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ABSTRACT Brain storm optimization (BSO) is a young and promising population-based swarm intelligence 

algorithm inspired by the human process of brainstorming. The BSO algorithm has been successfully applied 

to both science and engineering issues. However, thus far, most BSO algorithms are prone to fall into local 

optima when solving complicated optimization problems. In addition, these algorithms adopt complicated 

clustering strategies such as K-means clustering, resulting in large computational burdens. The paper 

proposes a simple BSO algorithm with a periodic quantum learning strategy (SBSO-PQLS), which includes 

three new strategies developed to improve the defects described above. First, we develop a simple individual 

clustering (SIC) strategy that sorts individuals according to their fitness values and then allocates all 

individuals into different clusters. This reduces computational burdens and resists premature convergence. 

Second, we present a simple individual updating (SIU) strategy by simplifying the individual combinations 

and improving the step size function to enrich the diversity of newly generated individuals and reduces 

redundancy in the pattern for generating individuals. Third, a quantum-behaved individual updating with 

periodic learning (QBIU-PL) strategy is developed by introducing a quantum-behaved mechanism into 

SBSO-PQLS. QBIU-PL provides new momentum, enabling individuals to escape local optima. With the 

support of these three strategies, SBSO-PQLS effectively improves its global search capability and 

computational burdens. SBSO-PQLS is compared with seven other BSO variants, Particle Swarm 

Optimization (PSO), and Differential Evolution (DE) on CEC2013 benchmark functions. The results show 

that SBSO-PQLS achieves a better global search performance than do the other nine algorithms. 

INDEX TERMS Global optimization, Brain storm optimization (BSO), Periodic quantum learning strategy. 

I. INTRODUCTION 

Brain storm optimization (BSO), invented by Shi in 2011, is a 

young and competitive population-based swarm intelligence 

optimization approach [1], [2]. The fundamental principle of 

the BSO algorithm is to emulate the human process of 

brainstorming, in which several people gather together to 

discuss issues. This group brainstorming effort can result in a 

broad range of ideas for handling complicated issues [3]. In 

the BSO algorithm, each individual in the solution space can 

be regarded as a single idea in the brainstorming process. All 

the ideas are divided into several clusters using the K-means 

algorithm. The best idea in each cluster acts as a clustering 

center, and each idea can be updated by integrating a Gaussian 

factor with ideas from other clusters. In brief, the BSO 

algorithm is composed of the following main processes: 

individual initialization, individual clustering, cluster center 

disruption, individual updating, and individual selection. The 

BSO algorithm has been successfully applied in various 

science and engineering fields. For instance, Xue et al. 

developed a multi-objective optimization algorithm based on 

BSO algorithm [4]. María and Miguel improved both the 

energy consumption and execution time by using a multi-

objective BSO algorithm [5]. Jordehi adopted the BSO 

algorithm to determine the optimal location and setting of 

flexible AC transmission system [6]. Sun et al. developed a 

closed-loop brain storm optimization to deal with the optimal 

formation reconfiguration of multiple satellites with impulse 

control [7]. Qiu and Duan developed a modified BSO to 
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ascertain receding horizon control parameters of formation 

flight for unmanned aerial vehicles [8]. 

However, similar to other swarm intelligence algorithms 

such as ant colony optimization (ACO) [9], particle swarm 

optimization (PSO) [10], and differential evolution (DE) [11], 

the BSO algorithm exhibits a fundamental issue in that it is apt 

to achieve premature convergence when handling complicated 

issues. Consequently, avoiding premature convergence while 

achieving good convergence speed are important issues for the 

BSO algorithm. To enhance BSO performance, several BSO 

variants have been proposed over the past few years.  

Zhan et al. proposed a modified brain storm optimization 

(MBSO) algorithm that uses a simple grouping method (SGM) 

to improve calculation efficiency and introduces the idea 

difference strategy (IDS) to avoid premature convergence [12]. 

Similarly, Li and Duan developed a simplified brain storm 

optimization (SBSO) algorithm for optimizing an automatic 

carrier landing system by applying the SGM strategy and 

simplifying the individual-generating operation to achieve 

good convergence speed [13]. To reduce the computational 

cost of the BSO, Sun et al. developed three variants of closed-

loop brain storm optimization (CLBSO) algorithms by 

introducing new operators [7]. Zhou et al. developed a 

dynamic step size and individual-updating strategy using a 

batch pattern to avoid local minima and strengthen the 

convergence ability [14]. In [15], two partial reinitializing 

strategies were adopted to avoid premature convergence by 

enhancing the population diversity of the BSO algorithm.  

Furthermore, hybrid algorithms play a crucial role in 

avoiding premature convergence and accelerating 

convergence. To optimize a DC brushless motor, Duan et al. 

proposed a predator-prey BSO (PPBSO) algorithm that 

introduces a predator-prey operator to enrich swarm diversity 

and avoid premature convergence [16]. Krishnanand et al. 

incorporated the teaching-learning-based algorithm into the 

BSO algorithm to obtain a self-evolving feature in the entire 

iterative process [17]. Inspired by the quantum-behaved PSO 

(QPSO) algorithm [18], [19], Duan and Li presented a 

quantum-behaved BSO (QBSO) algorithm to handle Loney’s 

solenoid issue by incorporating a quantum mechanism into 

each idea to improve population diversity and avoid local 

optima [20]. Both the differential evolution strategy and a new 

step-size control strategy for the BSO were employed in [21] 

to achieve an effective balance between avoiding premature 

convergence and accelerating convergence. Yang et al. 

developed an advanced discussion-mechanism-based brain 

storm optimization (ADMBSO) algorithm by creating a new 

discussion pattern to maintain a trade-off global search ability 

and convergence speed [22]. Chen et al. proposed an improved 

BSO algorithm that adopts an affinity propagation (AP) 

technique with an individual updating pattern to adaptively 

transform the number of clusters and enhance global search 

ability [23]. Cao et al. presented an improved BSO in which a 

stochastic grouping technique is designed to improve the time 

complexity, and a dynamic step-size parameter is used to 

balance the global and local search capabilities of the 

algorithm [24]. In addition, Cao et al. proposed an improved 

BSO algorithm that used a dynamic clustering strategy (BSO-

DCS) to reduce the computational time complexity of the BSO 

[25]. Jia et al. developed a new hybrid BSO algorithm that 

integrates the simulated annealing (SA) technique to avoid 

falling into local optima [26]. 

Although the aforesaid BSO variants achieved acceptable 

results, they still tend to fall into local optima when applied for 

solving increasingly complicated optimization problems such 

as the Popular CEC2013 test suit in [27]. A crucial reason 

behind the problems with these BSO variants is that their 

individual clustering strategies and individual updating 

strategies are unable to maintain a rational balance between 

global and local search capabilities. In addition, these BSO 

variants use complicated strategies such as K-means 

clustering, resulting in excessive computational burdens. 

To address the abovementioned problems, this paper 

proposes a novel BSO variant named the simple brain 

storming optimization with periodic quantum learning 

strategy (SBSO-PQLS), for which a new individual clustering 

strategy, a new individual updating mechanism, and a 

quantum-behaved individual updating with periodic learning 

strategy are developed. The three strategies work 

cooperatively to avoid premature convergence and reduce the 

computational burden of SBSO-PQLS. First, a new individual 

clustering strategy, called the simple individual clustering 

(SIC) strategy, is developed, which sorts all individuals 

according to their fitness values instead of the distances 

between them and then reasonably allocates all individuals 

into different clusters. The SIC strategy not only effectively 

reduces the computational burden of SBSO-PQLS but also 

provides a reasonable improvement regarding premature 

convergence. Second, a new individual updating mechanism, 

called the simple individual updating (SIU) strategy, is 

presented, which integrates the difference strategy proposed in 

[12]. The SIU strategy both enriches the new individual-

generating pattern and reduces its redundancy, which 

efficiently preventes new individuals from becoming trapped 

in local optima and accelerates convergence. Third, a 

quantum-behaved individual updating with periodic learning 

(QBIU-PL) strategy is presented. The QBIU-PL includes a 

quantum-behaved mechanism that provides new momentum, 

enabling individuals to jump out of local optima. However, 

too-frequent utilization of the quantum-behaved mechanism 

resulting in excessive states, over-expands the search range for 

individuals, and may cause the SBSO-PQLS algorithm to 

conduct meaningless and purposeless exploration, reducing its 

search efficiency. Therefore, the periodic learning strategy is 

integrated with the quantum-behaved mechanism to achieve 

rational utilization of the quantum-behaved mechanism 

throughout the iterative process. In addition, in the QBIU-PL 

strategy, a new individual is selected through the fitness 

evaluation mechanism rather than via a probability 

mechanism. Only new individuals with better fitness values 
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should be kept to ensure good solutions across the entire 

swarm. 

To demonstrate its superiority, SBSO-PQLS is compared 

with BSO [2], MBSO [12], SBSO [13], CLBSO [7], QBSO 

[20], BSODE [21], and ADMBSO [22]. These are 

representative BSO algorithms with good performance. 

Furthermore, we also compare SBSO-PQLS with PSO [10] 

and DE [11] to further evaluate its performance. The 

CEC2013 benchmark functions [27] are used to evaluate and 

verify the superiority of SBSO-PQLS. 

II. RELATED WORKS 
A. HUMAN BRAINSTORMING 

Brainstorming has been broadly adopted to promote creative 

thinking. The concept was first presented by Osborn in 1939 

[3]. The brainstorming procedure is an exercise in creativity 

in which a group of people with different backgrounds gather 

together and spontaneously contribute their best ideas to 

address a specific problem. In humans, the brainstorming 

steps can be described as follows [3]: 

Step 1 People with backgrounds as varied as possible 

gather to create new ideas based on four rules, called 

Osborn’s rules. 

Step 2 Several clients act as issue owners, and one idea per 

owner is selected as the most useful answer for the issue. 

Step 3 The ideas from Step 2 are then used as cues to spark 

more ideas. 

Step 4 Some ideas are randomly selected as cues to 

produce yet more ideas. 

Step 5 The issue owners select several of the best ideas 

from Steps 3 and 4. 

Step 6 Execute Steps 2–6 repeatedly until a sufficiently 

effective solution is achieved for the issue. 

For the brainstorming procedure to work properly, the 

participants follow four general rules of brainstorming, 

called Osborn’s rules, which are described as follows [1]–[3]: 

Rule 1 Focus on quantity: The first rule is based on the 

assumption that producing a larger number of ideas increases 

the probability of achieving an effective solution. This rule 

focuses on facilitating problem solving by using a "quantity 

implementing quality" approach. 

Rule 2 Avoid criticism: Participants in the brainstorming 

procedure should concentrate on generating ideas rather than 

criticizing ideas already produced. Criticism is reserved for 

the next stage to enable the participants to be unrestricted so 

that they can produce unusual and creative ideas and improve 

the probability of a satisfactory result. 

Rule 3 Welcome unusual ideas: Participants can contribute 

unusual ideas by viewing the issues from different 

perspectives and suspending their assumptions. These 

solutions are welcomed to achieve a good and sufficiently 

large series of ideas. 

Rule 4 Cross-fertilize: By modeling the budding ideas 

through associations, the fourth rule assumes that better ideas 

can be achieved by integrating good ideas. 

B. BRAIN STORM OPTIMIZATION ALGORITHM 

As proposed in [1] and [2], the BSO algorithm procedure can 

be described as follows.  

