes represent
time-points, and the directed edges represent binary difference constraints. In
the figure, Z is fixed at 0; and P? and Q? are observation time-points whose
execution generates truth values for p and q, respectively. Q? being labeled by p
indicates that Q? is executed only if p happens to be true. Similarly, the edge
from U to Q? being labeled by p¬q indicates that it applies only in scenarios
where p is true and q is false. The dashed edges with shaded labels are generated
by the IR-DC-checking algorithm [3], to be discussed later on.

Tsamardinos et al. [1] noted that for any reasonable CSTN, the propositional
labels on its time-points must satisfy certain properties. Hunsberger et al. [9]
later extended these properties to accommodate labels on constraints. Together,
their properties formalized the notion of a well-defined CSTN. Recently, Cairo et
al. [11] showed that for any well-defined CSTN, no loss of generality results from
subsequently removing the labels from its time-points. Therefore, this paper
restricts attention to CSTNs whose time-points do not have any propositional
labels, what Cairo et al. [11] called streamlined CSTNs. Since streamlined CSTNs
are necessarily well defined, and the applicability conditions of the constraint-
propagation rules become simpler when there are no labels on time-points, the
following presentation benefits dramatically from the restriction to streamlined
CSTNs.

2.1 Streamlined CSTNs

The following definitions are from Hunsberger et al. [3], except that propositional
labels appear only on constraints. Henceforth, the term CSTN shall refer to
streamlined CSTNs.

2

Definition 1 (Labels). Given a set P of propositional letters:

• a label is a (possibly empty) conjunction of (positive or negative) literals
from P. The empty label is notated �.

• for any label `, and any p ∈ P, if ` |= p or ` |= ¬p, then we say that p
appears in `.

• for any labels `1 and `2, if `1 |= `2 then `1 is said to entail `2. If `1 ∧ `2 is
satisfiable, `1 and `2 are called consistent.

• the label universe of P, denoted by P∗, is the set of all consistent labels
whose literals are drawn from P.

Definition 2 (CSTN). A Conditional Simple Temporal Network (CSTN) is a
tuple, 〈T ,P, C,OT ,O〉, where:

• T is a finite set of real-valued time-points (i.e., variables);

• P is a finite set of propositional letters (or propositions);

• C is a set of labeled constraints, each having the form, (Y − X ≤ δ, `),
where X,Y ∈ T , δ ∈ R, and ` ∈ P∗;

• OT ⊆ T is a set of observation time-points (OTPs); and

• O : P → OT is a bijection that associates a unique observation time-point
to each propositional letter.

In a CSTN graph, the observation time-point for p (i.e., O(p)) may be denoted by
P ?; and each labeled constraint, (Y −X ≤ δ, `), is representedd by an arrow from

X to Y annotated by the labeled value, 〈δ, `〉: X
〈δ, `〉

Y . Since any time-points
X and Y may participate in multiple constraints of the form, (Y −X ≤ δi, `i),
the corresponding edge from X to Y may have multiple labeled values of the
form, 〈δi, `i〉.
Definition 3 (Scenario). A scenario over a set P of propositional letters is a
function, s : P → {true, false}, that assigns a truth value to each letter in P.
Any such function also provides the truth value for any label ` ∈ P∗, denoted by
s(`). The set of all scenarios over P is denoted by I.

Definition 4 (Schedule). A schedule for a set of time-points T is a mapping,
ψ : T → R. The set of all schedules for any subset of T is denoted by Ψ.

The projection of a CSTN onto a scenario, s, is the STN obtained by restricting
attention to the constraints whose labels are true under s (i.e., must be satisfied
in scenario s).

Definition 5 (Projection). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, and s any
scenario over P . The projection of S onto s—notated S(s)—is the STN, (T , C+

s),
where:

C+
s ={(Y −X≤δ) | ∃`, (Y −X≤δ, `) ∈ C ∧ s(`)= true}

Definition 6 (Execution Strategy). An execution strategy for a CSTN S =
〈T ,P, C,OT ,O〉 is a mapping, σ : I → Ψ, from scenarios to schedules. The
execution time for the time-point X in the schedule σ(s) is denoted by [σ(s)]X .

Definition 7 (Viable Strategy). An execution strategy σ for a CSTN S is viable
if for each scenario s, the schedule σ(s) is a solution to the projection S(s).

3

P?0 = Z
〈0, p〉, 〈10,¬p〉

〈0, p〉, 〈−10,¬p〉

Figure 2: An absurd 0-DC CSTN

3 Strategies with Instantaneous Reaction

The truth values of propositions in a CSTN are not known in advance, but a
dynamic execution strategy can react to observations in real time. Three distinct
semantics for strategies that can react instantaneously to observations (i.e., after
zero delay) have been defined: IR-dynamic [3]; and 0-dynamic and π-dynamic
[4]. Since a CSTN is DC iff it has a viable and dynamic execution strategy, each
distinct version of dynamic strategy gives rise to a distinct version of DC.

3.1 0-Dynamic Strategies

In an ε-dynamic strategy, ε > 0 represents a fixed lower bound on the strategy’s
reaction times [2]. Cairo et al. [4] then considered the ramifications of setting
ε = 0, leading to the following definition.

Definition 8 (0-Dynamic Execution Strategy). An execution strategy σ for a
CSTN S = 〈T ,P, C,OT ,O〉 is 0-dynamic if for any scenarios s1 and s2, and any
time-point X ∈ T :

either: [σ(s1)]X ≥ [σ(s2)]X
or: [σ(s1)]X ≥ min{[σ(s1)]P? | s1(p) 6= s2(p)}.

I.e., if σ(s1) executes X before σ(s2) does, then σ(s1) must have observed some
p at or before its execution of X, obtaining a different outcome than σ(s2)’s
observation of p.

