
On the Power of the
Semi-Separated Pair Decomposition

Mohammad Ali Abam1

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

Paz Carmi2

School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.

Mohammad Farshi2,∗

Department of Computer Science, Yazd University, Yazd, Iran.

Michiel Smid2

School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.

Abstract

A Semi-Separated Pair Decomposition (SSPD), with parameter s > 1, of a
set S ⊂ Rd is a set {(Ai, Bi)} of pairs of subsets of S such that for each
i, there are balls DAi and DBi containing Ai and Bi respectively such that
d(DAi , DBi) ≥ s·min(radius(DAi), radius(DBi)), and for any two points p, q ∈ S
there is a unique index i such that p ∈ Ai and q ∈ Bi or vice-versa. In this
paper, we use the SSPD to obtain the following results: First, we consider the
construction of geometric t-spanners in the context of imprecise points and we
prove that any set S ⊂ Rd of n imprecise points, modeled as pairwise disjoint
balls, admits a t-spanner with O(n log n/(t− 1)d) edges that can be computed
in O(n log n/(t − 1)d) time. If all balls have the same radius, the number of
edges reduces to O(n/(t− 1)d). Secondly, for a set of n points in the plane, we
design a query data structure for half-plane closest-pair queries that can be built
in O(n2 log2 n) time using O(n log n) space and answers a query in O(n1/2+ε)
time, for any ε > 0. By reducing the preprocessing time to O(n1+ε) and using
O(n log2 n) space, the query can be answered in O(n3/4+ε) time. Moreover, we

∗Corresponding author.
Email addresses: abam@sharif.ir (Mohammad Ali Abam), paz@cg.scs.carleton.ca

(Paz Carmi), mfarshi@yazd.ac.ir (Mohammad Farshi), michiel@scs.carleton.ca
(Michiel Smid)

1MAA was supported by School of Computer Science, Institute for Research in Fundamen-
tal Sciences (IPM), Tehran, Iran.

2PC, MF and MS were supported by Natural Sciences and Engineering Research Council
(NSERC) of Canada.

Preprint submitted to Elsevier February 11, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217576733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

improve the preprocessing time of an existing axis-parallel rectangle closest-pair
query data structure from quadratic to near-linear. Finally, we revisit some pre-
viously studied problems, namely spanners for complete k-partite graphs and
low-diameter spanners, and show how to use the SSPD to obtain simple algo-
rithms for these problems.

Keywords: semi-separated pair decomposition, closest-pair query, imprecise
spanners, spanners for complete k-partite graphs

1. Introduction

Background. The Well-Separated Pair Decomposition (WSPD) introduced by
Callahan and Kosaraju (Callahan and Kosaraju, 1995) has found numerous ap-
plications in proximity problems (Narasimhan and Smid, 2007, Chapter 10). A
WSPD for a point set S ⊂ Rd with respect to a constant s > 1 is a set of
pairs {(Ai, Bi)}i where (i) Ai, Bi ⊂ S, (ii) Ai and Bi are s-well-separated,
i.e., there are balls DAi and DBi containing Ai and Bi, respectively, such
that d(DAi

, DBi
) ≥ s · max(radius(DAi

), radius(DBi
)), and (iii) for any two

points p, q ∈ S there is a unique index i such that p ∈ Ai and q ∈ Bi or
vice-versa. Callahan and Kosaraju showed that a WSPD containing O(sdn)
pairs can be constructed in O(sdn + n log n) time. Although they showed
that

∑
min(|Ai|, |Bi|) = O(n log n), the summation

∑
(|Ai| + |Bi|), the so-

called weight of the WSPD, can be Θ(n2). This disadvantage led Varadara-
jan (Varadarajan, 1998) to define the Semi-Separated Pair Decomposition (SSPD).

An SSPD is defined as a WSPD, except for the condition (ii) which is relaxed
to the requirement that Ai and Bi are s-semi-separated, i.e., there are balls
DAi and DBi containing Ai and Bi, respectively, such that d(DAi , DBi) ≥
s · min(radius(DAi), radius(DBi)). Varadarajan (Varadarajan, 1998) showed
how to compute an SSPD of weight O(n log4 n) for a set of n points in the
plane in O(n log5 n) time and used the decomposition to solve the min-cost
perfect-matching problem. Recently, Abam et al. (Abam et al., 2009) presented
an algorithm that improves the construction time to O(n log n) and the weight
to O(n log n); in Abam et al. (2011), the same bounds were obtained in Rd.
It follows from results by Hansel (Hansel, 1964) that any SSPD of any set of
n points has weight Ω(n log n) —see Bollobás and Scott (Bollobás and Scott,
2007) as well.

Abam et al. (Abam et al., 2009) used the SSPD to compute a region fault-
tolerant t-spanner in the plane, which is a geometric t-spanner, as defined next,
and remains a t-spanner after everything inside a half-plane fault region is re-
moved from the spanner.