(1) Population Initialization  

In the BSO algorithm, each individual, termed an idea, is 

regarded as a candidate solution vector for the problem 

solution. For 𝑖 ∈  {1, 2, ⋯ , 𝑁}, the 𝑖th idea is described as 

vector 𝑃𝑖
𝑘 =  [𝑝𝑖1

𝑘 , 𝑝𝑖2
𝑘 , ⋯ , 𝑝𝑖𝐷

𝑘 ] , 𝑁  represents the 

population size, 𝐷  denotes the dimension of the search 

space, and 𝑘 is the current iteration index. Here, 𝑝𝑖𝑑
𝑘  is the 

𝑑 th dimension of the 𝑖 th idea 𝑃𝑖
𝑘  in the range 

[𝑙𝑑_𝑚𝑖𝑛 , 𝑢𝑑_𝑚𝑎𝑥] , where 𝑑  represents a dimension that 

satisfies 𝑑 ∈  {1, 2, ⋯ , 𝐷} , and 𝑙𝑑_𝑚𝑖𝑛  and 𝑢𝑑_𝑚𝑎𝑥  are 

defined as the minimum and maximum boundaries of the dth 

dimension of the search space, respectively. Then, the dth 

dimension of the 𝑖th idea is randomly initialized based on 

the uniform distribution in the search space as follows: 

 𝑝𝑖𝑑  = 𝑙𝑑_𝑚𝑖𝑛 + 𝑟𝑑(𝑢𝑑_𝑚𝑎𝑥 − 𝑙𝑑_𝑚𝑖𝑛),                      (1) 

where 𝑟𝑑 is a random number uniformly distributed in the 

range [0, 1]. Subsequently, each idea is evaluated using a 

fitness function 𝐹(𝑃𝑖
𝑘)  to determine that idea’s fitness 

value. 

(2) Individual Clustering 

In each generation, all 𝑁 ideas in the entire swarm are 

divided into 𝑀  clusters according to the K-means 

clustering strategy [1], [2]. The best idea 𝐶𝑚
𝑘 =

[𝑐𝑚1
𝑘 , 𝑐𝑚2

𝑘 , ⋯ , 𝑐𝑚𝐷
𝑘 ], 𝑚 ∈ {1, 2, ⋯ , 𝑀} in the 𝑚th cluster is 

selected as the 𝑚 th cluster center, after which the 𝑀 

cluster centers can be described as {𝐶1
𝑘, 𝐶2

𝑘, ⋯ , 𝐶𝑀
𝑘 }.  

(3) Cluster Center Disruption 

In addition, the 𝑗th cluster center 𝐶𝑗
𝑘 = [𝑐𝑗1

𝑘 , 𝑐𝑗2
𝑘 , ⋯ , 𝑐𝑗𝐷

𝑘 ], 

𝑗 ∈  {1, 2, ⋯ , 𝑀} is randomly selected from the 𝑀 cluster 

centers {𝐶1
𝑘, 𝐶2

𝑘, ⋯ , 𝐶𝑀
𝑘 } and is replaced by a random idea 

𝑄 = [𝑞1, 𝑞2, ⋯ , 𝑞𝐷] when the uniformly distributed random 

number 𝑟0  is smaller than the pre-determined probability 

𝑝𝑟0; otherwise, it is not replaced. The cluster center 𝐶𝑗
𝑘 is 

updated as follows: 

𝑐𝑗𝑑
𝑘 = {

𝑞𝑑 , 𝑟0 <  𝑝𝑟0

𝑐𝑗𝑑
𝑘 ,     𝑟0 ≥  𝑝𝑟0

                                 (2) 

where 𝑐𝑗𝑑
𝑘 , 𝑑 ∈  {1, 2, ⋯ , 𝐷} is the 𝑑th dimension of the 

cluster center 𝐶𝑗
𝑘 , 𝑟0  is a uniformly distributed random 

number in the range [0, 1], and 𝑞𝑑 , 𝑑 ∈  {1, 2, ⋯ , 𝐷} is 

the 𝑑 th dimension of the random idea 𝑄 , randomly 

initialized in the 𝑑th search space according to (1). 

(4) Individual Updating  

The new idea is updated based on either a single old idea 

from one cluster, or a combination of two old ideas from two 

different clusters. 

1) Generating new ideas from one cluster 

When the uniform distribution random number 𝑟1 is less 
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than the pre-determined probability 𝑝𝑟1 , the new idea 

( 𝑃𝑖
𝑘+1 = [𝑝𝑖1

𝑘+1, 𝑝𝑖2
𝑘+1, ⋯ , 𝑝𝑖𝐷

𝑘+1] , 𝑖 ∈  {1, 2, ⋯ , 𝑁} ) is 

updated based on one old idea 𝑈𝑘 = [𝑢1
𝑘, 𝑢2

𝑘 , ⋯ , 𝑢𝐷
𝑘 ] from 

one cluster of 𝑀 cluster as follows: 

𝑝𝑖𝑑
𝑘+1 = 𝑢𝑑

𝑘 + 𝜂𝑑(𝜇, 𝜎)ξ(k), 𝑟1 <  𝑝𝑟1                      (3) 

where 𝑝𝑖𝑑
𝑘+1 is the 𝑑th dimension of the updated idea 𝑃𝑖

𝑘+1, 

and 𝑢𝑑
𝑘 is the 𝑑th dimension of the vector 𝑈𝑘. Here, 𝜂𝑑 is 

a Gaussian random number, 𝜇 is its mean, 𝜎 is its variance, 

and ξ(𝑘) denotes the step size function for regulating the 

convergence speed. 

Suppose the old idea 𝑈𝑘  comes from the 𝑗 th selected 

cluster. The 𝑗th cluster center 𝐶𝑗
𝑘 is selected as the old idea 

𝑈𝑘 if the uniform distribution random number 𝑟11 is less 

than the pre-determined probability𝑝𝑟11; otherwise, an idea 

Ψ𝑘 = [𝜓1
𝑘 , 𝜓2

𝑘 , ⋯ , 𝜓𝐷
𝑘 ] is randomly selected from the 𝑗th 

cluster as the 𝑈𝑘. The 𝑢𝑑
𝑘 can be formulated as 

𝑢𝑖𝑑
𝑘 = {

𝑐𝑗𝑑
𝑘 , 𝑟11 <  𝑝𝑟11

𝜓𝑑
𝑘 ,     𝑟11 ≥  𝑝𝑟11

,                                  (4) 

where 𝑐𝑗𝑑
𝑘  is the 𝑑th dimension of the 𝑗th cluster center 

𝐶𝑗
𝑘, and 𝜓𝑑

𝑘 is the 𝑑th dimension of the randomly selected 

idea Ψ𝑘 from the 𝑗th cluster. 

Note that the 𝑗th cluster is selected from the 𝑀 cluster 

centers {𝐶1
𝑘, 𝐶2

𝑘, ⋯ , 𝐶𝑀
𝑘 }  based on the probability 𝑝𝐶 , 

which is acquired using roulette wheel selection [2] as 

follows: 

𝑝𝐶 = 𝐹(𝐶𝑗
𝑘) ∑ 𝐹(𝐶𝑚

𝑘 )𝑀
𝑚=1⁄ ,                     (5) 

where 𝐶𝑗
𝑘 represents the selected center of the 𝑗th cluster, 

𝐹(𝐶𝑗
𝑘) stands for the fitness value of the center 𝐶𝑗

𝑘 , 𝐶𝑚
𝑘  

denotes any of 𝑀  cluster centers {𝐶1
𝑘, 𝐶2

𝑘, ⋯ , 𝐶𝑀
𝑘 } , and 

𝐹(𝐶𝑚
𝑘 )  represents any fitness value from the 𝑀  cluster 

centers. 

In addition, the step size function is defined as 

ξ(𝑘) = 𝑟𝑑logsig[(0.5 × 𝐾 − 𝑘) c⁄ ],          (6) 

where 𝑟𝑑  is a uniform distribution random number in the 

range [0, 1], 𝐾 is the maximum iterative number, 𝑘 is the 

current iterative number, and 𝑐  is a regulating factor for 

switching the slope of the step size function ξ(𝑘)  and 

improving the convergence speed of the algorithm. 

2) Generating new ideas from two clusters 

When the uniform distribution random number 𝑟1  is 

greater than the pre-determined probability𝑝𝑟1, the new idea 

( 𝑃𝑖
𝑘+1 = [𝑝𝑖1

𝑘+1, 𝑝𝑖2
𝑘+1, ⋯ , 𝑝𝑖𝐷

𝑘+1] , 𝑖 ∈  {1, 2, ⋯ , 𝑁} ) can be 

updated based on one vector 𝑉𝑘 = [𝑣1
𝑘 , 𝑣2

𝑘 , ⋯ , 𝑣𝐷
𝑘]  as 

follows: 

𝑝𝑖𝑑
𝑘+1 = 𝑣𝑑

𝑘 + 𝜂𝑑(𝜇, 𝜎)ξ(k), 𝑟1 ≥  𝑝𝑟1,               (7) 

where 𝑝𝑖𝑑
𝑘+1 is the 𝑑th dimension of the updated idea 𝑃𝑖

𝑘+1, 

𝑣𝑑
𝑘  is the 𝑑 th dimension of the vector 𝑉𝑘 , and 𝑑 

represents a dimension that satisfies 𝑑 ∈  {1, 2, ⋯ , 𝐷}. 

Note that unlike the vector 𝑈𝑘  from (4), the vector 𝑉𝑘 

from (7) is a combination of two different ideas from two 

different 𝑀 clusters. Suppose that the 𝑗th cluster and the 

ℎth cluster are two different clusters randomly selected from 

𝑀  clusters, and 𝐶𝑗
𝑘  and 𝐶ℎ

𝑘  are used to described their 

cluster centers, respectively. In addition, Ψ𝑘  and Φ𝑘  are 

two different old ideas randomly selected from the 𝑗th and 

ℎth clusters, respectively. If the uniform distribution random 

number 𝑟12 is less than the pre-determined probability 𝑝𝑟12, 

the vector 𝑉𝑘  is created by a combination of the centers, 

𝐶𝑗
𝑘  and 𝐶ℎ

𝑘 ; otherwise, the vector 𝑉𝑘  is created by 

combining two ideas, Ψ𝑘  and Φ𝑘 . Thus, 𝑣𝑑
𝑘  can be 

formulated as 

𝑣𝑑
𝑘 = {

𝑟𝑑𝑐𝑗𝑑
𝑘 + (1 − 𝑟𝑑)𝐶ℎ𝑑

𝑘 , 𝑟12 <  𝑝𝑟12

𝑟𝑑𝜓𝑑
𝑘 + (1 − 𝑟𝑑)𝜙𝑑

𝑘, 𝑟12 ≥  𝑝𝑟12             
,      (8) 

where 𝑐𝑗𝑑
𝑘  and 𝑐ℎ𝑑

𝑘  are the 𝑑th dimension of the centers 

𝐶𝑗
𝑘  and 𝐶ℎ

𝑘 , respectively, 𝜓𝑑
𝑘  and 𝜙𝑑

𝑘  are the 𝑑 th 

dimension of the two different ideas Ψ𝑘 and Φ𝑘 from the 

𝑗th and ℎ th clusters, respectively, and 𝑟𝑑  is the uniform 

distribution random number in the range [0,1]. 

