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Abstract. Consider a line segment R consisting of n facilities. Each
facility is a point on R and it needs to be assigned exactly one of the
colors from a given palette of c colors. At an instant of time only the
facilities of one particular color are ‘active’ and all other facilities are
‘dormant’. For the set of facilities of a particular color, we compute the
one dimensional Voronoi diagram, and find the cell, i.e, a segment of
maximum length. The users are assumed to be uniformly distributed over
R and they travel to the nearest among the facilities of that particular
color that is active. Our objective is to assign colors to the facilities in
such a way that the length of the longest cell is minimized. We solve
this optimization problem for various values of n and c. We propose an
optimal coloring scheme for the number of facilities n being a multiple
of c as well as for the general case where n is not a multiple of c. When
n is a multiple of c, we compute an optimal scheme in Θ(n) time. For
the general case, we propose a coloring scheme that returns the optimal
in O(n2 logn) time.

1 Introduction

In this paper we study a facility location problem. There are n facilities to be
distributed between c classes of service providers. Each class of service provider
should be assigned at least one facility and no facility should be assigned to more
than one class. Moreover, when one class of service provider is active, all other
classes are dormant. Our objective is to partition the set of facilities in c classes
such that the users are served as equitably as possible, i.e., the maximum length
amongst the regions covered by any facility of any class is minimized.

In the area of wireless sensor networks, an effective approach for energy con-
servation is scheduling sleep intervals for sensors [1]. One can assign a color to
each sensor, each color representing a set of sensors which would be active at
a given time when the rest are in the sleep mode. Here the objective would be
to color the nodes such that the maximum area covered by any active node is
minimized. Lin et al [2] have explored the problem of maximizing the lifetime
of wireless sensor networks. Their study is based on finding the maximum num-
ber of disjoint connected covers that satisfy both sensing coverage and network
connectivity.
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Here we study the MinVor problem. Let nη be the number of facilities of
color class η, where η = 0, . . . , c − 1 and n = Σc−1

η=0nη. For each η, we draw the
Voronoi diagram considering the corresponding nη facilities which represents the
active sensors while the remaining n−nη facilities represent the sensors in sleep
mode. A Voronoi diagram of a set of k sites partitions the Euclidean space into
k regions such that the region of each site consists of all points that are closer
to it than to any other site. For our problem, the region R is a horizontal line
segment. Let γη,j denote the length of the Voronoi zones of the j-th facility from
the left end of some color η.

Formally, the MinVor problem is to devise a coloring scheme that minimizes
maxη=0,1,...,c−1 maxj=1,2,...,jη γη,j where jη is the total number of facilities as-
signed the color η.

Problems similar to the MinVor problem in the plane have been considered
in [1, 3–5]. Funke et al [1] presented a greedy algorithm that provides complete
coverage with an approximation factor no better than Ω(log n), where n is the
number of sensor nodes. An algorithm is said to provide complete coverage if the
set of the selected sensors always covers the region R, provided that there exists
a feasible solution. The communication graph is an undirected graph in which
sensors are represented as nodes and there is an edge between two nodes if they
can talk to each other. Attempts have been made to cover the Communication
Graph using a connected dominating set (CDS) S′, which is a subset of the set
of sensors, S, such that each node in S \ S′ is adjacent to some node in S′ and
the communication subgraph induced by S′ is connected. Clark et al [3] have
shown that the problem of finding a minimum CDS for unit-disk graphs is NP-
hard. An 8-approximation algorithm with O(n) time complexity was suggested
by Wan et al [4] which was later improved to a 6.91 approximation factor [5].

In this paper we consider the case where R is a horizontal line segment and
provide optimal solutions. As input to the problem we have the location of n
facilities, specified by a distance vector d̄ = 〈d1, d2, . . . , dn+1〉, where the i-th

facility is placed at a distance of
∑i
j=1 dj from the left end of R, for i = 1, . . . , n

and dn+1 is the distance of the n-th facility from the right end of R. We consider
various cases depending on the values of n and c. Note that each facility is
assigned exactly one of the colors from {0, 1, . . . , c−1} and each color is assigned
to at least one facility. We assume that the density of users is uniform over R
and hence the Voronoi length reflects the proportional user volume.

For n < 2c observe that there has to be a color with only one facility whose
Voronoi zone is the whole space. In Section 3 we prove that C1 (see Definition 1)
is an optimal coloring for any distance vector if the number of facilities is twice
the number of colors. In Section 4 we show that if the number of facilities is any
multiple of c, the same coloring scheme provides an optimal solution. Section 5
suggests a coloring scheme for the general case where n is not a multiple of c
which produces an optimal coloring in O(n2 log n) time.