Let G = (S,E) be a geometric graph on a set S of n points in Rd. That
is, G is an edge-weighted graph where the weight of an edge (p, q) ∈ E is
equal to |pq|, the Euclidean distance between p and q. The distance in G
between two points p and q, denoted by dG(p, q), is defined as the length of a
shortest (that is, minimum-weight) path between p and q in G. The graph G

2

is called a (geometric) t-spanner, for some t ≥ 1, if for any two points p, q ∈ S
we have dG(p, q) ≤ t · |pq|. We define a t-path between p and q to be any
path between p and q having length at most t · |pq|. Geometric spanners have
received a lot of attention in the past few years—see the book by Narasimhan
and Smid (Narasimhan and Smid, 2007) and survey papers Eppstein (2000);
Gudmundsson and Knauer (2007); Smid (2000) for more details. Obviously the
complete graph is a t-spanner for any point set and any t ≥ 1, but a desirable
one would be a spanner providing short paths between its nodes, while not
containing too many edges. Other desirable properties of a t-spanner is low
total length of edges and low maximum degree. Several algorithms are known
that compute, in near-linear time, a t-spanner of any given point set that has
one or more desirable properties—see Narasimhan and Smid (2007).

Our results. In this paper, we present more applications of the SSPD and show
how powerful the SSPD can be:
(i) We consider geometric t-spanners in the context of imprecise points. We
model each imprecise point as a ball that specifies the possible location of the
point. For a set of n pairwise disjoint imprecise points in Rd, for a constant d, we
compute a geometric t-spanner with O(n log n/(t− 1)d) edges such that regard-
less of the position of each point in its associated ball, it remains a t-spanner.
Moreover, we improve the number of edges to O(n/(t − 1)d) if the associated
balls have the same radius.
(ii) We present a query data structure for the half-plane closest-pair query prob-
lem that uses O(n log2 n) space and can be computed in O(n1+ε) time and an-
swers a query in O(n3/4+ε) time, where ε > 0 is an arbitrary constant. By
increasing the pre-processing time to O(n2 log2 n) and using O(n log n) space,
we achieve O(n1/2+ε) query time. We also improve the pre-processing time
of the axis-parallel rectangle closest-pair query data structure of Gupta et al.
(2008) from quadratic to near-linear without affecting the query time and space
bound.
(iii) We revisit some previously studied problems, specifically spanners for k-
partite graphs (Bose et al., 2008) and low-diameter spanners (Arya et al., 1995,
1994), and show how to use the SSPD to obtain simple algorithms for these
problems. Here, we just emphasize on the simplicity of the algorithms; we do
not improve the existing results.

2. Spanners for Imprecise Points

Computational geometers traditionally assume that input data, such as
points, are precise. However, in the real-world, the input comes from measuring
devices that are subject to finite precision. Therefore, the input data given to
an algorithm is imprecise and running the algorithm on the input may lead to
incorrect output. One solution is to design algorithms that explicitly compute
with imprecise data that can be modeled in different ways. One possible model,
for data that consists of points, is to consider each point as a region. This region
represents all possible locations where the point might be. Given a collection

3

of such imprecise points, one can then ask questions about these points. What
is their convex hull? What is their Voronoi diagram/Delaunay triangulation?
These questions were recently studied— see Löffler and Snoeyink (2008); van
Kreveld and Löffler (2008)— and here we consider one more interesting question.

Let D = {D1, . . . , Dn} be a set of n regions in Rd and let t > 1 be a real
number. Is it possible to construct a graph G = (D,E), such that for any set
S = {p1, . . . , pn} of points, with pi ∈ Di for 1 ≤ i ≤ n, the graph G = (S, E),
where E = {(pi, pj)|(Di, Dj) ∈ E} is a t-spanner? We call the graph G a
t-spanner for the set D. In this section we answer this question affirmatively for
the case when the regions are balls.

In fact, we use the common model of expressing imprecise points where each
imprecise point pi is modeled by a ball Di = (ci, ri), where ci and ri are the
center and the radius of Di, in Rd. We assume balls are pairwise disjoint. Oth-
erwise, for any two overlapping balls there must be an edge in a t-spanner, as we
know the edge between the closest pair is always in the t-spanner for t < 2, and
therefore the size of the t-spanner depends on the number of overlapping balls.
This assumption is not unrealistic as constructing road network is a common
applicaton of t-spanners where cities are regions and they do not overlap.

2.1. Balls with Similar Sizes

We first consider the case when all balls are unit-balls. We can easily extend
the results to the case when all balls have similar sizes. Our spanner construction
is based on the WSPD approach (Callahan and Kosaraju, 1993) that works as
follows. It computes a WSPD of the point set with respect to a constant s, and
then for each pair (A,B) in the WSPD, it adds an edge between an arbitrary
point from A and an arbitrary point from B. Choosing an appropriate value s
based on t leads us to a t-spanner.

The above construction is applicable to an imprecise point set if we are able
to construct a WSPD of the imprecise point set, i.e., regardless of the positions
of the points in their associated balls, the pairs in the decomposition remain
s-well-separated. The following lemma states that it is possible to obtain a
WSPD of imprecise points using a WSPD of the center points.

Lemma 1. Let {(Ai, Bi)|1 ≤ i ≤ m} be a WSPD for the set {c1, . . . , cn} of
center points, with respect to s′ = 2s + 2. Let S = {p1, . . . , pn} be a set of
points, where pj ∈ Dj, for 1 ≤ j ≤ n. For 1 ≤ i ≤ m, let A′i = {pj |cj ∈ Ai} and
B′i = {pj |cj ∈ Bi}. Then {(A′i, B′i)|1 ≤ i ≤ m} is a WSPD for S with respect
to s.

