
Approximating the average stretch factor of geometric graphs∗

Siu-Wing Cheng† Christian Knauer‡ Stefan Langerman§ Michiel Smid¶

Abstract

Let G be a geometric graph whose vertex set S is a set of n points in Rd. The
stretch factor of two distinct points p and q in S is the ratio of their shortest-path dis-
tance in G and their Euclidean distance. We consider the problem of approximating
the sum of all

(
n
2

)
stretch factors determined by all pairs of points in S. We show that

for paths, cycles, and trees, this sum can be approximated, within a factor of 1 + ε, in
O(npolylog(n)) time. For plane graphs, we present a (2 + ε)-approximation algorithm with
running time O(n5/3polylog(n)), and a (4 + ε)-approximation algorithm with running time
O(n3/2polylog(n)).

1 Introduction

Let S be a set of n points in Rd and let G be a connected graph with vertex set S in which the
weight of any edge (p, q) is equal to the Euclidean distance |pq| between p and q. The length
of a path in G is defined to be the sum of the weights of the edges on the path. For any two
points p and q of S, we denote by |pq|G the minimum length of any path in G between p and q.
If p 6= q, then the stretch factor of p and q is defined to be |pq|G/|pq|. If t ≥ 1 is a real number
such that each pair of distinct points in S has stretch factor at most t, then we say that G is
a t-spanner of S. The smallest value of t such that G is a t-spanner of S is called the stretch
factor of G.

The problem of computing, given any set S of points in Rd and any t > 1, a t-spanner of S,
has been well-studied; see the book by Narasimhan and Smid [8].

For the related problem of computing, or approximating, the stretch factor of a given geo-
metric graph, much less is known. Narasimhan and Smid [7] show that the problem of approx-
imating the stretch factor of any geometric graph on n vertices can be reduced to performing
approximate shortest-path queries for O(n) pairs of points. Agarwal et al. [1] show that the ex-
act stretch factor of a geometric path, tree, and cycle on n points in the plane can be computed
in O(n log n), O(n log2 n), and O(n

√
n log n) expected time, respectively. They also present

algorithms for the three-dimensional versions of these problems. Klein et al. [6] consider the
problem of reporting all pairs of vertices whose stretch factor is at least some given value t;
they present efficient algorithms for the cases when the input graph is a geometric path, tree,
or cycle.

Given a method to compute the stretch factor of a graph, a natural question is whether
the graph connectivity can be adjusted to lower the stretch factor. For instance, this would
be helpful in reducing the maximum commute time in a road network and related problems

∗Research of Cheng was supported by Research Grant Council, Hong Kong, China (project no. 612107).
Research of Smid was supported by NSERC.

†Department of Computer Science and Engineering, HKUST, Hong Kong
‡Institute of Computer Science, Universität Bayreuth
§Département d’Informatique, Université Libre de Bruxelles. Mâıtre de Recherches du F.R.S.-FNRS.
¶School of Computer Science, Carleton University, Ottawa

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217576708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

have been considered (e.g. [4]). However, the stretch factor can be high just because the stretch
factors of a few pairs of points are high while the stretch factors of the other pairs are low.
A more robust measure is the average stretch factor which we define as follows. Let SSF (G)
denote the sum of all stretch factors, i.e.,

SSF (G) =
∑

{p,q}∈P2(S)

|pq|G
|pq|

,

where P2(S) denotes the set of all
(
n
2

)
unordered pairs of distinct elements in S. The value

SSF (G)/
(
n
2

)
is equal to the average stretch factor of the graph G.

