
Journal of Computational Geometry jocg.org

AN OPTIMAL ALGORITHM FOR COMPUTING ANGLE-CONSTRAINED
SPANNERS∗

Paz Carmi,† and Michiel Smid‡

Abstract. Let S be a set of n points in Rd and let t > 1 be a real number. A graph
G = (S,E) is called a t-spanner for S, if for any two points p and q in S, the shortest-path
distance in G between p and q is at most t|pq|, where |pq| denotes the Euclidean distance
between p and q. The graph G is called θ-angle-constrained, if any two distinct edges sharing
an endpoint make an angle of at least θ. It is shown that, for any θ with 0 < θ < π/3,
a θ-angle-constrained t-spanner can be computed in O(n log n) time, where t depends only
on θ. For values of θ approaching 0, we have t = 1 +O(θ).

1 Introduction

Let S be a set of n points in Rd, where d ≥ 1 is a constant, and let G = (S,E) be a
graph with vertex set S, in which the length (or weight) of every edge {p, q} is equal to the
Euclidean distance |pq| between p and q. The length of a path in G is defined to be the
sum of the lengths of the edges on the path. For any two points p and q in S, denote by
δG(p, q) the minimum length of any path in G between p and q. For a real number t > 1,
G is a t-spanner for S, if δG(p, q) ≤ t|pq| for any two points p and q of S. The smallest t
for which G is a t-spanner is called the stretch factor of G.

The problem of efficiently constructing spanners for a given point set has been well-
studied. For any set S of n points in Rd and any constant t > 1, a t-spanner for S with
O(n) edges can be computed in O(n log n) time; see Salowe [20], Vaidya [23], and Callahan
and Kosaraju [6]. Chen et al. [8] have shown an Ω(n log n) lower bound in the algebraic
computation-tree model for any spanner construction algorithm. For overviews of the main
results for geometric spanners, we refer to Eppstein [13] and Narasimhan and Smid [19].

Geometric spanners have many applications in various domains and, hence, have
received much attention in the wireless network community; see, e.g., the book [16] by Li.
For a positive real number θ, we say that the graph G = (S,E) is θ-angle-constrained, if for
any two distinct edges {p, q} and {p, r} in E, the angle ∠(pq, pr) between them is at least θ.
On page 238 in his book, Li mentions that a wireless network being an angle-constrained
spanner is a desirable property, because it reduces signal interference and receiving power

∗MS was supported by NSERC. A preliminary version of this paper appeared in the Proceedings of the
21st Annual International Symposium on Algorithms and Computation (ISAAC), Part I, Lecture Notes in
Computer Science, Vol. 6506, Springer-Verlag, Berlin, 2010, pp. 316–327.
†Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel,

carmip@cs.bgu.ac.il
‡School of Computer Science, Carleton University, Ottawa, Canada, michiel@scs.carleton.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217576713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jocg.org/


Journal of Computational Geometry jocg.org

cost when directional antennae are used, and it guarantees short paths between any pair of
nodes.

In this paper, we consider the problem of computing angle-constrained spanners for
point sets in Rd.

The “path-greedy” algorithm of Althöfer et al. [1] is a well-known algorithm for
constructing a t-spanner. Soares [22] has shown that this spanner is θ-angle-constrained,
where θ depends on t. However, the fastest known algorithm for computing the greedy
spanner has a running time of O(n2 log n); see Bose et al. [5]. In [21], Salowe presents
an “angle-greedy” algorithm that constructs an angle-constrained spanner; this algorithm,
however, also has a running time of O(n2 log n). The “gap-greedy” algorithm of Arya and
Smid [3] can be modified so that it constructs an angle-constrained spanner in O(n logd n)
time.

There are O(n log n)–time algorithms that construct, for any constant t > 1, a t-
spanner whose maximum degree is bounded by a constant; see Arya et al. [2]. Salowe [21]
showed that, for a sufficiently large value of t, a t-spanner of maximum degree 4 can be com-
puted in O(n log n) time. The degree-bound was improved to 3 by Das and Heffernan [11].
In dimension d = 2, there are O(n log n)–time algorithms that construct, for a sufficiently
large value of t, a plane t-spanner whose maximum degree is bounded by a constant; see
Bonichon et al. [4] for the currently best degree-bound of six. None of these algorithms,
however, produces a graph that is angle-constrained.

In this paper, we prove that angle-constrained spanners can be constructed in
O(n log n) time:

Theorem 1. Let S be a set of n points in Rd, where d ≥ 1 is a constant, and let θ and ε
be two real numbers such that 0 < θ < π/3 and 0 < ε < (π − 3θ)/(21 + π). In

O
((

1/ε2d
)

(log(1/ε))n log n+
(

1/ε3d
)
n
)

time, a θ-angle-constrained t-spanner for S can be computed, where

t =
1 +

√
2(1 + ε)(1− cos(θ + 7ε)) + ε2

2 cos(θ + 7ε)− 1− ε .

Note that this result depends on two parameters: The real number θ determines a
lower bound on the minimum angle between any two edges that share a vertex, the real
number ε determines the constant factor in the running time, whereas the upper bound t
on the stretch factor is a function of both parameters.

If we want a t-spanner with t approaching 1, then we take θ and ε to be equal and
let it approach 0. Using the approximations cosx ≈ 1− x2/2 and

√
1 + x ≈ 1 + x/2, which

are valid for small positive real numbers x, the upper bound t on the stretch factor becomes
1 + O(θ). Since the t-spanner is θ-angle-constrained, its maximum degree is O(1/θd−1) =
O(1/(t− 1)d−1); see Theorem 5.3.1 in [19]. This gives the following result:

Corollary 1. Let S be a set of n points in Rd, where d ≥ 1 is a constant, and let t > 1 be
a real number. In

O
((

1/(t− 1)2d
)

(log(1/(t− 1)))n log n+
(

1/(t− 1)3d
)
n
)

http://jocg.org/


Journal of Computational Geometry jocg.org

time, a t-spanner for S can be computed, whose maximum degree is O(1/(t− 1)d−1).

We remark that the previously best-known upper bound on the maximum degree
(for O(n log n)–time algorithms) was O(1/(t−1)2d−1); see Section 10.1 in [19]. Let S be the
set in Rd consisting of the origin and n− 1 points evenly spaced on the unit-sphere. Elkin
and Solomon [12] have shown that any t-spanner for S has maximum degree Ω(1/(t−1)d−1).
Therefore, the result in Corollary 1 is optimal.

1.1 Organization of the Paper

Our construction will be based on a combination of the spanner based on the well-separated
pair decomposition of Callahan and Kosaraju [6, 7] (see also Section 2) and ideas that have
been used in analyzing the Θ-graph spanner of Clarkson [9] and Keil and Gutwin [15]. As
we will show in Section 3, this combination leads to a simple and sufficient condition for a
graph being a spanner. In order to satisfy this condition, our algorithms will use simplicial
cones, which are described in Section 4. In Section 5, we will present a simple algorithm
that constructs an angle-constrained graph that satisfies the condition in Section 3; thus,
it produces an angle-constrained spanner. The running time of this algorithm is, however,
O(n logd−1 n). Moreover, it does not work in the algebraic computation-tree model. We
decided to include this non-optimal algorithm, because it is a good illustration of the general
approach that is used to obtain an angle-constrained spanner. We also believe that it makes
it easier to read and understand the final algorithm in Section 6. In that section, we will
show that the algorithm of Section 5 can be modified such that it works in the algebraic
computation-tree model and its running time is O(n log n). The main ingredient of this
final algorithm is the use of the “dumbbell trees” of Arya et al. [2].

2 Well-Separated Pairs

Our algorithms will use the well-separated pair decomposition of Callahan and Kosaraju [7].
In this section, we briefly review this decomposition.