Cairo et al. [4] showed that a 0-dynamic strategy can exhibit a kind of circular
dependence among multiple simultaneous observations, making them impossible
to implement. Even worse, the CSTN in Fig. 2 has a 0-dynamic strategy that
exhibits a circular dependence involving just one observation. The labeled
constraints stipulate that P? = 0 in scenarios where p = true; and P? = 10
where p = false1 (i.e., the execution time of P? must depend on the observation
obtained by executing P?). Nonetheless, the CSTN has a viable and 0-dynamic
strategy σ0, where: [σ0(p)]Z = [σ0(p)]P? = [σ0(¬p)]Z = 0 and [σ0(¬p)]P? = 10.
Clearly, σ0 is viable. In addition, it is trivially 0-dynamic since [σ0(sp)]P? = 0 =
min{[σ0(sp)]Q? | sp(q) 6= s¬p(q)} and [σ0(s¬p)]P? = 10 > 0 = [σ0(sp)]P?.

3.2 IR-Dynamic Strategies

Hunsberger et al. [3] defined IR-dynamic strategies to support an analysis of
their propagation-based DC-checking algorithm in the case of instantaneous
reaction. This section recalls the definition of IR-dynamic strategies and then
compares them to 0-dynamic strategies.

Definition 9 (History). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, s any scenario,
σ any execution strategy for S, and t any real number. The history of t in the

1(P? = δ) abbreviates {(P?− Z ≤ δ), (Z− P? ≤ −δ)}.

4

scenario s, for the strategy σ—notated Hist(t, s, σ)—is the set of observations
made before time t according to the schedule σ(s):

Hist(t, s, σ) = {(p, s(p)) | P? ∈ OT ∧ [σ(s)]P? < t}

Definition 10 (IR-Dynamic Strategy). An execution strategy σ for a CSTN
S = 〈T ,P, C,OT ,O〉 is called IR-dynamic if for any scenarios s1 and s2, and
any time-point X:

let: t = [σ(s1)]X
if: Hist(t, s1, σ) = Hist(t, s2, σ)
then: [σ(s2)]X = t
unless: [σ(s1)]P? = [σ(s2)]P? = t and s1(p) 6=

s2(p) for some p ∈ P, where P? 6≡ X
(i.e., P ? and X are distinct time-points).

In other words, if an IR-dynamic strategy σ executes X at time t in scenario s1,
and the schedules σ(s1) and σ(s2) have the same history of observations, then σ
must also execute X at time t in s2—unless some observation at time t (where
P? 6≡ X) yielded different results in the two scenarios.

The condition, P? 6≡ X, prohibits the circular dependence exhibited by the
0-dynamic strategy σ0. In particular, σ0 is not IR-dynamic, since [σ0(p)]P? = 0
and Hist(0, p, σ0) = Hist(0,¬p, σ0) = ∅, but [σ0(¬p)]P? 6= 0, even though there
is no Q? different from P? that σ0(p) and σ0(¬p) both executed at 0. Thus,
IR-dynamic and 0-dynamic are different.

Theorem 1 (IR-dynamic ⇒ 0-dynamic). If an execution strategy for a CSTN
is IR-dynamic, then it is also 0-dynamic.

Proof. Let σ be any IR-dynamic strategy, but suppose that σ is not 0-dynamic.
Then, for some scenarios s1 and s2, some time-point X, and t = [σ(s1)]X , it
must be that:

t < [σ(s2)]X and t < min{[σ(s1)]P? | s1(p) 6= s2(p)}.

With no loss of generality, assume t is minimal for this circumstance. Consider the
schedules σ(s1) and σ(s2), each annotated with the truth values of observations
as they occur. Since t < [σ(s2)]X , these annotated schedules differ at t. Let t∗ be
the first time at which they differ. By construction, t∗ ≤ t, and Hist(t∗, s1, σ) =
Hist(t∗, s2, σ). Now, there are only two ways the annotated schedules can differ
at t∗:

Case 1: For some P?, [σ(s1)]P? = [σ(s2)]P? = t∗, but s1(p) 6= s2(p). But this
contradicts that t∗ ≤ t < min{[σ(s1)]P? | s1(p) 6= s2(p)}.

Case 2: For some Y , [σ(si)]Y = t∗ < [σ(sj)]Y , where {si, sj} = {s1, s2}.
Since Hist(t∗, si, σ) = Hist(t∗, sj , σ) and σ is IR-dynamic, the “unless” clause of
Defn. 10 must hold. Thus, there must be some P? 6≡ Y such that [σ(si)]P? =
[σ(sj)]P? = t∗ and si(p) 6= sj(p), which is a contradiction by Case 1.

Although Theorem 1 shows that IR-dynamicity is stronger than 0-dynamicity,
IR-dynamicity is nonetheless flawed. For example, consider the network shown
in Fig. 3, which is equivalent to a network from Cairo et al. [4]. It has three
observation time-points, A?, B? and C?, with corresponding propositional letters,

5

ZA?

B?

C?
〈0,¬b〉, 〈0, c〉

〈−1, b¬c〉

〈0,¬a〉, 〈0,¬c〉

〈−1, ac〉
〈0, a〉, 〈0, b〉

〈−1,¬a¬b〉

Figure 3: An absurd IR-DC CSTN

a, b and c. Each observation time-point is forced to execute at 0 in some scenarios,
but at or above 1 in some other scenario. Thus, there is no single time-point that
executes first, at or after Z, implying that no implementable, realistic strategy
can exist. Yet, the strategy, σ′, defined below, is viable and IR-dynamic (i.e.,
the network is IR-DC):

if s |= b¬c, [σ′(s)]A? = 1, else [σ′(s)]A? = 0.
if s |= ac, [σ′(s)]B? = 1, else [σ′(s)]B? = 0.
if s |= ¬a¬b, [σ′(s)]C? = 1, else [σ′(s)]C? = 0.

Although tedious to check, it holds that for any scenarios, s1 and s2, and any ob-
servation time-pointX? ∈ {A?, B?, C?}, where [σ′(s1)]X? = 0 and [σ′(s2)]X? = 1,
there is always some other observation time-point Y ? 6≡ X? that σ′ executes
at 0, but for which s1 and s2 generate different truth values. As a result, the
“unless” clause of Defn. 10 invariably applies, allowing a circular dependence
among A?, B? and C?.

3.3 The IR-DC-checking Algorithm

Hunsberger et al. [3] presented an algorithm based on the propagation of labeled
constraints that they claimed was sound and complete for checking the IR-DC
property. However, their algorithm says that the IR-DC network in Fig. 3 is not
IR-DC. Therefore, something is wrong. This section will show that in the case
of the IR-DC-checking algorithm, the fault lies with the IR-DC semantics, not
the algorithm.

