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ABSTRACT This paper addresses the robust finite time trajectory tracking control problem for a rigid
three-degrees-of-freedom (3-DOF) manipulator system, which is subject to model uncertainty and external
disturbances. The disturbances are assumed to be upper bounded. The proposed method incorporates a
finite time velocity observer and disturbance observer into the proposed nonlinear control scheme and the
conditions of global finite time stability are established. The global finite-time stability of the controlled
system is proved by using the finite-time Lyapunov stability theory. Simulation results of a 3-DOF
manipulator show that the trajectory tracking was achieved with a finite period of settling time.

INDEX TERMS Finite-time tracking, global finite-time stability, disturbance observer, velocity observer.

I. INTRODUCTION

THE problem of high-precision, fast-response trajectory
tracking control of robotic manipulators has long been

a research hotspot [1]–[4]. A number of strategies have been
proposed for this purpose, including computed torque control
[5]–[8] and inverse-dynamics control [6], [9], to guarantee
the asymptotic stability of robotic manipulators system [10].
However, the actual trajectories generated using these control
methods usually cannot converge to the desired ones within a
finite period of settling time. To address this issue, finite-time
stabilization strategies have been developed, enabling robotic
manipulators to converge fast with high precision within a
finite period of time [11]–[18].

Most finite-time control methods need joint position and
velocity measurements [15]–[20], which not only require
extra sensors, but also add to the cost, weight, size, and noise
to the servo systems of manipulators. A number of nonlinear
velocity observers have been proposed [21]–[23], however,
most of these velocity observers provide estimation in the
sense of infinite time. In order to provide faster velocity es-
timation and higher estimation accuracy, finite time velocity
observers have been proposed [22].

In recent years, the disturbance observer (DO) has been
introduced for robotic manipulator control [24], [25] in order
to deal with the robust problem associated with uncertainties,
external disturbances, and unmodeled friction forces in robot

manipulator systems [3], [8], [9], [26]. In general, the main
purpose of using DO is to further deduce external unknown or
uncertain disturbance torques without the use of an additional
sensor [27], [28]. In particular, finite-time DO has been
proposed to ensure the finite-time convergence of disturbance
estimation [15].

Recently, Bouakrif [23] proposes a trajectory tracking
strategy with a nonlinear disturbance observer and velocity
observer for robot manipulators. Using position measure-
ments only, it demonstrated that the actual trajectories rapidly
tracked the desired trajectories under the conditions of model
uncertainties and external disturbances, however, the trajec-
tory tracking was achieved asymptotically.

This paper introduces a finite-time nonlinear control
scheme for rigid 3-DOF manipulators with external dis-
turbance and model uncertainty. The proposed method in-
corporates a finite time velocity observer and disturbance
observer into the proposed nonlinear control scheme and the
conditions of global finite time stability are established. The
global finite-time stability of the controlled system is proved
by using the finite-time Lyapunov stability theory. Simulation
results of a 3-DOF manipulator shows that trajectory tracking
was achieved with a finite period of settling time.

The rest of this paper is organized as follows. The dynam-
ics of a rigid 3-DOF manipulator is introduced in Section 2.
Section 3 describes the design of a finite-time disturbance
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observer, and the input torque is generated by incorporating
the disturbance observer with a nonlinear controller. Then,
the finite-time velocity observer is introduced. In Section
4, global finite-time stabilization of a 3-DOF manipulators
system is proved by using Lyapunov stability theory. In
Section 5, numerical simulation are provided to verify the
correctness of the theoretical derivation. Section 6 draws a
conclusion and gives some suggestions for further research.

II. THE DYNAMICS OF A RIGID 3-DOF MANIPULATOR
In this section, a rigid 3-DOF manipulator system, which suf-
fers external disturbance and model uncertainty is presented.
Later, according to the manipulator model, the state equation
of the system is derived and the tracking error dynamics of
the manipulator is obtained.

Consider a rigid 3-DOF manipulator system given by the
following model:

τ = M (θ) θ̈+B (θ)
[
θ̇ · θ̇

]
+C (θ)

[
θ̇2
]

+G (θ) + τd (1)

where θ = [θ1, θ2, θ3]
T
, θ̇, θ̈ ∈ R3×1 are the position,

velocity, and acceleration vectors of manipulator joints, re-
spectively. M (θ) ∈ R3×3 is the positive definite inertia
matrix. B (θ) ∈ R3×3 is the vector of Coriolis torques.
C (θ) ∈ R3×3 represents the vector of centripetal forces.[
θ̇ · θ̇

]
∈ R3×1 and

[
θ̇2
]
∈ R3×1 are defined as

[
θ̇ · θ̇

]
=[

θ̇1θ̇2, θ̇1θ̇3, θ̇2θ̇3

]T
and

[
θ̇2
]