For any point set A in Rd, denote its bounding box by R(A); thus, R(A) is the
smallest axes-parallel hyperrectangle that contains all points of A.

Let s > 0 be a real number, which we call the separation ratio. Two point sets A
and B in Rd are s-well-separated, if there exist two balls of the same radius, say, ρ, one ball
containing R(A) and the other ball containing R(B), such that the distance between the
balls is at least sρ. The following lemma follows from this definition:

Lemma 1. Let A and B be two sets of points that are s-well-separated, let a, a′, and a′′

be points in R(A), and let b, b′, and b′′ be points in R(B). Then the following inequalities
hold:

1. |aa′| ≤ (2/s)|a′′b′′|,

2. |bb′| ≤ (2/s)|a′′b′′|,

http://jocg.org/


Journal of Computational Geometry jocg.org

3. |ab| ≤ (1 + 4/s)|a′b′|.

Let S be a set of n points in Rd and let s > 0 be a real number. A well-separated pair
decomposition (WSPD) of S, with separation ratio s, is a sequence {A1, B1}, . . . , {Am, Bm}
of s-well-separated pairs of subsets of S, such that, for any two distinct points p and q in
S, there is a unique index i such that p ∈ Ai and q ∈ Bi or p ∈ Bi and q ∈ Ai. We will
refer to the number m of pairs as the size of the WSPD.

Theorem 2 (Callahan and Kosaraju [7]). Let S be a set of n points in Rd and let s > 0
be a real number. A WSPD, with separation ratio s, of size O(sdn) can be computed in
O(n log n+ sdn) time.

The algorithm of Callahan and Kosaraju uses the so-called fair-split tree, which is a
binary tree storing the points of S at its leaves. For each pair {Ai, Bi} in the WSPD, there
are two nodes u and v in this tree such that Ai is the set of all points stored in u’s subtree
and Bi is the set of all points stored in v’s subtree. It follows from their construction that
Ai = S ∩R(Ai) and Bi = S ∩R(Bi).

3 A Su�cient Condition for Being a Spanner

In this section, we introduce a general property which implies that a geometric graph is a
spanner. The property is based on a combination of the WSDP-spanner of [6] and techniques
that have been used in the analysis of the Θ-graph spanner of [9, 15].

We fix real numbers α, λ, ε, and s, such that

0 < α < π/3, λ ≥ 1, 0 < ε < 2 cosα− 1, and s > 8λ. (1)

Let S be a set of n points in Rd and consider a WSPD {A1, B1}, . . . , {Am, Bm} of S with
separation ratio s. Let G = (S,E) be a graph with vertex set S. For any i with 1 ≤ i ≤ m,
consider the following three properties P.1, P.2, and P.3, which are illustrated in Figure 1:

P.1: For every point p in Ai, the edge set E contains an edge {p, r} such that for every
point q in Bi, ∠(pq, pr) ≤ α and |pr| ≤ (1 + ε)|pq|.

P.2: For every point q in Bi, the edge set E contains an edge {q, r} such that for every
point p in Ai, ∠(qp, qr) ≤ α and |qr| ≤ (1 + ε)|pq|.

P.3: Let `i be the distance between the centers of R(Ai) and R(Bi). The edge set E
contains an edge {x, y}, such that for every point p in Ai and every point q in Bi,
both |px| and |qy| are at most (2λ/s)`i.

Informally, property P.1 states that every point p in Ai has an edge {p, r}, such that
the line segment pr takes us “in the direction of” Bi and does not take us “too far beyond”
Bi. Property P.2 is symmetric to P.1. Finally, property P.3 states that there exists an edge
{x, y}, where x is “close” to Ai and y is “close” to Bi.

http://jocg.org/


Journal of Computational Geometry jocg.org

≤ α

R(Ai)
R(Bi)

p
q

r

≤ α

R(Ai)
R(Bi)

p
q

r

R(Ai)
R(Bi)

Property P.1 Property P.2

Property P.3

p q

x y

`i

Figure 1: Illustrating properties P.1, P.2, and P.3.

In Lemma 4 below, we will prove that the graph G is a spanner, provided that for
each pair {Ai, Bi}, at least one of P.1, P.2, and P.3 holds. The proof of this lemma will use
the following two technical results.

Lemma 2. We have

1 + ε <
1 +

√
2(1 + ε)(1− cosα) + ε2

2 cosα− 1− ε .

Proof. Put a = 1 + ε. Since (a− 1)2 > 0, which is equivalent to 2a− a2 < 1, we have

2a cosα− a2 ≤ 2a− a2 < 1 < 1 +
√

2a(1− cosα) + (a− 1)2.

Using the fact (see (1)) that 2 cosα− a > 0, we obtain

a <
1 +

√
2a(1− cosα) + (a− 1)2

2 cosα− a .

Lemma 3. Let t be a real number such that

t ≥ 1 +
√

2(1 + ε)(1− cosα) + ε2

2 cosα− 1− ε . (2)

Let p, q, and r be three distinct points in Rd, such that ∠(pq, pr) ≤ α and |pr| ≤ (1+ ε)|pq|.
Then

1. |rq| < |pq| and

2. |pr|+ t|rq| ≤ t|pq|.

http://jocg.org/


Journal of Computational Geometry jocg.org

Proof. Let β = ∠(pq, pr). By the Law of Cosines, we have

|rq|2 = |pq|2 + |pr|2 − 2|pq||pr| cosβ.

Thus, |rq| < |pq| if and only if

|pr| < 2|pq| cosβ. (3)

Since |pr| ≤ (1 + ε)|pq| and cosα ≤ cosβ, the inequality in (3) holds if 1 + ε < 2 cosα.
By our choice of α and ε (see (1)), the latter inequality holds. Thus, we have shown that
|rq| < |pq|.

To prove the second claim, we have

|pr|+ t|rq| = |pr|+ t
√
|pq|2 + |pr|2 − 2|pq||pr| cosβ.

Thus, |pr|+ t|rq| ≤ t|pq| if and only if

t
√
|pq|2 + |pr|2 − 2|pq||pr| cosβ ≤ t|pq| − |pr|. (4)

By Lemma 2, we have |pr| ≤ (1 + ε)|pq| ≤ t|pq|. Thus, t|pq| − |pr| ≥ 0, implying that (4) is
equivalent to

t2
(
|pq|2 + |pr|2 − 2|pq||pr| cosβ

)
≤ (t|pq| − |pr|)2 ,

which, in turn, is equivalent to(
t2 − 1

)
|pr| ≤ 2t (t cosβ − 1) |pq|.

Since |pr| ≤ (1 + ε)|pq| and cosα ≤ cosβ, it suffices to show that(
t2 − 1

)
(1 + ε) ≤ 2t (t cosα− 1) ,

which can be rewritten as

(2 cosα− 1− ε) t2 − 2t+ (1 + ε) ≥ 0. (5)

By considering the left-hand side as a quadratic function of t, we see that the largest root of
this function is equal to the right-hand side in (2). Thus, by our choice of t, the inequality
in (5) holds.

Lemma 4. Assume that for each i with 1 ≤ i ≤ m, at least one of the properties P.1, P.2,
and P.3 is satisfied. Then for any real number t with

t ≥ max

(
1 +

√
2(1 + ε)(1− cosα) + ε2

2 cosα− 1− ε ,
s+ 8λ

s− 8λ

)
,

the graph G is a t-spanner for S.

http://jocg.org/


Journal of Computational Geometry jocg.org

Proof. We have to show that δG(p, q) ≤ t|pq| for all p and q in S. The proof is by induction
on the rank of the distance |pq| in the sorted sequence of distances in S. If p = q, then the
claim obviously holds. Let p 6= q and assume that δG(a, b) ≤ t|ab| for all a and b in S with
|ab| < |pq|. Let i be the index such that (i) p ∈ Ai and q ∈ Bi or (ii) p ∈ Bi and q ∈ Ai.
We may assume without loss of generality that (i) holds. There are three possible cases.