To the best of our knowledge, even for a simple graph G such as a path, it is not known
if SSF (G) can be computed in o(n2) time. We remark that Wulff-Nilsen shows in [9] that
the related problem of computing the Wiener index (i.e.,

∑
{p,q}∈P2(S) |pq|G) of an unweighted

planar graph can be solved in O(n2 log log n/ log n) time.
In this paper, we consider the problem of approximating SSF (G). We start in Section 2 by

showing that, not surprisingly, the well-separated pair decomposition (WSPD) of Callahan and
Kosaraju [3] can be used to approximate SSF (G). In Section 3, we apply this general approach
to compute a (1 + ε)-approximation to SSF (G) in O(n log2 n) time, for the cases when G is a
path or a cycle. In Section 4, we modify the general approach of Section 2 and show how to
compute a (1 + ε)-approximation to SSF (G) in O(n log2 n/ log log n) time for the case when
G is a tree. Finally, in Section 5, we consider plane graphs. We further modify the general
approach of Section 2 and obtain a (2 + ε)-approximation to SSF (G) in O((n log n)5/3) time,
and a (4 + ε)-approximation in O(n3/2 log2 n) time.

2 The general approach using well-separated pairs

Let s > 0 be a real number, called the separation ratio. We say that two point sets A and B
in Rd are well-separated with respect to s, if there exist two balls, one containing A and the
other containing B, of the same radius, say ρ, which are at least sρ apart. If A and B are
well-separated, a and a′ are points in A, and b and b′ are points in B, then it is easy to verify
that

|ab| ≤ (1 + 4/s)|a′b′|. (1)

Let S be a set of n points in Rd. A well-separated pair decomposition (WSPD) of S is a
sequence {A1, B1}, . . . , {Am, Bm} of well-separated pairs of subsets of S, such that, for any two
distinct points p and q in S, there is a unique index i such that p ∈ Ai and q ∈ Bi or p ∈ Bi

and q ∈ Ai.
Callahan and Kosaraju [3] have shown that a WSPD can be obtained from the split-tree

T (S) of the point set S. This tree is defined as follows: If n = 1, then T (S) consists of one
single node storing the only element of S. Assume that n ≥ 2. Consider the bounding box B of
S. By splitting the longest edge of B into two parts of equal size, we obtain two boxes B1 and
B2. The split tree T (S) consists of a root having two subtrees, which are recursively defined
split trees T (S1) and T (S2) for the point sets S1 = S ∩ B1 and S2 = S ∩ B2, respectively.

Given a separation ratio s > 0, the split tree T (S) can be used to compute a WSPD of S,
where each subset Ai (and each subset Bi) corresponds to a node v of the split-tree: Ai equals
the set Sv of all points that are stored at the leaves of the subtree rooted at v.

Theorem 1 (Callahan and Kosaraju [3]) Let S be a set of n points in Rd and let s >
0 be a real constant. In O(n log n) time, the split tree T (S) and a corresponding WSPD

2

{A1, B1}, . . . , {Am, Bm} of S can be computed, such that m = O(n) and
∑m

i=1 min(|Ai|, |Bi|) =
O(n log n).

If G is a connected graph with vertex set S, then

SSF (G) =
m∑

i=1

∑
p∈Ai,q∈Bi

|pq|G
|pq|

.

Let s = 4/ε. By (1), all distances |pq|, where p ∈ Ai and q ∈ Bi, are within a factor of 1 + ε of
each other. For each i, choose an arbitrary point xi in Ai and an arbitrary point yi in Bi, and
consider the summation

SSF ′(G) =
m∑

i=1

1
|xiyi|

∑
p∈Ai,q∈Bi

|pq|G.

Then 1/(1+ ε) ≤ SSF ′(G)/SSF (G) ≤ 1+ ε. In order to compute SSF ′(G), we need to compute
the values ∑

p∈Ai,q∈Bi

|pq|G. (2)

3 Paths and cycles

Assume that the graph G is a path (p1, p2, . . . , pn) on the points of the set S. For two indices
i and j with 1 ≤ i < j ≤ n, we say that pi is to the left of pj in G, and pj is to the right of pi

in G.
Before we present the algorithm that approximates SSF (G), we describe the main idea.