Table 1 lists three of the six constraint-propagation rules from the IR-DC-
checking algorithm, along with sample applications that illustrate their use.
Unlike the original, the LP rule shown in Table 1 focuses on generating edges
terminating at Z, but that restriction does not affect what follows. These
three rules will be sufficient to ensure completeness of the algorithm under the
alternative semantics discussed later. The qR∗3 rule can generate a new kind
of propositional label, called a q-label; and the qR0 and qR∗3 rules can each be
applied to q-labeled edges. Below, q-literals and q-labels are summarized, along
with the ? operator that extends ordinary conjunction to q-labels.

Whereas a constraint labeled by p must hold in all scenarios in which p is
true, a constraint labeled by the q-literal ?p need only hold as long as the truth
value of p is unknown (i.e., as long as P? has not been executed).

Definition 11 (Q-literals, q-labels).

• A q-literal is a literal of the form ?p, where p ∈ P.

• For convenience, if p ∈ P, then p̃, p̃1 or p̃2 may be used to denote an
arbitrary element of {p,¬p, ?p}.

6

LP(X,u, α,W, v, β): X W Z
〈u, α〉 〈v, β〉

〈u+ v, αβ〉

qR0(P?, w, α, p̃): P? Z
〈w,αp̃〉
〈w,α〉

qR∗3(P?, w, α, v, β, p̃, Y): P? Z Y
〈w,α〉 〈v, βp̃〉

〈m,α ? β〉

X,Y,W ∈ T ; P? ∈ OT ; and Z is the zero time-point. LP
applies if αβ ∈ P∗; qR0 and qR∗

3 apply if w < 0. In qR0 and
qR∗

3, p̃ ∈ {p,¬p, ?p}; p does not appear in α or β (in any
form); α ? β is as defined in the text; and m = max{v, w}.

LP(X, 3, pqr,W, 4, rs¬t): X W Z
〈3, pqr〉 〈4, rs¬t〉

〈7, pqrs¬t〉

qR0(P?,−9, qr, ?p): P? Z
〈−9, (?p)qr〉
〈−9, qr〉

qR∗3(P?,−7,¬qr,−9, ?q,¬p, Y): P? Z Y
〈−7,¬qr〉 〈−9,¬p(?q)〉

〈−7, (?q)r〉

qR∗3(A?,−1, b¬c,−1, c, a, Y):A? Z B?
〈−1, b¬c〉 〈−1, ac〉

〈−1, b(?c)〉

Table 1: The LP, qR0 and qR∗3 propagation rules for CSTNs (above) and
instances of their application (below)

• For any scenario s, and any q-literal ?p, it will be convenient to say that
s 6|=?p.

• A q-label is a conjunction of literals and/or q-literals.

• Q∗ denotes the set of all q-labels.

For example, p(?q)¬r and (?p)(?q)(?r) are both q-labels.
The ? operator extends ordinary conjunction to accommodate q-labels. Intu-

itively, if C1 is labeled by p, and C2 is labeled by ¬p, then both constraints must
hold as long as the value of p is unknown, which is represented by p ? ¬p = ?p.

Definition 12 (?). The operator, ? : Q∗ × Q∗ → Q?, is defined in two steps.
First, for any p ∈ P, p ? p = p and ¬p ? ¬p = ¬p; otherwise, p̃1 ? p̃2 =?p. Next,
for any q-labels, `1, `2 ∈ Q∗, `1 ? `2 ∈ Q∗ denotes the conjunction obtained by
applying the ? operator in pairwise fashion to corresponding literals from `1 and
`2, as follows.

• If p̃1, p̃2 are literals in `1 and `2, respectively, then p̃1 ? p̃2 is contained in
the conjunction, `1 ? `2.

• If p̃ is in `1, but proposition p does not appear in `2, then p̃ is contained
in the conjunction, `1 ? `2.

• If p̃ is in `2, but proposition p does not appear in `1, then p̃ is contained
in the conjunction `1 ? `2.

For example: (p¬q(?r)) ? (q¬s) = p(?q)(?r)¬s.

Lemma 1. The IR-DC-checking algorithm is not sound with respect to the
IR-DC semantics.

7

Proof. The CSTN from Fig. 3 is IR-DC, given the valid and IR-dynamic strategy
σ′. But the IR-DC-checking algorithm declares it to be not IR-DC, as follows.
First, applying the qR∗3 rule to the edges shown at the bottom of Table 1 generates
the constraint (B? ≥ 1, b(?c)).2 Next, applying the qR0 rule to this constraint
yields: (B? ≥ 1, (?c)) (i.e., B must be at least 1 as long as c is unknown). But
this constraint is not satisfied by σ′. For example, in the scenario ¬a¬bc, σ′

executes B? at 0, but C? at 1. Furthermore, the Spreading Lemma [3] ensures
that continued application of the qR∗3 and qR0 rules will generate the constraints,
(A? ≥ 1,�), (B? ≥ 1,�) and (C? ≥ 1,�) (i.e., all three time-points must be
executed at or after 1 in all scenarios), which is inconsistent, for example, with
the constraint (A? ≤ 0, c). The inconsistency is detected by the LP rule, which
generates a negative self-loop with a consistent label, causing the IR-DC-checking
algorithm to declare that the network is not IR-DC, which is wrong.

3.4 π-Dynamic Consistency

This section summarizes the π-DC semantics introduced by Cairo et al. [4]
that forces a strategy to select an order of dependence among simultaneous
observations. The three-rule version of the IR-DC-checking algorithm will be
shown to be sound and complete with respect to the π-DC semantics.

Definition 13 (Order of dependence). For any scenario s, let (P1?, . . . , Pk?) be
some ordering of the observation time-points in OT , where k = |OT |. An order
of dependence is any permutation π over (1, 2, . . . , k); and for each P? ∈ OT ,
π(P?) ∈ {1, 2, ..., k} denotes the (integer) position of P? in that order. In
addition, it is convenient to set π(X) =∞ for any non-observation time-point
X. Finally, let Πk denote the set of all permutations over (1, 2, . . . , k).