Proof. Let (A,B) be an s′-well-separated pair. There are two balls DA and
DB containing the points in A and B, respectively, and d(DA, DB) ≥ (2s + 2) ·
max(radius(DA), radius(DB)). If max(radius(DA), radius(DA)) < 1, then the
disjointness of the balls Di implies that A and B are singletons, which implies
that (A′, B′) is an s-well-separated pair. Otherwise, let D′A (D′B) be a ball
with radius radius(DA) + 1 (radius(DB) + 1) co-centered with DA (DB). Since
|pici| ≤ 1, from ci ∈ DA we can conclude that pi ∈ D′A. The same property

4

holds for B. Therefore D′A and D′B contain all points in A′ and B′, respectively.
Now it suffices to show that d(D′A, D

′
B) ≥ s ·max(radius(D′A), radius(D′B)). We

have

d(D′A, D
′
B) = d(DA, DB)− 2

≥ s′ ·max(radius(DA), radius(DB))− 2

≥ (s′ − 2) ·max(radius(DA), radius(DB))

≥ 2s ·max(radius(DA), radius(DB))

≥ s · (max(radius(DA), radius(DB)) + 1)

≥ s ·max(radius(D′A), radius(D′B)).
�

Theorem 2. For any set D = {D1, . . . , Dn} of n imprecise points in Rd mod-
eled as pairwise disjoint balls with similar sizes and any t > 1, there is a
t-spanner with O(n/(t− 1)d) edges that can be computed in O(n/(t− 1)d +
n log n) time.

Proof. Let s = 4(t+1)
t−1 and s′ = 2s + 2. Let {(Ai, Bi)|1 ≤ i ≤ m} be a WSPD

with respect to s′ for center points of size m = O(s′dn). Initialize E = ∅. For
each 1 ≤ i ≤ m add edge (Dj , Dk) to E , where Dj is a ball with center cj ∈ Ai

and Dk is a ball with center ck ∈ Bi. Let G = (D,E) be the resulting graph.
Let S = {p1, . . . , pn} be a set where pi ∈ Di, for 1 ≤ i ≤ n, and let

G = (S, E), where E = {(pi, pj)|(Di, Dj) ∈ E}. It follows from Lemma 1 and
Callahan and Kosaraju (1993) that G is a t-spanner for S and the time com-
plexity of the algorithm is O(n/(t− 1)d + n log n). �

2.2. Balls with Arbitrary Sizes

When the sizes of the balls vary greatly, we cannot simply construct a WSPD
of the points pi using a WSPD of the center points ci. Hence, a more sophis-
ticated approach is needed. As we will see, the SSPD comes handy here. The
overall idea is to construct an SSPD of the points {pi}i using an SSPD of the
points {ci}i and then construct a t-spanner using the SSPD of the points {pi}i.

Lemma 3. Let {(Ai, Bi)|1 ≤ i ≤ m} be a SSPD for the set {c1, . . . , cn} of
center points, with respect to s′ = 3s + 3. Let S = {p1, . . . , pn} be a set of
points, where pj ∈ Dj, for 1 ≤ j ≤ n. For 1 ≤ i ≤ m, let A′i = {pj |cj ∈ Ai} and
B′i = {pj |cj ∈ Bi}. Then {(A′i, B′i)|1 ≤ i ≤ m} is a SSPD for S with respect
to s.

Proof. Let (A,B) be an s′-semi-separated pair in the SSPD of the points {ci}i.
Let A′ (resp. B′) be the set containing the points pi ∈ Di corresponding to the
points ci ∈ A (resp. ci ∈ B). Since (A,B) is an s′-semi-separated pair, there are
two balls DA and DB containing all points in A and B, respectively, such that
d(DA, DB) ≥ s′ ·min(rA, rB)), where rA = radius(DA) and rB = radius(DB).
Without loss of generality, assume that rA ≤ rB . If radius(Di) ≥ 2 · rA, for

5

A

DA

rA
3× rA

s
′ × rA

rA

D

s
′ × rA

B

DB

ci

Di

≥ s
′ × rA

Figure 1: Illustration of Lemma 3.

some i such that ci ∈ A, the disjointness of the balls implies that A, and as a
consequence A′, is a singleton and therefore (A′, B′) is an s-semi-separated pair.

Otherwise, assume that for any point ci ∈ A, radius(Di) < 2 ·rA. Therefore,
every point pi corresponding to the point ci ∈ A must lie in the ball co-centered
with DA and having radius 3 · rA.

Let D be the ball co-centered with DA and radius s′ · rA, see Figure 1.
Using a packing argument, it can be shown that the number of points ci ∈ B
whose associated balls intersect D and have radius greater than rA is bounded
by O(dd/2sd−1), see (Duncan et al., 2001, Lemma 3.2). For each such point ci,
(A′, {pi}) is an s-semi-separated pair. For the remaining points ci, the corre-
sponding point pi is at least (s′− 1) · rA away from DA. This implies that these
points are at least (s′ − 3) · rA away from the points in A′; the latter points
are inside a ball with radius 3 · rA. This all together implies that these points
and A′ are s-semi-separated, because (s′−3)/3 = s. Note that each pair (A,B)
produces a constant number, or more precisely O(sd), of pairs each of which has
linear size based on A and B and therefore the weight of the generated SSPD
is O(s2dn log n). �

Our spanner construction is as follows. First we use Lemma 3 to compute
an SSPD S of the points {pi}i with respect to s = 4/(t−1). Then, for each pair
(A,B) ∈ S, assuming radius(DA) ≤ radius(DB), we select an arbitrary point
from A and connect it by an edge to every other point in A∪B. The number of