Consider a pair {Ai, Bi} of the WSPD. Let p be an arbitrary point in Ai, let b1, . . . , bk be the
points in Bi that are to the left of p in G, and let b′1, . . . , b

′
k′ be the points in Bi that are to the

right of p in G. Then

∑
q∈Bi

|pq|G = (k − k′)|p1p|G +
k′∑

j=1

|p1b
′
j |G −

k∑
j=1

|p1bj |G. (3)

Let v be the node in the split tree such that Bi = Sv, i.e., Bi is the subset of S that is stored
in the subtree rooted at v. Assume that we have a balanced binary search tree Tv storing the
points of Sv at its leaves, sorted according to their indices in the path G. Also assume that
each node u of this tree stores (i) the number of points stored in the subtree of u and (ii)
the sum of the path lengths |p1q|G, where q ranges over all points stored in the subtree of u.
Then by searching in Tv for p, we obtain, in O(log |Bi|) = O(log n) time, (i) a partition, into
O(log n) canonical subsets, of all points in Bi that are to the left of p in G, and (ii) a partition,
into O(log n) canonical subsets, of all points in Bi that are to the right of p in G. From the
information stored at the canonical nodes, we can compute the summation in (3) in O(log n)
time.

Based on this discussion, we obtain the following algorithm.

Step 1: Compute the split tree T (S) and the corresponding WSPD {A1, B1}, . . . , {Am, Bm}
of Theorem 1, with separation ratio s = 4/ε. Assume that |Ai| ≤ |Bi| for all 1 ≤ i ≤ m.

Step 2: Traverse the path G and store with each point pi (1 ≤ i ≤ n) the path length |p1pi|G.

Step 3: Traverse the split tree T (S) in post-order, maintaining the following invariant: After
having just visited node v, this node contains a pointer to the above data structure Tv storing
the set Sv. Let v be the node of T (S) that is currently visited.

3

1. If v is a leaf of T (S), then initialize Tv such that it contains only the point stored at v.
Otherwise, let v1 and v2 be the two children of v. If the size of Tv1 is at most that of Tv2 ,
then insert all elements of Tv1 into Tv2 , discard Tv1 , and rename Tv2 as Tv. Otherwise,
insert all elements of Tv2 into Tv1 , discard Tv2 , and rename Tv1 as Tv.

2. For each pair {Ai, Bi} in the WSPD for which Bi = Sv, do the following: Let w be the
node of the split tree such that Ai = Sw. Traverse the subtree rooted at w and for each
point p stored in this subtree, use Tv to compute the value in (3). The sum of all these
values (over all p in Ai) gives the summation in (2).

Theorem 2 Let G be a path on n points in Rd and let ε > 0 be a real constant. In O(n log2 n)
time, we can compute a real number that lies between SSF (G)/(1 + ε) and (1 + ε)SSF (G).

By using a slight modification of the above algorithm, we can prove the following result:

Theorem 3 Let G be a cycle on n points in Rd and let ε > 0 be a real constant. In O(n log2 n)
time, we can compute a real number that lies between SSF (G)/(1 + ε) and (1 + ε)SSF (G).

4 Trees

Let S be a set of n points in Rd and let G be a spanning tree of S. Assume that n ≥ 3. Let
c be a centroid of G, i.e., c is a node whose removal from G (together with its incident edges)
results in two forests G′

1 and G′
2, each one having size at most 2n/3. It is well known that

such a centroid always exists and can be computed in O(n) time. Let G1 be the tree obtained
by adding c to G′

1, together with the edges of G between c and G′
1. Define G2 similarly with

respect to G′
2. We have

SSF (G) = SSF (G1) + SSF (G2) +
∑
p∈G′

1

∑
q∈G′

2

|pq|G
|pq|

. (4)

We will show that the summation in (4) can be approximated in O(n log n) time. Therefore,
by recursively approximating the values SSF (G1) and SSF (G2), we obtain an approximation
of SSF (G) in O(n log2 n) time.

We color each point of G′
1 red and each point of G′

2 blue. The centroid c does not get a
color. Consider the split tree T (S) and the corresponding WSPD of Theorem 1, where s = 4/ε.
For each i, let Ar

i and Ab
i be the set of red and blue points in Ai, respectively, and let Br

i and
Bb

i be the set of red and blue points in Bi, respectively. Then (4) is equal to

m∑
i=1

 ∑
p∈Ar

i

∑
q∈Bb

i

|pq|G
|pq|

+
∑
p∈Br

i

∑
q∈Ab

i

|pq|G
|pq|

 .