(5) Individual selection  

The selection strategy is utilized to preserve the 

competitive solutions in all individuals. The fitness value of 

the new idea 𝑃𝑖
𝑘+1, 𝑖 ∈  {1, 2, ⋯ , 𝑁} is compared with that 

of the old idea 𝑃𝑖
𝑘. When the fitness value of the new idea 

𝑃𝑖
𝑘+1 is better than that of the old idea 𝑃𝑖

𝑘 , the new idea 

𝑃𝑖
𝑘+1  is preserved for next iterative updating process; 

otherwise, the old idea 𝑃𝑖
𝑘 is preserved for the next iterative 

updating process. Without loss of generality, suppose that 

the considered fitness value is for minimization. The 

individual selection procedure is as follows: 

𝑃𝑖
𝑘+1 = {

𝑃𝑖
𝑘+1,   𝐹(𝑃𝑖

𝑘+1) < 𝐹(𝑃𝑖
𝑘)

𝑃𝑖
𝑘 , 𝐹(𝑃𝑖

𝑘+1) ≥  𝐹(𝑃𝑖
𝑘) 

,                    (9) 

where 𝐹(𝑃𝑖
𝑘+1) is the fitness value of the new idea 𝑃𝑖

𝑘+1, 

and 𝐹(𝑃𝑖
𝑘) is the fitness value of the old idea 𝑃𝑖

𝑘. 

When 𝑁  ideas have been generated, the termination 

conditions of the BSO algorithm are checked, and if the 

termination conditions are matched, the BSO algorithm 

terminates and outputs the results. Otherwise, the BSO 

algorithm continues to run until the termination conditions 

are met. 

C. QUANTUM-BEHAVED BRAIN STORM OPTIMIZATION  

Recently, the quantum mechanism has been exploited to 

enhance the global search capabilities of intelligent swarm 

techniques. In [18] and [19], Sun et al. introduced quantum 

behavior and proposed a quantum-behaved PSO (QPSO) 

algorithm. The quantum behavior generates new states and 

offers new momentums for each individual in the entire 

swarm, effectively improving the global search capability of 

each individual. 
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Inspired by the QPSO, Duan et al. proposed a QBSO 

algorithm by introducing quantum behavior into the BSO 

algorithm to enhance its global search capabilities. In the 

QBSO, each idea in the swarm is updated based on quantum 

behavior. The new idea with quantum states is formulated as 

follows 

𝑞𝑖𝑑
𝑘+1 = {

𝑞𝑖𝑑+
𝑘+1,   𝑟𝑑 < 0.5

𝑞𝑖𝑑−
𝑘+1,  𝑟𝑑 ≥ 0.5

 ,                    (10) 

where 𝑞𝑖𝑑
𝑘+1  is the 𝑑 th dimension of the new quantum-

behaved idea 𝑄𝑖
𝑘+1 = [𝑞𝑖1

𝑘+1, 𝑞𝑖2
𝑘+1, ⋯ , 𝑞𝑖𝐷

𝑘+1] , 𝑖 ∈
 {1, 2, ⋯ , 𝑁} and has two different states: 𝑞𝑖𝑑+

𝑘+1 and 𝑞𝑖𝑑−
𝑘+1, 

defined as 

𝑞𝑖𝑑+
𝑘+1 = 𝑚𝑖𝑑

𝑘 + ln(1 𝑟𝑑⁄ )(𝑏|𝑐�̅�
𝑘 − 𝑢𝑑

𝑘|) + 𝜂𝑑(𝜇, 𝜎)ξ(k)   (11) 

and  

𝑞𝑖𝑑−
𝑘+1 = 𝑚𝑖𝑑

𝑘 − ln(1 𝑟𝑑⁄ )(𝑏|𝑐�̅�
𝑘 − 𝑢𝑑

𝑘|) + 𝜂𝑑(𝜇, 𝜎)ξ(k),  (12) 

respectively. The 𝑚𝑖𝑑
𝑘  can be expressed as 

𝑚𝑖𝑑
𝑘 =   𝑟𝑑𝑔𝑑

𝑘 + (1 − 𝑟𝑑)𝑐𝑗𝑑
𝑘 ,                      (13) 

where 𝑔𝑑
𝑘  is the 𝑑th dimension of the best idea from the 

entire swarm in the 𝑘 th iteration, and 𝑐𝑗𝑑
𝑘  is the 𝑑 th 

dimension of the cluster center 𝐶𝑗
𝑘 from cluster 𝑗, to which 

the idea 𝑃𝑖
𝑘 belongs. The 𝑐�̅�

𝑘 from (11) or (12) is the 𝑑th 

dimension of the mean value of the 𝑀  cluster centers 

{𝐶1
𝑘, 𝐶2

𝑘, ⋯ , 𝐶𝑀
𝑘 }, defined as  

𝑐�̅�
𝑘 = ∑ 𝑐𝑖𝑑

𝑘𝑀
𝑖=1 𝑀,                                  ⁄ (14) 

where 𝑐𝑖𝑑
𝑘  represents the 𝑑th dimension of the 𝑖th cluster 

center, and 𝑖  satisfies 𝑖 ∈  {1, 2, ⋯ , 𝑀}. The parameter 𝑏 

from (11) or (12) decreases linearly from 1 to 0.5, according 

to the formula  

𝑏 = 1 − 𝑏0 ∗ 𝑘 𝐾,                                  ⁄ (15) 

where 𝑘 is the current iteration index, 𝐾 is the maximum 

number of iterations, and 𝑏0 is a constant. 

In addition, the new quantum-behaved idea 𝑄𝑖
𝑘+1, when 

crossed with an existing idea 𝑃𝑖
𝑘 generates two new ideas 

as follows: 

𝑥𝑖𝑑
𝑘+1 = 𝑟𝑑𝑞𝑖𝑑

𝑘+1 + (1 − 𝑟𝑑)𝑝𝑖𝑑
𝑘              (16) 

and  

𝑦𝑖𝑑
𝑘+1 = (1 − 𝑟𝑑)𝑞𝑖𝑑

𝑘+1 + 𝑟𝑑𝑝𝑖𝑑
𝑘 ,     (17) 

respectively. Here, 𝑥𝑖𝑑
𝑘+1 and 𝑦𝑖𝑑

𝑘+1 are the 𝑑th dimension 

of the new ideas 𝑋𝑖
𝑘+1  and 𝑌𝑖

𝑘+1  in the crossover 

operation, respectively, and 𝑝𝑖𝑑
𝑘  is the 𝑑th dimension of the 

existing idea 𝑃𝑖
𝑘 . Subsequently, the fitness values of four 

individuals 𝑄𝑖
𝑘+1, 𝑃𝑖

𝑘, 𝑋𝑖
𝑘+1, and 𝑌𝑖

𝑘+1 are evaluated, and 

the individual with the best fitness is selected as the new idea 

for the next iteration. 

Note that, except for the individual updating and selection 

operations, the other procedures of the QBSO algorithm are 

the same as those of the BSO algorithm.  

III. PROPOSED ALGORITHM 

In the SBSO-PQLS algorithm, three new strategies, the SIC 

strategy, the SIU strategy, and the QBIU-PL strategy, are 

developed to improve premature convergence and reduce the 

computational cost. 

A. SIMPLE INDIVIDUAL CLUSTERING STRATEGY 

The original BSO algorithm used basic K-means clustering 

to gather similar individuals into small clusters in each 

iteration. In the original BSO algorithm, the purpose of 

clustering is to refine a search area and accelerate 

convergence. However, the K-means clustering algorithm 

causes a heavier computational burden because the K-means 

algorithm must compute the distances between all 

individuals. Hence, to reduce the computational burden, 

some BSO variants have adopted the simple grouping 

method (SGM) [12]. However, the SGM strategy also 

involves computing the distances among individuals, which 

causes the computational burden of BSO variants to remain 

high. 

  

Algorithm 1

m=1

m=m+1

end

Sort N ideas according 

to their fitness values 

Divide N ideas sorted from large to small into two 

groups; the large group consist of N/2 ideas with 

large fitness values; the small group consists of N/2 

ideas with small fitness values 

For cluster m, one half of its N/M ideas 

are randomly selected from the large 

group; the other half are randomly 

selected from the small group 

The idea with the best fitness 

among cluster m is selected as the 

center 𝐶𝑚
𝑘  of the cluster m 

m<M
Y

N

 

FIGURE 1. Flowchart of SIC Strategy (Algorithm 1). 

 

From the analysis above, we develop a simple individual 

clustering (SIU) strategy, which sorts all individuals in 
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accordance with their fitness values and then reasonably 

allocates all individuals into different clusters. Because the 

SIC strategy does not need to calculate the distances between 

all individuals, it effectively reduces the computational 

burden. Furthermore, the SIC strategy can generate a 

reasonably diverse population and improve premature 

convergence of the SBSO-PQLS algorithm. The pseudocode 

for the SIC strategy is shown in Algorithm 1, and its 

flowchart is displayed in Fig. 1. 

Algorithm 1: SIC Strategy 

1: Sort all 𝑁 ideas {𝑃1
𝑘, 𝑃2

𝑘 , ⋯ , 𝑃𝑁
𝑘} in the swarm from large to small 

according to their fitness values, {𝐹(𝑃1
𝑘), 𝐹(𝑃2

𝑘), ⋯ , 𝐹(𝑃𝑁
𝑘)}; 

2: Divide the sorted 𝑁 ideas into two groups: a large group and a small 

group. The large group consists of the N/2 ideas with larger fitness 

values; the small group includes the rest of the N/2 ideas, which have 

smaller fitness values; 

3: Distribute the 𝑁 ideas from the two groups into M clusters so that 

each cluster contains N/M ideas. For each cluster m ∈ {1, 2, ⋯ , 𝑀}, 
half of its N/M ideas are randomly selected from the large group, and 

the other half are randomly selected from the small group; 

 

4: 

For each cluster m ∈ {1, 2, ⋯ , 𝑀}, the idea with the best fitness value 

is selected as the cluster center 𝐶𝑚
𝑘 , 𝐶𝑚

𝑘 = [𝑐𝑚1
𝑘 , 𝑐𝑚2

𝑘 , ⋯ , 𝑐𝑚𝐷
𝑘 ]; thus, 

all 𝑀 cluster centers can be described by {𝐶1
𝑘 , 𝐶2

𝑘 , ⋯ , 𝐶𝑀
𝑘 }. 

B. SIMPLE INDIVIDUAL UPDATING STRATEGY 

In the original BSO algorithm, individual updating is based 

on two different cases. In one case, the new idea is generated 

from the center or from any idea in one cluster to refine a 

search area and strengthen the local search capability. In 

contrast, in the other case, the new idea is generated by 

combining two centers from two clusters or by combining 

two ideas from two clusters. This approach maintains 

population diversity and enhances global search capability.  

However, we discovered that the individual updating in 

the original BSO algorithm still needs further improvement. 

For instance, a new idea generated from one cluster does not 

consider a combination of any two ideas from one cluster. 

Similarly, a new idea generated from two clusters does not 

consider the combination of a center from one cluster and 

any idea from the other cluster. Furthermore, in the original 

BSO algorithm, for each new idea, its individual updating 

equations that contain some redundant information can be 

simplified. Moreover, the updating equation of the original 

BSO algorithm uses a logarithmic sigmoid mechanism, 

which is disadvantageous for two reasons. The first is that 

the logarithmic sigmoid function is constrained in the range 

[-4, 4], which may result in an invalid search when the 

solution space is sufficiently large [12]. The second is that 

the logarithmic sigmoid function does not contain any 

feedback information and thus, it may not achieve some 

effective search features [7].  

From the above analysis, we developed an simple 

individual updating (SIU) strategy based on the original BSO 

algorithm. The SIU strategy uses a combination of any two 

ideas from one cluster to improve population diversity. 