6

edges added to the spanner is at most
∑

(A,B)∈S(|A|+ |B|) which is O(n log n)
based on the property of the SSPD. We claim that this gives a t-spanner. To
prove this, let p and q be two arbitrary points. There is a pair (A,B) ∈ S such
that p ∈ A and q ∈ B or vice-versa. Assume that radius(DA) ≤ radius(DB),
p ∈ A, and q ∈ B. Based on our construction, both p and q are connected to a
point w in A—note that w can be p. Therefore the length of the path between
p and q in the graph is at most |pw|+ |wq|, which can be bounded as follows:

|pw|+ |wq| ≤ 2|pw|+ |pq| ≤ 4 radius(DA) + |pq| ≤ (t− 1)|pq|+ |pq| ≤ t · |pq|.

This shows that the path is a t-path between p and q.

Theorem 4. For any set of n imprecise points in Rd modeled as pairwise dis-
joint balls and any t > 1, there is a t-spanner with O(n log n/(t − 1)2d) edges
that can be computed in O(n log n/(t− 1)2d) time.

3. Range Closest-Pair Query

The range searching problem is a well-studied problem in computational
geometry. In such a problem, we are given a set of geometric objects, such as
points or line segments, and want to pre-process the set into a data structure
such that we can report the objects in a query region quickly—see the survey
by Agarwal and Erickson (Agarwal and Erickson, 1999). However, in several
applications, we need more information about the objects in the query area,
for example the closest pair or the proximity of these objects. For this kind of
queries, a so-called aggregation function can be defined to satisfy the property
we are looking for. This range-aggregate query problem has been studied in
recent years in both the computational geometry (Nievergelt and Widmayer,
2000) and the database communities (Tao and Papadias, 2004).

The range-aggregate query problem for the case when ranges are axis-parallel
rectangles and the aggregation function is the closest pair, was first considered
by Shan et al. (Shan et al., 2003). They proposed an algorithm and showed
that it works well in practice, but no theoretical bound was provided. Later
Gupta (Gupta, 2006) gave a data structure with constant query time using
O(n) space for points in R. For points in the plane, their structure answers
a query in O(log3 n) time and uses O(n2 log3 n) space. Later, Sharathkumar
and Gupta (Sharathkumar and Gupta, 2007) improved the space in the 2D
case to O(n log3 n) while guaranteeing the same query time. Recently, Gupta
et al. Gupta et al. (2008) improved the query time to O(log2 n) using O(n log5 n)
space. It is unknown whether the data structures in Gupta et al. (2008);
Sharathkumar and Gupta (2007) can be built in sub-quadratic time.

In this section, we first present a data structure for range closest-pair query
problem when ranges are half-planes. Then, we show how to modify Gupta
et al.’s data structure in Gupta et al. (2008) such that it can be built in near-
linear time without affecting the query time and space bound.

7

3.1. Half-Plane Closest-Pair Query

Let S be a set of n points in the plane. We first start investigating which
pairs of points can be a closest pair for some half-plane. Let G be the graph
with vertex set S where p and q are connected if and only if (p, q) is a closest
pair in S∩h for some half-plane h. The following lemma states that the number
of such closest pairs is O(n), even though the number of “different” half-planes
is Θ(n2).

Lemma 5. The graph G defined above is plane.

Proof. For the sake of contradiction, assume that (p, q) and (r, s) properly
intersect, where (p, q) and (r, s) are the closest pairs inside the half-planes h1

and h2, respectively. It is easy to see that h1 contains at least one of the points
r and s. Assume that r is inside h1. Since (p, q) is the closest pair inside
h1, |pr| and |qr| are at least |pq|. The same argument holds for (r, s). Under
the assumption that p is in h2, we can conclude that |pr| and |ps| are at least
|rs|. This all together implies that |pq| + |rs| ≤ |ps| + |rq|. On the other
hand, |pq| + |rs| > |ps| + |rq|, since (p, q) and (r, s) properly intersect. This
contradiction implies that the graph G is plane. �

We describe our data structure under the assumption that G is available
to us. Later, we will explain how to construct G. We construct a half-plane
segment-reporting data structure for the edges of G, which is a multi-level par-
tition tree—see (de Berg et al., 2008, Section 16.2). This data structure stores
n segments not sharing any endpoint in such a way that the segments inside the
half-plane query can be reported as the union of O(n1/2+ε) disjoint canonical
subsets. The data structure uses O(n log n) space and can be constructed in
O(n1+ε) time. We also pre-compute the closest pair for each canonical subset
of nodes in the second level of the tree to be able to report the closest pair
without visiting all the edges in the query region.

The assumption that the segments are not sharing any endpoint can be
relaxed to the assumption that each endpoint can be adjacent to at most a
constant number of segments. Indeed, by such an assumption, the size of the
associated partition tree with a node v in the first level is still proportional to
|S(v)|, where S(v) is the set of points stored at the subtree rooted at v. This
is the key property in the analysis of the space and time complexity. Unfortu-
nately, this assumption does not hold in our graph G, as we can simply find a
configuration of n points such that the maximum degree in G is Θ(n).

A possible way to resolve this problem is to use the simulation of simplicity
technique of Edelsbrunner and Mücke (1990). Using this technique, we get a
set of segments that do not share any endpoint. However, it is not clear how
can we construct the multi-level partition tree on the new point set. Therefore,
we give a simple and direct way to handle shared endpoints.