=
[
θ̇1

2
, θ̇2

2
, θ̇3

2
]T

. G (θ) ∈
R3×1 is the vector of gravitational torques. τ = [τ1, τ2, τ3]

T

represents the vector of input torques. τd, which is (by
assumption) absolutely continuous, represents the external
disturbance and model uncertainty, and its derivative τ̇d is
assumed to be a locally bounded Lebesgue measurable to
ensure the existence of control τ . In consequence, ‖ τd ‖
and ‖ τ̇d ‖ are assumed to be upper estimated as follows:

‖ τd ‖≤ β0 (t) , ‖ τ̇d ‖≤ β1 (t) (2)

where β0 (t) and β1 (t) are known non-negative functions.
The rigid 3-DOF manipulator model is shown in Fig. 1.

FIGURE 1. Structure of 3–DOF manipulator

As seen from this figure, the first joint is the translational
joint, which can move up and down. Both the second and the
third joints can rotate freely. The weights of the three joints
are m1 = 1kg, m2 = 1kg , and m3 = 1kg, respectively. The
movement range d of the first link, satisfies d = 0 − 0.21m.
The lengths of the other two links are l2 = 0.2m and l3 =
0.2m, respectively.

Therefore, according to the 3-DOF manipulator system in
(1), matrices M , B, C, and G of this 3-DOF manipulator are
given as follows:

M (θ) =

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 , B (θ) =

00 0
00−l2l3m3 sin θ
00 0

 ,
C (θ) =


0 0 0

0 0 −1

2
l2l3m3 sin θ

0 −1

2
l2l3m3 sin θ 0

 ,
G (θ) =

[
(m1 +m2 +m3) g

0
0

]
.

(3)

The components of M are given by

m11 = m1 +m2 +m3

m12 = m13 = m21 = m31 = 0

m22 =
1

3
m2l

2
2 +

1

3
m3l

2
3 +m3l

2
2 + l2l3m3 cos θ3

m23 =
1

2
l2l3m3 cos θ3 +

1

3
m3l

2
3

m32 =
1

2
l2l3m3 cos θ3 +

1

3
m3l

2
3

m33 =
1

3
m3l

2
3.

(4)
The state variables x and v represent positions and veloci-

ties, respectively: {
x = θ

v = ẋ
(5)

where x = [x1, x2, x3]
T and v = [v1, v2, v3]

T . Thus, the
state equation of the robot manipulator can be described by{

ẋ = v

v̇ = f (x, v) + φ (x, v, t) + p (x) (τ +4u)
(6)

where p (x)=M−1(x),f=−p (x)
(
B (x)〈v, v〉+C (x) v2

)
−

p (x)G (x),φ = −p (x) τd, and4u = u− τ . u is the control
vector of the robot system.

Considering the saturation constraint of the joints’ actu-
ators, we design the saturation function to limit the control
vector u:

u =


uupper if τ > uupper

τ if − ulower ≤ τ ≤ uupper
−ulower if τ < −ulower

(7)

where uupper and ulower are the known values of the satura-
tion function. Note that uupper 6= ulower is always satisfied.

Despite the uncertainties, external disturbances, un-
modeled friction forces, and actuators’ saturation, all trajec-
tories of manipulator joints can reach the desired trajectories
in finite time for suitable values of the input torque τ .
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xd = [xd1 , xd2 , xd3 ]
T represents the desired trajectories and

vd = [vd1 , vd2 , vd3 ]
T gives the derivatives of the desired

trajectories; thus, tracking errors can be described by ex =
x − xd and ev = v − vd . Based on the state space model in
(6) the tracking error dynamics of the manipulator are given
as follows:{

ėx=ev

ėv=f(x, v)+φ (x, v, t)+p (x) (τ +4u)−v̇d
(8)

III. DESIGN OF THE CLOSED-LOOP CONTROL SYSTEM
In this section, we describe the design of the closed-loop
control system satisfying the conditions of global finite time
stability based on the dynamics of the 3-DOF manipulator
given in the last section. Firstly we propose a disturbance
observer to estimate the disturbance within finite time. Sec-
ond, by incorporating the nonlinear sliding mode controller
with the disturbance observer, input torque is determined to
guarantee that the trajectory error converges to zero within
finite settle time. In the following subsection, a finite time
velocity observer is designed to replace the velocity in the
disturbance observer and input torque with its estimation.
Finally, the control input is acquired in virtue of modified
input torque and the saturation function, which indicates that
the closed-loop control system is established.