2 Notations and definitions

The facilities on the horizontal line segment R are to be assigned colors from the
set {0, 1, . . . , c − 1}. A facility at position f means that among the n facilities
on the line segment R, it is the f -th one from the left and hence at a distance
Σf
k=1dk from the left boundary of the line segment R. Pi,j is the position of the

j-th facility from the left belonging to the color class i, i.e., there are exactly
Pi,j − 1 facilities to the left of this facility among which j − 1 are of color i. We
define M(a, b) = 1

2Σ
b
`=a+1d`, where M(a, b) is the Voronoi length of a facility at

some position f whose immediate left neighbor of the same color is at position a
and whose immediate right neighbor of the same color is at position b, a < f < b
(see Figure 1 for an illustration). We define L(a, b) = Σa

`=1d`+
1
2Σ

b
`=a+1d`, where

L(a, b) is the Voronoi length of a facility at position a which is the leftmost of
its color and whose immediate right neighbor (of the same color) is at position
b. Analogously, we define R(a, b) = 1

2Σ
b
`=a+1d` +Σn+1

`=b+1d`, where R(a, b) is the
Voronoi length of a facility at position b which is the rightmost of its color and
whose immediate left neighbor (of the same color) is at position a.

d1 d2 da db dn dn+1

1 2 a− 1 a b− 1 b n− 1 n

2M(a, b)

M(a, b)

L(a, b)
R(a, b)

Fig. 1. M(a, b), L(a, b) and R(a, b)

We define the objective function of a coloring C as ∆(C), which is the largest
Voronoi length among all the facilities corresponding to all the colors.

In this paper we use certain fixed coloring schemes, as they turn out to be
optimal for specific configurations. One such scheme is as follows.

Definition 1. (Coloring C1): Consider a coloring of the facilities from the left
in the order 0, 1, . . . , c−1, c−1, . . . , 0, 0, 1, . . . , c−1, c−1, . . . , 0, . . .. We define this
assignment of colors as the coloring C1. The position of the jth facility of color i
for C1 is denoted by Fi,j. Note that Fi,j = 2cb j−12 c+ (2c− i)(1−χj) + (i+ 1)χj,
where χj = 1 if j is odd and 0 otherwise.

For example, for n = 9 and c = 3, C1 will color the facilities by the colors
0, 1, 2, 2, 1, 0, 0, 1, 2, from left to right on R (see Figure 2). Let αi,j be the length
of the Voronoi cell of the j-th facility from the left belonging to the color class
i, where facilities are colored by C1. Note that

αi,j =

M(Fi,j−1, Fi,j+1) if j 6= 1, ji
L(Fi,j , Fi,j+1) if j = 1
R(Fi,j−1, Fi,j) if j = ji
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Fig. 2. An example for n = 9, c = 3 using C1. The facilities are represented by
circles and the numbers 0, 1 or 2 within the facility represent the color of the fa-
cility. The distance vector is d̄ = 〈3, 2, 5, 7, 3, 5, 1, 2, 5, 7〉. The length of Voronoi

cells of the facilities are as follows: α0,1 = L(1, 6) = 3 + (2+5+7+3+5)
2

= 14,

α0,2 = M(1, 7) = (2+5+7+3+5+1)
2

= 11.5, α0,3 = R(6, 7) = 1
2

+ (2 + 5 + 7) = 14.5,

α1,1 = L(2, 5) = (3 + 2) + (5+7+3)
2

= 12.5, α1,2 = M(2, 8) = (5+7+3+5+1+2)
2

= 11.5,

α1,3 = R(5, 8) = (5+1+2)
2

+ (5 + 7) = 16, α2,1 = L(3, 4) = (3 + 2 + 5) + 7
2

= 13.5,

α2,2 = M(3, 9) = (7+3+5+1+2+5)
2

= 11.5, α2,3 = R(4, 9) = (3+5+1+2+5)
2

+ 7 = 15.
Therefore ∆(C1) = α1,3 = 16.

∆(C1) = max{αi,j}, for all i = 0, . . . , c − 1 and j = 1, 2, . . . , ji, where ji is the
total number of facilities assigned to color i.

The value of the objective function for the optimum coloring is denoted by
Opt.

3 n = 2c

In Theorem 1 we show that C1 is an optimal coloring when we have n = 2c
facilities. It is obvious that for each color there will be exactly two facilities,
otherwise the Voronoi cell for at least one of the colors will be whole of R, which
is clearly non-optimal. In Case 1 of Theorem 1, we show that if the objective
function for C1 returns the Voronoi length of the 1st facility of some color i (i.e.
∆(C1) = αi,1), then any attempt to get a new coloring to reduce αi,1 will ensure
that in the new coloring there will be some color i′, such that the length of the
Voronoi cell corresponding to its 1st facility will be at least αi,1. The analogous
result for the case where the objective function for C1 returns the Voronoi length
of 2nd facility of some color i is shown in Case 2 of Theorem 1. Using these two
cases, we show in Theorem 1 that for n = 2c, C1 is an optimal coloring.

We consider C′ to be a coloring scheme different from C1 introduced as a
candidate for possible improvement over C1. Let α′i,j denote the length of the
Voronoi cell corresponding to the j-th facility from the left belonging to the color
class i in C′. Let F ′i,j be the position of the j-th facility from the left of color i
using C′.

Theorem 1. For n = 2c, C1 is an optimal coloring for the MinVor problem.

Proof. Suppose ∆(C1) = αi,` for some i ∈ {0, . . . , c− 1} and some ` ∈ {1, 2} for
C1.