For each i, fix xi ∈ Ai and yi ∈ Bi. Then

m∑
i=1

 1
|xiyi|

 ∑
p∈Ar

i

∑
q∈Bb

i

|pq|G +
∑
p∈Br

i

∑
q∈Ab

i

|pq|G

approximates the summation in (4) within a factor of 1 + ε. Observe that∑

p∈Ar
i

∑
q∈Bb

i

|pq|G = |Bb
i |

∑
p∈Ar

i

|pc|G + |Ar
i |

∑
q∈Bb

i

|cq|G

4

and ∑
p∈Br

i

∑
q∈Ab

i

|pq|G = |Ab
i |

∑
p∈Br

i

|pc|G + |Br
i |

∑
q∈Ab

i

|cq|G.

This leads to the following algorithm for approximating the summation in (4):
Traverse the tree G in postorder (assuming it is rooted at the centroid c) and store with

each point p the path length |pc|G.
Traverse the split tree T (S) in postorder and store with each node v the number of red

points in Sv and the number of blue points in Sv.
For each leaf v of the split tree T (S), do the following: Let p be the point stored at v. If

p is red, then set redsum(v) = |pc|G and bluesum(v) = 0. If p is blue, then set redsum(v) = 0
and bluesum(v) = |pc|G. If p is the centroid, then set redsum(v) = 0 and bluesum(v) = 0.

Traverse the split tree T (S) in postorder. For each internal v, with children v1 and v2, set
redsum(v) = redsum(v1) + redsum(v2) and bluesum(v) = bluesum(v1) + bluesum(v2).

Consider a pair {Ai, Bi} in the WSPD, and let v and w be the nodes in the split tree such that
Ai = Sv and Bi = Sw. Node v stores the values |Ar

i | and |Ab
i |. Also, the values of redsum(v)

and bluesum(v) are equal to
∑

p∈Ar
i
|pc|G and

∑
q∈Ab

i
|cq|G, respectively. Similarly, from the

information stored at w, we obtain the values of |Br
i |, |Bb

i |,
∑

p∈Br
i
|pc|G, and

∑
q∈Bb

i
|cq|G.

Theorem 4 Let G be a tree on n points in Rd and let ε > 0 be a real constant. In O(n log2 n)
time, we can compute a real number that lies between SSF (G)/(1 + ε) and (1 + ε)SSF (G).

We now show how the running time can be improved by a doubly-logarithmic factor. Con-
sider the recursion tree of the above divide-and-conquer algorithm, and consider a node in this
tree. Let S′ be the set of points in S that are involved in the call at this node, and let n′ be
the size of S′. The total time spent at this node is equal to the sum of (i) O(n′ log n′), which
is the time to compute the split tree and the WSPD of S′, and (ii) O(n′), which is the time
for the rest of the algorithm at this node of the recursion tree. Assume that, at this node, we
do not compute the split tree and the WSPD of S′, but use the split tree and the WSPD for
the entire point set S. Consider a centroid c′ of the subtree of G that corresponds to S′. This
centroid splits the set S′ into two subsets, which we color red and blue, whereas the centroid c′

does not get a color. Also, no point of S \ S′ gets a color. Now we can use the split tree T (S)
to compute an approximation of the summation in (4) in O(n) time.

Let h be a positive integer such that h = O(log n). By using the split tree T (S) and the
corresponding WSPD of the entire set S at the levels 0, 1, . . . , h − 1 of the recursion tree, the
total time spent at these levels is O(n log n+2hn). At each node at level h of the recursion tree,
we compute the split tree and the WSPD for the points involved in the recursive call at this
node. In this way, the total time of our algorithm is O((n log n + 2hn) log n

h). For h = log log n,
this gives the following result:

Theorem 5 Let G be a tree on n points in Rd and let ε > 0 be a real constant. In O(n log2 n/ log log n)
time, we can compute a real number that lies between SSF (G)/(1 + ε) and (1 + ε)SSF (G).