A. DESIGN OF THE DISTURBANCE OBSERVER AND
INPUT TORQUE
In order to estimate the disturbance within finite settle time,
the disturbance observer is designed as follows:

φ̂=−Kω − f (x, v)− γsigc (ω)

−β0 (t)λmax

(
M−1

)
sgn(ω)−|f(x, v)|sgn(ω)

ż=−Kω+pu−v̇d−β0(t)λmax

(
M−1

)
sgn (ω)

−γsigc (ω)− | f (x, v) | sgn (ω)

τ̂d=p−1φ̂, ω=z − ev

(9)

where φ̂ and τ̂d are the estimates of φ and τd, respectively.
ω = [ω1, ω2, ω3]

T represents the subsidiary vector. Kω =
[K1ω1,K2ω2,K3ω3]

T , γ = [γ1, γ2, γ3]
T , and sigc (ω) =

[| ω1 |c sgn (ω1) , | ω2 |c sgn (ω2) , | ω3 |c sgn (ω3)]
T , where

kj > 0, γj > 0 and 0 < c < 1 are arbitrary coeffi-
cients, and sgn (ω) denotes the signum function of vector
ω. λmax

(
M−1

)
is the maximum eigenvalue of M−1. Note

that variables x and v are assumed to be directly measurable
here.

According to the disturbance observer, τ̂d can exactly
converge to τd after finite time Ta, satisfying the following
inequality :

Ta ≤

ln

 α

√√√√( 3∑
j=1

s2j (0) + ω2
j (0)

)1−c

+ δ

− ln δ

α (1− c)
(10)

where parameters α and δ satisfy α = min (min εj ,min kj)
and δ = min (min γj ,min ςj) in which εj and ςj are arbitrary
coefficient.

Then, for the objective of designing the input torque, a
nonlinear sliding mode controller is also introduced. In this
paper, we choose the sliding surface s = [s1, s2, s3]

T as
follows:

s = ω + ėv + sig$x (ev) + sig$v (ψ (ex, ev)) . (11)

In (11), parameters $x = [$x1, $x2, $x3]
T and $v =

[$v1, $v2, $v3]
T are defined, where 0 < $xj < 1

is an arbitrary coefficient and $vj = $xj (2−$xj)
−1

for j = 1, 2, 3. Also, parameter ψ (ex, ev) is given by
ψ (ex, ev) = [ψj (ex1, ev1) , ψj (ex2, ev2) , ψj (ex3, ev3)]

T ,
where ψj (exj , evj)=(2−$xj)

−1 |evj |2−$xj sgn(evj)+exj
for j = 1, 2, 3. By incorporating the controller with a
disturbance observer, the input torque τ can be chosen such
that the control system achieves global finite-time stability.
For this purpose, the control law of τ is proposed as follows:{

τ=p−1(−f(x, v)−sig$x(ev)−sig$v(ψ (ex, ev))+v̇d+τs)−∆u

τ̇s=−εs−ςsigc (s)−φ̂−
(
β0 (t)λmax

(
M−1

)
+β2 (t)

)
sgn(s)

(12)
where function β2 (t) = β0 (t) ‖ ˙p (x)‖+β1 (t)λmax

(
M−1

)
,

εs = [ε1s1, ε2s2, ε3s3]
T , and ς = [ς1, ς2, ς3]

T are as defined.
When the input torque τ is applied to the error dynamics of
the manipulator in (8), the tracking error is able to reach the
sliding surface s = 0 in finite time Ta, and then converges
to zero after finite time Tb. In other words, all tracking errors
reach zero within finite time Ttol = Ta + Tb.

B. DESIGN OF THE VELOCITY OBSERVER AND
CONTROL INPUT
Owing to the drawbacks of direct measurement of joint
velocity, the method used in this work only measures position
x directly, while velocity v is estimated by velocity observer
in adjustable finite time. Assume that velocity v is bounded
as follows:

‖ v ‖≤ κ (13)

where κ is a known constant.
Hence, the velocity observer is designed as follows:

˙̂x = v̂ − (σ0 + σ3) sig (x̂− x)

−h (x, v̂) sgn (x̂− x)− σ2sigξ (x̂− x)
˙̂v = −σ1v̂ − σ3 | x̂− x | +f (x, v̂) + p (x)u

h (x, v̂) = (‖ v̂ ‖ +κ)L1 (x, v̂) + L2 (x, v̂)

+σ1κ+σ2 (‖v̂‖+κ)
ξ
+λmax

(
M−1

)
β0(t)

(14)

where x̂ = [x̂1, x̂2, x̂3]
T and v̂ = [v̂1, v̂2, v̂3]

T are estimates
of x and v, respectively. σ0, σ2, σ3 > 0, and 0 < ξ < 1
are arbitrary parameters which can be set by users. Define
h(x, v̂)=B(x) 〈v̂, v̂〉+C(x)v̂2,L1(x, v̂)=λmax(M−1)(‖B‖+
‖C‖)(‖v̂‖ + κ), L2(x, v̂)=2λmax(M−1)(‖B‖ + ‖C‖)‖v̂‖2,
and σ1=1+σ0. Clearly, through this velocity observer, the
obtained estimate of velocity v̂ can converge to v within finite
time Tc, which satisfies the following inequality:

Tc ≤
ln
(
σ0 (‖ēx (0)‖+‖ēv (0)‖)1−ξ+σ2

)
−lnσ2

σ0 (1− ξ)
(15)
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where ēx = x̂− x, ēv = v̂ − v.
Remark 1: By substituting v̂ for v, the disturbance observer

in (9) and input torque in (12) are modified.Since the design
of the finite-time velocity observer is finished, the global
finite-time is changed as Ttol′ = Ttol + Tc=Ta + Tb + Tc.