Definition 14 (π-Execution Strategy). Given any CSTN S = 〈T ,P, C,OT ,O〉,
let k = |OT |. A π-execution strategy for S is a mapping, σ : I → (Ψ×Πk), such
that for each scenario s, σ(s) is a pair (ψ, π) where ψ : T → R is a schedule for
the time-points in T ; and π ∈ Πk is a permutation that determines an order of
dependence among the time-points in OT . For any time-point X, [σ(s)]X denotes
the execution time of X (i.e., ψ(X)); for any observation time-point P ?, [σ(s)]πP?

denotes the position of P? in the order of dependence (i.e., π(P?)); and for any
non-observation time-point X, [σ(s)]πX =∞. Finally, a π-dynamic strategy must
be coherent: for any scenario s, and any P?, Q? ∈ OT , [σ(s)]P? < [σ(s)]Q?

implies [σ(s)]πP? < [σ(s)]πQ? (i.e., if σ(s) schedules P? before Q?, then it orders
P? before Q?).

Definition 15 (Viability). The π-execution strategy σ = (ψ, π) is called viable
for the CSTN S if for each scenario s, the schedule ψ(s) is a solution to the
projection S(s).

Definition 16 (π-History). Let σ be any π-execution strategy for some CSTN
S = 〈T ,P, C,OT ,O〉, s any scenario, t any real number, and d ∈ {1, 2, . . . , |OT |}∪
{∞} any integer position (or infinity). The π-history of (t, d) for the scenario s
and strategy σ—denoted by πHist(t, d, s, σ)—is the set

{(p, s(p)) | P? ∈ OT , [σ(s)]P? ≤ t, π(P?) < d}.
2(B? ≥ 1) is an abbreviation for (Z−B? ≤ −1).

8

Thus, the π-history specifies the truth values of each proposition p that is
observed before time t in the schedule ψ, or observed at time t if its corresponding
observation time-point P? is ordered before position d by the permutation π.

The following definition is equivalent to that given by Cairo et al. [4]. (Proof
in the Appendix.) This form, and the notation it uses, was chosen to facilitate
comparison with the definition of an IR-dynamic strategy (Defn. 10).

Definition 17 (π-Dynamic Strategy). A π-execution strategy, σ, for a CSTN is
called π-dynamic if for every pair of scenarios, s1 and s2, and every time-point
X ∈ T :

let: t = [σ(s1)]X , and d = [σ(s1)]πX .
if: πHist(t, d, s1, σ) = πHist(t, d, s2, σ)
then: [σ(s2)]X = t and [σ(s2)]πX = d.

Thus, if X is some observation time-point P ? that, in the scenario s1, σ executes
at time t and position d, and the histories, πHist(t, d, s1, σ) and πHist(t, d, s2, σ),
are the same, then in the scenario s2, σ must execute P? at the same time t,
and in the same position d. The requirement for a non-observation time-point
X is weaker because executing X at time t does not generate any information;
therefore, it can be presumed to be ordered after any observation time-points
that are executed at that same time.

Definition 18 (π-Dynamic Consistency). A CSTN, S, is π-dynamically consis-
tent (π-DC) if there exists a π-execution strategy for S that is both viable and
π-dynamic.

4 Sound and Complete π-DC Checking

This section proves that the constraint-propagation rules in Table 1 are sound
and complete for the π-DC semantics.

Lemma 2 (Soundness of the LP rule). If σ is a valid and π-dynamic strategy
for a CSTN S that includes the constraints (W −X ≤ u, α) and (Y −W ≤ v, β),
where αβ ∈ P∗, then σ also satisfies the constraint (Y −X ≤ u+ v, αβ) (i.e.,
for each scenario s, if s |= αβ, then [σ(s)]Y − [σ(s)]X ≤ u+ v).

Proof. Let s be any scenario for which s |= αβ. Since σ is valid and s |= α,
[σ(s)]W−[σ(s)]X ≤ u. Similarly, since σ is valid and s |= β, [σ(s)]Y −[σ(s)]W ≤ v.
Summing these inequalities yields: [σ(s)]Y − [σ(s)]X ≤ u+ v.

Definition 19 (π-before). For a given scenario s, we say that an execution
strategy σ observes p π-before executing Y if [σ(s)]P? ≤ [σ(s)]Y and [σ(s)]πP? <
[σ(s)]πY .

Intuitively, if σ observes p π-before Y , then σ’s decision to execute Y can
depend on the value of p. In addition, note that if P? and Q? are distinct, then
a coherent strategy σ observes p π-before Q? if and only if [σ(s)]πP? < [σ(s)]πQ?.

Since the qR0 and qR∗3 rules involve lower-bound constraints whose labels
may be q-labels, we first provide a semantics for such constraints. The following
definition extends that of Hunsberger et al. [3] to accommodate the order of
dependence among simultaneous observations.

9

Definition 20 (Satisfying a lower-bound constraint). A strategy σ satisfies the
lower-bound constraint (Y ≥ δ, α), where α ∈ Q∗, if and only if for each scenario
s:

1. [σ(s)]Y ≥ δ; or

2. ∃a ∈ P, such that A? 6≡ Y , ã ∈ α,
σ observes a π-before Y , and s 6|= ã

(i.e., the only way σ(s) can execute Y before δ is if some observation was made
π-before Y that ensured that s 6|= α).

Lemma 3 (Soundness of qR0). If σ is a valid and π-dynamic strategy that
satisfies (P? ≥ δ, αp̃), where α ∈ Q∗ and p̃ ∈ {p,¬p, ?p}, then σ also satisfies
(P? ≥ δ, α).

Proof. If σ satisfies (P? ≥ δ, αp̃), then, for any scenario s, either: (1) [σ(s)]P? ≥ δ;
or (2) for some ã ∈ αp̃, such that A? 6≡ P ?, σ observes a π-before P ?, and s 6|= ã.
Since qR0 stipulates that p does not appear in α, (1) and (2) are equivalent to
the satisfaction conditions for (P? ≥ δ, α).