Case 1: Property P.1 holds for the pair {Ai, Bi}.
Consider the edge {p, r} in property P.1. By the first claim in Lemma 3, we have

|rq| < |pq|. Thus, by using the induction hypothesis, our choice for t, and the second claim
in Lemma 3, we obtain

δG(p, q) ≤ |pr|+ δG(r, q) ≤ |pr|+ t|rq| ≤ t|pq|.

Case 2: Property P.2 holds for the pair {Ai, Bi}.
This case is symmetric to Case 1.

Case 3: Property P.3 holds for the pair {Ai, Bi}.
Consider the edge {x, y} in property P.3. Using this property and Lemma 1, we

have
|px| ≤ (2λ/s)`i ≤ (2λ/s)(1 + 4/s)|pq|.

Since s > 4, we have 1 + 4/s < 2, and, therefore,

|px| < (4λ/s)|pq| < |pq|,

where the last inequality uses the fact that s > 4λ. By a symmetric argument, we have

|qy| < (4λ/s)|pq| < |pq|.

Thus, by using the induction hypothesis, we obtain

δG(p, q) ≤ δG(p, x) + |xy|+ δG(y, q) ≤ t|px|+ |xy|+ t|yq|.

Since |xy| ≤ |xp|+ |pq|+ |qy|, it follows that

δG(p, q) ≤ (t+ 1)|px|+ |pq|+ (t+ 1)|qy|
≤ (t+ 1)(4λ/s)|pq|+ |pq|+ (t+ 1)(4λ/s)|pq|.

By our choice of t, the latter quantity is at most t|pq|.

In the rest of this section, we give an informal description of our algorithm. Let θ be
a real number with 0 < θ < π/3. We choose a real number ε > 0 such that α := θ+O(ε) <
π/3. We also choose a real number λ ≥ 1. Let C be a collection of cones1 that cover Rd,
such that for each cone C in C, the apex of C is at the origin 0 and

max {∠(0x, 0y) : x, y ∈ C \ {0}} ≤ ε.
1See Section 4 for a formal definition.

http://jocg.org/


Journal of Computational Geometry jocg.org

≤ ε

R(Ai)

R(Bi)

Rλ(Bi)

c

b

r

r′

≤ α

≥ θ

θ +O(α)

θ +O(α)

c+ C c+ C

Figure 2: Illustrating the main properties of the cones C.

For any point c in Rd and any cone C in C, let c+C denote the cone with apex c obtained
by translating C, i.e.,

c+ C = {c+ x : x ∈ C}.
For each cone C in C, define C to be the union of all cones C ′ in C that make an angle of
at most θ +O(ε) with C.

Consider a WSPD {A1, B1}, . . . , {Am, Bm} of the point set S with separation ratio
s. For each i, let `i be the distance between the centers of R(Ai) and R(Bi). Let Rλ(Ai)
and Rλ(Bi) be boxes of diameter O(λ`i/s) that contain R(Ai) and R(Bi), respectively.

We choose the separation ratio s large enough such that for any point x in Rλ(Ai)
and any two points y and y′ in Rλ(Bi), ∠(xy, xy′) ≤ ε.

Consider a pair {Ai, Bi} in the WSPD. Let c be the center of R(Ai) and let C be
a cone in C such that R(Bi) overlaps c + C. Consider the corresponding cone C. The
parameters will be chosen such that the following two properties hold (refer to Figure 2):

1. For any point r 6∈ c+ C and any point b ∈ Rλ(Bi), the angle between cr and cb is at
least θ.

2. For any point r′ ∈ c+C and any point b ∈ Rλ(Bi), the angle between cr′ and cb is at
most α.

http://jocg.org/


Journal of Computational Geometry jocg.org

Assume that the pairs in the WSPD have been sorted such that `1 ≤ `2 ≤ . . . ≤ `m. The
algorithm will start with an empty edge set E. Then it processes each pair in the WSPD.
Consider the current pair {Ai, Bi}.

Let c be the center of R(Ai) and let C be a cone in C such that R(Bi) overlaps c+C.
Let c′ be the center of R(Bi) and let C ′ be a cone in C such that R(Ai) overlaps c′ + C ′.
There are three possible cases:

1. If every point p in Ai is incident on some edge {p, r} with r ∈ p + C, then property
P.1 holds for the pair {Ai, Bi} and, thus, there is no need to add an additional edge
to E.

2. If every point q in Bi is incident on some edge {q, r} with r ∈ q + C ′, then property
P.2 holds for {Ai, Bi} and, again, there is no need to add an additional edge to E.

3. Otherwise, we pick an arbitrary point x in Rλ(Ai) that is not incident on any edge
{x, r} with r ∈ x+ C and an arbitrary point y in Rλ(Bi) that is not incident on any
edge {y, r} with r ∈ y + C ′ and add the edge {x, y} to E. The addition of this edge
guarantees that property P.3 holds for the pair {Ai, Bi}. Furthermore, the new edge
{x, y} makes an angle of at least θ with all edges in the old set E that are incident on
x or y.

In the next section, we will present a detailed description of the collection C of cones
and prove the relevant properties that were mentioned above. In Sections 5 and 6, we will
use this collection of cones to present our algorithm for computing an angle-constrained
spanner.

4 Simplicial Cones

Let V be a set of d linearly independent points in Rd. The set

C =

{∑
v∈V

µvv : µv ≥ 0 for all v ∈ V
}

is called a simplicial cone with apex at the origin 0. If we define rv to be the infinite ray
emanating from the origin and going through v, then this cone is equal to the convex hull
of the rays rv, where v ranges over all elements of V . Thus, C is bounded by d hyperplanes,
each one containing the origin. The angular diameter of C is defined to be

max {∠(0x, 0y) : x, y ∈ C \ {0}} .

We fix real numbers ε and λ such that 0 < ε ≤ π/2 and λ ≥ 1. Let S be a set of n
points in Rd, and consider a WSPD {A1, B1}, . . . , {Am, Bm} of S with separation ratio s,
where

s ≥ max

(
8λ
√
d,

4λ
√
d

sin ε

)
. (6)

http://jocg.org/


Journal of Computational Geometry jocg.org

≤ ε

≤ ε

yC

0

z

≤ θ′

C

C ′

Figure 3: Since ∠(0yC , 0z) ≤ θ′ = θ + 3ε, the cone C ′ is contained in IC and, therefore, in
C.

For each i with 1 ≤ i ≤ m, define `i to be the distance between the centers of the bounding
boxes R(Ai) and R(Bi) of Ai and Bi, respectively.

For each i with 1 ≤ i ≤ m, we assume that we are given boxes Rλ(Ai) and Rλ(Bi),
both having diameter at most 2λ

√
d`i/s, that contain R(Ai) and R(Bi), respectively. Ob-

serve that, by Lemma 1, Rλ(Ai) and Rλ(Bi) exist.

Let C be a collection of simplicial cones that cover Rd, such that each cone has its
apex at the origin and angular diameter at most ε. Lukovszki [17] has shown how to obtain
such a collection C consisting of O(1/εd−1) cones in O(1/εd−1) time. Moreover, for any point
q in Rd, a cone in C that contains q can be computed in O(log |C|) = O(log(1/ε)) time. (See
also Chapter 5 in [19].)

For each cone C in C, we fix an arbitrary point yC in C \ {0}. Let θ > 0 be a real
number and define θ′ = θ + 3ε. For any cone C in C, define

IC = {C ′ ∈ C : ∃z ∈ C ′ \ {0},∠(0yC , 0z) ≤ θ′}

and
C =

⋃
C′∈IC

C ′;

see Figure 3. Observe that for any point r in C \ {0}, ∠(0yC , 0r) ≤ θ′ + ε.