Subsequently, a combination of any two ideas from two 

clusters is adopted to improve population diversity and 

decrease the redundant information in the pattern for 

generating new individuals. Furthermore, the difference 

strategy from [12] was introduced to replace the logarithmic 

sigmoid function. The use of the SIU strategy improves 

premature convergence and reduces the computational 

burden of SBSO-PQLS. The corresponding details are 

formulated as follows. 

(1) Generating new ideas from one cluster 

When the uniform distribution random number 𝑟1 is less 

than the pre-determined probability 𝑝𝑟1 , the new idea 

𝑃𝑖
𝑘+1 = [𝑝𝑖1

𝑘+1, 𝑝𝑖2
𝑘+1, ⋯ , 𝑝𝑖𝐷

𝑘+1] , 𝑖 ∈  {1, 2, ⋯ , 𝑁}  can be 

updated based on one vector 𝑈𝑘 = [𝑢1
𝑘, 𝑢2

𝑘 , ⋯ , 𝑢𝐷
𝑘 ]  from 

one cluster of 𝑀 clusters as follows: 

𝑝𝑖𝑑
𝑘+1 = 𝑢𝑑

𝑘 + ζ(k),   𝑟1 <  𝑝𝑟1,                      (18) 

where ζ(k)  is the step-size function that regulates the 

convergence speed, 𝑑  satisfies 𝑑 ∈  {1, 2, ⋯ , 𝐷} , and 𝑢𝑑
𝑘 

is the 𝑑th dimension of the vector 𝑈𝑘. 

Assume that the vector 𝑈𝑘  is generated from the 𝑗 th 

cluster randomly selected from the 𝑀 clusters based on the 

roulette wheel selection [2]. If the uniform distribution 

random number 𝑟11  is less than the pre-determined 

probability 𝑝𝑟11 , the 𝑗th cluster center 𝐶𝑗
𝑘  is used as the 

vector 𝑈𝑘 ; otherwise, two ideas Ψ𝑘 = [𝜓1
𝑘 , 𝜓2

𝑘 , ⋯ , 𝜓𝐷
𝑘 ] 

and Φ𝑘 = [𝜙1
𝑘, 𝜙2

𝑘, ⋯ , 𝜙𝐷
𝑘 ] are randomly selected from the 

𝑗th cluster, and then combined into vector 𝑈𝑘. Thus, 𝑢𝑑
𝑘 is 

defined as 

𝑢𝑑
𝑘 = {

𝑐𝑗𝑑
𝑘 , 𝑟11 <  𝑝𝑟11

𝑟𝑑𝜓𝑑
𝑘 + (1 − 𝑟𝑑)𝜙𝑑

𝑘, 𝑟11 ≥  𝑝𝑟11,             
      (19) 

where 𝑐𝑗𝑑
𝑘  is the 𝑑th dimension of the 𝑗th cluster center 

𝐶𝑗
𝑘, 𝜓𝑑

𝑘 and 𝜙𝑑
𝑘 is the 𝑑th dimension of the ideas Ψ𝑘 and 

Φ𝑘 , 𝑟𝑑  is the uniform distribution random number in the 

range [0, 1] , and 𝑑  represents a dimension that satisfies 

𝑑 ∈  {1, 2, ⋯ , 𝐷}. 

Note that 𝑢𝑑
𝑘  is equal to 𝑟𝑑𝜓𝑑

𝑘 + (1 − 𝑟𝑑)𝜙𝑑
𝑘  when 

𝑟11 ≥  𝑝𝑟11, indicating that 𝑢𝑑
𝑘 can achieve different results 

given the uniform distribution of the random number 𝑟𝑑 in 

the range [0, 1]. For instance, when 𝑟𝑑  = 1 is true, 𝑢𝑑
𝑘 

will be equal to 𝜓𝑑
𝑘, and when 𝑟𝑑 = 0 is true, 𝑢𝑑

𝑘 will be 

equal to 𝜙𝑑
𝑘 . Finally, when 0 < 𝑟𝑑 <1 is true, 𝑢𝑑

𝑘  is an 

arbitrary combination of 𝜓𝑑
𝑘  and 𝜙𝑑

𝑘 . Thus, the 𝑢𝑑
𝑘  from 

(19) has more possible combinations than does the 𝑢𝑑
𝑘 from 

(4), implying that the new idea of SBSO-PQLS from one 

cluster has a richer diversity of the population compared with 

that of the original BSO.  

(2) Generating new ideas from two clusters 

When the uniform distribution random number 𝑟1  is 

greater than the pre-determined probability 𝑝𝑟1 , the new 

idea 𝑃𝑖
𝑘+1 = [𝑝𝑖1

𝑘+1, 𝑝𝑖2
𝑘+1, ⋯ , 𝑝𝑖𝐷

𝑘+1] , 𝑖 ∈  {1, 2, ⋯ , 𝑁}  can 

be updated based on one vector, 𝑉𝑘 = [𝑣1
𝑘 , 𝑣2

𝑘 , ⋯ , 𝑣𝐷
𝑘] , 

which is a combination of two different ideas from two 

clusters among the 𝑀 clusters. Then, the new idea 𝑃𝑖
𝑘+1 
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can be updated by 

𝑝𝑖𝑑
𝑘+1 = 𝑣d

𝑘 + ζ(k), 𝑟1 ≥  𝑝𝑟1,                     (20) 

where 𝑝𝑖𝑑
𝑘+1  is the 𝑑th dimension of the new idea 𝑃𝑖

𝑘+1, 

𝑣𝑑
𝑘  is the 𝑑th dimension of vector 𝑉𝑘, ζ(k) is the step size 

function for regulating the convergence speed, and 𝑑 

satisfies 𝑑 ∈  {1, 2, ⋯ , 𝐷}.  

To improve the diversity of the population in SBSO-PQLS, 

the vector 𝑉𝑘 should contain as many combinations of two 

old ideas from two clusters as possible. Therefore, to 

describe all possible combinations that can be created by 

combining two ideas from two clusters, an effective 

combination for vector 𝑉𝑘 is  

𝑣𝑑
𝑘 = 𝑟𝑑𝜓𝑑

𝑘 + (1 − 𝑟𝑑)𝜙𝑑
𝑘,                           (21) 

where 𝑣𝑑
𝑘  is the 𝑑th dimension of the vector 𝑉𝑘, 𝑟𝑑 is the 

uniform distribution random number in the range [0, 1], 

𝜓𝑑
𝑘  and 𝜙𝑑

𝑘  are the 𝑑 th dimension of the two different 

ideas Ψ𝑘 = [𝜓1
𝑘 , 𝜓2

𝑘 , ⋯ , 𝜓𝐷
𝑘 ]  and Φ𝑘 = [𝜙1

𝑘, 𝜙2
𝑘, ⋯ , 𝜙𝐷

𝑘 ] 
from any two clusters, respectively, and 𝑟𝑑  is a uniform 

distribution random number in the range [0, 1]. 
Note that the ideas Ψ𝑘  and Φ𝑘  can be randomly 

selected from the two clusters from the 𝑀  clusters, 

respectively. Hence, both Ψ𝑘  and Φ𝑘  have two possible 

cases. One is that each of the ideas Ψ𝑘 and Φ𝑘 is selected 

from any cluster center of the 𝑀 cluster centers. The other 

is that each of them is selected from any idea in the selected 

cluster other than the center of the selected cluster. Hence, 

𝑣𝑑
𝑘  contains four possible combinations according to (21). 

This implies that 𝑝𝑖𝑑
𝑘+1 also has four possible combinations 

according to (20) and (21). From the above analysis, the new 

idea-generating pattern in SBSO-PQLS from two clusters 

can enhance the diversity of the population compared to the 

idea-generating pattern used by the standard BSO.  

(3) Step size function 

The step size function in SBSO-PQLS incorporates the 

difference strategy from [12] to improve the search range and 

provide feedback on the search information. The step size 

function is 

ζ(k) = {

ℳ − 𝑢𝑑
𝑘 ,  𝑟1 <  𝑝𝑟1, 𝑟2 <  𝑝𝑟2

ℳ − 𝑣𝑑
𝑘 ,  𝑟1 ≥  𝑝𝑟1, 𝑟2 <  𝑝𝑟2 

 𝑟𝑑(𝑝𝑠𝑑
𝑘 − 𝑝𝑡𝑑

𝑘 ),  𝑟2 ≥  𝑝𝑟2

.       (22) 

Here, 𝑢𝑑
𝑘 and 𝑣𝑑

𝑘 can be computed according to (19) and 

(21), respectively; 𝑝𝑠𝑑
𝑘  and 𝑝𝑡𝑑

𝑘  correspond to the 𝑑 th 

dimension of two different ideas, 𝑃𝑠
𝑘  and 𝑃𝑡

𝑘 , from all 

current ideas, respectively; the indices 𝑠 and 𝑡 are mutually 

exclusive integers randomly selected from the range [1, N]; 

ℳ is written as 

ℳ = 𝑙𝑑_𝑚𝑖𝑛 + 𝑟𝑑(𝑢𝑑_𝑚𝑎𝑥 − 𝑙𝑑_𝑚𝑖𝑛),     (23) 

where 𝑢𝑑_𝑚𝑎𝑥  and 𝑙𝑑_𝑚𝑖𝑛  denote the maximum and 

minimum boundaries of the 𝑑 th dimension of the search 

space, respectively. 

Generally, the SIU strategy can both enrich the diversity 

and decrease the redundancy when generating new 

individuals, which efficiently avoids premature convergence. 

The new individual updating pattern is illustrated in 

Algorithm 2 with the flowchart shown in Fig. 2. 

Algorithm 2: SIU Strategy 

1: Generate a random number 𝑟1; 

2: for each new idea 𝑃𝑖
𝑘+1, 𝑖 ∈  {1, 2, ⋯ , 𝑁} do 

3: if 𝑟1 <  𝑝𝑟1 then 

4: Select a cluster 𝑗, 𝑗 ∈  {1, 2, ⋯ , 𝑀} from 𝑀 cluster according 

to the probability 𝑝𝐶  in the (5); 

5: Update the new idea 𝑃𝑖
𝑘+1 = [𝑝𝑖1

𝑘+1, 𝑝𝑖2
𝑘+1, ⋯ , 𝑝𝑖𝐷

𝑘+1] using (18), 
(19), and (22); 

6: else if 𝑟1 ≥  𝑝𝑟1 then 

 Randomly select two clusters 𝑗  and ℎ , 𝑗(ℎ)  ∈  {1, 2, ⋯ , 𝑀} 

from the 𝑀 clusters; 

7: Update new idea 𝑃𝑖
𝑘+1 = [𝑝𝑖1

𝑘+1, 𝑝𝑖2
𝑘+1, ⋯ , 𝑝𝑖𝐷

𝑘+1] by using (20), 
(21), and (22). 

8: end if 

9: end for 

 

𝑟1 <  𝑝𝑟1   

Algorithm 2

Select a cluster by 

using roulette method 

Randomly select 

two clusters 

Y N

Update new idea 𝑃𝑖
𝑘+1 by using 

the formulas (18), (19) and (22) 

Update new idea 𝑃𝑖
𝑘+1 by using 

the formulas (20), (21) and (22) 

end

 

FIGURE 2. Flowchart of SIU Strategy (Algorithm 2). 