We first make the graph G directed such that the out-degree of each vertex
is constant. This can be performed as follows. We select a set S1 of n/2 vertices
whose degrees are at most 12—this is always possible, since the degree sum in

8

any plane graph is at most 6 times the number of vertices. For each edge (p, q),
if both p and q are in S1 we give this edge an arbitrary direction. If one of them
is in S1, say p, we make the edge (p, q) directed in the direction −→pq. We remove
every directed edge as well as the vertices in S1 from the graph and recurse on

the remaining graph. At the end, we have a directed graph
−→
G such that the

out-degree of each node is at most 12.

Now, given the graph
−→
G , for each node v in the first level of the multi-level

partition tree, we look at the edges going out from S(v). Since the number of
such edges is proportional to |S(v)|, the same query-time bound can be obtained.

One easy way of computing G is to compute the closest pair for all 2 ·(
n
2

)
possible half-planes which takes O(n3 log n) time. Unfortunately it seems

difficult to compute G in near-linear time. Hence, we introduce a new graph G′

with O(n log n) edges that contains G as a subgraph and can be computed in
near-linear time. To define G′, we use the convex region fault-tolerant t-spanner
of the points, as introduced by Abam et al. (Abam et al., 2009). This graph
has the property that after removing all vertices and edges that are inside a
convex fault region, what remains is a t-spanner of the complete graph minus the
vertices and edges in the convex fault region. They used an SSPD to construct a
convex region fault-tolerant t-spanner containing O(n log n) edges in O(n log2 n)
time. When the fault regions are half-planes, what remains from the graph is a
t-spanner of the remaining points due to the fact that the line segment between
any two points outside the half-plane fault region does not touch the fault region.
Since any t-spanner, for t < 2, contains the closest pair as an edge, we set G′ to
be a region fault-tolerant t-spanner for some t < 2.

There are two possibilities of using G′: (i) use G′ instead of G in the above
construction and (ii) use G′ to compute G faster. Next we look at each of them
more precisely.

(i) Using G′ instead of G in our structure will obviously affect the asymptotic
complexity of the space bound by a factor of O(log n). Moreover, since we
cannot make G′ directed such that the out-degree of each vertex is bounded,
we are unable to obtain the same query-time bound. We can show, however,
that the query time is O(n3/4+ε): Searching in the first level of the multi-level
partition tree boils down toO(n1/2+ε) associated partition trees that are disjoint
and whose total size is O(n log n). If x is the size of one of the associated trees,
searching in the associated tree takes O(x1/2+ε) time. By the Cauchy-Schwarz
inequality, we know that

∑m
i=1

√
xi/m ≤

√∑m
i=1 xi/m. Therefore, the total

search costs O(n3/4+ε)—note that m = O(n1/2+ε) and
∑m

i=1 xi = O(n log n).

(ii) We can construct G from G′ as follows. We sort all edges of G′ by their
lengths and process them in ascending order. Initially, we set G to be the graph
on the point set whose edge set is empty. Let e be the edge of G′ to be processed.
We check in linear time whether it intersects any of the current edges of G. If so,
we ignore e. Otherwise, we perform two rotational sweeps around the endpoints
of e, in O(n log n) time, to see whether there is a half-plane containing e that
does not contain any edge in the current graph G. If so, e is inserted into G,

9

otherwise, we ignore e. Since we process O(n log n) edges, each of which takes
O(n log n) time, the total construction time is O(n2 log2 n).

Theorem 6. Let S be a set of n points in the plane. For any ε > 0, there is a
data structure for S

(i) of size O(n log2 n) that can be constructed in O(n1+ε) time and answers
a half-plane closest-pair query in O(n3/4+ε) time; or

(ii) of size O(n log n) that can be constructed in O(n2 log2 n) time and answers
a half-plane closest-pair query in O(n1/2+ε) time.

Remark 1. In a recent work by Abam and Har-Peled (Abam and Har-Peled,
2012), new constructions of SSPD are introduced with the following additional
property: each point appears in poly-logarithmic number of sets in SSPD. Using
the new constructions, one can construct the graph G′ such that the out-degree
of each node is poly-logarithmic.3 This improves the half-plane closest-pair
query time in Theorem 6(i) to O(n1/2+ε).

Remark 2. There is a recent work by T. M. Chan (Chan (2012)) that improves
the preprocessing time of the partition tree to logarithmic, but it is randomized.
This improves the expected preprocessing time of Theorem 6(i) to O(n log n).

Remark 3. Like other data structures using partition trees, it is possible to
obtain a trade-off between query time and space. Indeed, for any n ≤ m ≤ n2,
there is a data structure of size O(m1+ε) and O(n1+ε/m1/2) query time.

3.2. Axis-Parallel Rectangle Closest-Pair Query

We now consider the axis-parallel rectangle closest-pair query. As mentioned
above, Gupta et al. (Gupta et al., 2008) presented a data structure of size
O(n log5 n) and query time O(log2 n). It is unknown whether their structure can
be built in subquadratic time. Their data structure works as follows: They first
construct a data structure to answer closest-pair queries for two-sided queries
(vertical/horizontal strips and quadrants). To do that, they pre-compute a
graph G with vertex set S whose edges are closest pair for some two-sided
region. They show that G has linear size for quadrants and O(n log n) size for
vertical/horizontal strips; however, it is unknown how to compute G quickly. For
three- and four-sided queries, they use the data structure for two-sided queries
together with some additional information that can be computed in near-linear
time. Therefore, the time-consuming ingredient of their structure is computing
the graph G.