5 Plane graphs

Let G be a plane connected graph whose vertex set is a set S of n points in Rd, and let C be
a separator of G. That is, C is a subset of the point set S, such that the following is true: By
removing the points of C (together with their incident edges) from G, we obtain two graphs,
with vertex sets, say, A and B, such that G does not contain any edge joining some point of A
with some point of B.

5

For any point p in S \C, let p′ be a point of C for which |pp′|G is minimum. The following
lemma appears in Arikati et al. [2].

Lemma 1 Let p be a point in A, let q be a point in B, and assume that |pp′|G ≤ |qq′|G. Then

|pp′|G + |p′q|G ≤ 2|pq|G.

The following notions were introduced by Frederickson [5]. A division of G is a sequence
R1, . . . , Rk of subsets of S (called regions), for some k ≥ 1, such that ∪k

i=1Ri = S and for each
i and each p in Ri,

1. either p is an interior point of Ri, i.e., (i) p is not contained in any other subset in the
sequence and (ii) for every edge (p, q) in G, the point q also belongs to Ri

2. or p is a boundary point of Ri, i.e., p is contained in at least one other subset in the
sequence.

A division R1, . . . , Rk is called an r-division, if k = O(n/r) and each region Ri contains at
most r points and O(

√
r) boundary points. Frederickson [5] has shown that such an r-division

can be computed in O(n log n) time. The total number of boundary points in an r-division is
k ·O(

√
r) = O(n/

√
r). Also, for any i, the boundary points of Ri form a separator of the graph

G.

5.1 Approximating SSF (G) within 2 + ε

Consider an r-division R1, . . . , Rk of G. It partitions the pairs in P2(S) into two groups: The
pair {p, q} is of type 1, if p and q belong to the same region; otherwise, {p, q} is of type 2. For
j ∈ {1, 2}, we define

SSF j(G) =
∑

{p,q} of type j

|pq|G
|pq|

.

Then SSF (G) = SSF 1(G)+SSF 2(G). We start by showing how a 2-approximation of SSF 1(G)
can be computed. Using the algorithm of [2], we preprocess the graph G in O(n3/2) time, after
which, for any two points p and q, a 2-approximation of |pq|G can be computed in O(log n)
time. Since the total number of pairs of type 1 is at most kr2 = O(rn), this leads to a 2-
approximation of SSF 1(G) in O(n3/2 + rn log n) time. In the rest of this section, we will show
how to compute a (2 + ε)-approximation of SSF 2(G) in time

O

(
n2 log2 n√

r

)
. (5)

By choosing r = (n log n)2/3, we obtain the following result:

Theorem 6 Let G be a plane graph on n points in Rd and let ε > 0 be a real constant.
In O((n log n)5/3) time, we can compute a real number that lies between SSF (G)/(2 + ε) and
(2 + ε)SSF (G).

A (2 + ε)-approximation of SSF 2(G) is obtained in the following way. For each boundary
point p, we run Dijkstra’s shortest-path algorithm with source p. In this way, we obtain the
shortest-path lengths for all pairs p, q of points, where p ranges over all boundary points and q
ranges over all points of S. We store the values |pq|G in a table so that we can access any one

6

of them in O(1) time. This part of the algorithm takes O((n2 log n)/
√

r) time, which is within
the time bound in (5).

Nest, we compute the split tree T (S) and the corresponding WSPD {A1, B1}, . . . , {Am, Bm}
of Theorem 1, with separation ratio s = 8/ε. Assume that |Ai| ≤ |Bi| for all 1 ≤ i ≤ m.

We repeat the following for each region R in the r-division R1, . . . , Rk. We color each point
of R red and color each point of S \R blue. For each i with 1 ≤ i ≤ m, let Ar

i and Ab
i be the set

of red and blue points in Ai, respectively, and let Br
i and Bb

i be the set of red and blue points
in Bi, respectively.

As in Section 4, in order to obtain a (2 + ε)-approximation of SSF 2(G), it is sufficient to
compute a 2-approximation of the values∑

p∈Ar
i

∑
q∈Bb

i

|pq|G and
∑
p∈Br

i

∑
q∈Ab

i

|pq|G, (6)

for all i with 1 ≤ i ≤ m. We will show how a 2-approximation of the first summation in (6)
can be computed. The second summation can be approximated in a symmetric way.