Lemma 4 (Soundness of the qR∗3 rule). Let σ be any viable and π-dynamic
strategy for a CSTN S. If σ satisfies the constraints (P? ≥ g, α) and (Y ≥ h, βp̃),
where α, β ∈ Q∗, then σ also satisfies (Y ≥ x, α ? β), where x = min{g, h}.3

Proof. Suppose that the conditions of the lemma hold, but that σ does not
satisfy (Y ≥ x, α ? β). Then for some scenario s, the negation of each condition
from Defn. 20 holds:

(1′) [σ(s)]Y < x = min{g, h}; and

(2′) for each ã ∈ α ? β, where A? 6≡ Y :

[σ(s)]A? > [σ(s)]Y , or [σ(s)]πA? ≥ [σ(s)]πY , or s |= ã.

Since σ satisfies (Y ≥ h, βp̃), one of the following holds:

(1) [σ(s)]Y ≥ h ≥ x; or

(2) for some ã ∈ βp̃, A? 6≡ Y , σ observes a π-before Y , and s 6|= ã.

Now, (1) contradicts (1′). Thus (2) must hold. Now, if ã ∈ β, then either ã or ?a
is in α?β, which would contradict (2′). Thus, it must be that ã = p̃, in which case,
(2) becomes: P? 6≡ Y , σ observes p π-before Y (i.e., [σ(s)]P? ≤ [σ(s)]Y < x ≤ g
and [σ]πP? < [σ(s)]πY), and s 6|= p̃. Next, since σ satisfies (P? ≥ g, α), but
[σ(s)]P? < g, the following clause from Defn. 20 must hold:

(2†) for some b̃ ∈ α, [σ(s)]πB? < [σ(s)]πP? and s 6|= b̃.

Any instance of (2†) would imply that σ observes b π-before P? which, together
with σ observing p π-before Y , implies that σ observes b π-before Y . Now, b̃ ∈ α
implies that either b̃ or ?b is in α?β. But then a contradiction with (2′) can only
be avoided if B? ≡ Y . But that would imply that [σ(s)]πA? < [σ(s)]πP? < [σ(s)]πA?,
which is a contradiction.

10

Algorithm 1: π-DC-Check

Input: S = 〈T ,P, C,OT ,O〉, any (streamlined) CSTN
1 foreach (X ∈ T) do
2 Insert (X ≥ 0,�) and (X ≤Mn,�) // Mn = horizon

3 Cnew ··= ∅; Cprev ··= C
4 while (Cprev 6= ∅) do
5 foreach ((Z−X ≤ v, `) ∈ Cprev) do
6 if ((X ≡ P?) and (` = αp̃)) then
7 Cnew ··= Cnew ∪ qR0(P?, v, α, p̃)

8 foreach ((Z−Q? ≤ w,α) ∈ C | ` = βq̃) do
9 Cnew ··= Cnew ∪ qR∗3(Q?, w, α, v, β, q̃,X)

10 foreach ((X − Y ≤ w, `′) ∈ C) do
11 Cnew ··= Cnew ∪ LP(Y, v, `,X,w, `′)

12 if (∃ a negative self-loop in Cnew with label in P∗) then
13 return S is not π-DC

14 C ··= C ∪ Cnew; Cprev ··= Cnew; Cnew = ∅
15 return S is π-DC

4.1 The π-DC-Checking Algorithm for CSTNs

Unlike the 6-rule IR-DC-checking algorithm, our new π-DC-checking algorithm,
whose pseudo-code is shown in Algorithm 1, (1) uses only the three rules from
Table 1; and (2) only generates edges terminating at Z. It begins (Lines 1–2)
by constraining each time-point X thusly: 0 ≤ X ≤ h = Mn, where M is the
maximum absolute value of any negative weight in the CSTN, and n = |T |.
Cairo et al. [11] proved that such constraints preserve the DC property.

Each iteration of the main loop (Lines 5–13) processes each constraint C ∈
Cprev generated by the previous iteration, checking for possible applications of
qR0 (Lines 6–7), qR∗3 (Lines 8–9), and LP (Lines 10–11). Only constraints that
are not entailed by constraints already in C are collected in Cnew. The main loop
ends when: (1) a negative self-loop with a consistent label is found (Line 12);
or (2) no new constraints were generated by the current iteration (Line 4). The
algorithm reports not π-DC in the first case; π-DC in the second.

4.2 Completeness of π-DC Checking

⇒ The approach followed below mirrors that in Hunsberger et al. [3], generalized
to accommodate π-dynamicity.

At any point during the execution of a CSTN, the observations that have
been made so far can be represented by a label ` ∈ P∗ that is equivalent to the
π-history at that point. For convenience, such a label is called a current partial
scenario (CPS). A q-label α ∈ Q∗ is called applicable in a given CPS `, if the
observations in ` are consistent with α.

3For convenience, the following substitutions have been made from Table 1: g = −w; h =
−v; and x = −m.

11

Definition 21 (Applicable q-Label). A q-label α is applicable with respect to a
given CPS ` if the following condition holds: whenever any letter p appears in
both ` and α, it appears in the same form (i.e., as p in both, or as ¬p in both).

Note that if ?p ∈ α, then appl(α, `) only holds if p has not yet been observed
(i.e., if p does not appear in `).

Lemma 5. If σ is a viable and π-dynamic strategy for some CSTN S, then σ
satisfies the constraint (X ≥ δ, α) if and only if for each scenario s, [σ(s)]X <
δ ⇒ ¬appl(α, `), where ` = πHist([σ(s)]X , [σ(s)]πX , s, σ) is the relevant CPS.

Proof. Suppose [σ(s)]X < δ. Since σ satisfies (X ≥ δ, α), there must be some
a such that ã ∈ α, A? 6≡ X, σ observes a π-before X, and s 6|= ã. Since σ
observes a π-before X, then either a or ¬a appears in the CPS `. Now, if ã = a,
then a ∈ α, but s 6|= a implies that ¬a ∈ `; and, hence, ¬appl(α, `). The case,
ã = ¬a, is similar. Finally, if ã =?a, then ã ∈ α and a appearing in ` implies
that ¬appl(α, `).

Lemma 6 (Spreading Lemma). Let S be any CSTN whose set of constraints
C is closed under the qR0 and qR∗3 rules. Let ` ∈ P∗ be any consistent label,
representing a possible CPS. Let T` = {P? | p appears in `} be the observation
time-points corresponding to the observations in `. Let Tx be any set of time-
points such that T` ⊆ Tx ⊂ T , and Tx ∩OT = T`. (Tx represents the time-points
that have been executed so far. Note that the observation time-points in Tx are
precisely those in T`; thus, ` is a possible CPS for the case where the observation
time-points in Tx have been executed.) And let Tu = T \ Tx be the as-yet-
unexecuted time-points.