Case 1: ` = 1: We investigate if it is possible to achieve an objective function
whose value is smaller than ∆(C1) by any alternate coloring scheme C′. F ′j,k is the
position of the k-th facility of color j for the coloring C′ and α′j,k be the Voronoi
length of the facility at F ′j,k in C′. Note that each color in C′ is assigned to exactly
two facilities. Let S1 = {i′ : F ′i′,1 ≥ i+ 1}, i.e., S1 is the set of colors whose first
facility for coloring C′ is at position i + 1 or higher. Clearly |S1| ≥ c − i. Note
F ′i′,1 ≥ Fi,2 implies α′i′,1 = L(F ′i′,1, F

′
i′,2) ≥ L(Fi,1, Fi,2) ≥ αi,1 = ∆(C1). Hence

F ′i′,1 < Fi,2 = 2c−i ∀ i′ ∈ {0, . . . , c−1} (from Definition 1). Let S2 = {i′ : F ′i′,2 ≥
2c−i} i.e., S2 is the set of colors whose second facility for coloring C′ is at position
2c− i or higher. Since F ′i′,1 < 2c− i ∀ i′, |S2| = i+ 1. Therefore |S1|+ |S2| > c,
i.e., S1 and S2 are not disjoint and there exists some i′ such that F ′i′,1 ≥ Fi,1
and F ′i′,2 ≥ Fi,2 ⇒ L(F ′i′,1, F

′
i′,2) ≥ L(i+ 1, 2c− i) = L(Fi,1, Fi,2)⇒ α′i′,1 ≥ αi,1.

Case 2: ` = 2: Let d′i = dn+2−i ∀ i = 1, . . . , n+ 1. Then, for the distance vector
d̄′ = 〈d′1, . . . , d′n+1〉, the value of the objective function is αi,1. This is because
if the Voronoi length of the 2nd facility for color i is the value of the objective
function for coloring C1, if we look at the mirror image such that the `-th facility
from the left is now the `-th facility from the right, then the Voronoi length of
the 1st facility for color i is the value of the objective function for coloring C1.
So, as demonstrated in Case 1, for the distance vector d̄′, for any new coloring
C′, ∃ some i′ such that F ′i′,1 ≥ Fi,1 and F ′i′,2 ≥ Fi,2. Hence for the distance vector

d̄ = 〈d1, . . . , dn+1〉, for any coloring C′, there exists some i′ such that F ′i′,1 ≤ Fi,1
and F ′i′,2 ≤ Fi,2. Therefore, there exists some i′ such that F ′i′,1 ≤ Fi,1 and
F ′i′,2 ≤ Fi,2 ⇒ R(F ′i′,1, F

′
i′,2) ≥ R(Fi,1, Fi,2)⇒ α′i′,2 ≥ αi,2.

Hence, no coloring C′ can result in an objective function with value less than
∆(C1). �

4 n = kc, k > 2

In this section, we extend the C1-coloring result of the previous section to the
cases where n = kc and k > 2.

Theorem 2. For n = kc and any integer k > 2, C1 is an optimal coloring for
the MinVor problem.

Proof. As the facilities are colored by the coloring C1, let Voronoi length of
the j-th facility of the color η achieve maximum amongst all the facilities, i.e.
∆(C1) = αη,j . If j = 1 or k, then we are looking at facilities at the left or right
end among all the facilities of color η. Else, we are dealing with some intermediate
facility of color η.

Consider first the case j /∈ {1, k}. Let S = {Fη,j−1+1, Fη,j−1+2, . . . , Fη,j+1−
1}. We investigate if it is possible to achieve an objective function with value
smaller than ∆(C1) by the alternate coloring scheme C′. There exists an i such
that for the coloring C′ there is at most one facility of color i in S because
there are c colors and |S| = 2c − 1. Let there be one facility, say the j1-th
of color i with a position in S and jmax is the number of facilities of color i.
Then for 1 < j1 < jmax, F ′i,j1−1 ≤ Fη,j−1 < F ′i,j1 < Fη,j+1 ≤ F ′i,j1+1 which



implies α′i,j1 ≥ αη,j = ∆(C1). If j1 = 1, Fη,j−1 < F ′i,1 < Fη,j+1 ≤ F ′i,2 which
implies α′i,j1 = L(F ′i,1, F

′
i,2) ≥ αη,j = ∆(C1). If j1 = jmax, F ′i,jmax−1 ≤ Fη,j−1 <

F ′i,jmax < Fη,j+1 which implies α′i,j1 = R(F ′i,jmax−1, F
′
i,jmax

) ≥ αη,j = ∆(C1).
For j = 1, the situation is similar to the Case 1 of Theorem 1. We have

∆(C1) = αη,1 = L(η + 1, 2c − η). We investigate if it is possible to achieve an
objective function with value smaller than ∆(C1) by C′. Let S1 = {i′ : F ′i′,1 ≥
Fη,1}. Since Fη,1 = η + 1, |S1| ≥ c − η. Let S2 = {i′ : F ′i′,2 ≥ Fη,2}. Since
Fη,2 = 2c−η and F ′i′,1 < Fη,2 ∀ i′, |S2| ≥ η+1. Therefore |S1|+ |S2| > c, i.e., S1

and S2 are not disjoint and ∃ some i′ such that F ′i′,1 ≥ Fη,1 and F ′i′,2 ≥ Fη,2 ⇒
L(F ′i′,1, F

′
i′,2) ≥ L(Fη,1, Fη,2)⇒ α′i′,1 ≥ αη,1.