Let b1, . . . , b` be the boundary points of the region R. Recall that ` = O(
√

r). For each
point p of S, let p′ be a point in {b1, . . . , b`} for which |pp′|G is minimum. Observe that, since
we have run Dijkstra’s algorithm from every boundary point, each point p “knows” the closest
boundary point p′.

Consider a pair {Ai, Bi} in the WSPD, let v be the node in the split tree T (S) such that
Bi = Sv, and let Sb

v be the set of blue points in Sv. Assume that v stores the following
information:

1. Balanced binary search trees Tv,j for 1 ≤ j ≤ `. Each such tree Tv,j stores the points q of
Sb

v at its leaves, sorted according to the values |qq′|G. Moreover, each node u in this tree
stores

(a) the number of leaves in the subtree of u and

(b) the sum of the values |qbj |G, where q ranges over all points in the substree of u.

2. Balanced binary search trees T ′
v,j for 1 ≤ j ≤ `. Each such tree T ′

v,j stores the points q of
{q ∈ Sb

v : q′ = bj} at its leaves, sorted according to the values |qq′|G. Each node u in this
tree stores

(a) the number of leaves in the subtree of u and

(b) the sum of the values |qbj |G, where q ranges over all points in the substree of u.

Let us see how these trees can be used to obtain a 2-approximation of the summation in (6).
Let p be a point in Ar

i and let q be a point in Bb
i .

1. Assume that |pp′|G ≤ |qq′|G. By Lemma 1, |pp′|G + |p′q|G is a 2-approximation of |pq|G.
Recall that we know the value |pp′|G. If j is the index such that p′ = bj , then the value
|p′q|G = |bjq|G is stored in the tree Tv,j .

2. Assume that |pp′|G > |qq′|G. By Lemma 1, |qq′|G+|q′p|G is a 2-approximation of |pq|G. We
know the value |q′p|G. If j′ is the index such that q′ = bj′ , then the value |qq′|G = |qbj′ |G
is stored in the tree Tv,j′ .

Based on this, we do the following, for each point p in Ar
i : Let j be the index such that p′ = bj .

By searching in Tv,j with the value |pp′|G, we compute, in O(log n) time,

7

1. the number N of points q in Bb
i for which |pp′|G ≤ |qq′|G,

2. the summation
X =

∑
q∈Bb

i ,|pp′|G≤|qq′|G

|p′q|G,

3. the value N |pp′|G + X.

Observe that
N |pp′|G + X =

∑
q∈Bb

i ,|pp′|G≤|qq′|G

(|pp′|G + |p′q|G).

Next, for all j′ with 1 ≤ j′ ≤ `, by searching in the trees T ′
v,j′ with the value |pp′|G, we compute,

in O(` log n) = O(
√

r log n) total time,

1. the numbers Nj′ of points q in {q ∈ Bb
i : q′ = bj′} for which |pp′|G > |qq′|G,

2. the summations
Xj′ =

∑
q∈Bb

i ,q′=bj′ ,|pp′|G>|qq′|G

|qq′|G,

3. the summation ∑̀
j′=1

(Nj′ |pq′|G + Xj′).

Observe that this last summation is equal to∑
q∈Bb

i ,|pp′|G>|qq′|G

(|pq′|G + |q′q|G).

Thus, for a fixed point p in Ar
i , we have computed, in O(

√
r log n) time, a 2-approximation

of the summation
∑

q∈Bb
i
|pq|G. Therefore, in O(|Ar

i |
√

r log n) time, we have computed a 2-
approximation of the summation in (6). (Recall that this assumes that we have the trees Tv,j

and T ′
v,j for all j with 1 ≤ j ≤ `.)

By traversing the split tree T (S) in post-order, as we did in Step 3 of the algorithm in
Section 3, we obtain 2-approximations of the summations in (6), for all i with 1 ≤ i ≤ m, in
total time which is the sum of

1. O(
√

rn log2 n): This is the total time to compute all binary search trees Tv,j and T ′
v,j .