In the rest of this section, we will prove the properties about the cones C, the
corresponding sets C, and the WSPD that were mentioned at the end of Section 3.

Lemma 5. Consider a pair {Ai, Bi} in the WSPD, let x be a point in the box Rλ(Ai), and
let y and y′ be points in the box Rλ(Bi). Then

1. |xy| ≥ `i/2 and

2. ∠(xy, xy′) ≤ ε.

http://jocg.org/


Journal of Computational Geometry jocg.org

H

H ′

x

c
b

b′

R(Bi)

Figure 4: An illustration of the proof of Lemma 6.

Proof. Let c and c′ be the centers of R(Ai) and R(Bi), respectively. Since both |cx| and
|c′y| are at most 2λ

√
d`i/s, we have

`i = |cc′| ≤ |cx|+ |xy|+ |yc′| ≤ 4λ
√
d`i/s+ |xy| ≤ `i/2 + |xy|.

It follows that |xy| ≥ `i/2, proving the first claim.

Since |yy′| ≤ 2λ
√
d`i/s, it follows that

sin∠(xy, xy′) ≤ |yy
′|

|xy| ≤
2λ
√
d`i/s

`i/2
=

4λ
√
d

s
≤ sin ε,

where the last inequality follows from (6). Since 0 < ε ≤ π/2, the second claim follows.

Lemma 6. Consider a pair {Ai, Bi} in the WSPD, let c be the center of the bounding box
R(Ai) of Ai, and let C be a cone in C such that R(Bi) overlaps the translated cone c+ C.
Let b be a point in the intersection of R(Bi) and c + C, and let x be a point in Rλ(Ai).
Then there exists a point b′ in the translated cone x+C such that b′ 6= x and ∠(xb, xb′) ≤ ε.

Proof. If b is contained in x+C, then we take b′ = b. In this case, the lemma clearly holds.

Assume that b is not contained in x+ C. We define b′ to be the point in x+ C for
which |bb′| is minimum; see Figure 4 for an illustration.

Let H be the hyperplane through b′ having normal b′ − b (i.e., the vector from b
to b′). Recall that, since C is a simplicial cone, the translated cone x + C is bounded by
d hyperplanes, each one containing the apex x. Since b is outside of x + C and b′ is the
point in x+ C closest to b, the hyperplane H is tangent to x+ C. In particular, (i) b and
x+C are on opposite sides of H, (ii) H contains the apex x of the cone x+C, and (iii) H
contains the line through x and b′.

We may assume without loss of generality that b is “below” H and x+C is “above”
H. Let H ′ be the hyperplane through c that is parallel to H. We observe that c + C is
above H ′. Therefore, since b is contained in c+ C, b is also above H ′.

http://jocg.org/


Journal of Computational Geometry jocg.org

x

c

R(Ai)

Rλ(Ai)

c+ C x+ C

y

R(Bi)

Rλ(Bi)

r

r′

≥ θ

≤ θ + 7ε

Figure 5: Illustrating Lemmas 7 and 8.

Thus, H and H ′ are two parallel hyperplanes such that (i) x ∈ H, (ii) c ∈ H ′, (iii)
b is between H and H ′, and (iv) b′ is the point in H that is closest to b. It follows that

|bb′| ≤ |cx| ≤ 2λ
√
d`i/s.

In particular, by our choice of s (see (6)), we have |bb′| ≤ `i/4. Since |xb| ≥ `i/2 (by
Lemma 5), it follows that b′ 6= x. To complete the proof, we have

sin∠(xb, xb′) =
|bb′|
|xb| ≤

2λ
√
d`i/s

`i/2
= 4λ

√
d/s ≤ sin ε,

where the last inequality follows from (6). Since 0 < ε ≤ π/2, it follows that ∠(xb, xb′) ≤
ε.

For the following two lemmas, refer to Figure 5.

Lemma 7. Consider a pair {Ai, Bi} in the WSPD, let c be the center of the bounding box
R(Ai) of Ai, and let C be a cone in C such that R(Bi) overlaps the translated cone c+ C.
Let x be a point in Rλ(Ai), let y be a point in Rλ(Bi), and let r be a point that is not
contained in x+ C. Then ∠(xy, xr) ≥ θ.

Proof. Consider the point yC in C \ {0} and define y′C = x + yC . Then ∠(xy′C , xr) ≥ θ′,
because otherwise, r would be contained in x+ C.

http://jocg.org/


Journal of Computational Geometry jocg.org

Let b be a point in the intersection of R(Bi) and c + C. By Lemma 6, there is a
point b′ in x + C such that b′ 6= x and ∠(xb′, xb) ≤ ε. Since y′C and b′ are in the cone
x + C, we have ∠(xy′C , xb

′) ≤ ε. Finally, since x ∈ Rλ(Ai) and b, y ∈ Rλ(Bi), we have, by
Lemma 5, ∠(xb, xy) ≤ ε.

By combining these inequalities, we obtain

θ′ ≤ ∠(xy′C , xr)

≤ ∠(xy′C , xb
′) + ∠(xb′, xb) + ∠(xb, xy) + ∠(xy, xr)

≤ 3ε+ ∠(xy, xr).

Therefore, ∠(xy, xr) ≥ θ′ − 3ε = θ.

Lemma 8. Consider a pair {Ai, Bi} in the WSPD, let c be the center of the bounding
box R(Ai) of Ai, and let C be a cone in C such that R(Bi) overlaps the translated cone
c+ C. Let x be a point in Rλ(Ai), let y be a point in Rλ(Bi), and let r′ be a point that is
contained in x+ C. Then ∠(xy, xr′) ≤ θ + 7ε.

Proof. Consider the point yC in C \ {0} and define y′C = x + yC . Since r′ is contained in
x+ C, we have ∠(xy′C , xr

′) ≤ θ′ + ε.

Let b be a point in the intersection of R(Bi) and c + C. By Lemma 6, there is a
point b′ in x+ C such that b′ 6= x and ∠(xb, xb′) ≤ ε. Since b′ and y′C are contained in the
cone x+C, we have ∠(xb′, xy′C) ≤ ε. Finally, since x ∈ Rλ(Ai) and b, y ∈ Rλ(Bi), we have,
by Lemma 5, ∠(xy, xb) ≤ ε.

By combining these inequalities, we obtain

∠(xy, xr′) ≤ ∠(xy, xb) + ∠(xb, xb′) + ∠(xb′, xy′C) + ∠(xy′c, xr
′)

≤ θ′ + 4ε

= θ + 7ε.

5 A Preliminary Algorithm

In this section, we present a preliminary algorithm that computes an angle-constrained
spanner. In Section 6, we will see that a variant of this algorithm can be implemented so
that its running time is O(n log n).

The input to the algorithm is a set S of n points in Rd and two real numbers θ and
ε such that

0 < θ < π/3 and 0 < ε < (π − 3θ)/(21 + π).

Let C be a collection of O(1/εd−1) simplicial cones of angular diameter at most ε;
see Section 4. Recall how we defined C for every cone C in C. Let

s = max

(
8
√
d,

4
√
d

sin ε
,

4√
1 + ε− 1

, 8 +
16

ε

)
.

http://jocg.org/


Journal of Computational Geometry jocg.org

Step 1: Compute a WSPD {A1, B1}, . . . , {Am, Bm} for S with separation ratio s, where
m = O(sdn). For each i with 1 ≤ i ≤ m, let `i be the distance between the centers of the
bounding boxes R(Ai) and R(Bi). Sort the pairs in the WSPD according to the values of
`i. Renumber the pairs so that `1 ≤ `2 ≤ . . . ≤ `m.