C. QUANTUM-BEHAVED INDIVIDUAL UPDATING WITH 
PERIODIC LEARNING STRATEGY 

The new strategies for clustering and generating individuals 

improve population diversity and help SBSO-PQLS avoid 

becoming trapped into local optima to some extent. However, 

these strategies may be less effective when the individuals of 

SBSO-PQLS become similar. This is because that these 

similar individuals lack new momentums; therefore, it is 

difficult for similar individuals to escape a local optimum 

and find promising search spaces.  

In [18] and [19], Sun et al. proposed a quantum-behaved 

PSO (QPSO) algorithm by introducing quantum theory into 

PSO to generate new momentum for the individuals, which 

enhances QPSO's global search capabilities and avoids 

premature convergence. Inspired by QPSO, Duan et al. 

proposed a quantum-behaved BSO (QBSO) algorithm to 

enhance the performance of the BSO algorithm by 

introducing quantum behavior into the BSO algorithm. 
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Although QBSO generates new momentum and causes 

extreme expansion of individuals' search range, such a range, 

it may cause QBSO to carry out excessive exploration with 

sketchy exploitation and, thus, affect the algorithm's search 

efficiency. To overcome this defect of QBSO and improve 

its search efficiency, we develop a quantum-behaved 

individual updating with periodic learning (QBIU-PL) 

strategy as follows. 

Each new quantum-behaved individual 𝑄𝑖
𝑘+1 , 𝑖 ∈

 {1, 2, ⋯ , 𝑁} has two quantum states: 𝑄𝑖+
𝑘+1 and 𝑄𝑖−

𝑘+1. The 

QBIU-PL strategy is written as follows: 

𝑞𝑖𝑑
𝑘+1 = {

𝑞𝑖𝑑+
𝑘+1Δ(𝑇)

𝑞𝑖𝑑−
𝑘+1Δ(𝑇)

 ,                                   (24) 

where 𝑞𝑖𝑑
𝑘+1  is the 𝑑 th dimension of the new quantum-

behaved idea 𝑄𝑖
𝑘+1 = [𝑞𝑖1

𝑘+1, 𝑞𝑖2
𝑘+1, ⋯ , 𝑞𝑖𝐷

𝑘+1] , 𝑖 ∈
 {1, 2, ⋯ , 𝑁}, 𝑞𝑖𝑑+

𝑘+1and 𝑞𝑖𝑑−
𝑘+1 are the 𝑑th dimension of two 

different states 𝑄𝑖+
𝑘+1  and 𝑄𝑖−

𝑘+1  of the quantum-behaved 

idea 𝑄𝑖
𝑘+1, and Δ(𝑇) is the time periodic learning strategy, 

defined as 

Δ(𝑇) = {
1, 𝑘 = 𝑛𝑇  
0, 𝑘 ≠ 𝑛𝑇

, 𝑛 ∈  {1,2 ⋯ , 𝐾 𝑇⁄ },        (25) 

where 𝑇  is the time period, 𝑘  is the current iteration 

index, 𝐾 is the maximum number of iterations, and 𝑛 is a 

positive integer. This indicates that all the ideas in the whole 

swarm will periodically conduct a quantum-behaved 

individual updating operation in the 𝑛 th iteration.  

Moreover, two different quantum-behaved states 𝑄𝑖+
𝑘+1 and 

𝑄𝑖−
𝑘+1 can be improved as follows: 

𝑞𝑖𝑑+
𝑘+1 = [𝑚𝑖𝑑

𝑘 + ln(1 𝑟𝑑⁄ )(𝑏|𝑐�̅�
𝑘 − 𝑝𝑖𝑑

𝑘 |) + ζ(k)]      (26) 

and  

𝑞𝑖𝑑−
𝑘+1 = [𝑚𝑖𝑑

𝑘 − ln(1 𝑟𝑑⁄ )(𝑏|𝑐�̅�
𝑘 − 𝑝𝑖𝑑

𝑘 |) + ζ(k)],   (27) 

respectively. Here, 𝑚𝑖𝑑
𝑘  and 𝑐�̅�

𝑘 are obtained from (13) and 

(14), respectively; 𝑝𝑖𝑑
𝑘  is the 𝑑th dimension of the existing 

idea 𝑃𝑖
𝑘 ; ζ(k)  is formulated by (22). The parameter 𝑏 

decreases from 1 to 1 − 𝑏0 linearly: 

𝑏 = 1 − 𝑏0 ∗ 𝑘 𝐾,                                  ⁄ (28) 

where 𝑘 is the current iteration index, 𝐾 is the maximum 

number of iterations, and 𝑏0 is a certain constant. Unlike 

(11) and (12), (26) and (27) use 𝑝𝑖𝑑
𝑘  and ζ(k) instead of 

𝑢𝑖𝑑
𝑘  and 𝜂𝑑(𝜇, 𝜎)ξ(k). 

In particular, for 𝑖 ∈  {1, 2, ⋯ , 𝑁}, the fitness values of 

the new quantum-behaved idea 𝑄𝑖
𝑘+1  with two different 

states are compared with that of the new idea 𝑃𝑖
𝑘+1, and the 

best idea among them is preserved as a new idea for the next 

iterative updating procedure. By using the QBIU-PL strategy, 

our proposed BSO algorithm can avoid excessive 

exploration and achieves an effective balance between 

exploration and exploitation. 

The pseudocode for the QBIU-PL strategy is listed in 

Algorithm 3. The corresponding flowchart is displayed in 

Fig. 3. 

Algorithm 3: QBIU-PL Strategy 

1: 𝑄𝑖
𝑘+1 , 𝑖 ∈  {1, 2, ⋯ , 𝑁}  is composed of two quantum states: 

𝑄𝑖+
𝑘+1 and 𝑄𝑖−

𝑘+1; 

2: for each new idea 𝑄𝑖
𝑘+1, 𝑖 ∈  {1, 2, ⋯ , 𝑁} do 

3: if Δ(𝑇) =  1 then 

4: Generate and update quantum-behaved idea 𝑄𝑖
𝑘+1 (𝑄𝑖+

𝑘+1 and 

𝑄𝑖−
𝑘+1) using (24)–(28); 

6: end if 

7: Evaluate the fitness values 𝐹(𝑃𝑖
𝑘+1), 𝐹(𝑄𝑖+

𝑘+1), and 𝐹(𝑄𝑖−
𝑘+1); 

8: if 𝐹(𝑄𝑖+
𝑘+1) < 𝐹(𝑃𝑖

𝑘+1)  then 

9: 𝑃𝑖
𝑘+1 = 𝑄𝑖+

𝑘+1; 

10: else if 𝐹(𝑄𝑖−
𝑘+1) < 𝐹(𝑃𝑖

𝑘+1)  
11: 𝑃𝑖

𝑘+1 = 𝑄𝑖−
𝑘+1. 

12: end if 

13: end for 

 

Generate and update quantum-behaved ideas 𝑄𝑖+
𝑘+1 

and 𝑄𝑖−
𝑘+1 by using the formulas (24)-(28) 

Evaluate 𝑄𝑖+
𝑘+1, 𝑄𝑖−

𝑘+1and 𝑃𝑖
𝑘+1; the 

individual with the best fitness will be 

kept as 𝑃𝑖
𝑘+1  

end 

Δ(𝑇) = 1  

Algorithm 3

N

Y

 
 

FIGURE 3. Flowchart of QBIU-PL Strategy (Algorithm 3). 

D. PROCEDURES OF PROPOSED ALGORITHM 

The main steps of SBSO-PQLS are listed in Algorithm 4 

with its flowchart shown in Fig. 4. First, the N ideas of the 

entire swarm are randomly initialized in the search space, 

and the corresponding fitness values are evaluated. Second, 

the SIC strategy is conducted for the entire swarm based on 

Algorithm 1. Third, cluster center disruption is carried out 

for the cluster centers of SBSO-PQLS. Fourth, the SIU 

strategy is conducted for each idea in the entire swarm. Fifth, 

when the QBIU-PL strategy is activated, each idea of the 

entire swarm is updated using the QBIU-PL strategy. Sixth, 

the individual selection strategy is used to discover the most 

promising ideas in the entire swarm. Finally, the idea with 

the best corresponding fitness value is achieved. 

In addition, we use the same constraint mechanism used 

in the PSO algorithm to constrain the search range of SBSO-

PQLS as follows: 

𝑝𝑖𝑑
𝑘 = 𝑚𝑖𝑛 {𝑢𝑑_𝑚𝑎𝑥 , 𝑚𝑎𝑥 {𝑙𝑑_𝑚𝑎𝑥 , 𝑝𝑖𝑑

𝑘  }}.          (29) 
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i=1

i<N?

k<K?

End

N

N

i=i+1

Y
k=k+1

Y

Initialize N ideas and evaluate their 

corresponding fitness values 

Individual clustering by SIC 

strategy ( Algorithm 1 ) 

Cluster center disrupting: 

Randomly update the center of a random selected cluster 

Individual updating by SIU 

strategy ( Algorithm 2 ) 

Quantum-behaved individual 

updating with periodic learning 

strategy by QBIU-PL strategy 

( Algorithm 3 ) 

Individual selection: 

Evaluate for 𝑃𝑖
𝑘  and 𝑃𝑖

𝑘+1; the 

individual with better fitness will be 

kept in next generation 

 
FIGURE 4. Flowchart of SBSO-POLS Algorithm (Algorithm 4). 

Algorithm 4: SBSO-PQLS Algorithm 

1: Initialization: Randomly generate 𝑁 ideas, {𝑃1
𝑘, 𝑃2

𝑘 , ⋯ , 𝑃𝑁
𝑘}; each 

idea denotes a potential solution in a 𝐷-dimensional search space, 

described as 𝑃𝑖
𝑘 = [𝑝𝑖1

𝑘 , 𝑝𝑖2
𝑘 , ⋯ , 𝑝𝑖𝐷

𝑘 ], 𝑖 ∈  {1, 2, ⋯ , 𝑁}. Evaluate the 

𝑁  ideas, {𝑃1
𝑘, 𝑃2

𝑘 , ⋯ , 𝑃𝑁
𝑘} ; the corresponding fitness values are 

described as {𝐹(𝑃1
𝑘), 𝐹(𝑃2

𝑘), ⋯ , 𝐹(𝑃𝑁
𝑘)}; 𝑘 and 𝐾 are the current 

iteration index and maximum iteration number, respectively.  

2: While (stop condition is not satisfied) do 

3: New Individual Clustering: Algorithm 1; 

4: Cluster Center Disruption: a cluster center is randomly selected 

from the centers of the 𝑀 clusters. The selected cluster center is 

replaced by a randomly generated idea if 𝑟0 < 𝑝𝑟0 , where the 

random number 𝑟0 is uniformly distributed from 0 to 1; 𝑝𝑟0 is 

the pre-determined probability; 

5: New Individual Updating: Algorithm 2; 

6: Quantum-behaved Individual Updating with Periodic 

Learning Strategy: Algorithm 3; 

7: Individual Selection: Evaluate each new idea 𝑃𝑖
𝑘+1,  𝑖 ∈

{1, 2, ⋯ , 𝑁}, select and keep the best idea according to (9). 

8: end While 

IV COMPARISONS WITH OTHER ALGORITHMS  
A. BENCHMARK FUNCTIONS 

The evaluations of SBSO-PQLS were carried out using a 

popular test suite, called the CEC2013 benchmark [27]. 

Section S-I of the supplementary material describes the 

CEC2013 test suite, which is composed of 28 benchmark 

functions, including shifted and rotated functions for real 

parameter optimization in complicated and difficult cases. 