3The fault-tolerant t-spanner G′ constructed based on the algorithm given in (Abam et al.,
2009, section 3.1) is the union of O(n) plane subgraphs where each subgraph is a graph
defined over a pair of the SSPD. Moreover, each pair is involved in a constant number of such
subgraphs. Since each subgraph is plane, we can make it directed such that the out-degree
of each vertex is at most 6. Since each point appears in poly-logarithmic pairs in the new
constructions of SSPD, the out-degree of each vertex in G′ is then poly-logarithmic.

10

As in the previous section, we introduce a graph G′ that has O(n log n)
edges, including all edges of G. We use G′ instead of G. The graph G′ indeed
is a kind of t-spanner that we call local t-spanner.

A geometric t-spanner G is an F -local spanner, for a region F in the plane,
if the part of G that is completely inside F is a t-spanner of the points inside F .
For a family F of regions, we call a graph G an F-local t-spanner, if for any
region F ∈ F the graph G is an F -local t-spanner. As an example, any convex
region fault-tolerant t-spanner is an H-local t-spanner, where H is the family
of half-planes. We will show that there are F-local t-spanners with O(n log n)
edges, when F is the family of all axis-parallel two-sided regions in the plane.
To this end, we set G′ to be an F-local t-spanner for some t < 2 which therefore
contains the closest pair for every possible query region.

Theorem 7. A set S of n points in the plane can be stored in a structure of
size O(n log5 n) such that for any axis-parallel query rectangle Q, the closest
pair in S ∩Q can be reported in O(log2 n) time. Moreover, the structure can be
built in O(n log5 n) time.

3.2.1. Local t-spanner.

In this section, we construct F-local t-spanners with O(n log n) edges, when
F is the family of all axis-parallel two-sided regions in the plane. Due to sim-
ilarity, we just consider the family VS of vertical strips and the family NE of
north-east quadrants. Our construction is based on the region fault-tolerant
t-spanner (Abam et al., 2009). To re-use the approach in Abam et al. (2009),
we construct the graph such that the following property holds for every s-semi-
separated pair (A,B) (assuming that radius(DA) ≤ radius(DB)).

(I) For every region R ∈ F such that R ∩A 6= ∅ and R ∩B 6= ∅, the point in
R∩B that is closest to the center of DA is connected to a point in R∩A.

This property is equivalent to Lemma 3.2 of Abam et al. (2009) and following a
similar argument as in the proof of Lemma 3.3 of the same paper, proves that
any graph satisfying this property is an F-local t-spanner.

We will show how to satisfy property (I) using O(|A| + |B|) edges when
regions are vertical strips and north-east quadrants. Therefore, this gives us an
F-local t-spanner that contains O(n log n) edges.

Vertical strips. We first sort the points in A based on their x-coordinates. Then,
for each point b ∈ B, we find two consecutive points a, a′ ∈ A surrounding b on
the x-axis. We then connect b to both a and a′.

Lemma 8. The above connecting schema satisfies property (I) and uses
O(|A|+ |B|) edges and can be performed in O((|A|+ |B|) log |A|) time.

Proof. Assume that an arbitrary region R ∈ VS contains at least one point
from each subset A and B. Let a1, . . . , ak be the sorted list of points in A, based
on their x-coordinates. Let b ∈ B ∩R be the point that is closest to the center

11

of DA. Our schema connects b to ai and ai+1 for some i. If R does not contain
ai or ai+1, then R ∩ A must be empty which is not true by assumption—note
that since R is a vertical strip, it contains a contiguous subsequence of the sorted
list. Therefore, the point b must be connected to a point of A.

Since the above schema just needs a sorted list of |A|, and it makes |B|
binary searches in this list, it can be performed in O((|A| + |B|) log |A|) time.
�

North-east quadrants. For a point p = (px, py), let NE(p) be the north-east
quadrant with apex at p. More precisely, NE(p) = [px,+∞)× [py,+∞). Simi-
larly we define NW(p) = (−∞, px]×[py,+∞) and SE(p) = [px,+∞)×(−∞, py).
The connecting schema is as follows:

(1) We connect every point a ∈ A to the point in NE(a)∩B, if it exists, that
is closest to the center of DA.

(2) We connect each point b ∈ B to an arbitrary point in NE(b) ∩ A, to the
highest point in SE(b) ∩ A and to the rightmost point in NW(b) ∩ A, if
they exist.

The following lemma shows our connecting schema holds the property (I).

Lemma 9. The above connecting schema satisfies property (I) and uses
O(|A|+ |B|) edges and can be performed in O((|A|+ |B|) log2(|A|+ |B|)) time.

Proof. Let R ∈ NE be an arbitrary north-east quadrant containing at least
one point of each subset A and B, and let b ∈ R∩B be the point that is closest
to the center of DA. If there exists a point of R∩A in NE(b), SE(b), or NW(b),
our schema guarantees that b is connected to one of points in R ∩ A. If this is
not the case, then for every a ∈ R ∩ A, the point b must be in NE(a) which
then, by the first step of our schema, guarantees that a is connected to b.