Step 2: Initialize an empty edge set E.

Step 3: Process the pairs in the WSPD in increasing order of their indices. Let {Ai, Bi}
be the current pair to be processed.

1. Let c be the center of R(Ai), let C be a cone in C such that R(Bi) overlaps the cone
c+ C, and let L(Ai) be the set of all points p in Ai such that the current edge set E
does not contain any edge {p, r} with r ∈ p+ C.

2. Let c′ be the center of R(Bi), let C ′ be a cone in C such that R(Ai) overlaps the cone
c′+C ′, and let L(Bi) be the set of all points q in Bi such that the current edge set E
does not contain any edge {q, r} with r ∈ q + C ′.

3. If both L(Ai) and L(Bi) are non-empty, choose an arbitrary point x in L(Ai) and an
arbitrary point y in L(Bi), and add the edge {x, y} to E.

Step 4: Return the graph G = (S,E).

The next two lemmas state that this algorithm returns an angle-constrained spanner.
Their proofs use the results of Sections 3 and 4. In order to show that these results can be
applied, we define α = θ + 7ε and λ = 1.

First observe that 0 < α < π/3, λ ≥ 1, and s > 8λ. We will show below that
0 < ε < 2 cosα − 1. Therefore, the conditions in (1) are satisfied and, thus, the results in
Section 3 can indeed be applied.

The line through (0, 1) and (π/3, 1/2) has equation y = 1 − 3x/(2π). For 0 < x <
π/3, the function y = cosx is above this line. Thus, the inequality 0 < ε < 2 cosα − 1 is
satisfied if we can show that 1− 3α/(2π) > (1 + ε)/2. By substituting α and rewriting the
inequality, we obtain the equivalent inequality ε < (π − 3θ)/(21 + π), which is satisfied by
our choices for ε and θ.

We define, for each i with 1 ≤ i ≤ m, Rλ(Ai) = R(Ai) and Rλ(Bi) = R(Bi). Observe
that, by Lemma 1, the diameters of R(Ai) and R(Bi) are at most 2

√
d`i/s. Finally, observe

that the restriction on the separation ratio s in (6) is satisfied. Thus, the results in Section 4
can be applied.

Lemma 9. The graph G = (S,E) that is returned by the above algorithm is θ-angle-
constrained.

Proof. Consider an edge {x, y} that is added to the edge set E during the processing of the
pair {Ai, Bi}. During the processing of this pair, the algorithm chooses a cone C in C such
that R(Bi) overlaps c + C, where c is the center of R(Ai). It follows from the algorithm
that x ∈ L(Ai) and y ∈ L(Bi) and, therefore, x ∈ Ai and y ∈ Bi. Furthermore, just before

http://jocg.org/


Journal of Computational Geometry jocg.org

{x, y} was added to E, there was no edge {x, r} in E with r ∈ x + C. It follows from
Lemma 7 that {x, y} makes an angle of at least θ with all edges incident on x that were
previously added to the edge set E. By a symmetric argument, {x, y} makes an angle of at
least θ with all edges incident on y that were previously added to E.

Lemma 10. The graph G = (S,E) that is returned by the above algorithm is a t-spanner,
where

t =
1 +

√
2(1 + ε)(1− cos(θ + 7ε)) + ε2

2 cos(θ + 7ε)− 1− ε .

Proof. Recall that α = θ + 7ε and λ = 1. We will prove that the assumption in Lemma 4
holds. Since, by our choice of s, (s+ 8)/(s− 8) ≤ 1 + ε, this, together with Lemma 2, will
imply the lemma.

Let i be an integer with 1 ≤ i ≤ m and consider the iteration in which the pair
{Ai, Bi} is processed. Consider the sets L(Ai) and L(Bi) in Step 3. There are three possible
cases.

Case 1: L(Ai) = ∅.
We will show that property P.1 holds for the pair {Ai, Bi}. Recall from the algorithm

that c is the center of R(Ai) and C is a cone in C such that R(Bi) overlaps the cone c+C.

Let p be an arbitrary point in Ai. Since L(Ai) = ∅, the edge set E contains an
edge {p, r} with r ∈ p + C. Let q be an arbitrary point in Bi. By Lemma 8, we have
∠(pq, pr) ≤ θ + 7ε = α.

It remains to show that |pr| ≤ (1+ε)|pq|. Let j be the index such that the edge {p, r}
was added to E during the processing of the pair {Aj , Bj}. Since this pair was processed
before {Ai, Bi}, we have `j ≤ `i. It follows from the algorithm that (i) p ∈ Aj and r ∈ Bj
or (ii) p ∈ Bj and r ∈ Aj . Combining this with Lemma 1, we obtain

|pr| ≤ (1 + 4/s)`j ≤ (1 + 4/s)`i ≤ (1 + 4/s)2|pq|.

By our choice of s, we have (1 + 4/s)2 ≤ 1 + ε.

Case 2: L(Bi) = ∅.
Using an argument that is symmetric to the one for Case 1, we can prove that

property P.2 holds for the pair {Ai, Bi}.

Case 3: Both L(Ai) and L(Bi) are non-empty.

We will show that property P.3 holds for the pair {Ai, Bi}. Consider the edge {x, y}
that is added to E during the processing of the pair {Ai, Bi}. Observe that x ∈ Ai and
y ∈ Bi. Since, by Lemma 1, both Ai and Bi have diameter at most (2/s)`i, property P.3 is
satisfied.

Let us consider the running time of this algorithm. First, the collection C of cones
can be computed in O(1/εd−1) time. It takes O(n log n+ sdn) time to compute the WSPD.

http://jocg.org/


Journal of Computational Geometry jocg.org

Sorting the m = O(sdn) pairs takes

O(m logm) = O(m log n) = O(sdn log n)

time, where we have used the fact that m ≤
(
n
2

)
. Thus, Step 1 takes O(sdn log n) time.

Step 2 takes O(1) time.

A naive implementation of Step 3 has a running time which is proportional to∑m
i=1(|Ai|+ |Bi|). This summation can be as large as Θ(n2); see Callahan and Kosaraju [7].

We improve the running time for Step 3 by maintaining, for each cone C in C, a range
tree RTC storing all points p of S for which the current edge set E does not contain any edge
{p, r} with r ∈ p+C. At the start of Step 3, each tree RTC stores all points of S. Consider
the iteration in Step 3 in which the pair {Ai, Bi} is processed. Deciding whether L(Ai) and
L(Bi) are both non-empty can be done by performing two range emptiness queries: One
in RTC with the bounding box R(Ai) of Ai and the other in RTC′ with the bounding box
R(Bi) of Bi. (Recall from Section 2 that Ai = S ∩ R(Ai) and Bi = S ∩ R(Bi).) If the
algorithm adds an edge {x, y} to the edge set E, then x is deleted from all range trees RTC′′

for which y ∈ x+ C ′′, and y is deleted from all range trees RTC′′ for which x ∈ y + C ′′.

Thus, it is sufficient to use range trees that support range emptiness queries and
deletions. Mehlhorn and Näher [18] have shown that both of these operations can be done
in O(logd−1 n) time. Moreover, such a range tree can be built in O(n logd−1 n) time. It
follows that the total running time for Step 3 is the sum of

• O((1/εd−1)n logd−1 n), which is the total time to build O(1/εd−1) range trees (one for
each cone),

• O(sdn logd−1 n), which is the total time for 2m = O(sdn) range emptiness queries,
and

• O((1/εd−1)n logd−1 n), which is the total time to perform n deletions in each range
tree.

Thus, the overall running time of the algorithm is

O
((
sd + (1/εd−1)

)
n logd−1 n

)
.

Note that for small values of ε, the separation ratio s is proportional to 1/ε, leading to a
running time of O((1/εd)n logd−1 n).