In order to guarantee that the system achieves global
stability in finite time Ttol′, the modified input torque τ̃ is
proposed as follows:

τ̃ =

{
cτ 0 ≤ t < Tc

τ t ≤ Tc
(16)

where cτ ∈ R3×1 is an arbitrary continuous function.
Hence, based on the saturation function in (7), the control

input u is given by

u =


uupper if τ̃ > uupper

τ̃ if −ulower ≤ τ̃ ≤ uupper
−ulower if τ̃ < −ulower

(17)

Therefore, the closed-loop control system of the 3-DOF
manipulator, which is composed of the disturbance observer,
velocity observer, and the nonlinear controller, is established
to guarantee the trajectory tracking in finite time Ttol′.

IV. GLOBAL FINITE-TIME STABILITY
By using Lyapunov theory, this section proves the global
finite-time stability of the closed-loop control system. That is
to say, the finite-time tracking toward the desired trajectory
can be testified.

Two lemmas are introduced to contribute to the demonstra-
tion of global finite-time stability.

Lemma 1 [11]: Consider a nonlinear system ẋ (t) = f (t),
x ∈ Rn, x (0) = x0 with the equilibrium point x = 0.
Assume that there exist three real numbers ρ1 > 0, ρ2 > 0,
0 < β < 1 and a continuously differentiable positive
function V (x) : Rn → R such that the inequality V̇ (x) +
ρ1V (x) + ρ2V

β (x) ≤ 0 is always fulfilled for any solution
x (t, x0) of the system. Then, the equilibrium point x = 0 is
globally finite-time stable and the finite convergence time T ,
which is called the finite settling time, satisfies the inequality
T (x0) ≤ (ρ1 (1− β))

−1 (
ln
(
ρ1V

1−β (x0) + ρ2
)
− ln ρ2

)
.

Lemma 2 [29]: Consider a double integrator system is
expressed by differential equations ẋ = v, v̇ = u, where
u is the control input, and x and v are the state variables.
This system can be made globally finite–time stable by
implementing control input (18).

u=−|v|$sgn(v)−|ψ (x, v) |$(2−$)−1

sgn (ψ (x, v))

ψ (x, v) = x+ (2−$)
−1 |v|2−$sgn (v) .

(18)

where tuning coefficient 0 < $ < 1 can be used to adjust the
finite convergence time. Furthermore, by using control input
(18), state variables x and v exactly converge to zero in the
finite convergence time specified as

T (x (0) , v (0)) ≤ V (x (0) , v (0))
F

Fl
,

F = (3−$)
−1

(1−$)
(19)

where positive function V (x, v) and coefficient l are defined
such that arbitrary parameters ζ and Φ fulfill constraints 0 <
ζ < 1 and Φ > 1, respectively [29].

V =
1

J
|ψ (x, v) |J + ζvψ (x, v) +

Φ

3−$
|v|3−$

l = −max(x,v)∈D V̇ (x, v) , D = {(x, v) : V (x, v) = 1}
(20)

where J = (2−$)
−1

(3−$).
Theorem 1 demonstrates that the tracking error dynamics
expressed by (8) reach sliding surface s = 0 in finite time
Ta. Theorem 2 shows that the estimation of disturbances τ̂d
converges to actual disturbances s = 0 in finite time Ta. The-
orem 3 proves that the tracking errors, which had reached s =
0, arrive at zero in finite time Tb. Moreover, Theorem 4 shows
that the estimations of velocity converge to actual velocity
in finite time Tc. Finally, Theorem 5 shows that trajectory
tracking is achieved within finite time T

′

tol = Ta + Tb + Tc.
Theorem 1: Consider control torque (12) and sliding mode

(11). Then, the tracking errors expressed by (8) reach sliding
surface s = 0 within adjustable finite time Ta given by (10).