For j = k, we have ∆(C1) = αη,k = L(n − 2c + u, n − u + 1) for some u ∈
{1, . . . , c}. Let ji′ be the number of facilities assigned to the color i′ by the new
coloring scheme C′ for which we investigate if it is possible to achieve an objective
function with value smaller than ∆(C1). Note that if F ′i′,ji′ ≤ Fη,k−1 for some

i′, then R(F ′i′,ji′−1, F
′
i′,ji′

) ≥ R(Fη,k−1, Fη,k) since F ′i′,ji′−1 < F ′i′,ji′ ≤ Fη,k−1 <

Fη,k. Hence we assume F ′i′,ji′ > Fη,k−1 ∀ i′. Let S′1 = {i′ : F ′i′,ji′ ≤ Fη,k}. Since

Fη,k = n − u + 1, |S′1| ≥ c − u + 1. Let S′2 = {i′ : F ′i′,ji′−1 ≤ Fη,k−1}. Since

Fη,k−1 = n− 2c+ u and F ′i′,ji′ > Fη,k−1 ∀ i′, |S′2| ≥ u. Therefore |S′1|+ |S′2| > c,

i.e., S′1 and S′2 are not disjoint and ∃ some i′ such that F ′i′,ji′ ≤ Fη,k and

F ′i′,ji′−1 ≤ Fη,k−1 ⇒ R(F ′i′,ji′−1, F
′
i′,ji′

) ≥ R(Fη,k−1, Fη,k)⇒ α′i′,ji′ ≥ αη,k. �

5 n = kc + m

In this section we consider the general case where n is not a multiple of c. Note
that 0 < m < c. In Section 5.1, we introduce a coloring C2 where the facility
of any color and its next to next neighbouring facilities of the same color have
exactly 2c−1 facilities in between them. If the maximum Voronoi length among
all the facilities in this coloring corresponds to an interior facility of some color,
i.e, a facility which is neither the leftmost nor the rightmost of its color, then
C2 is the optimal coloring. Otherwise, for a given ∆, we define a coloring C∆ in
Section 5.2. We denote the Voronoi length of the j-th facility of the i-th color
for coloring C2 as βi,j and for coloring C∆ as γi,j . In Theorem 3 we show that
there exists an optimal C∆ which can be obtained in O(n2 log n) time.

5.1 Coloring C2

Definition 2. (Coloring C2): Let S1 = 0, 1, . . . ,m − 1, S̄1 = m − 1,m −
2, . . . , 1, 0, S2 = m,m+ 1, . . . , c− 1, S̄2 = c− 1, c− 2, . . . ,m+ 1,m. Consider a
coloring of the facilities from the left in the order S1, S2, S̄1, S̄2, S1, S2, S̄1, S̄2, . . ..
We define this assignment of colors as the coloring C2.

Lemma 1 If the value of the objective function for C2 is not equal to βi,1 or
βi,k for some i ∈ {m,m+ 1, . . . , c− 1}, then C2 is an optimal coloring.

Proof. The value of the objective function for C2 can not be equal to βi′,1 or
βi′,k+1 for some i′ ∈ {0, . . . ,m−1}. By Definition 2, ∀ i′ ∈ {0, 1, . . . ,m−1} and
∀ i ∈ {m,m+ 1, . . . , c− 1}, Pi′,1 = i′ + 1 < i+ 1 = Pi,1 < Pi′,2 = c+ i′ + 1 <



c + i + 1 = Pi,2, which implies βi′,1 = L(Pi′,1, Pi′,2) < L(Pi,1, Pi,2) = βi,1.
Similarly Pi′,k < Pi,k−1 < Pi′,k+1 < Pi,k and hence βi′,k = R(Pi′,k, Pi′,k+1) <
R(Pi,k−1, Pi,k) = βi,k.

Consider the case where the value of the objective function for C2 is βi,j for
some intermediate facility j of any color i. We call j-th facility of a color i as an
intermediate facility when 2 ≤ j ≤ k − 1 for i ∈ {m,m+ 1, . . . , c− 1} or when
2 ≤ j ≤ k for i ∈ {0, 1, . . . ,m−1}). Then, by Definition 2, Pi,j+1−Pi,j−1 = 2c.
Any alternate coloring scheme C′ will have at least one color i′ with at most one
facility in S = {Pi,j−1 + 1, . . . , Pi,j+1− 1}. If there is one facility of i′ in S, then
its Voronoi length is at least βi,j and if there is no facility of i′ in S, then the
Voronoi length of a facility of color i′ nearest to S is greater that βi,j . Hence
the value of the objective function can not be reduced from βi,j by any different
coloring scheme C′. �

5.2 Coloring C∆

If the objective function for C2 returns the Voronoi length of the 1st
or last facility of some color in {m,m + 1, . . . , c − 1}, C2 need not
be optimal. For example if n = 18, c = 5 and the distance vec-
tor d = (2, 10, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), then C2 returns an
objective function 20.5 where as Opt = 19 for the coloring scheme
0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 3, 0, 1, 2, 4, 2, 1, 0. To handle such cases, let us consider a
number ∆ such that max(maxu=1,...,n−2cM(u, u+ 2c),maxu=1,...,c L(u, 2c−u+
1),maxu=1,...,cR(n−2c+u, n−u+1)) ≤ ∆ ≤ max(M(1, n),maxu=1,...,c L(u, n−
u+1),maxu=1,...,cR(u, n−u+1)). The lower bound of ∆ will be clear from Ob-
servation 1 and the upper bound is arrived considering the extreme cases where
the 1st and 3rd facilities of a colour are at positions 1 and n respectively, or the
1st and 2nd facilities of a colour are at positions u and n − u + 1 respectively
for some u ∈ {1, 2, . . . , c}, or the last but one and last but one facilities of a
colour are at positions u and n− u+ 1 respectively for some u ∈ {1, 2, . . . , c}.
We intend to define a Coloring C∆ where the value of the objective function will
be lesser than or equal to ∆. If ∆ is less than the optimum, clearly the coloring
doesn’t exist. There are O(n2) possible choices for ∆ since the optimum can be
of the form L(a, b), M(a, b) or R(a, b), where 1 ≤ a < b ≤ n.

Observation 1 If maxu=1,...,n−2cM(u, u+2c) > ∆ or maxu=1,...,c L(u, 2c−u+
1) > ∆ or maxu=1,...,cR(n− 2c+ u, n− u+ 1) > ∆, then C∆ does not exist.

Proof. Proof omitted due to paucity of space. �

After choosing a ∆ at least as large as the maximum among
maxu=1,...,n−2cM(u, u+ 2c), maxu=1,...,c L(u, 2c− u+ 1) and maxu=1,...,cR(n−
2c+ u, n− u+ 1), our scheme to obtain C∆ can be divided into two parts. The
first part assigns k facilities to each of the colors m, . . . , c − 1, ensuring that
the Voronoi length of each of these k(c−m) facilities is lesser than or equal to
∆. The second part assigns the remaining colors 0, . . . ,m − 1 to the remaining
m(k + 1) facilities, each of these colors being assigned to k + 1 facilities.



In the first part of the coloring scheme, we identify the facilities to be as-
signed the colors m, . . . , c − 1. Initially we define the positions of the first fa-
cilities of these colors as Pi,1 = i + 1 ∀ i ∈ {m, . . . , c − 1}. Pc−1,2 is such that
L(Pc−1,1, Pc−1,2) ≤ ∆ < L(Pc−1,1, Pc−1,2+1), i.e., the farthest positon to ensure
that γc−1,1 ≤ ∆.

Observation 2 Pc−1,2 ≥ c+ 1

Proof. ∆ is chosen such that ∆ > maxu=1,...,c L(u, 2c− u+ 1) ≥ L(c, c+ 1). As
Pc−1,1 = c and Pc−1,2 is such that L(Pc−1,1, Pc−1,2) ≤ ∆ < L(Pc−1,1, Pc−1,2+1),
the observation follows. �

Now ∀ i = c − 2, . . . ,m, we define Pi,2 such that L(i + 1, Pi,2) ≤ ∆ <
L(i+ 1, Pi,2 + 1). If k is odd and Pi,2 > 2c− i+ 2m, we set Pi,2 = 2c− i+ 2m.
If k is even and Pi,2 > 2c− i+m, we set Pi,2 = 2c− i+m. If Pi,2 ≤ Pi+1,2, we
backtrack by reducing Pi+1,2 and if necessary even earlier defined assignments of
colors. Essentially we reduce Pi+1,2 by one, but if that conflicts with Pi+2,2, we
reduce that by 1 and so on. Please note that the operation of backtracking will
stop at Pc−1,2 or before because of the lower bound discussed in Observation 2.
We observe, similar to the Observation 2, the following:

Observation 3 Pi,2 ≥ 2c− i

To assign the j-th facility of each of these colors, ∀ j = 3, . . . , k − 1:

1. If j is odd, we define Pi,j , where the order of i is m, . . . , c− 1, i.e, first Pm,j
is identified, then Pm+1,j and so on. If k is odd, Pi,j = (j − 1)c+ i+ 1. If k
is even, Pi,j is such that M(Pi,j−2, Pi,j) ≤ ∆ < M(Pi,j−2, Pi,j + 1). If i > m
and Pi,j ≤ Pi−1,j , we backtrack starting with Pi−1,j = Pi,j − 1. If i = m and
Pi,j ≤ Pi,j−1, we backtrack starting with Pi,j−1 = Pi,j − 1. For even k and
Pi,j > jc+ i+m+ 1, we set Pi,j = jc+ i+m+ 1.