To perform the above schema, we need two 2-dimensional range trees TA and
TB for the points in A and B, respectively. We perform |A| searches in TB and
3|B| searches in TA which in total can be done in O((|A|+ |B|) log2(|A|+ |B|))
time. �

4. SSPD Makes Life Easier

4.1. Spanners for complete k-Partite Graphs

Bose et al. (Bose et al., 2008) introduced the following problem: Given
a complete k-partite graph K on a set of n points in Rd, compute a sparse
spanner of the graph K. They presented an algorithm running in O(n log n)
time that computes a (5 + ε)-spanner of K with O(n) edges. They also gave an
algorithm of O(n log n) time complexity that computes a (3 + ε)-spanner of K
with O(n log n) edges. This algorithm is based on a WSPD of the points and a
bit involved. They also showed that every t-spanner of K for t < 3 must contain
Ω(n log n) edges.

12

We present a simpler algorithm, using the SSPD, to compute a (3 + ε)-spanner
of K with O(n log n) edges in O(n log n) time. We first present the algorithm
when K is a complete bipartite graph; at the end, we describe how to extend
it to any k-partite graph. To this end, assume that we are given a complete
bipartite graph of n red and blue points.

We first compute an SSPD of the point set with respect to s = 6/ε, no matter
what the color of the points is. Consider a pair (A,B) in the SSPD. There exist
two disjoint balls DA and DB containing A and B, resp., such that d(DA, DB) ≥
s · min(radius(DA), radius(DB)). Assume that radius(DA) ≤ radius(DB). We
choose a red and a blue representative point in A, denoted by repr(A) and
repb(A), resp., if they exist. We also choose red and blue representative points
in B, denoted by repr(B) and repb(B), which are the red and the blue points
in B that are closest to A. Then we connect repr(A) to all blue points in
B and repb(A) to all red points in B. We apply the same procedure for the
representative points in B.

Consider a pair (x, y) of points, where x is red and y is blue and assume
that (A,B) is the pair in the SSPD such that x ∈ A and y ∈ B. Assume that
radius(DA) ≤ radius(DB). Our algorithm connects x to repb(B), repb(B) to
repr(A), and repr(A) to y. Let Π be this 3-hop path between x and y. For ease
of presentation let z = repr(A) and w = repb(B), and let o and r be the center
and the radius of DA. We have:

|Π| ≤ |xw|+ |wz|+ |zy|
≤ r + |wo|+ r + |ow|+ 2r + |xy| = 4r + 2|wo|+ |xy|
≤ 4r + 2|yo|+ |xy|
≤ 4r + 2(|xy|+ r) + |xy| = 6r + 3|xy|
≤ 6|xy|/s + 3|xy| = (3 + 6/s)|xy| = (3 + ε)|xy|.

Extending the results to k-partite complete graphs is simple. We choose
a representative point for any component for each color and we connect each
representative to all the other points whose colors are different form the repre-
sentative. This gives a (3 + ε)-spanner of size O(kn log n).

4.2. Low-Diameter Spanners

The diameter of a t-spanner is the minimum integer ∆ such that for any
pair of points, there exists a t-path between them in the t-spanner containing at
most ∆ links. Spanners with low diameter are desirable to many applications
like ad hoc networks where in order to quickly get a packet to the receiver it
must pass through few stations. There are several t-spanners with O(log n)
diameter and O(n) edges; for example see Arya et al. (1994, 1999); Bose et al.
(2004). Moreover, Arya et al. (Arya et al., 1995) presented an algorithm for
constructing a t-spanner of diameter 2 that contains O(n log n) edges. They
also showed that a t-spanner with a constant diameter cannot have a linear
number of edges.

13

t-spanner with diameter 2. Computing t-spanner of diameter 2 is simple using
the SSPD. We compute an SSPD of the points with respect to 4/(t−1). Then for
each pair (A,B) in the SSPD, assuming radius(DA) ≤ radius(DB), we choose
an arbitrary point p in A and connect all the points in A ∪ B \ {p} to p. This
gives us a spanner with O(n log n), because of the SSPD property.

Let p and q be two arbitrary points. There is a pair (A,B) in the SSPD such
that p ∈ A and q ∈ B or vice-versa. Assume that radius(DA) ≤ radius(DB).
Based on our construction, both p and q are connected to a point w in A. Since

|pw|+ |wq| ≤ 2|pw|+ |pq| ≤ 4 radius(DA) + |pq| ≤ (t− 1)|pq|+ |pq| ≤ t · |pq|,

it follows that the spanner has diameter 2.

References

Abam, M. A., de Berg, M., Farshi, M., Gudmundsson, J., 2009. Region-fault
tolerant geometric spanners. Discrete and Computational Geometry 41, 556–
582.

Abam, M. A., de Berg, M., Farshi, M., Gudmundsson, J., Smid, M., Sep. 2011.
Geometric spanners for weighted point sets. Algorithmica 61 (1), 207–225.
URL http://dx.doi.org/10.1007/s00453-010-9465-2

Abam, M. A., Har-Peled, S., 2012. New constructions of SSPDs and their appli-
cations. Computational Geometry: Theory and Applications 45 (5-6), 200–
214.
URL http://dx.doi.org/10.1016/j.comgeo.2011.12.003

Agarwal, P. K., Erickson, J., 1999. Geometric range searching and its relatives.
In: Advances in Discrete and Computational Geometry. American Mathe-
matical Society, pp. 1–56.

Arya, S., Das, G., Mount, D. M., Salowe, J. S., Smid, M., 1995. Euclidean
spanners: short, thin, and lanky. In: STOC’95: Proceedings of the 27th
Annual ACM Symposium on Theory of Computing. pp. 489–498.