2. O(
√

rn log2 n): This is the total time to search in all these binary search trees.

Recall that we repeat this algorithm for each of the O(n/r) regions R in the r-division. It
follows that the total time used to compute a (2 + ε)-approximation of SSF 2(G) is within the
time bound in (5). This completes the proof of Theorem 6.

5.2 Approximating SSF (G) within 4 + ε

In this section, we improve the running time in Theorem 6, while increasing the approximation
factor to 4 + ε. Since the algorithm is recursive, a generic call solves a more general problem.

Let R be a subset of S, which we can think of to be a region in a division of the graph G.
Recall that a point p of R is an interior point, if for every edge (p, q) in G, the point q is also
in R. All other points of R are boundary points. We denote the sets of interior and boundary

8

points of R by int(R) and ∂R, respectively. The subgraph of G that is induced by R is denoted
by G[R].

The input for the algorithm consists of a subset R of S such that |int(R)| = r and |∂R| =
O(
√

r). The output will be a real number that is between SSF (R)/(4 + ε) and (4 + ε)SSF (R),
where

SSF (R) =
∑

{p,q}∈P2(int(R))

|pq|G
|pq|

.

By running this algorithm with R = S (in which case int(R) = S and ∂R = ∅), we obtain a
(4 + ε)-approximation of SSF (G).

We assume that the entire graph G has been preprocessed using the algorithm of Arikati et
al. [2]. Recall that this preprocessing takes O(n3/2) time, after which, for any two points p and
q, a 2-approximation of |pq|G can be computed in O(log n) time.

If r is less than some constant, we use the data structure of [2] to compute a 2-approximation
of SSF (R) in O(log n) time. For a large value of r, the algorithm does the following.

Let r′ = r/2. Use the algorithm of Frederickson [5] to compute an r′-division of the graph
G[R]. Since G[R] has size O(r), this takes O(r log r) time and produces k = O(r/r′) = O(1)
regions, each one having size at most r′ = r/2 and O(

√
r′) = O(

√
r) boundary points. Thus,

the total number of boundary points in the r′-division is O(
√

r).
The r′-division partitions the pairs in P2(int(R)) into three groups:

1. The pair {p, q} is of type 0, if at least one of p and q is a boundary point of some region.

2. The pair {p, q} is of type 1, if p and q are interior points of the same region.

3. The pair {p, q} is of type 2, if p and q are interior points of different regions.

For j ∈ {0, 1, 2}, we define

SSF j(R) =
∑

{p,q} of type j

|pq|G
|pq|

,

so that
SSF (R) = SSF 0(R) + SSF 1(R) + SSF 2(R).

We obtain a 2-approximation of SSF 0(R) by querying the data structure of [2] with each
pair of type 0. Since the number of such pairs is O(r3/2), this takes time

O
(
r3/2 log n

)
. (7)

We obtain a (4 + ε)-approximation of SSF 1(R), by running the algorithm recursively on
each region in the r′-division. Recall that k denotes the number of regions in the r′-division.
For 1 ≤ i ≤ k, we denote by ri the number of interior points of the i-th region and by T (ri)
the running time of the recursive call on the i-th region. Then, the total time to approximate
SSF 1(R) is

O(r) +
k∑

i=1

T (ri). (8)

Observe that r1 + . . . + rk ≤ r and each value ri is at most r/2.
It remains to show how to approximate SSF 2(R). We first do the following for each region

R′ in the r′-division. Consider the graph G[R′]. We add a dummy vertex and connect it by
an edge to every point of ∂R′; each such edge gets weight, say, one. Then we run Dijkstra’s
algorithm on the resulting graph with the source being the dummy vertex. This gives, for