Proof: Consider candidate Lyapunov function V =
0.5
(
sT s+ ωTω

)
. By substituting for τ from (12) into (8),

one can obtain the following equation:

ėv = φ− sig$x (ev)− sig$v (ψ (ex, ev)) + τs (21)

Then, by substituting ėv from (21) into (11), sliding surface
s is derived as s = φ + τs + ω so that ṡ = φ̇ + τ̇s + ω̇. By
taking into account ω̇ and τ̇s expressed by (9) and (12), this
yields

ṡ = φ̇− φ− εs− ςsigc (s)
−
(
β0 (t)λmax

(
M−1

)
+β2 (t)

)
sgn (s)

(22)

By employing inequalities ‖s‖≤
3∑
j=1

|sj |, sT φ̇≤‖s‖‖φ̇‖, and

−sTφ ≤‖s‖‖φ‖, it follows that

sT s≤‖s‖‖ φ̇‖+‖s‖‖φ‖ −
3∑
j=1

ςj |sj |c+1

−
3∑
j=1

εjs
2
j−
(
β0(t)λmax

(
M−1

)
+β2(t)

)
‖s‖

(23)

According to the definition φ = −p (x) τd, inequalities (2),
and inequality M−1 ≤ λmax

(
M−1

)
[14], the following

inequalities are obtained:

‖ φ̇ ‖≤ β2 (t) , ‖ φ ‖≤ β0 (t)λmax

(
M−1

)
(24)

where function β2 (t) is defined as β2 (t) = β0 (t) ‖ ˙p (x) ‖
+β1 (t)λmax

(
M−1

)
.

Applying (24) to (23) results in

sT ṡ ≤ −εmin

3∑
j=1

s2j − ςmin

3∑
j=1

|sj |c+1 (25)

where εmin = min εj and ςmin = min ςj . Based on (9), the
derivation of ω is obtained as follows:
ω̇ = ż − ėv = −Kω + pu− v̇d − ςsigc (ω)− ėv
−β0(t)λmax

(
M−1

)
sgn(ω)−|f(x, v)|sgn(ω)

(26)

4
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Applying (8) to (26), this yields

ω̇ = −Kω − β0 (t)λmax

(
M−1

)
sgn (ω)

−γsigc (ω)−|f (x, v) |sgn(ω)−f (x, v)−φ. (27)

Thus,

ωT ω̇= −ωT (f (x, v) + φ+ γsigc (ω) +Kω)

−β0(t)λmax

(
M−1

)( 3∑
j=1

|ωj |

)
−|ω|T |f(x, v)|. (28)

Consider that −|ω|T |f (x, v) | −ωT f (x, v) < 0 , −ωTφ ≤

‖ ω ‖ ‖ φ ‖ and ‖ ω ‖≤
3∑
j=1

|ωj | are always fulfilled. Thus,

ωT ω̇ satisfies the following inequality:

ωT ω̇ ≤ −
3∑
j=1

kjω
2
j −

3∑
j=1

γj |ωj |c+1

+‖ω‖
(
‖φ‖−β0(t)λmax

(
M−1

)) (29)

By employing ‖φ‖≤β0(t)λmax

(
M−1

)
, (29) can be simpli-

fied to

ωT ω̇ ≤ −kmin

3∑
j=1

ω2
j − γmin

3∑
j=1

|ωj |c+1 (30)

Taking into account (30) and (25), and applying definitions
α = min (min εj ,min kj) and δ = min (min γj ,min ςj),
derivation V̇ can be written as

V̇ = 0.5
(
sT ṡ+ ωT ω̇

)
≤ −α

3∑
j=1

(
ω2
j +s2j

)
−δ

3∑
j=1

(
|ωj |c+1+|sj |c+1

) (31)

Introducing inequalities
3∑
i=1

|ai|β ≥
(

3∑
i=1

|ai|
)β

and

3∑
i=1

|ai|1+β ≥

√(
3∑
i=1

|ai|2
)1+β

for 0 < β < 1 results in

V̇ ≤ −2αV − δ


√√√√( 3∑

j=1

(
s2j + ω2

j

))c+1


= −2αV − δ
√

2c+1
√
V c+1

(32)

Suppose ρ1 = 2α, ρ2 = δ
√

2c+1, and β = 0.5 (c+ 1). Thus,
V̇ (x) + ρ1V (x) + ρ2V

β (x) ≤ 0. According to Lemma 1,
the equilibrium point s = 0 is stable and ω = 0 is attainable
after finite time Ta. This completes the proof.

Theorem 2: Consider disturbance observer (9). Then, dis-
turbance errors converge to zero within finite time Ta given
by (10).

Proof: From Theorem 1, it is known that ω=0 is attainable
for t ≥ Ta such that ω̇ = 0. By setting φ̄ = φ̂−φ, this yields

φ̄=−φ−Kω−f(x, v)−β0(t)λmax

(
M−1

)
sgn(ω)

−γsigc (ω)−|f (x, v) |sgn (ω)=−φ−Kω+φ
−ėv+p (x)u−v̇d−β0 (t)λmax

(
M−1

)
sgn(ω)

−γsigc (ω)−|f(x, v)|sgn (ω)= ż−ėv= ω̇

(33)

Clearly, for t ≥ Ta, φ̄ = 0, as a result, φ̂ = φ. Thus, after
finite time Ta, τ̂d = p−1φ̂ converges to τd = p−1φ. This
completes the proof.