Now for each X ∈ Tu, let:

• ELB(X, `) = max{δ | ∃α ∈ Q∗ and (X ≥ δ, α) ∈ C such that appl(α, `)};
and

• Λ(`, Tu) = min{ELB(X, `) | X ∈ Tu}.

ELB(X, `) is the effective lower bound for X specified by constraints in C that
are applicable in the CPS `, and Λ(`, Tu) is the minimum ELB among unexecuted
time-points.

Given all of the above, for each X ∈ Tu, the constraint (X ≥ Λ(`, Tu), `) is
entailed by the constraints in C.

Proof. Given the premise, let Λ denote Λ(`, Tu), let ELB(X) denote ELB(X, `),
and let Pu = {p ∈ P | P? ∈ Tu} be the propositional letters that have not yet
been observed. By construction, for each p ∈ Pu, ELB(P?) ≥ Λ; hence there
must be a constraint, (P? ≥ λp, αp) ∈ C, for some λp ≥ Λ and αp ∈ Q∗ such
that appl(αp, `). Now, if p appears in αp, then qR0 can remove it from αp; thus,
since C is closed under qR0, it can be assumed that p does not appear in αp.

Next, let r be any other letter in Pu. Again, there must be a constraint,
(R? ≥ λr, αr), for some λr ≥ Λ, and r ∈ Q∗ such that appl(αr, `). Now, if p
appears in r, then it can be removed using qR∗3, generating (R? ≥ λpr, αpr), where
λpr = min{λp, λr} ≥ Λ, and αpr = αp ? α

′
r, where α′r is obtained by removing

any p̃ from αr. Since appl(αp, `) and appl(αr, `), it follows that appl(αpr, `). As
before, since C is closed under qR0 and qR∗3, this constraint must be entailed by
constraints in C. Thus, we can assume that p does not appear in αr. Continuing

12

Algorithm 2: EarliestFirstExecutionStrategy(S)

Input: S = 〈T ,P, C,OT ,O〉, a CSTN
t ··= 0, d ··= 1 // current time & dependency position

` ··= � // current partial scenario

[σ(s)]Z ··= 0 // execute Z at 0

Tu ··= T \ {Z}
while (Tu 6= ∅) do

t ··= Λ(`, Tu) // as in Lemma 6

χ ··= {X ∈ Tu | ELB(X, `) = t} // as in Lemma 6

foreach (X ∈ χ) do
[σ(s)]X ··= t // execute X at t

Tu ··= Tu \ {X}
if (X ∈ OT) then

[σ(s)]πX ··= d
d ··= d+ 1
` ··= ` ∧ s(x) // record observation

return 〈σ(s), s〉 // ` = s at end

in this way, each observation time-point T? ∈ Tu must have a corresponding
constraint (T? ≥ λt, αt) where λt ≥ Λ and αt does not include p.

Once p has been removed from all such labels, it follows that r can similarly
be removed from all such labels, and so on, until each observation time-point
T? ∈ Tu is seen to have a lower-bound constraint, (T? ≥ λt, αt), where λt ≥ Λ
and αt contains no propositional letters from Pu. As a result, each label αt can
only have letters that appear in `; and, since appl(αt, `) holds, it follows that
` |= αt. Finally, qR∗3 can be used to similarly process the labels from lower-bound
constraints on all X ∈ Tu, removing any occurrences of letters in Pu. Thus, for
each X ∈ Tu, the constraint (X ≥ Λ, `) must be entailed by constraints in C.

Lemma 7. Let S be any CSTN, s any scenario, and S(s) the corresponding
projection STN. If P is a path from X to Y of length δ in S(s), then there is a
corresponding path P ′ in S from X to Y whose length is δ and whose edges have
labels that are consistent with s. In addition, if the edges in S are closed under
the LP rule, then there is a single edge in S from X to Y of length δ whose label
is consistent with s.

Proof. Follows from Defn. 5 and the LP rule.

Theorem 2 (Correctness of π-DC checking). Algorithm 1 is sound and com-
plete for π-DC checking for CSTNs with rational weights; and is guaranteed to
terminate.

Proof. Soundness follows from Lemmas 2–4. Termination is guaranteed by the
horizon constraints: for each X ∈ T , 0 ≤ X ≤ h. A finite number of rational
weights can be put over a common denominator D, yielding, in effect, an integer
domain. Because there are n2 edges, each with at most 3k different q-labels
and D different numerical weights, the algorithm generates at most n2(3k)D
incremental updates.

13

X Z
−x

|Π|

(a)

Z Y
y

|Π|

(b)

X Z

Y

−x
y

|Π|

(c)

Figure 4: Loops discussed in proof of Theorem 2

Next, let S be any CSTN that the algorithm says is π-DC. Then the fully
propagated CSTN must be closed under the LP, qR0 and qR∗3 rules. Henceforth,
S shall refer to the fully propagated CSTN.

Let σ be the earliest-first execution strategy (Algorithm 2). This strategy is
computed in real time, as the execution of observation time-points incrementally
reveals the scenario s.
• σ is π-dynamic. By construction, with each observation, the ELB values

and, hence, t = Λ(`, Tu) can never decrease; and d never decreases. Thus,
each execution decision depends only on the relevant π-history, as required by
Defn. 17.
• For any scenario s, the projection S(s) is consistent. If S(s) contains a

negative loop, then Lemma 7 implies there is a single-edge negative loop in S
whose label is consistent with s, contradicting the algorithm’s report that S is
π-DC.
• σ is valid. Let s be any scenario, and S(s) the corresponding projection.

We must show that the schedule σ(s) is a solution to the STN S(s). Suppose
not.

For each X, let x = [σ(s)]X . The corresponding execution constraints are
(Z−X ≤ x) and (X−Z ≤ x) (i.e., X = x). Since σ(s) is not a solution, inserting
these constraints into S(s) must create a negative loop—call it L. Without loss
of generality, L has only one occurrence of Z.