Arya, S., Mount, D. M., Smid, M., 1994. Randomized and deterministic algo-
rithms for geometric spanners of small diameter. In: FOCS’94: Proceedings
of the 35th Annual IEEE Symposium on Foundations of Computer Science.
pp. 703–712.

Arya, S., Mount, D. M., Smid, M., 1999. Dynamic algorithms for geometric
spanners of small diameter: Randomized solutions. Computational Geometry:
Theory and Applications 13 (2), 91–107.

Bollobás, B., Scott, A., 2007. On separating systems. European Journal of Com-
binatorics 28 (4), 1068–1071.

14

Bose, P., Carmi, P., Courture, M., Maheshvari, A., Morin, P., Smid, M., 2008.
Spanners of complete k-partite geometric graphs. In: LATIN’08: Proceedings
of the 8th Latin American Theoretical Informatics Symposium . Vol. 4957 of
Lecture Notes in Computer Science. Springer, pp. 170–181.

Bose, P., Gudmundsson, J., Morin, P., 2004. Ordered theta graphs. Computa-
tional Geometry: Theory and Applications 28, 11–18.

Callahan, P. B., Kosaraju, S. R., 1993. Faster algorithms for some geometric
graph problems in higher dimensions. In: SODA’93: Proceedings of the 4th
Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, pp. 291–300.

Callahan, P. B., Kosaraju, S. R., 1995. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields. Journal of the ACM 42, 67–90.

Chan, T. M., 2012. Optimal partition trees. Discrete and Computational Ge-
ometry 47 (4), 661–690.

de Berg, M., Cheong, O., van Kreveld, M., Overmars, M., 2008. Computa-
tional Geometry: Algorithms and Applications, 3rd Edition. Springer-Verlag,
Berlin, Germany.

Duncan, C. A., Goodrich, M. T., Kobourov, S., 2001. Balanced aspect ratio
trees: Combining the advances of k-d trees and octrees. Journal of Algorithms
38, 303–333.

Edelsbrunner, H., Mücke, E. P., 1990. Simulation of simplicity: a technique to
cope with degenerate cases in geometric algorithms. ACM Transactions on
Graphics 9, 66–104.

Eppstein, D., 2000. Spanning trees and spanners. In: Sack, J.-R., Urrutia, J.
(Eds.), Handbook of Computational Geometry. Elsevier Science Publishers,
Amsterdam, pp. 425–461.

Gudmundsson, J., Knauer, C., 2007. Dilation and detour in geometric networks.
In: Gonzalez, T. (Ed.), Handbook on approximation algorithms and meta-
heuristics. Chapman & Hall/CRC, Amsterdam, pp. 52–1–52–17.

Gupta, P., 2006. Range-aggregate query problems involving geometric aggrega-
tion operations. Nordic Journal of Computing 13 (4), 294–308.

Gupta, P., Janardan, R., Kumar, Y., Smid, M., 2008. Data structures for range-
aggregate extent queries. In: CCCG’08: Proceedings of the 20th Canadian
Conference on Computational Geometry. pp. 7–10.

Hansel, G., 1964. Nombre minimal de contacts de fermeture nécessaires pour
réaliser une fonction booléenne symétrique de n variables. C. R. Acad. Sci.
Paris 258, 6037–6040, russian transl., Kibern. Sb. (Nov. Ser.) 5 (1968), 47-52.

15

Löffler, M., Snoeyink, J., 2008. Delaunay triangulations of imprecise points in
linear time after preprocessing. In: SCG’08: Proceedings of the 24th Annual
ACM Symposium on Computational Geometry. ACM, New York, NY, USA,
pp. 298–304.

Narasimhan, G., Smid, M., 2007. Geometric spanner networks. Cambridge Uni-
versity Press.

Nievergelt, J., Widmayer, P., 2000. Spatial data structures: Concepts and de-
sign choices. In: Sack, J.-R., Urrutia, J. (Eds.), Handbook of Computational
Geometry. Elsevier Science Publishers, Amsterdam, pp. 725–764.

Shan, J., Zhang, D., Salzberg, B., 2003. On spatial-range closest-pair query.
In: In Proceedings of Symposium on Advances in Spatial and Temporal
Databases (SSTD). Vol. 2750 of Lecture Notes in Computer Science. Springer
Verlag, pp. 252–269.

Sharathkumar, R., Gupta, P., 2007. Range-aggregate proximity queries. Tech-
nical Report IIIT/TR/2007/80, International Institute of Information Tech-
nology Hyderabad.
URL http://www.iiit.ac.in/techreports/2007 80.pdf

Smid, M., 2000. Closest point problems in computational geometry. In: Sack,
J.-R., Urrutia, J. (Eds.), Handbook of Computational Geometry. Elsevier
Science Publishers, Amsterdam, pp. 877–935.

Tao, Y., Papadias, D., December 2004. Range aggregate processing in spatial
databases. IEEE Transactions on Knowledge and Data Engineering 16 (12),
1555–1570.

van Kreveld, M., Löffler, M., 2008. Approximating largest convex hulls for im-
precise points. Journal of Discrete Algorithms 6 (4), 583–594.

Varadarajan, K. R., 1998. A divide-and-conquer algorithm for min-cost perfect
matching in the plane. In: FOCS’98: Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science. pp. 320–331.

16