Theorem 3: Consider tracking error dynamics (8) and
sliding mode (11). Then, trajectory tracking errors, which
had arrived at s = 0, converge to zero within finite time Tb
specified as

Tb ≤ max
j
{ 1

ljFj
(Vj (exj (Ta) , evj (Ta)))

Fj}

with Fj = (3−$xj)
−1

(1−$xj)
(34)

where positive function Vj (exj , evj) and lj are defined so
that parameters ζj and Φj follow 0 < ζj < 1 and Φj > 1,
respectively.

Vj=
|ψj (exj , evj) |Jj

Jj
+ζjevjψj (exj , evj)+

Φj |evj |3−$xj
3−$xj

,

lj=−max(exj ,evj)∈Dj V̇j (exj , evj),
Dj={(exj , evj) :Vj (exj , evj)=1} .

(35)

where Jj = (2−$xj)
−1

(3−$xj).
Proof: According to Theorem 1, s = ω = 0 for t ≥ Ta.

So, from (11) one can obtain

ėv=−sig$x (ev)−sig$v (ψ (ex, ev)) . (36)

Therefore, (8) can be rewritten as

ėx = ev
ev = −sig$x (ev)− sig$v (ψ (ex, ev))

(37)

In consequence, three independent double integrator subsys-
tems that belong to system (37) are described as below for
j = 1, 2, 3:

ėxj=evj
ėvj =−|evj |$xjsgn (evj)−|ψj(exj , evj) |$vjsgn(ψj(exj , evj))

(38)
Based on Lemma 2 and the conclusion of [29], the following
inequality can be written as

V̇j (exj , evj) ≤ lj (Vj (exj , evj))

2

3−$xj ,

for all [exj , evj ]
T ∈ R2.

(39)

where lj = −max(exj ,evj)∈Dj V̇j (exj , evj). As a result,
tracking errors in each subsystem converge to zero after finite
time jTb specified as

jTb ≤
1

ljFj
(Vj (exj (Ta) , evj (Ta)))

Fj (40)

Obviously, for system (37) all tracking errors that had arrived
at s = 0 converge to zero after finite time Tb. In other
words, tracking errors converge to zero within finite time
Ttol = Ta + Tb.

Proposition 1: f (x, v) ∈ R3, which is defined in (6),
satisfies the following relation:

‖f (x, v̂)− f (x, v)‖≤ L1 (x, v̂) ‖ v̂ − v‖ +L2 (x, v̂) (41)
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Proof: From (6), this yields

‖f (x, v̂)−f (x, v)‖=‖M−1
(
B (〈v, v〉−〈v̂, v̂〉)+C

(
v2−v̂2

))
‖

≤‖M−1B (〈v, v〉 − 〈v̂, v̂〉) ‖ + ‖M−1C
(
v2 − v̂2

)
‖

≤ λmax

(
M−1

)(
‖B ‖(‖〈v, v〉‖+‖〈v̂, v̂〉‖)+‖C ‖

(
‖v2 ‖+‖ v̂2 ‖

))
(42)

Based on the definitions of 〈v, v〉 and v2, the following
inequalities hold:

‖〈v, v〉‖≤‖v‖2, ‖v2 ‖≤‖v‖2 (43)

So, (42) can be rewritten as

‖f (x, v̂)−f (x, v)‖

≤ λmax

(
M−1

)(
‖B ‖

(
‖v‖2 +‖ v̂‖2

)
+‖C ‖

(
‖v‖2 +‖ v̂‖2

))
≤ λmax

(
M−1

) (
2 (‖B‖+‖C‖) ‖ v̂‖2

)
+λmax

(
M−1

)
(‖B‖+‖C‖) (‖v‖−‖ v̂‖) (‖v‖+‖ v̂‖)

(44)
Then, in view of (13), one can obtain

‖f (x, v̂)−f (x, v)‖

≤ λmax

(
M−1

)(
2 (‖B‖+‖C‖) ‖ v̂‖2 +(‖B‖+‖C‖) (‖ v̂−v‖) (‖v‖+κ)

)
= L1(x, v̂)‖ v̂ − v‖+L2 (x, v̂) .

(45)
This completes the proof.

Theorem 4: Consider velocity observer (14) and assume
that estimation errors should not have a finite escape time.
Then, estimates x̂ and v̂ converge to x and v exactly within
finite time Tc given by (15).