Case 1. In this case, illustrated in Fig. 4a, L consists of the lower-bound
execution constraint (Z − X ≤ −x) followed by a path Π from Z back to X,
where: (1) x = Λ(`, Tu) = ELB(X, `), where ` is the CPS at the moment X
was executed; (2) |Π| < x, and (3) the edges in Π are from S(s). By Lemma
7, there must be a single edge in S from Z to X of length |Π| whose label is
consistent with s. Next, the Spreading Lemma ensures that the constraint/edge,
(Z−X ≤ −x, `), is entailed by constraints in the propagated CSTN. And ` is
necessarily consistent with s. Applying the LP rule to these two edges would yield
a single-edge negative loop in S with a consistent label, causing the algorithm
to report that S was not π-DC, a contradiction.

Case 2. In this case, illustrated in Fig. 4b, L consists of the constraint
(Y − Z ≤ y) followed by a path Π from Y back to Z, where: (1) y = Λ(`, Tu) =
ELB(Y, `), where ` is the CPS when Y was executed; (2) the edges in Π are from
S(s); and (3) |Π| < −y. By Lemma 7, there must be a single edge in S from Y to
Z of length |Π| whose label is consistent with s. But then −|Π| ≤ ELB(Y, `) = y,
by the definition of ELB(Y, `), which contradicts that |Π| < −y.

Case 3. In this case, illustrated in Fig. 4c, L consists of a lower-bound edge
(Z − X ≤ −x), followed by an upper-bound edge (Y − Z ≤ y), followed by a
path Π from Y to X with edges in S(s). Here, |Π| − x+ y < 0. By Lemma 7,
there is a single edge Π′ in S of length |Π| whose label is consistent with s. By
Case 1, the lower-bound constraint for X is entailed by constraints in S. Thus,
applying the LP rule to Π′ and the lower-bound edge for X would have yielded

14

43 59 75 91 107 123 139 155

0.3s

3s

30s
1m

5m

Benchmark 1
N=10, |P|=3

Benchmark 2
N=20, |P|=5

Benchmark 3
N=30, |P|=7

Benchmark 4
N=40, |P|=9

n

E
x
ec

u
ti

o
n

ti
m

e

IR-DC-Ch π-DC-Ch

Figure 5: Execution time vs. number of time-points n

an edge, (Z− Y ≤ |Π| − x, α) in S, where α is consistent with s. So −|Π|+ x
must be a relevant lower bound for Y . Hence, ELB(Y, `y) ≥ −|Π| + x > y, a
contradiction.

5 Empirical Evaluation

This section compares the performance of the π-DC-checking and IR-DC-checking
algorithms. (The results in this paper imply that the 6-rule IR-DC algorithm is
also sound and complete for π-DC checking, although not for IR-DC checking.)
π-DC-Ch is our implementation of Algorithm 1; IR-DC-Ch is the freely available
implementation of the IR-DC-checking algorithm [12]. Algorithms and proce-
dures were implemented in Java and executed on a JVM 8 in a Linux box with
two AMD Opteron 4334 CPUs and 64GB of RAM.

Both implementations were tested on instances of the four benchmarks from
Hunsberger and Posenato [7]. Each benchmark has at least 60 DC and 60
non-DC CSTNs, obtained from random workflow schemata generated by the
ATAPIS toolset [13]. The numbers of activites (N) and observations (|P|) were
varied, as shown in Fig. 5. Since non-DC networks were regularly solved one to
two orders of magnitude faster than similarly sized DC networks, this section
focuses on the results for the DC networks.

Fig. 5 displays the average execution times of the two algorithms over all four
benchmarks, each point representing the average execution time for instances
of the given size. We extended the benchmarks, adding up to 50 DC instances,
to generate tight 95% confidence intervals. The results demonstrate that the
3-rule π-DC-Ch algorithm is much faster than the 6-rule IR-DC-Ch algorithm.
Moreover, the better performance increases as the size of the instances increases.

6 Conclusions

This paper showed that the original analysis of the IR-DC-checking algorithm
with respect to the IR-DC semantics was flawed. However, it showed that the

15

IR-DC-checking algorithm is sound-and-complete with respect to the π-DC
semantics that properly captures instantaneous reaction. Furthermore, it proved
that only three of the six propagation rules are needed to ensure completeness.
And, since no proper subset of the three rules will suffice, the three rules represent
a minimal sound-and-complete set of rules, an important theoretical result. The
experimental evaluation indicated that the new algorithm is faster than the
IR-DC-checking algorithm.

References

[1] I. Tsamardinos, T. Vidal, and M. E. Pollack, “CTP: A new constraint-
based formalism for conditional, temporal planning,” Constraints, vol. 8,
pp. 365–388, 2003. doi:10.1023/A:1025894003623.

[2] C. Comin and R. Rizzi, “Dynamic consistency of conditional simple temporal
networks via mean payoff games: a singly-exponential time dc-checking,” in
22st International Symposium on Temporal Representation and Reasoning
(TIME 2015), pp. 19–28, IEEE, Sept. 2015. doi:10.1109/TIME.2015.18.

[3] L. Hunsberger, R. Posenato, and C. Combi, “A sound-and-complete
propagation-based algorithm for checking the dynamic consistency of con-
ditional simple temporal networks,” in 22st International Symposium on
Temporal Representation and Reasoning (TIME 2015), pp. 4–18, IEEE,
Sept. 2015. doi:10.1109/TIME.2015.26.

[4] M. Cairo, C. Comin, and R. Rizzi, “Instantaneous reaction-time in dynamic-
consistency checking of conditional simple temporal networks,” in TIME
2016, Oct. 2016.

[5] A. Cimatti, L. Hunsberger, A. Micheli, R. Posenato, and M. Roveri, “Sound
and complete algorithms for checking the dynamic controllability of temporal
networks with uncertainty, disjunction and observation,” in 21st Interna-
tional Symposium on Temporal Representation and Reasoning (TIME 2014),
pp. 27–36, IEEE, Sept. 2014. doi:10.1109/TIME.2014.21.

[6] A. Cimatti, L. Hunsberger, A. Micheli, R. Posenato, and M. Roveri, “Dy-
namic controllability via Timed Game Automata,” Acta Informatica, vol. 53,
no. 6-8, pp. 681–722, 2016. doi:10.1007/s00236-016-0257-2.