This result has, however, two drawbacks. First, the amount of space used by the
algorithm is O((1/εd−1)n logd−1 n). Second, the algorithms in [18] do not work in the
algebraic computation-tree model. Thus, even though the running time is O(n log n) in the
case when d = 2, the Ω(n log n) lower bound of [8] on the time to compute any spanner
does not apply.

In the next section, we show that a variant of the algorithm can be implemented to
run in optimal O(n log n) time.

http://jocg.org/


Journal of Computational Geometry jocg.org

6 An Optimal Algorithm

6.1 The Main Idea

Consider again the WSPD {A1, B1}, . . . , {Am, Bm} of the point set S. Das et al. [10] (see
also Arya et al. [2]) define, for each pair {Ai, Bi}, the dumbbell Di to be the geometric
object consisting of the bounding boxes R(Ai) and R(Bi), together with the line segment
joining the centers of these boxes. The two boxes R(Ai) and R(Bi) are called the heads
of the dumbbell. The length of the dumbbell Di is defined to be the distance between the
centers of its heads. Thus, using our previous notation, the length of Di is equal to `i.

In the algorithm of Section 5, it is crucial that the pairs {Ai, Bi} (or, equivalently,
the dumbbells Di) are processed in non-decreasing order of their lengths; see Case 1 in the
proof of Lemma 10. Assume that for any two dumbbells, either their four heads are pairwise
disjoint, or one dumbbell is completely contained in the head of the other dumbbell. Then
we can store the dumbbells at the nodes of a “nesting tree” such that, for every dumbbell
Di, all dumbbells that are completely contained in either of its heads are stored in the
subtree of the node storing Di. In particular, each dumbbell in the subtree of Di has a
length that is less than `i.

During the processing of the dumbbells, each node v for which (i) its dumbbell has
not been processed but (ii) all dumbbells in its subtree have been processed, stores O(1)
lists: Let Di be the dumbbell stored at v. Then, for every cone C in C, the node v stores
two lists LA(v, C) and LB(v, C). The list LA(v, C) stores all points p ∈ Ai such that (i) p
is in some dumbbell stored in the subtree of v and (ii) the current graph does not have any
edge {p, r} with r ∈ p+C. The list LB(v, C) stores a subset of Bi and is similarly defined.

These lists allow us to implement Step 3 of the algorithm in O(n) time, because
processing the dumbbells in sorted order implies a bottom-up traversal of the nesting tree.

Unfortunately, the dumbbells do not have this nesting property. Arya et al. [2],
however, have shown that the dumbbells can be partitioned into O(1) groups, such that the
nesting property “almost” holds for each group: Each group can be stored in a “dumbbell
tree” such that the following holds: For any dumbbell Di, all dumbbells in its subtree are
much shorter than Di and very close to Di. Thus, even though there may be a point p in
the subtree of Di that is not contained in either of its heads, p is still close to one of the
heads. As we will prove later, this implies that, by using a value of λ that is larger than 1,
we can still apply the results in Section 3.

In the next section, we briefly recall those ingredients of the dumbbell trees that are
relevant for our algorithm.

6.2 Dumbbell Trees

As mentioned above, the dumbbell trees are due to Arya et al. [2]. Since they did not
provide the full details of this construction, in particular, the dependence on the different
parameters, we will follow the exposition in Chapter 11 of [19]; in particular, refer to Section
11.9.

http://jocg.org/


Journal of Computational Geometry jocg.org

Let s > 1 be the separation ratio and consider the WSPD {A1, B1}, . . . , {Am, Bm} of
the point set S, where m = O(sdn), and the corresponding set D of dumbbells D1, . . . , Dm.
Let β and γ be real numbers such that

0 < β < min

(
1

2
,

s√
d(s+ 4)

)
, (7)

6β +
8
√
d

s
< min

(
γ,

s

s+ 4

)
, (8)

and

β

(
1 + 2γ +

2
√
d

s

)
≤ γ < 1. (9)

Let R0 be a large box that contains all dumbbells of D. We define a dummy dumbbell
D0 whose heads are R0 and a translated copy R′0 of R0 such that the distance between the
centers of R0 and R′0 (and, thus, the length `0 of D0) is equal to 1/β times the maximum
length of any dumbbell in D. In

O
(
sd(1 + γs)d(log(1/β))n log n+ s2d(1 + γs)dn

)
(10)

total time, the set D of dumbbells can be partitioned into

k = O
(
sd(1 + γs)d log(1/β)

)
groups D1, . . . , Dk, and for each group, a dumbbell tree can be constructed. For any index
` with 1 ≤ ` ≤ k, each node in the dumbbell tree T` is either

1. a dumbbell node, in which case it stores a dumbbell of the set D` ∪ {D0},

2. a head node, in which case it stores a head of some dumbbell in the set D` ∪ {D0}, or

3. a leaf, in which case it stores a point of S.

The tree T` has the following properties (see Figure 6):

1. Each dumbbell in D` ∪ {D0} is stored at a unique dumbbell node, each head of each
dumbbell in this set is stored at a unique head node, and each point of S is stored at
a unique leaf.

2. The root is a dumbbell node and stores the dummy dumbbell D0.

3. Each dumbbell node storing a dumbbell Di, has two children, which are head nodes
storing the heads of Di.

4. Each head node v storing a head R of a dumbbell Di, has dumbbell nodes and leaves
as children:

http://jocg.org/


Journal of Computational Geometry jocg.org

D

D′

D′′

D

D′ D′′

R1

R2

R1 R2

Figure 6: The dumbbell D is stored at a dumbbell node, whose children are head nodes,
storing the heads R1 and R2 of D. The dumbbell D′ is “much shorter” than D and “close”
to R1; therefore, the dumbbell node storing D′ is a child of the head node storing R1.
Similarly, the dumbbell node storing D′′ is a child of the head node storing R2.

(a) If a child is a dumbbell node storing a dumbbell Dj , then

i. `j ≤ β`i and

ii. the distance of closest approach between Dj and the head R is at most γ`j .

(b) If a child is a leaf storing a point p, then p ∈ R and p is not contained in any of
the heads that are stored in the proper subtree of v.

The following property, which is Lemma 11.8.2 in [19], will be important for us.

Lemma 11. Consider a dumbbell tree T`. Let p be a point of S, let u be the leaf in T` that
stores p, and let v be a head node in T` whose head contains p. Then u is in the subtree of
v.

In the rest of this section, we will take

s ≥ 32
√
d, β = 1/(4s), and γ = 1/2. (11)

It is not difficult to verify that the conditions in (7), (8), and (9) are satisfied.

http://jocg.org/


Journal of Computational Geometry jocg.org

The following lemma states that for every head node v, all points in the subtree of
v are “close” to the head stored at v. This will allow us to use the results of Section 3 with
the value λ = 2.

Lemma 12. Let v be a head node of a dumbbell tree, let R be the head stored at v, and
let Di be the dumbbell stored at the parent of v (thus, R is a head of Di). Let Sv be the
set of all points in S that are stored at the leaves of the subtree of v. Then

1. the diameter of Sv is at most 4`i/s,

2. the bounding box of Sv has diameter at most 4
√
d`i/s.

Proof. First observe that each point of Sv is contained either in R or in one of the heads of
one of the dumbbells that is stored in the proper subtree of v.

Consider two dumbbells D and D′ in the subtree of v such that the node storing
D is the grandparent of the node storing D′. Let ` and `′ be the lengths of D and D′,
respectively. By the properties of the dumbbell trees, `′ ≤ β` and the distance of closest
approach between D and D′ is at most γ`′. By Lemma 1, the diameter of D′ is at most
(1 + 4/s)`′. Therefore, any point of D′ is within distance

γ`′ + (1 + 4/s)`′ ≤ β(γ + 1 + 4/s)` ≤ `

of some point of D, where the last inequality follows from our choices of s, β, and γ in (11).