Proof: Based on (14) and the non-existence of a finite
escape time in estimation errors, the error dynamics can be
written as follows:

˙̄ex= ēv−(σ0+σ3) sig(ēx)−h(x, v̂) sgn(ēx)−σ2sigξ (ēx)

˙̄ev=−σ1v̂−σ3|ēx|+f(x, v̂)−f(x, v)−φ (x, v, t)
(46)

Here, the candidate Lyapunov function is chosen as V =
‖ ēx ‖ + ‖ ēv ‖, such that its time derivative V̇ =‖ ēx ‖−1
ēTx ˙̄ex+ ‖ ēv ‖−1 ēTv ˙̄ev where (ēx)j is the jth element of

ēx. Introducing inequalities
3∑
i=1

|ai|β ≥
(

3∑
i=1

|ai|
)β

and

3∑
i=1

|ai|1+β ≥

√(
3∑
i=1

|ai|2
)1+β

for 0 < β < 1 results in

3∑
j=1

| (ēx)j | ≥‖ ēx ‖,
3∑
j=1

| (ēx)j |
ξ+1 ≥‖ ēx ‖ξ+1 (47)

By substituting for ˙̄ex and ˙̄ev from (46) into V̇ =‖ ēx ‖−1
ēTx ˙̄ex+ ‖ ēv ‖−1 ēTv ˙̄ev , and employing (47), one can obtain

V̇ ≤‖ ēx ‖−1ēTx ēv−(σ0+σ3)‖ēx‖−h (x, v̂)−σ1 ‖ ēv ‖

−σ2 ‖ēx‖ξ−σ1 ‖ ēv‖−1 ēTv v−σ3‖ ēv ‖−1ēTv |ēx|

−‖ ēv‖−1ēTv φ+‖ ēv ‖−1ēTv (f(x, v̂)−f(x, v))

(48)

Applying inequalities | ēTv (f (x, v̂)− f (x, v)) | ≤ ‖ ēTv ‖
‖f(x, v̂) − f(x, v)‖, |ēTx ēv|≤‖ēx‖‖ēv‖, |ēTx v|≤‖ ēx ‖‖ v ‖,
|ēTv |ēx|| ≤‖ ēv ‖‖|ēx|‖ and |ēTv φ| ≤‖ ēv ‖‖φ‖ results in

V̇≤‖ēv‖−(σ0+σ3)‖ ēx ‖−h(x, v̂)−σ1‖ēv‖+‖φ‖

+σ1‖v‖−σ2‖ēx‖ξ+σ3‖ēx‖+‖f(x, v̂)−f(x, v)‖
(49)

By employing inequalities (13) and (24), equality σ1 = 1 +
σ0 and proposition 1, and substituting for h (x, v̂), (48) can
be rewritten as

V̇ ≤ −σ0 ‖ ēv ‖ −σ0 ‖ ēx ‖ −σ2 ‖ ēx ‖ξ

−σ2 (‖ v̂‖+κ)
ξ−L2 (‖ v̂‖+κ) + L2 ‖ ēv ‖

(50)

Then, by incorporating with inequalities ‖ ēv ‖≤ (‖ v̂‖ +κ)
and − (‖ v̂‖ +κ)

ξ ≤ − ‖ ēv ‖ξ, this yields

V̇ ≤−σ0(‖ ēx ‖+‖ ēv ‖)− σ2
(
‖ ēx ‖ξ+‖ ēv ‖ξ

)
(51)

According to inequality
3∑
i=1

|ai|β ≥
(

3∑
i=1

|ai|
)β

, ‖ ēx ‖ξ

+ ‖ ēv ‖ξ≥ (‖ ēx ‖ + ‖ ēv ‖)ξ is obtained.

Moreover, in view of function V =‖ ēx ‖ + ‖ ēv ‖, (51) can
be rewritten as V̇ + σ0V + σ2V

ξ ≤ 0. By setting ρ1 = σ0,
ρ2 = σ2, β = ξ, inequality V̇ (ēx, ēv) + ρ1V (ēx, ēv) +
ρ2V

β (ēx, ēv) ≤ 0 is satisfied. Considering Lemma 1, errors
ēx and ēv reach zero for t ≥ Tc.This completes the proof.

Theorem 5: Consider a closed loop system of a 3-DOF
manipulator, which only measures positions of joints. Then,
joint positions x converge to the desired trajectories xd within
finite time T

′

tol = Ta +Tb +Tc, where Tc satisfies inequality
(15), and Tb and Ta are determined by

Tb ≤ max
j
{Vj (exj (Ta + Tc) , evj (Ta + Tc))

Fj

ljFj
} (52)

Ta≤

ln

α

√√√√( 3∑
j=1

s2j (Tc)+ω2
j (Tc)

)1−c

+δ

−ln δ

α (1− c)

(53)

Proof: Based on Theorem 4, estimate v̂ converges to v after
finite time Tc using the velocity observer. Note that position
x is applied to observer (14) as input to estimate v, and for
t ≥ Tc improved torque τ̃ becomes τ , and v̂ becomes v.
Consequently, by considering Theorem 1, 2, 3 and 4, it is
clear that x converges to xd within finite time T

′

tol = Ta +
Tb + Tc, where Tc satisfies inequality (15). In addition, it is
clear that initial condition t = 0 in (10) could be substituted

6
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by t = Tc, and initial condition t = Ta in (33) could be
replaced by t = Ta + Tc. This completes the proof.