[7] L. Hunsberger and R. Posenato, “Checking the Dynamic Consistency
of Conditional Temporal Networks with Bounded Reaction Times,” in
Proceedings of the 26th International Conference on Automated Plan-
ning and Scheduling, ICAPS 2016, pp. 175–183, 2016. URL: http:

//www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108.

[8] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” Artificial
Intelligence, vol. 49, no. 1-3, pp. 61–95, 1991. doi:10.1016/0004-3702(91)
90006-6.

[9] L. Hunsberger, R. Posenato, and C. Combi, “The Dynamic Controllability
of Conditional STNs with Uncertainty,” in PlanEx at ICAPS 2012, pp. 1–8,
June 2012.

16

http://dx.doi.org/10.1023/A:1025894003623
http://dx.doi.org/10.1109/TIME.2015.18
http://dx.doi.org/10.1109/TIME.2015.26
http://dx.doi.org/10.1109/TIME.2014.21
http://dx.doi.org/10.1007/s00236-016-0257-2
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108
http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/10.1016/0004-3702(91)90006-6

[10] C. Combi, L. Hunsberger, and R. Posenato, “An algorithm for checking
the dynamic controllability of a conditional simple temporal network with
uncertainty,” in Proceedings of the 5th International Conference on Agents
and Artificial Intelligence (ICAART-2013), vol. 2, pp. 144–156, Feb. 2013.

[11] M. Cairo, L. Hunsberger, R. Posenato, and R. Rizzi, “A Streamlined Model
of Conditional Simple Temporal Networks - Semantics and Equivalence
Results,” in 24th International Symposium on Temporal Representation
and Reasoning (TIME 2017), vol. 90 of LIPIcs, pp. 10:1–10:19, 2017. doi:
10.4230/LIPIcs.TIME.2017.10.

[12] R. Posenato, “A CSTN(U) consistency check algorithm implementation in
Java. version 1.22.” http://profs.scienze.univr.it/∼posenato/software/cstnu,
Nov. 2017.

[13] A. Lanz and M. Reichert, “Enabling time-aware process support with the
atapis toolset,” in Proceedings of the BPM Demo Sessions 2014 (L. Limonad
and B. Weber, eds.), vol. 1295 of CEUR Workshop Proceedings, pp. 41–45,
2014.

7 Appendix

Here is the definition of π-dynamic strategy given by Cairo et al. [4].

Definition 22 (π-Dynamic Strategy). A π-execution strategy, σ, for a CSTN is
called π-dynamic if for every pair of scenarios, s1 and s2, and every time-point
X ∈ T :

let: t = [σ(s1)]X , and d =

{
[σ(s1)]πX , if X ∈ OT ;
∞, otherwise.

if: Cons(π(t, d, s1, σ), s2)
then: [σ(s2)]X = t and, if X ∈ OT , [σ(s2)]πX = d.

Note that for a scenario such as s2, Cons(π(t, d, s1, σ), s2) is equivalent to
s2 |= πHist(t, d, s1, σ).

Theorem 3. The definitions of π-dynamic strategy (i.e., Defns. 17 and 22) are
equivalent.

Proof. (⇒). Suppose that σ satisfies Defn. 17, but not Defn. 22. Then for
some scenarios s1 and s2, and some time-point X, where t = [σ(s1)]X and
d = [σ(s1)]πX , s2 |= πHist(t, d, s1, σ), but [σ(s2)]X 6= t or [σ(s2)]πX 6= d. With no
loss of generality, choose the circumstance of this sort for which t is minimal
and, for that t, d is minimal.

Next, for σ(s1) and σ(s2), consider the corresponding schedules of time-point
executions, where each observation time-point is annotated with the boolean
value specified by the given scenario, and where any simultaneous observations
are listed in the order of dependence specified by σ(s1) or σ(s2), respectively.
By construction, these two annotated schedules—call them σ(s1)+ and σ(s2)+,
differ at time t. Let t∗ ≤ t be the earliest time at which σ(s1)+ 6= σ(s2)+.

Case 1: The first difference involves an observation time-point Q? for which
[σ(s1)]Q? = t∗ = [σ(s2)]Q? and [σ(s1)]πQ? = d∗ = [σ(s2)]πQ?, but but s1(q) 6= s2(q).
Now suppose that t∗ < t. But then (q, s1(q)) ∈ πHist(t, d, s1, σ), in which case,

17

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.10
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.10

s2 |= πHist(t, d, s1, σ) would contradict that s1(q) 6= s2(q). Thus, t∗ = t.
Similarly, given that t∗ = t, if d∗ < d, then (q, s1(q)) ∈ πHist(t, d, s1, σ),
leading to the same contradiction. Thus, d = d∗. But then πHist(t, d, s1, σ) =
πHist(t, d, s2, σ) which, since σ satisfies Defn. 17, implies that [σ(s2)]X = t and
[σ(s2)]πX = d, a contradiction.

Case 2: The first difference between σ(s1)+ and σ(s2)+ involves the execution
of some time-point Y at time t∗ and position d∗ by σ(si), but not by σ(sj),
where {si, sj} = {s1, s2}. But then πHist(t∗, d∗, s1, σ) = πHist(t∗, d∗, s2, σ) and,
since σ satisfies Defn. 17, [σ(s2)]Y = t∗ and [σ(s2)]Y = d∗, a contradiction.

(⇐). Suppose that σ satisfies Defn. 22, but not Defn. 17. Thus, there must
be some scenarios s1 and s2, and time-point X, such that πHist(t, d, s1, σ) =
πHist(t, d, s2,Hist), where t = [σ(s1)]X and d = [σ(s1)]πX , but [σ(s2)]X 6= t or
[σ(s2)]πX 6= d. As above, choose t minimal with this property and, for that
t, choose d minimal. Now, s2 |= πHist(t, d, s2, σ) since the history contains
observations determined by s2. But then πHist(t, d, s1, σ) = πHist(t, d, s2,Hist)
implies that s2 |= πHist(t, d, s1, σ) which, since σ satisfies Defn. 22, implies that
[σ(s2)]X = t and [σ(s2)]πX = d, a contradiction.

18

University of Verona
Department of Computer Science
Strada Le Grazie, 15
I-37134 Verona
Italy

http://www.di.univr.it