2. If j is even, the order of i is c− 1, . . . ,m while defining Pi,j , i.e, first Pc−1,j
is identified, then Pc−2,j and so on. We ensure that M(Pi,j−2, Pi,j) ≤ ∆ <
M(Pi,j−2, Pi,j +1). If i < c−1 and Pi,j ≤ Pi+1,j , we backtrack starting with
Pi+1,j = Pi,j − 1. If i = c− 1 and Pi,j ≤ Pi,j−1, we backtrack starting with
Pi,j−1 = Pi,j−1. If k is odd and Pi,j > jc− i+2m, we set Pi,j = jc− i+2m.
If k is even and Pi,j > jc− i+m, we set Pi,j = jc− i+m.

Observation 4 Pi,j+1 − Pi,j−1 ≥ 2c ∀ j = 2, 3, . . . , k − 1.

Proof. ∆ is chosen such that ∆ ≥ maxu=1,...,n−2cM(u, u + 2c). If Pi,j+1 −
Pi,j−1 < 2c for any j ∈ {2, 3, . . . , k − 1}, then γi,j = M(Pi,j−1, Pi,j+1) <
M(u, u+ 2c) for some u. �

Observation 5 Pi,j ≥ (j − 1)c+ i+ 1 for odd j and Pi,j ≥ jc− i for even j.

Proof. Pi,1 = i+ 1 and by Observation 4 for odd j, Pi,j −Pi,1 ≥ j−1
2 2c⇒ Pi,j ≥

(j − 1)c + i + 1. By Observations 2 and 3, Pi,2 ≥ 2c − i for all i ∈ {m,m +
1, . . . , c− 1}. Therefore for even j, Pi,j − Pi,2 ≥ j−2

2 2c⇒ Pi,j ≥ jc− i. �



Now we define Pi,k, i.e., the last position for the colors i = m, . . . , c − 1. If
k is odd, we define Pi,k = n− c−m+ i+ 1 ∀ i = m, . . . , c− 1. If k is even, we
define Pi,k = n− i ∀ i = m, . . . , c− 1. Irrespective of whether k is odd or even,
if M(Pi,k−2, Pi,k) > ∆ for any i ∈ {m, . . . , c − 1} or R(Pi,k−1, Pi,k) > ∆ for
any i ∈ {m, . . . , c− 1}, then C∆ does not exist for the given ∆. Otherwise we
proceed to the second part of the coloring scheme.

In the second part of the scheme, we assign facilties to the colors 0, . . . ,m−1.
We have remaining m(k+ 1) facilities to be colored 0, . . . ,m− 1. We color them
using Coloring C1 for m colors. It is easy to note that,

Observation 6 For i = 0, 1, . . . ,m− 1, we have Pi,1 = i+ 1, Pi,k+1 = n− i for
odd k and Pi,k+1 = n−m+ i+ 1 for even k.

5.3 Optimality of C∆

In this section we prove that an optimal coloring C∆ and the corresponding
∆ = Opt can be identified in O(n2 log n) time. Proof of Lemma 4 is omitted
because of paucity of space.

Lemma 2 For all i′ ∈ {0, . . . ,m− 1}

1. γi′,1 ≤ L(u, 2c− u+ 1) for some u ∈ {1, . . . , c}
2. γi′,k+1 ≤ R(n− 2c+ u, n− u+ 1) for some u ∈ {1, . . . , c}
3. Pi′,j′+1 − Pi′,j′−1 ≤ 2c ∀ j′ ∈ {2, . . . , k}.

Proof. If 2c − i′ < Pi′,2 ≤ 2c for some i′ ∈ S1 = {0, . . . ,m − 1}, then to its
left there are at least 2c − i′ facilities of which the first c are the first facilities
of each color (by the description of C∆ and Observation 6). Moreover, there
are m − i′ − 1 more facilities with colors in S1 with position less than Pi′,2. So
in {c + 1, . . . , Pi′,2 − 1} there are atleast 2c − i′ − (m − i′ − 1) = c − m + 1
facilities with colors in S2 = {m, . . . , c− 1}, which implies Pi′′,3 < Pi′,2 < 2c for
some i′′ ∈ S2 . Then Pi′′,3 − Pi′′,1 < 2c violating Observation 4. If Pi′,2 > 2c,
then there are at most 2m − 1 of the facilities with position less than Pi′,2 are
from S1. Therefore there are at least 2c − (2m − 1) = 2(c − m) + 1 facilities
assigned colors from m,m+ 1, . . . , c− 1 with positions in {1, 2, . . . , c}, i.e., there
is a color i ∈ {m,m + 1, . . . , c − 1} such that Pi,3 ≤ 2c. But Pi,1 > m for all
i ∈ {m,m + 1, . . . , c − 1} and hence Pi,3 − Pi,1 < 2c violating Observation 4.
So Pi′,2 ≤ 2c − i′ for all i′ ∈ S1 and hence γi′,1 ≤ L(u, 2c − u + 1) for some
u ∈ {1, . . . , c}.