Remark 2: The constraint of input torque indicated in (17),
which is employed to design control signal for eliminating
the effect of actuator saturation, can enhance the performance
of the control system of manipulator.

Remark 3: The parameters of nonlinear observers given in
(9) and (14) as well as those of control torque provided in
(12), which are in proper design, can decrease global finite
time and improve control precision.

V. NUMERICAL SIMULATION
In this section, finite-time trajectory tracking is verified by
numerical simulation for the 3-DOF manipulator described
in Section 2.

A schematic block diagram of the control system of the
closed-loop 3-DOF manipulator is given as Fig. 2.

FIGURE 2. Closed-loop control system of 3-DOF manipulator.

Consider the model of the 3-DOF manipulator in (1) and
the matrix parameters in (3). The desired trajectory was cho-
sen as xd = [sin (8t) , cos (8t) , 0.5 cos (8t)]

T . The initial po-

sition and velocity were selected as x (0) =
[
−π

3
,−π, π

3

]T
and v (0) = [0, 0, 0]

T , respectively. The initial values of the
velocity observer were considered to be x̂ (0) = [0, 0, 0]

T

and v̂ (0) = [5,−6,−3]
T . The disturbance matrix was

chosen as τd = (1 + sin (t)) [1, 1, 1]
T

+ 0.2x (t). Based
on (17), values of uupper1 = uupper2 = uupper3 = 80
and ulower1 = ulower2 = ulower3 = 60 were selected.
The upper bound of velocity was chosen as κ = 25. The
parameters of the sliding mode controller were taken to be
$x1 = $x2 = $x3 = 0.5, ε1 = ε2 = ε3 = 5 and
ς1 = ς2 = ς3 = 2. The parameters of the velocity observer
were assumed to be σ0 = σ2 = σ3 = 1.5, and ξ = 0.8,
and the disturbance parameters were chosen as c = 0.2,
γ1 = γ2 = γ3 = 15, and k1 = k2 = k3 = 10.

From Fig. 3, it is clear that the estimated velocities v̂1 (t),
v̂2 (t), and v̂3 (t) converge to actual velocities v1 (t), v2 (t),
and v3 (t) in finite time Tc ≈ 4.2 (s). In Fig. 4, the estimated
disturbances τ̂d1, τ̂d2, and τ̂d3 converge to actual disturbances
τd1, τd2, and τd3 within finite time Ta ≈ 1.0 (s). Fig. 5
illustrates how the actual positions x1, x2, and x3 track
exactly the desired positions xd1, xd2, and xd3 in total finite
time T

′

tol ≈ 8.5 (s).
As shown in Fig. 3, 4, and 5, global finite-time stability in

a closed-loop system of a 3-DOF manipulator is attainable,
consistent with the results of the theoretical analysis.

(a)

(b)

(c)

FIGURE 3. The estimates of joints velocities. a: Time responses of v̂1 and v1.
b: Time responses of v̂2 and v2. c: Time responses of v̂3 and v3.

(a)

(b)

(c)

FIGURE 4. The estimates of external disturbances. a: Time responses of τ̂d1
and τd1. b: Time responses of τ̂d2 and τd2.c: Time responses of τ̂d3 and τd3.
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(a)

(b)

(c)

FIGURE 5. Finite time trajectory tracking. a: Time responses of xd1 and x1.
b: Time responses of xd2 and x2. c: Time responses of xd3 and x3.

VI. CONCLUSION
This paper addresses the finite-time trajectory tracking con-
trol problem for the rigid 3-DOF manipulator system in
the presence of system external disturbance. The finite-time
velocity observer is designed to estimate velocity from direct
measurement of joint position. To improve the robustness
of the manipulator system against the disturbances, a distur-
bance observer is also designed. By applying the disturbance
observer and velocity observer with a nonlinear controller,
the conditions of global finite-time stability is established.
Based on Lyapunov stability theory, it is proved that the
finite-time trajectory tracking is achieved for the closed-
loop manipulator system. Simulation is performed and the
results demonstrate the effectiveness of the proposed control
method. In the future, the finite-time trajectory tracking con-
trol based on the observers will be further investigated for
other nonlinear systems. In addition, the finite-time conver-
gence rate for the robot system will be studied by virtue of
new control schemes.
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