The argument above implies that any point in Sv is within distance

∞∑
j=1

βj`i =
β

1− β `i ≤ `i/s

of some point of the head R. Since, by Lemma 1, the diameter of R is at most 2`i/s, it
follows that the diameter of Sv is at most 4`i/s. This proves the first claim. The second
claim follows from the fact that the length of each side of the bounding box of Sv is at most
4`i/s.

6.3 The Algorithm

We are now ready to present the final algorithm. The input is a set S of n points in Rd and
real numbers θ and ε such that

0 < θ < π/3 and 0 < ε < (π − 3θ)/(21 + π).

Consider again a collection C of O(1/εd−1) simplicial cones of angular diameter at
most ε; see Section 4. Recall how we defined C for every cone C in C. Let

s = max

(
32
√
d,

8
√
d

sin ε
,

8√
1 + ε− 1

, 16 +
32

ε

)
. (12)

http://jocg.org/


Journal of Computational Geometry jocg.org

The algorithm starts by computing a WSPD {Ai, Bi}, 1 ≤ i ≤ m = O(sdn), for S
with separation ratio s, the corresponding dumbbells D1, . . . , Dm, and the dumbbell trees
T1, . . . , Tk, where k = O(s2d log s). (Note that, since s ≥ 32

√
d, we can apply the results of

Section 6.2; see (11).)

We assume that the pairs in the WSPD have been sorted so that `1 ≤ `2 ≤ . . . ≤ `m.
As in Section 5, the algorithm processes the pairs (or, equivalently, the dumbbells) in this
order. Observe that if a dumbbell has been processed, all dumbbells in its subtree have also
been processed. The algorithm will maintain the following invariant:

Invariant: Every head node v of every dumbbell tree stores lists L(v, C), where C ranges
over all cones in C. Let Sv be the set of all points in S that are stored at the leaves of v’s
subtree. If (i) the dumbbell stored at the parent of v has not been processed but (ii) all
dumbbells in the subtree of v have been processed, then, for each C in C, the list L(v, C)
stores all points p in Sv for which the current edge set E does not contain any edge {p, r}
with r ∈ p+ C.

Let p be a point in S and let C be a cone in C. Each dumbbell tree has at most one
head node v satisfying (i) and (ii), and such that p ∈ Sv. Therefore, there are at most k lists
L(·, C) that contain p. In order to avoid searching for p in such a list, we do the following:
For each point p in S and for each cone C in C, we store a list LP(p, C) of pointers to the
positions of p in all lists L(·, C) in which p occurs.

Initialization:

1. For every head node v of every dumbbell tree, and for every cone C in C, initialize an
empty list L(v, C).

2. For every point p in S and for every cone C in C, initialize an empty list LP(p, C).

3. For every leaf w of every dumbbell tree, and for every cone C in C, do the following:
Let p be the point stored at w, and let v be the parent of w. Add the point p to the
list L(v, C), and add, to LP(p, C), a pointer to the position of p in L(v, c).

4. Initialize an empty edge set E.

It is easy to verify that the invariant holds after the initialization. Now the algorithm
processes the pairs {Ai, Bi} in the WSPD in increasing order of their indices.

Processing the pair {Ai, Bi}: Let u be the dumbbell node storing Di, and let v and w
be the children of u storing the heads R(Ai) and R(Bi) of Di, respectively.

1. Let c be the center of R(Ai) and let C be a cone in C such that R(Bi) overlaps the
cone c+ C.

2. Let c′ be the center of R(Bi) and let C ′ be a cone in C such that R(Ai) overlaps the
cone c′ + C ′.

3. If both L(v, C) and L(w,C ′) are non-empty, do the following:

http://jocg.org/


Journal of Computational Geometry jocg.org

(a) Choose an arbitrary point x in L(v, C) and an arbitrary point y in L(w,C ′), and
add the edge {x, y} to E.

(b) For each cone C ′′ in C for which y ∈ x+C ′′, use the list LP(x,C ′′) to locate and
delete x from all lists L(·, C ′′) in which x occurs. Set LP(x,C ′′) to the empty
list.

(c) For each cone C ′′ in C for which x ∈ y+C ′′, use the list LP(y, C ′′) to locate and
delete y from all lists L(·, C ′′) in which y occurs. Set LP(y, C ′′) to the empty
list.

4. Let u′ be the parent of u. For each cone C ′′ in C, set L(u′, C ′′) as the concatenation of
the lists L(u′, C ′′), L(v, C ′′), and L(w,C ′′), and set L(v, C ′′) and L(w,C ′′) as empty
lists.

It is not difficult to verify that the invariant is maintained during the processing
of the pair {Ai, Bi}. After all pairs have been processed, the algorithm returns the graph
G = (S,E).

In the next two lemmas, we will prove that this graph G is an angle-constrained
spanner. The proofs are similar to those of Lemmas 9 and 10, and they use the results of
Sections 3 and 4. Define α = θ + 7ε and λ = 2. We first observe that the conditions in (1)
are satisfied and, thus, the results in Section 3 can indeed be applied.

Let i be an index with 1 ≤ i ≤ m, and consider the pair {Ai, Bi} in the WSPD. Let
v be the head node that stores the head R(Ai) of the dumbbell Di. We define Rλ(Ai) to be
the bounding box of the set Sv of points stored in the subtree of v. By Lemmas 11 and 12,
Rλ(Ai) contains R(Ai) and has diameter at most 2λ

√
d`i/s. The box Rλ(Bi) is defined in

the same way with respect to Bi. We finally observe that the restriction on the separation
ratio s in (6) is satisfied. Thus, the results of Section 4 can be applied.

Lemma 13. The graph G = (S,E) that is returned by the above algorithm is θ-angle-
constrained.

Proof. Consider an edge {x, y} that is added to the edge set E during the processing of the
pair {Ai, Bi}. Consider the head nodes v and w that store the heads R(Ai) and R(Bi) of
the dumbbell Di, respectively. The algorithm chooses cones C and C ′ in C such that R(Bi)
overlaps c + C, and R(Ai) overlaps c′ + C ′, where c and c′ are the centers of R(Ai) and
R(Bi), respectively.

It follows from the algorithm that x ∈ L(v, C) and y ∈ L(w,C ′) and, therefore,
x ∈ Sv and y ∈ Sw. Thus, x ∈ Rλ(Ai) and y ∈ Rλ(Bi). Since x ∈ L(v, C), just before
{x, y} was added to E, there was no edge {x, r} in E with r ∈ x+ C. It then follows from
Lemma 7 that {x, y} makes an angle of at least θ with all edges incident on x that were
previously added to the edge set E. By a symmetric argument, {x, y} makes an angle of at
least θ with all edges incident on y that were previously added to E.

Lemma 14. The graph G = (S,E) that is returned by the above algorithm is a t-spanner,
where

t =
1 +

√
2(1 + ε)(1− cos(θ + 7ε)) + ε2

2 cos(θ + 7ε)− 1− ε .

http://jocg.org/


Journal of Computational Geometry jocg.org

Proof. Recall that α = θ + 7ε and λ = 2. We will prove that the assumption in Lemma 4
holds. Since, by our choice of s, (s + 16)/(s − 16) ≤ 1 + ε, this, together with Lemma 2,
will imply the lemma.

Consider the iteration in which the pair {Ai, Bi} is processed, and consider the head
nodes v and w that store the heads R(Ai) and R(Bi) of the dumbbell Di, respectively. The
algorithm chooses cones C and C ′ in C such that R(Bi) overlaps c+C and R(Ai) overlaps
c′ + C ′, where c and c′ are the centers of R(Ai) and R(Bi), respectively. Consider the lists
L(v, C) and L(w,C ′). There are three possible cases.