9

each point p in int(R′) a point p′ of ∂R′ such that |pp′|G[R′] is minimum, together with the
shortest-path length |pp′|G[R′]. Observe that |pp′|G[R′] = |pp′|G. Since the number of regions R′

is O(1) and each one has size O(r), this part of the algorithm takes O(r log r) time.
The value of SSF 2(R) is approximated, by doing the following for each pair R′, R′′ of distinct

regions in the r′-division. We compute the split tree and the corresponding WSPD {A1, B1},
. . . , {Am, Bm} of Theorem 1 for the point set int(R′)∪ int(R′′), with separation ratio s = 16/ε.
We color the points of int(R′) and int(R′′) red and blue, respectively. For each pair {Ai, Bi},
we define Ar

i , Ab
i , Br

i , and Bb
i as in Section 5.1. As before, we want to approximate the values∑

p∈Ar
i

∑
q∈Bb

i

|pq|G and
∑
p∈Br

i

∑
q∈Ab

i

|pq|G,

for all i with 1 ≤ i ≤ m.
Recall that, during the approximation of SSF 0(R), we have computed a 2-approximation

δ(b, p) of |bp|G, for each b in ∂R′ ∪ ∂R′′ and each p in int(R′) ∪ int(R′′). Consider a point p in
int(R′) and a point q in int(R′′). Since any path in G between p and q passes through a point
of ∂R′ ∪ ∂R′′, we can use Lemma 1 to approximate |pq|G:

1. If |pp′|G ≤ |qq′|G, then |pp′|G + δ(p′, q) is a 4-approximation of |pq|G.

2. If |pp′|G > |qq′|G, then |qq′|G + δ(q′, p) is a 4-approximation of |pq|G.

Let b1, . . . , b` be the elements of ∂R′ ∪ ∂R′′. We now use the binary search trees Tv,j and
T ′

v,j as in Section 5.1. The only difference is that each node u in any of these trees stores the
sum of the values δ(bj , q), where q ranges over all points in the substree of u. By using the same
algorithm as in Section 5.1, we obtain 4-approximations of the summations

∑
p∈Ar

i

∑
q∈Bb

i
|pq|G

and
∑

p∈Br
i

∑
q∈Ab

i
|pq|G in total time O(r3/2 log2 r).

Thus, since the number of pairs of distinct regions is O(1), the total time for computing a
(4 + ε)-approximation of SSF 2(R) is

O
(
r3/2 log2 r

)
. (9)

If we denote the total running time of the algorithm by T (r), then it follows from (7), (8),
and (9) that

T (r) = O
(
r3/2(log n + log2 r)

)
+

k∑
i=1

T (ri).

Recall that r1 + . . .+rk ≤ r and each value ri is at most r/2. A straightforward inductive proof
shows that

T (r) = O
(
r3/2(log n + log2 r)

)
.

As mentioned before, we obtain a (4 + ε)-approximation of SSF (G), by running this algorithm
with R = S. We have proved the following result:

Theorem 7 Let G be a plane graph on n points in Rd and let ε > 0 be a real constant.
In O(n3/2 log2 n) time, we can compute a real number that lies between SSF (G)/(4 + ε) and
(4 + ε)SSF (G).

10

References

[1] P. K. Agarwal, R. Klein, C. Knauer, S. Langerman, P. Morin, M. Sharir, and M. Soss.
Computing the detour and spanning ratio of paths, trees, and cycles in 2D and 3D. Discrete
& Computational Geometry, 39:17–37, 2008.

[2] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar spanners
and approximate shortest path queries among obstacles in the plane. In ESA, volume 1136
of LNCS, pages 514–528. Springer-Verlag, 1996.

[3] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42:67–90, 1995.

[4] M. Farshi, P. Giannopoulos and J. Gudmundsson. Improving the stretch factor of a geo-
metric graph by edge augmentation. SIAM Journal on Computing, 38:226–240, 2008.

[5] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16:1004–1022, 1987.

[6] R. Klein, C. Knauer, G. Narasimhan, and M. Smid. On the dilation spectrum of paths,
cycles, and trees. Computational Geometry: Theory and Applications, 42:923–933, 2009.

[7] G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean graphs. SIAM
Journal on Computing, 30:978–989, 2000.

[8] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press,
Cambridge, UK, 2007.

[9] C. Wulff-Nilsen. Wiener index and diameter of a planar graph in subquadratic time. In
EuroCG, pages 25–28, 2009.

11