These shifted and rotated functions are separated into three 

types according to their features. The first type contains 5 

unimodal benchmark functions, F1–F5. The second type 

consists of 15 multimodal benchmark functions, F6–F20. 

The third type consists of the composition benchmark 

functions, F21–F28. For each function from the 28 CEC2013 

benchmark functions, the dimension D is set to 30; each 

dimension is initialized within [-100, 100], and the search 

range of each dimension is set to [-100, 100].  

B. BENCHMARK FUNCTIONS PARAMETER 
CONFIGURATIONS FOR COMPARED ALGORITHMS 

The SBSO-PQLS algorithm was compared with seven BSO 

variants: the original BSO (BSO) [1], the modified BSO 

(MBSO) [12], the closed-loop brain storm optimization 

using random selection (CBSO-RS) [7], the simplified BSO 

(SBSO) [13], the BSO with a differential evolution strategy 

and a new step size method (BSODE) [21], the quantum-

behaved BSO (QBSO) [20], and the advanced discussion 

mechanism-based BSO (ADMBSO) [22]. The above seven 

BSO algorithms are typical BSO algorithms that have 

achieved good performances in the literature. As listed in 

Table I, their parameter configurations are set following the 

original references, except for the population size and the 

maximum fitness evaluations (FES). 

Furthermore, the proposed BSO algorithm was compared 

with the DE using the DE/rand/1/bin strategy [11] and the 

global version of PSO (GPSO) [10] to determine whether the 

proposed algorithm could surpass the widely used GPSO and 

DE algorithms (their parameter configurations are also listed 

in Table I). In addition, the parameters 𝑇 and 𝑏0  of the 

SBSO-PQLS algorithm were set to 100 and 0.9, respectively. 
TABLE I 

ALGORITHM PARAMETERS CONFIGURATIONS 

Algorithm Year Parameter Settings Reference 

BSO 2011 𝑝𝑟0=0.2, 𝑝𝑟1=0.8, 𝑝𝑟11=0.4, 𝑝𝑟21=0.5, c=25, M=5 [1] 

MBSO 2012 
𝑝𝑟0=0.2, 𝑝𝑟1=0.8, 𝑝𝑟11=0.4, 𝑝𝑟21=0.5, c=25, 

M=5, 𝑝𝑟= 0.005 
[12] 

CLBSO-RS 2013 𝑝𝑟0=0.2, 𝑝𝑟1=0.8, 𝑝𝑟11=0.4, 𝑝𝑟21=0.5, M=5 [7] 

SBSO 2015 𝑝𝑟0=0.2, 𝑝𝑟1=0.8, 𝑝𝑟11=0.4, 𝑝𝑟21=0.5, c=25, M=5 [13] 

BSODE 2015 
𝑝𝑟0=0.2, 𝑝𝑟1=0.8, 𝑝𝑟11=0.4, 𝑝𝑟21=0.5, M=5, 

CR=0.5, F=0.5 
[21] 

QBSO 2015 
𝑝𝑟0=0.2, 𝑝𝑟1=0.8, 𝑝𝑟11=0.4, 𝑝𝑟21=0.5, M=5, 

𝑏0=0.5 
[20] 

ADMBSO 2015 
𝑝𝑐𝑒𝑛=0.7, 𝑝𝑖𝑛𝑑=0.2, 𝑝𝑟𝑛𝑑=0.1, 𝑝𝑐𝑒𝑛𝑠=0.7, 𝑝𝑙𝑜𝑤=0.2, 

𝑝ℎ𝑖𝑔ℎ=0.2, m=5 
[22] 

DE 1997 CR=0.5, F=0.5 [11] 

PSO 1999 𝜔: 0.9-0.4, c1=2, c2=2 [10] 

SBSO-PQLS  
𝑝𝑟0=0.2, 𝑝𝑟1=0.8, 𝑝𝑟11=0.4, 𝑝𝑟21=0.5, 𝑝𝑟2=0.005, 

M=5, T=100, 𝑏0=0.9 
 

The above algorithms were all implemented in MATLAB 

R2014b and executed on a PC with an Intel Core (TM) CPU 

i7-4790 CPU @ 3.60 GHz with 16 GB RAM. Each of these 
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algorithms was independently executed 30 times on each of 

28 CEC2013 benchmark functions using the same maximum 

fitness evaluation (FES), 400,000. The maximum number of 

iterations was set to 8000, and the population size was set to 

50. The dimensions of each function were set to 30. 

C. COMPARISION WITH BSO VARIANTS, PSO AND DE 

The SBSO-PQLS algorithm was compared with seven other 

BSO variants, DE, and PSO on 28 CEC2013 benchmark 

functions. We have evaluated the error mean values between 

the best solution found by the algorithms listed in Table I and 

the global optimum solution over 30 runs on each function 

of 28CEC 2013 functions. The error mean value is described 

as 

Mean =  ∑ [𝐹𝑘(𝑃) −  𝐹(𝑃∗)] 30,⁄    30
𝑘=1                (30) 

where 𝐹(𝑃) and 𝐹(𝑃∗) denote the best result found by the 

algorithms listed in Table I and the global optimum solution 

on each function of the 28 functions, respectively. In addition, 

the standard deviation value of each function is defined as 

STD = √ ∑ [𝐹𝑘(𝑃) −  Mean]2 𝑁 − 1⁄    30
𝑘=1

2
 .             (31) 

Overall evaluation: Table II shows the error mean and 

standard deviation values on the 28 functions resulting from 

each algorithm. The best result of each function among all 

algorithms is marked in bold. We can observe that SBSO-

PQLS achieves the best results on 4 of the 28 CEC2013 

benchmark functions, the second-best results on 11, and the 

third best results on 5. However, it performed the worst or 

the second worst result on only 1. In addition, it performed 

third-worst on 2 of the 28 CEC2013 benchmark functions. 

By evaluating the error mean and standard deviation values 

of the 28 functions, we can obtain the average and final rank 

for each algorithm, shown the last two rows of Table II. 

Although SBSO-PQLS did not achieve the best result on any 

of the 28 CEC2013 benchmark functions, it achieves the best 

average rank value among all the tested algorithms, 3.46 on 

the 28 CEC 2013 benchmark functions. This indicates that 

SBSO-PQLS algorithm obtained the best overall 

performance on the 28 CEC2013 benchmark functions 

among all ten tested algorithms. 

Unimodal functions F1-F5: Table II shows that SBSO, 

MBSO, and BSODE achieved the best result on unimodal 

functions F1, F2 and F4, respectively; DE achieved the best 

results on the unimodal functions F3 and F5. However, 

QBSO had the worst results on the unimodal functions F1, 

F3, and F5, SBSO was worst on the unimodal function F4, 

and DE was worst on the unimodal function F2.  

Furthermore, Table II shows that SBSO-PQLS achieved 

the second-best result on function F5, the third best results 

on functions F1 and F3, and the fourth best results on 

functions F2 and F4. Interestingly, SBSO-PQLS did not 

achieve the best result on any of the unimodal functions, but 

it also did not have the worst result on any unimodal function. 

Similarly, BSO, CLBSO, ADMBSO, and PSO did not 

achieve the best results on any of the unimodal functions, nor 

did they have the worst results among all the unimodal 

functions. 

The average rank for each algorithm on all unimodal 

functions is listed in Table III, which shows that SBSO-

PQLS achieved the best average rank, 3.25, on all the 

unimodal functions. This indicates that the proposed 

algorithm has steady performance on five of the unimodal 

functions, and thus achieved the best overall performance on 

all five. 

Multimodal functions F6-F20: Table II shows that SBSO-

PQLS achieved the best results on the multimodal functions 

F9, F12, and F13. BSODE achieved the best results on the 

multimodal functions F10, F15, and F16. CLBSO achieved 

the best results on the multimodal functions F6, F18, and F20. 

BSO achieved the best result on the multimodal function F8. 

PSO achieved the best results on the multimodal functions 

F11, F14, F17, and F19. DE achieved the best result on 

multimodal function F7.  

However, QBSO was the worst on the multimodal 

functions F6, F7, F10, and F17-F19. BSO performed the 

worst on the multimodal functions F11–F14. ADMBSO 

performed the worst on the multimodal function F16. DE 

was in last place on the multimodal functions F9 and F15, 

and PSO performed the worst on the multimodal function 

F20. SBSO-PQLS algorithm was the worst on the 

multimodal function F8; however, as Table II shows, its 

performance on that function was only slightly worse than 

the best result of the BSO algorithm on that function. From 

the above analysis, SBSO-PQLS has the best overall 

performances on all the multimodal functions of all the tested 

algorithms listed in Table III. 

Composition functions F21-F28: The composition 

functions consist of various basic unimodal and multimodal 

benchmark functions with a randomly situated global 

optimum and several randomly situated deep local optima. 

Table II shows that SBSO-PQLS achieves the best result on 

the composition function F28. ADMBSO achieves the best 

results on the composition functions F25 and F26. MBSO 

achieves the best result on the composition function F23. DE 

achieves the best results on the composition functions F24, 

F27, and F28, and PSO achieves the best results on 

composition functions F21 and F22. However, QBSO 

performs the worst on the composition functions F21, F22, 

F24, F27, and F28. DE performs the worst on the 

composition function F23. BSO performs the worst on the 

composition function F25, and PSO performs the worst on 

the composition function F26. Table III shows the average 

rank for each algorithm on all the composition functions. 

ADMBSO achieves the best average rank, 3.13, on all the 

composition functions, and MBSO is in second place, with 

3.5, on all the composition functions. The SBSO-PQLS 

algorithm achieves the third-best average rank, 3.75, on all 

the composition functions. 
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TABLE II 

COMPARISON OF EXPERIMENTAL RESULTS AMONG TEN ALGORITHMS ON 30 DIMENSIONS CEC 2013 TEST FUNCTIONS 

Function 
Evaluation  

Criteria 
ADMBSO BSO BSODE SBSO MBSO QBSO 

CLBSO-

RS 
DE PSO 

SBSO-

PQLS 

F1 Mean 2.88E-13 1.29E-13 1.89E-13 0 2.96E-13 2.25E-02 2.05E-13 7.58E-15 4.55E-13 1.06E-13  
Std 2.53E-13 1.15E-13 8.62E-14 0.00E+00 1.22E-13 9.71E-03 6.94E-14 4.15E-14 1.58E-13 1.15E-13  
rank 7 4 5 1 8 10 6 2 9 3 

F2 Mean 1.06E+05 1.04E+06 2.82E+05 1.85E+06 9.48E+04 2.11E+07 1.20E+05 5.69E+07 1.26E+07 1.37E+05  
Std 1.57E+05 3.54E+05 9.57E+04 3.02E+05 5.67E+04 6.86E+06 5.32E+04 1.18E+07 9.47E+06 7.15E+04  
rank 2 6 5 7 1 9 3 10 8 4 

F3 Mean 1.47E+07 5.19E+07 3.35E+07 5.51E+07 1.07E+07 5.58E+09 5.58E+06 9.37E+02 1.17E+08 6.00E+06  
Std 3.68E+07 6.79E+07 4.40E+07 7.21E+07 1.67E+07 3.48E+09 1.11E+07 3.93E+03 1.22E+08 1.05E+07  
rank 5 7 6 8 4 10 2 1 9 3 

F4 Mean 1.05E+02 1.57E+04 2.22E+00 3.23E+04 1.19E+02 2.56E+04 3.35E+03 1.86E+04 3.43E+03 5.00E+02  
Std 2.49E+02 6.77E+03 3.40E+00 7.28E+03 9.88E+01 3.82E+03 7.19E+03 2.86E+03 7.83E+02 7.27E+02  
rank 2 7 1 10 3 9 5 8 6 4 