Similarly γi′,k+1 ≤ R(n− 2c+ u, n− u+ 1) for some u ∈ {1, . . . , c}.
Suppose ∃ i′ ∈ S1 such that Pi′,j′+1 − Pi′,j′−1 > 2c. Let T = {Pi′,j′−1 +

1, . . . , Pi′,j′+1 − 1} and |T | = 2c − 1 + u where u > 0. Since the colors in
S1 form an C1 of m colors for the m(k + 1) facilities they are assigned to,
∀ i1 ∈ S1 − {i′} there are exactly two facilities in T . Hence there are 2c −
1 + u − (2m − 1) = 2(c − m) + u facilities in T with colors in S2. Let colors
i1, . . . , iu ∈ S2 have 3 facilities each in T . If the leftmost facility in T of any color
ia ∈ {i1, . . . , iu} is positioned at Pia,ja > Pi1,j1−1 + u, then Pia,ja+2 − Pia,ja <



2c, violating Observation 4. Similarly, the rightmost facility in T of any color
ia ∈ {i1, . . . , iu} can not positioned at Pia,ja+2 < Pi1,j1+1 − u. Therefore,
positions Pi1,j1−1+1, . . . , Pi1,j1−1+u are assigned to colors from {i1, . . . , iu} and
positions Pi1,j1+1−u, . . . , Pi1,j1+1−1 are assigned to colors from {i1, . . . , iu}. Let
Pia,ja = Pi1,j1−1 + 1. If Pia,ja+2 = Pi1,j1+1−u, then TheoremPia,ja+2−Pia,ja =
2c − 1 < 2c, violating Observation 4. If Pia,ja+2 > Pi1,j1+1 − u, then there
exists an ib such that Pib,jb+2 = Pi1,j1+1 − u and Pib,jb > Pi1,j1−1 + 1. Hence
Pib,jb+2 − Pib,jb < (Pi1,j1+1 − u)− (Pi1,j1−1 + 1) = 2c− 1 < 2c, again violating
Observation 4. �

Lemma 3 If C∆ exists and γi,j is the Voronoi length of the j-th facility of color
i, then ∀ i and ∀ j , γi,j ≤ ∆ .

Proof. By the definition of C∆, if it exists, γi,j ≤ ∆ ∀ i ∈ {m, . . . , c − 1},
∀ j ∈ {1, . . . , k}.

From Lemma 2 we have for all i′ ∈ {0, . . . ,m− 1}

1. γi′,1 ≤ L(u, 2c− u+ 1) for some u ∈ {1, . . . , c}
2. γi′,k+1 ≤ R(n− 2c+ u, n− u+ 1) for some u ∈ {1, . . . , c}
3. Pi′,j′+1 − Pi′,j′−1 ≤ 2c ∀ j′ ∈ {2, . . . , k}, i.e., ∀ j ∈ {2, . . . , k}, γi′,j ≤
M(u, u+ 2c) for some u ∈ {1, . . . , n− 2c}

Our coloring scheme for C∆ chooses a ∆ at least as large as the max-
imum among maxu=1,...,n−2cM(u, u + 2c), maxu=1,...,c L(u, 2c − u + 1) and
maxu=1,...,cR(n− 2c+ u, n− u+ 1). Therefore γi′,j ≤ ∆ ∀ i′ ∈ {0, . . . ,m− 1},
∀ j ∈ {1, . . . , k + 1}. �

Lemma 4 If Ca is an optimal coloring where the colors of the facilities 1, 2, . . . , c
are not distinct or the colors of the facilities n − c + 1, n − c + 2, . . . , n are not
distinct, there exists another optimal coloring Cb where the colors of the facilities
1, 2, . . . , c are distinct and the colors of the facilities n − c + 1, n − c + 2, . . . , n
are distinct.

Lemma 5 If Opt ≤ ∆, there exists a C∆ where the value of the objective func-
tion is ∆.

Proof. Suppose, if possible, there exists some ∆ ≥ Opt and the coloring scheme
announced that C∆ does not exist for such ∆. This announcement is made if,
for some i ∈ {m, . . . , c− 1}, at least one of the following occurs:

1. M(Pi,k−2, Pi,k) > ∆
2. R(Pi,k−1, Pi,k) > ∆

If M(Pi,k−2, Pi,k) > ∆ and there would exist a coloring C′ where
the j-th facility for color η is at position P ′η,j , has Voronoi length γ′η,j ,
maxi=0,...,c−1 maxj=1,...,jmaxη

γ′η,j ≤ ∆ and at least one of the following is true:

1. P ′i,k−2 > Pi,k−2
2. P ′i,k < Pi,k



As is obvious from the definition of C∆, Pi,k−2 could not be increased without
increasing γi,k−1 or γη,u for some η and some u ≤ k−1. So if P ′i,1 = Pi,1 = i+ 1,
then P ′i,k−2 > Pi,k−2 would imply that the value of the objective function for
C′ is greater than ∆. Lemma 4 suggests for every optimal coloring we can have
a recoloring such that P ′i,1 = Pi,1 = i + 1 ∀ i ∈ {0, 1, . . . , c − 1}. P ′i,k < Pi,k
can not be achieved because by Lemma 4 there exists an optimal coloring such
that the colors of the facilities n − c + 1, n − c + 2, . . . , n are distinct and if
P ′i,1 = Pi,1 = i + 1 ∀ i ∈ {0, 1, . . . , c − 1}, the maximum Voronoi length will
only increase if P ′i,k < Pi,k since it would violate the C1 coloring for the colors
m,m+ 1, . . . , c− 1.