Case 1: The list L(v, C) is empty.

We will show that property P.1 holds for the pair {Ai, Bi}. Let p be an arbitrary
point in Ai. Lemma 11 and the invariant imply that p ∈ Sv and E contains an edge {p, r}
with r ∈ p + C. Let q be an arbitrary point in Bi. Since p ∈ Rλ(Ai) and q ∈ Rλ(Bi), it
follows from Lemma 8 that ∠(pq, pr) ≤ θ + 7ε = α.

It remains to show that |pr| ≤ (1 + ε)|pq|. Let j be the index such that the edge
{p, r} was added to E during the processing of the pair {Aj , Bj}. Since this pair was
processed before {Ai, Bi}, we have `j ≤ `i. It follows from the algorithm that p ∈ Rλ(Aj)
and r ∈ Rλ(Bj) (or vice versa). Thus, using the first claim in Lemma 12, the triangle
inequality, and Lemma 1, we obtain

|pr| ≤ 4`j/s+ `j + 4`j/s

= (1 + 8/s)`j

≤ (1 + 8/s)`i

≤ (1 + 8/s)(1 + 4/s)|pq|
≤ (1 + 8/s)2|pq|
≤ (1 + ε)|pq|,

where the last inequality follows from our choice of s.

Case 2: The list L(w,C ′) is empty.

Using an argument that is symmetric to the one for Case 1, we can prove that
property P.2 holds for the pair {Ai, Bi}.

Case 3: Both lists L(v, C) and L(w,C ′) are non-empty.

Consider the edge {x, y} that is added to E during the processing of the pair {Ai, Bi}.
Then x ∈ Sv and y ∈ Sw. By Lemmas 11 and 12, Ai ⊆ Sv, Bi ⊆ Sw, and both Sv and Sw
have diameter at most (2λ/s)`i. Therefore, property P.3 is satisfied.

We analyze the running time of the algorithm. Recall from (11) that β = 1/(4s)
and γ = 1/2, and from (12) that, for small values of ε, s is proportional to 1/ε.

It follows from (10) that the total time to compute the collection C of O(1/εd−1)
cones, the WSPD, and the

k = O
(
s2d log s

)
= O

((
1/ε2d

)
log(1/ε)

)

http://jocg.org/


Journal of Computational Geometry jocg.org

dumbbell trees is
O
((

1/ε2d
)

(log(1/ε))n log n+
(

1/ε3d
)
n
)
.

The time for the initialization is

O (kn|C|) = O
((

1/ε3d−1
)

(log(1/ε))n
)
.

Consider the processing of a pair {Ai, Bi}. Steps 1 and 2, i.e., determining the cones C and
C ′, takes O(log(1/ε)) time. The time for Step 3 is proportional to |C| = O(1/εd−1) plus the
number of lists from which x and y are deleted. Obviously, each point of S can be deleted
from such a list only once. Therefore, the total time to process all m = O(sdn) pairs of the
WSPD is

O
(
m/εd−1

)
= O

((
1/ε2d−1

)
n
)
.

We conclude that the total running time of the algorithm is

O
((

1/ε2d
)

(log(1/ε))n log n+
(

1/ε3d
)
n
)
.

Thus, we have proved Theorem 1.

7 Concluding Remarks

We have presented an O(n log n)–time algorithm that constructs, for any set of n points in
Rd, a t-spanner for S, in which any two edges {p, q} and {p, r} make an angle of at least θ.
The upper bound t on the stretch factor is a function of θ; for values of θ approaching 0, the
stretch factor approaches 1. As a corollary, we have obtained an O(n log n)–time algorithm
that constructs, for any t > 1, a t-spanner of maximum degree O(1/(t − 1)d−1). Both the
running time and the upper bound on the maximum degree are optimal.

By running the path-greedy algorithm of Gudmundsson et al. [14] on the spanner of
Theorem 1, we obtain, again in O(n log n) time, an angle-constrained spanner whose weight
is proportional to a minimum spanning tree of the point set.

Our results are valid for any θ with 0 < θ < π/3. We leave it as an open problem
to decide if the same results can be obtained for values of θ that are larger than or equal
to π/3.

Acknowledgments

The authors thank Shay Solomon for communicating the lower bound in [12] on the maxi-
mum degree of spanners. The authors also thank the referees for their useful comments.

References

[1] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of
weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993.

http://jocg.org/


Journal of Computational Geometry jocg.org

[2] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners:
short, thin, and lanky. In Proceedings of the 27th ACM Symposium on the Theory of
Computing, pages 489–498, 1995.

[3] S. Arya and M. Smid. Efficient construction of a bounded-degree spanner with low
weight. Algorithmica, 17:33–54, 1997.

[4] N. Bonichon, C. Gavoille, N. Hanusse, and L. Perkovic. Plane spanners of maximum
degree six. In Proceedings of the 37th International Colloquium on Automata, Lan-
guages and Programming, volume 6198 of Lecture Notes in Computer Science, pages
19–30, Berlin, 2010. Springer-Verlag.

[5] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and M. Smid. Computing the greedy
spanner in near-quadratic time. Algorithmica, 58:711–729, 2010.

[6] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph prob-
lems in higher dimensions. In Proceedings of the 4th ACM-SIAM Symposium on Dis-
crete Algorithms, pages 291–300, 1993.

[7] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the
ACM, 42:67–90, 1995.

[8] D. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners
and approximate shortest paths. Discrete Applied Mathematics, 110:151–167, 2001.

[9] K. L. Clarkson. Approximation algorithms for shortest path motion planning. In
Proceedings of the 19th ACM Symposium on the Theory of Computing, pages 56–65,
1987.

[10] G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional
Euclidean space. In Proceedings of the 9th ACM Symposium on Computational Geom-
etry, pages 53–62, 1993.

[11] G. Das and P. J. Heffernan. Constructing degree-3 spanners with other sparseness
properties. International Journal of Foundations of Computer Science, 7:121–135,
1996.

[12] M. Elkin and S. Solomon. Steiner shallow-light trees are exponentially lighter than
spanning ones. In Proceedings of the 52nd IEEE Symposium on Foundations of Com-
puter Science, pages 373–382, 2011.

[13] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 425–461. Elsevier Science, Amsterdam,
2000.

[14] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for
constructing sparse geometric spanners. SIAM Journal on Computing, 31:1479–1500,
2002.

http://jocg.org/


Journal of Computational Geometry jocg.org

[15] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Discrete & Computational Geometry, 7:13–28, 1992.

[16] X.-Y. Li. Wireless Ad Hoc and Sensor Networks. Cambridge University Press, Cam-
bridge, UK, 2008.

[17] T. Lukovszki. New Results on Geometric Spanners and Their Applications. Ph.D. the-
sis, Department of Computer Science, University of Paderborn, Paderborn, Germany,
1999.

[18] K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica, 5:215–241,
1990.

[19] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, Cambridge, UK, 2007.

[20] J. S. Salowe. Constructing multidimensional spanner graphs. International Journal of
Computational Geometry & Applications, 1:99–107, 1991.

[21] J. S. Salowe. Euclidean spanner graphs with degree four. Discrete Applied Mathematics,
54:55–66, 1994.

[22] J. Soares. Approximating Euclidean distances by small degree graphs. Discrete &
Computational Geometry, 11:213–233, 1994.

[23] P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K
dimensions. Discrete & Computational Geometry, 6:369–381, 1991.

http://jocg.org/

	Introduction
	Organization of the Paper

	Well-Separated Pairs
	A Sufficient Condition for Being a Spanner
	Simplicial Cones
	A Preliminary Algorithm
	An Optimal Algorithm
	The Main Idea
	Dumbbell Trees
	The Algorithm

	Concluding Remarks