F5 Mean 3.64E-13 1.06E-02 1.11E-03 6.20E-03 4.40E-13 2.50E+00 3.37E-13 1.14E-13 4.36E-13 1.63E-13  
Std 1.78E-13 2.25E-03 2.07E-04 1.59E-03 2.56E-13 5.05E+00 1.85E-13 1.28E-29 1.16E-13 5.73E-14  
rank 4 9 7 8 6 10 3 1 5 2 

F6 Mean 2.23E+01 3.35E+01 2.26E+01 4.44E+01 2.16E+01 9.02E+01 1.26E+01 1.38E+01 6.61E+01 1.74E+01  
Std 2.19E+01 2.73E+01 2.12E+01 2.99E+01 1.94E+01 3.58E+01 6.61E+00 5.42E+00 3.40E+01 1.56E+01  
rank 5 7 6 8 4 10 1 2 9 3 

F7 Mean 3.35E+01 1.21E+02 2.59E+02 1.02E+02 3.24E+01 6.47E+02 3.09E+01 1.91E-01 3.44E+01 1.97E+01  
Std 2.17E+01 4.29E+01 3.39E+02 2.84E+01 1.81E+01 1.31E+03 1.55E+01 5.08E-01 1.19E+01 1.68E+01  
rank 5 8 9 7 4 10 3 1 6 2 

F8 Mean 2.0935E+01 2.0883E+01 2.0890E+01 2.0890E+01 2.0915E+01 2.0933E+01 2.0924E+01 2.0927E+01 2.0929E+01 2.0949E+01  
Std 4.67E-02 8.60E-02 6.34E-02 6.24E-02 6.85E-02 7.12E-02 6.06E-02 4.11E-02 7.20E-02 5.29E-02  
rank 9 1 3 2 4 8 5 6 7 10 

F9 Mean 2.63E+01 3.26E+01 3.02E+01 2.70E+01 2.19E+01 3.72E+01 2.34E+01 3.84E+01 2.27E+01 1.68E+01  
Std 5.04E+00 2.71E+00 3.67E+00 4.18E+00 3.94E+00 2.75E+00 4.23E+00 1.18E+00 3.33E+00 4.61E+00  
rank 5 8 7 6 2 9 4 10 3 1 

F10 Mean 2.86E-01 2.74E-01 6.08E-03 4.78E-01 2.00E-01 1.40E+01 1.43E-01 7.15E-03 2.22E-01 1.32E-01  
Std 1.59E-01 2.58E-01 4.65E-03 2.91E-01 1.19E-01 5.63E+00 6.62E-02 3.90E-03 1.49E-01 5.15E-02  
rank 8 7 1 9 5 10 4 2 6 3 

F11 Mean 4.14E+01 4.15E+02 2.88E+02 3.14E+02 6.32E+01 4.14E+02 5.40E+01 8.14E+01 2.34E+01 3.06E+01  
Std 1.20E+01 8.35E+01 7.88E+01 6.27E+01 2.07E+01 7.83E+01 1.71E+01 7.27E+00 8.12E+00 7.66E+00  
rank 3 10 7 8 5 9 4 6 1 2 

F12 Mean 5.05E+01 4.19E+02 3.30E+02 3.08E+02 6.56E+01 4.16E+02 5.13E+01 1.79E+02 7.61E+01 3.68E+01  
Std 1.29E+01 8.49E+01 8.23E+01 5.13E+01 1.72E+01 8.02E+01 1.46E+01 1.04E+01 3.28E+01 1.22E+01  
rank 2 10 8 7 4 9 3 6 5 1 

F13 Mean 1.07E+02 4.883E+02 4.32E+02 4.16E+02 1.33E+02 4.880E+02 1.18E+02 1.81E+02 1.54E+02 8.78E+01  
Std 3.48E+01 6.94E+01 8.08E+01 5.11E+01 3.38E+01 9.58E+01 2.78E+01 9.47E+00 3.79E+01 2.37E+01  
rank 2 10 8 7 4 9 3 6 5 1 

F14 Mean 3.32E+03 4.29E+03 3.62E+03 3.74E+03 2.88E+03 4.18E+03 2.88E+03 3.92E+03 8.85E+02 2.41E+03  
Std 7.41E+02 4.02E+02 6.34E+02 8.38E+02 7.43E+02 5.60E+02 7.55E+02 2.18E+02 2.54E+02 7.82E+02  
rank 5 10 6 7 3 9 4 8 1 2 

F15 Mean 6.38E+03 4.393E+03 4.387E+03 4.42E+03 4.84E+03 4.59E+03 5.17E+03 7.20E+03 6.71E+03 6.68E+03  
Std 1.44E+03 5.43E+02 6.49E+02 6.09E+02 1.57E+03 6.70E+02 1.44E+03 1.63E+02 7.62E+02 1.16E+03  
rank 7 2 1 3 5 4 6 10 9 8 

F16 Mean 2.48E+00 1.69E-01 3.57E-02 6.11E-01 2.36E+00 1.61E+00 2.451E+00 2.450E+00 2.29E+00 2.454E+00  
Std 2.61E-01 4.74E-02 2.06E-02 4.89E-01 3.30E-01 4.52E-01 1.90E-01 2.41E-01 3.26E-01 3.07E-01  
rank 10 2 1 3 6 4 8 7 5 9 

F17 Mean 7.23E+01 4.35E+02 3.98E+02 3.31E+02 8.78E+01 5.29E+02 7.95E+01 1.16E+02 5.60E+01 6.29E+01  
Std 1.25E+01 9.32E+01 1.32E+02 6.40E+01 1.64E+01 1.10E+02 1.54E+01 8.02E+00 1.78E+01 1.10E+01  
rank 3 9 8 7 5 10 4 6 1 2 

F18 Mean 1.94E+02 3.86E+02 3.54E+02 3.97E+02 2.00E+02 5.61E+02 1.87E+02 2.09E+02 2.35E+02 1.90E+02  
Std 2.78E+01 7.26E+01 8.45E+01 5.16E+01 1.20E+01 1.08E+02 4.28E+01 7.42E+00 2.72E+01 8.65E+00  
rank 3 8 7 9 4 10 1 5 6 2 

F19 Mean 7.41E+00 7.93E+00 9.63E+00 1.43E+01 6.69E+00 9.21E+01 5.33E+00 1.19E+01 3.42E+00 3.63E+00  
Std 6.05E+00 1.81E+00 1.73E+00 2.22E+00 1.83E+00 2.54E+01 1.36E+00 7.25E-01 8.45E-01 1.16E+00  
rank 5 6 7 9 4 10 3 8 1 2 

F20 Mean 1.143E+01 1.45E+01 1.41E+01 1.31E+01 1.15E+01 1.45E+01 1.11E+01 1.22E+01 1.46E+01 1.144E+01  
Std 6.64E-01 1.20E-01 5.73E-01 9.55E-01 6.92E-01 3.17E-01 6.99E-01 2.28E-01 1.01E+00 5.66E-01  
rank 2 8 7 6 4 9 1 5 10 3 

F21 Mean 3.05E+02 3.42E+02 3.21E+02 3.52E+02 3.00E+02 3.54E+02 2.85E+02 2.88E+02 2.81E+02 3.21E+02  
Std 8.57E+01 1.01E+02 1.15E+02 9.02E+01 9.55E+01 6.94E+01 9.23E+01 4.78E+01 7.22E+01 9.70E+01  
rank 5 8 6 9 4 10 2 3 1 7 

F22 Mean 3.23E+03 5.51E+03 4.74E+03 4.05E+03 2.77E+03 5.94E+03 3.21E+03 4.31E+03 9.77E+02 2.13E+03  
Std 1.02E+03 8.42E+02 7.64E+02 9.58E+02 9.78E+02 8.52E+02 7.45E+02 3.30E+02 2.38E+02 7.22E+02  
rank 5 9 8 6 3 10 4 7 1 2 

F23 Mean 5.16E+03 5.50E+03 5.62E+03 5.64E+03 4.66E+03 5.94E+03 5.06E+03 7.39E+03 6.42E+03 6.05E+03  
Std 1.36E+03 7.89E+02 8.03E+02 7.69E+02 1.16E+03 1.10E+03 9.95E+02 2.88E+02 1.11E+03 1.49E+03  
rank 3 4 5 6 1 7 2 10 9 8 

F24 Mean 2.53E+02 3.09E+02 2.95E+02 3.11E+02 2.59E+02 3.18E+02 2.54E+02 2.00E+02 2.67E+02 2.47E+02  
Std 9.97E+00 1.77E+01 1.41E+01 1.59E+01 9.39E+00 1.22E+01 8.27E+00 7.32E-04 7.40E+00 9.71E+00  
rank 3 8 7 9 5 10 4 1 6 2 

F25 Mean 2.69E+02 3.53E+02 3.16E+02 3.51E+02 2.80E+02 3.29E+02 2.78E+02 2.98E+02 2.84E+02 2.69E+02  
Std 1.19E+01 1.63E+01 1.19E+01 1.60E+01 1.09E+01 1.52E+01 1.36E+01 1.93E+01 8.66E+00 9.81E+00  
rank 1 10 7 9 4 8 3 6 5 2 

F26 Mean 2.00E+02 2.34E+02 2.07E+02 3.07E+02 2.29E+02 2.78E+02 2.56E+02 2.04E+02 3.14E+02 2.50E+02  
Std 1.01E-02 6.60E+01 3.10E+01 7.72E+01 5.98E+01 9.61E+01 7.49E+01 9.47E-01 7.03E+01 6.74E+01  
rank 1 5 3 9 4 8 7 2 10 6 

F27 Mean 7.85E+02 1.12E+03 1.11E+03 1.03E+03 7.81E+02 1.31E+03 8.42E+02 3.02E+02 8.82E+02 7.01E+02  
Std 1.33E+02 1.19E+02 1.13E+02 8.77E+01 1.18E+02 7.76E+01 1.27E+02 8.35E+00 7.36E+01 8.20E+01  
rank 4 9 8 7 3 10 5 1 6 2 

F28 Mean 3.36E+02 3.96E+03 3.52E+03 3.34E+03 3.40E+02 4.13E+03 3.71E+02 3.00E+02 4.12E+02 3.00E+02  
Std 1.96E+02 5.71E+02 6.32E+02 3.16E+02 2.21E+02 4.77E+02 3.00E+02 0.00E+00 3.67E+02 0.00E+00  
rank 3 9 8 7 4 10 5 1 6 1 

Overall 
Average 

rank 
4.25 7.18 5.79 6.93 4.04 8.96 3.75 5.04 5.57 3.46 

Overall  Final rank 4 9 7 8 3 10 2 5 6 1 
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TABLE III 

AVERAGE AND FINAL RANK AMONG TEN ALGORITHMS ON UNIMODAL FUNCTIONS F1-F5, MULTIMODAL FUNCTIONS F6-F20, AND COMPOSITION 

FUNCTIONS F21-F28 WITH 30 DIMENSION 

Function Evaluation Criteria ADMBSO BSO BSODE SBSO MBSO QBSO CLBSO-RS DE PSO SBSO-PQLS 

Unimodal Functions F1-F5 Average rank 4.00 6.60 4.80 6.80 4.40 9.60 3.80 4.40 7.40 3.20 

Unimodal Functions F1-F5 Final rank 3 7 6 8 4 10 2 4 9 1 

Multimodal Functions F6-F20 Average rank 4.93  7.07  5.73  6.53  4.20  8.67  3.60  5.87  5.00  3.40  

Multimodal Functions F6-F20 Final rank 4 9 6 8 3 10 2 7 5 1 

Composition Functions F21-F28 Average rank 3.13 7.75 6.50 7.75 3.50 9.13 4.00 3.88 5.50 3.75 

Composition Functions F21-F28 Final rank 1 8 7 8 2 10 5 4 6 3 

D. STATISTICAL ANALYSIS 

To compare SBSO-PQLS with each of the nine compared 

algorithms on each benchmark function of the 28 CEC2013 

benchmark functions at a statistical hypothesis level of 

0.05, non-parametric Wilcoxon signed-rank tests were 

conducted, and the results are listed in Table IV. Each 

result is described using a mathematical symbol (“>”, “=”, 

or “<”), denoting that SBSO-PQLS achieved a 

significantly better, equal, or significantly worse 

performance than the compared algorithm, respectively. 