If R(Pi,k−1, Pi,k) > ∆ and there would exist a coloring C′ where
the j-th facility for color η is at position P ′η,j , has Voronoi length γ′η,j ,
maxi=0,...,c−1 maxj=1,...,jmaxη

γ′η,j ≤ ∆ and at least one of the following is true:

1. P ′i,k−1 > Pi,k−1
2. P ′i,k > Pi,k

But, as explained above while considering the case P ′i,k−2 > Pi,k−2, we can not
have P ′i,k−1 > Pi,k−1 if P ′i,1 = Pi,1 = i + 1 ∀ i ∈ {0, 1, . . . , c − 1}. P ′i,k > Pi,k
would violate the C1 coloring for the colors m,m + 1, . . . , c − 1 as it would for
P ′i,k < Pi,k. �

Theorem 3. For n = kc + m, 0 < m < c, an optimal coloring scheme can be
obtained in O(n2 log n) time.

Proof. From Lemma 5 it is clear that there exists a ∆ such that C∆ is optimal.
A candidate for ∆ is any of the following:

1. L(a, b) where 1 ≤ a < b ≤ n
2. M(a, b) where 1 ≤ a < b ≤ n
3. R(a, b) where 1 ≤ a < b ≤ n

There are O(n2) candidates for ∆, which can be sorted in ascending order
in O(n2 log n) time. For a given ∆, we can identify C∆ in O(cn) time as follows.
We have a list of n cumulative distances Dj = Σj

i=1di ∀ j = 1, 2, . . . , n. One can
calculate L(a, b) = Da+Db

2 , M(a, b) = Db−Da
2 and R(a, b) = dn+1 +Dn − Da+Db

2
for any pair of a and b in constant time. For odd k, Pi,j is fixed for odd j and,
for even j, jc− i ≤ Pi,j ≤ jc− i+ 2m. For even k, jc+ i ≤ Pi,j ≤ jc+ i+m+ 1
for odd j and jc − i ≤ Pi,j ≤ jc − i + m for even j. So, for identifying Pi,j for
i ∈ {m,m+1, . . . , c−1} using the rule M(Pi,j−2, Pi,j) ≤ ∆ ≤M(Pi,j−2, Pi,j+1)
for j > 2 or L(Pi,1, Pi,2) ≤ ∆ ≤ L(Pi,1, Pi,2 +1), we need O(m) time for each i, j
and hence O(cn) time for all the facilities as m < c. For backtracking we need:

1. At most c− i time for odd k and even j for each i ∈ {m,m+ 1, . . . , c− 1}
2. No backtracking for odd k and odd j
3. At most c− i time for even k and even j for each i ∈ {m,m+ 1, . . . , c− 1}
4. At most m time for even k and odd j for each i ∈ {m,m+ 1, . . . , c− 1}

So for backtracking we need O(cn) time and altogether we need O(cn) time for
each ∆. Using binary search over the sorted list of O(n2) candidates for ∆, we
obtain the optimum coloring by trying atmost O(log n) candidates. Hence the
total time complexity is O(cn log n) +O(n2 log n) , i.e., O(n2 log n). �



6 Conclusions

With the objective of coloring the available facilities to a population of users
distributed uniformly in a line segment R such that the load of the different
facilities are distributed as equitably as possible (MinVor problem) we obtained
some interesting results. We observed that when n = kc, C1 offers us an optimal
coloring for any distance vector, while for n = kc+m facilities with c colors for
the MinVor problem, we have C2 is the optimal coloring in some special cases
and otherwise C∆ is the optimal coloring with ∆ being the optimal value which
can be obtained in O(n2 log n) time.

If ∆ < maxu=1,...,n−2cM(u, u+ 2c) = M(u1, u1 + 2c) , there must be a color
i with only one facility in {u1 + 1, . . . , u1 + 2c− 1}. The Voronoi length of that
facility of color i is clearly atleast M(u1, u1 + 2c) > ∆.

Let ∆ < maxu=1,...,c L(u, 2c− u+ 1) = L(u2, 2c− u2 + 1). If the first facility
of color i is at position u2 or higher, we say that it follows Property 1. If the
2nd facility of color i is at position (2c − u2 + 1) or higher, we say that it
follows Property 2. Clearly at least c − u2 + 1 colors follow Property 1 and u2
colors follow Property 2. So, there is at least one color, say i1, whose 1st facility
is at position u2 or higher and 2nd facility at 2c − u2 + 1 or higher. Clearly
L(Pi1,1, Pi1,2) ≥ L(u2, 2c− u2 + 1) > ∆.

Similarly if ∆ < maxu=1,...,cR(n − 2c + u, n − u + 1) = R(n − 2c + u3, n −
u3 + 1), there is at least one color, say i2, whose last facility is at position
n−u3 +1 or lower and the 2nd last facility at n−2c+u3 or lower, which implies
R(Pi2,j−1, Pi2,j) ≥ R(n− 2c+ u3, n− u3 + 1) > ∆, where j is the total number
of facilities of color i2.
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