For instance, the statistical results for the comparison 

between SBSO-PQLS and ADMBSO are listed in the first 

column of Table IV, where 16 “>” symbols denote that 

SBSO-PQLS achieved significantly better performance 

than ADMBSO on the benchmark functions F1, F5, F7, F9-

F14, F17-F19, F22, F24, F27, and F28; 8 “=” symbols 

mean that SBSO-PQLS was statistically equal to 

ADMBSO on the benchmark functions F3, F6, F8, F15, 

F16, F20, F21, and F25; 4 “<” symbols mean that the 

SBSO-PQLS algorithm performed significantly worse than 

the ADMBSO algorithm on the benchmark functions F2, 

F4, F23, and F26. 
TABLE IV 

RESULTS OF WILCOXON SIGNED RANK TESTS FOR SBSO-PQLS AND 

NINE ALGORITHMS  

Pairwise Comparison: SBSO-PQLS Versus 

Function  ADMBSO BSO BSODE SBSO MBSO QBSO CLBSO DE PSO 

F1 > = > < > > > < > 

F2 < > > > < > = > > 

F3 = > > > = > = < > 

F4 < > < > < > > > > 

F5 > > > > > > > < > 

F6 = > = > = > = = > 

F7 > > > > > > > < > 

F8 = < < < < = = = = 

F9 > > > > > > > > > 

F10 > > < > > > = < > 

F11 > > > > > > > > < 

F12 > > > > > > > > > 

F13 > > > > > > > > > 

F14 > > > > > > > > < 

F15 = < < < < < < > = 

F16 = < < < = < = = < 

F17 > > > > > > > > = 

F18 > > > > > > = > > 

F19 > > > > > > > > = 

F20 = > > > = > = > > 

F21 = = = = = > = = = 

F22 > > > > > > > > < 

F23 < < = < < = < > = 

F24 > > > > > > > < > 

F25 = > > > > > > > > 

F26 < = = > = = = = > 

F27 > > > > > > > < > 

F28 > > > > > > > > > 

“>”/ “=” /“<” 16/8/4 21/3/4 19/4/5 22/1/5 17/6/5 23/3/2 16/10/2 16/5/7 18/6/4 

The statistical results from Table IV show that the 

SBSO-PQLS algorithm can surpass the other algorithms. 

The number of CEC2013 benchmark functions on which 

SBSO-PQLS achieved significantly better performance 

than the other nine algorithms, is greater than the number 

on which the SBSO-PQLS algorithm performed 

significantly worse than the other nine algorithms. 

Therefore, the results further show that our SBSO-PQLS 

algorithm has significantly better overall performance than 

the other nine algorithms on the CEC2013 benchmark 

functions, indicating that the SBSO-PQLS algorithm has 

the best global search capability among all ten tested 

algorithms. 

V EXPERIMENTAL INVESTIGATION ON PROPOSED 
ALGORITHM 

To fully understand the effects of the SIC strategy, the SIU 

strategy, and the QBIU-PL strategy of SBSO-PQLS, 

experiments were conducted on the 28 CEC2013 

benchmark functions [27] in 30 dimensions with 30 

independent runs. These experiments were also 

implemented in MATLAB R2014b, and executed on a PC 

with an Intel Core (TM) CPU i7-4790 CPU @ 3.60 GHz 

with 16 GB RAM. The maximum number of iterations was 

set to 8000, and the population size was set to 50. The 

maximum number of fitness evaluations (FES) was set to 

400,000. 

A.  SIC STRATEGY INVESTIGATION 

To clearly distinguish the effectiveness of SIC strategy, 

we compared SBSO-PQLS with the following variants: 

SBSO-PQLS with K-means (SBSO-PQLS-11), and 

SBSO-PQLS with SGM (SBSO-PQLS-12) on the 28 

CEC2013 benchmark functions. In other words, while the 

SBSO-PQLS algorithm adopts the SIU strategy as the 

individual clustering strategy, the SBSO-PQLS-11 and the 

SBSO-PQLS-12 algorithm adopt the K-means strategy and 

the SGM strategy to replace the SIU strategy, respectively. 

This can provide a fair comparison between the SIC, K-

means, and SGM strategies. The parameter configurations 

of the above algorithms were set the same as these of the 

SBSO-PQLS algorithm, shown in Table I. In addition, 

Table S-II of Section S-II of the supplementary material 

shows the error mean and standard deviation values of the 

28 functions on each algorithm. Based on the error mean 

and standard deviation values of the 28 functions, we can 

achieve the average and final rank for each algorithm listed 

in the Table V, where the SBSO-PQLS algorithm achieved 

the best average rank compared with the other two 

algorithms. This indicates that the SIC strategy performs 
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better than the K-means and the SGM on the 28 CEC2013 

benchmark functions.  
TABLE V 

COMPARISON BETWEEN SBSO-PQLS, AND SBSO-PQLS-11 AND SBSO-

PQLS-12 FOR EVALUATING SIC STRATEGY 

Function Evaluation Criteria SBSO-PQLS SBSO-PQLS-11 SBSO-PQLS-12 

Overall Average rank 1.75 2.18 2.04 

Overall Final rank 1 3 2 

Overall 
Average 

 computational time 
1.79E+01 5.03E+01 1.45E+02 

Moreover, Table S-II of Section S-II of the 

supplementary material shows the mean values of 

computational time (t-mean) among three algorithms on 

each of the 28 CEC2013 benchmark functions over 30 runs 

in units of seconds. From these results, we define the mean 

value of the sum of the mean values of computational time 

on all the 28 functions for each algorithm as its average 

computational time for evaluating the computational time 

cost shown in Table V. It can be observed that SBSO-

PQLS achieves the lowest average computational time on 

all the 28 CEC2013 functions among the three algorithms. 

Therefore, the SIC strategy not only improves global 

search capabilities, but also has the lowest computational 

time cost compared with the K-means and the SGM 

strategies. 

B.  SIU STRATEGY INVESTIGATION 

To clearly understand the effectiveness of the SIU strategy, 

SBSO-PQLS is compared with SBSO-PQLS using the 

individual updating from BSO (SBSO-PQLS-2) on the 28 

CEC2013 benchmark functions. The SBSO-PQLS 

algorithm adopts the SIU strategy as its individual updating 

strategy and SBSO-PQLS-2 adopts the individual updating 

strategy from the BSO algorithm in place of the SIU 

strategy. The parameters of the SBSO-PQLS-2 algorithm 

were set to the same values as those of the SBSO-PQLS 

algorithm shown in Table I.  

Table S-III of Section S-II of the supplementary material 

shows the error mean and standard deviation values of the 

28 functions from each algorithm. By evaluating the mean 

error and standard deviation values of the 28 functions, we 

can obtain the average and final rank for each algorithm, 

listed in Table VI. The results show that SBSO-PQLS 

achieved a higher average rank than SBSO-PQLS-2, 

indicating that the SIU strategy performs better than the 

individual updating strategy from BSO algorithm on most 

of the benchmark functions. 

In addition, Table S-III of Section S-II of the 

supplementary material also shows the mean value of the 

computational time (t-mean) on each of the 28 CEC2013 

benchmark functions in 30 runs for each algorithm in units 

of seconds. To evaluate the computational time cost, we 

define the mean value of the sum of the mean values of 

computational time on all the 28 functions for each 

algorithm as its average computational time. As listed in 

Table VI, the results concerning the average computational 

time show that SBSO-PQLS provide a lower 

computational time cost than does SBSO-PQLS-2 on all 

the 28 CEC2013 benchmark functions. This is due to the 

fact that SBSO-PQLS adopts the SIU strategy. 

From the above comparisons, the SIU strategy not only 

enhances global search capabilities but also has the lowest 

computational time cost compared with the individual 

updating strategy from the BSO algorithm. 
TABLE VI 

COMPARISON BETWEEN SBSO-PQLS AND SBSO-PQLS-2 FOR 

EVALUATING SIU STRATEGY 

Function Evaluation Criteria SBSO-PQLS SBSO-PQLS-2 

Overall Average rank 1.25 1.75 

Overall Final rank 1 2 

Overall 
Average  

computational time 
1.79E+01 2.22E+01 

C.  QBIU-PL Strategy Investigation  

In the previous experiments, SBSO-PQLS adopts T=100, 

and 𝑏0=0.9 in the QBIU-PL strategy; however, different T 

and 𝑏0  parameter values can affect the performance of 

SBSO-PQLS. Here, we investigate parameters T and 𝑏0 

through experiments on the 28 CEC2013 benchmark 

functions.  

(1) Configuration for Parameter T 

First, parameter 𝑇  is varied. Using different T 

parameter values for the SBIU-PL strategy can affect the 

global search capability of SBSO-PQLS. To evaluate the 

effects of different values of T, we tested a series of values 

𝑇 ∈{0, 1, 50, 100, 200, 500, 1000} when 𝑏0 = 0.9. Table 

S-IV of Section S-II of the supplementary material shows 

the error mean error and standard deviation values of the 

28 functions from each 𝑇 ∈{0, 1, 50, 100, 200, 500, 1000}. 

According to the error mean and standard deviation values 

of the 28 functions, we can evaluate the average and final 

ranks for 𝑇 ∈{0, 1, 50, 100, 200, 500, 1000}, listed in 

Table VII. 

In Table VII, the QBIU-PL strategy with the parameter 

T = 500 achieves the highest overall rank on the 28 

CEC2013 benchmark functions when 𝑇 ∈{0, 1, 50, 100, 

200, 500, 1000}, and the QBIU-PL strategy with the 

parameter T = 1 achieves the worst final overall rank. 

Specially, the QBIU-PL strategy with T = 1 means that the 

quantum-behaved individual updating is executed in every 

generation. It is generally believed that the quantum-

behavior generates new momentum and causes individuals 

to search across an extremely large range. However, 

applying the quantum behavior in every generation causes 

the SBSO-PQLS algorithm to perform excessive 

exploration with sketchy exploitation, which affects the 

search efficiency and convergence speed. To avoid 

excessive exploration and achieve an effective balance 

between exploration and exploitation, the quantum-

behaved individual updating with periodic learning 

strategy is used. Therefore, the QBIU-PL strategies using 

𝑇 ∈{50, 100, 200, 500, 1000} achieve higher rankings than 

the QBIU-PL strategy with T = 1. The QBIU-PL strategy 

with T = 500 achieves the best performance among the 

QBIU-PL strategies with 𝑇 ∈{1, 50, 100, 200, 500, 1000}. 

In addition, note that when T = 0 the SBSO-PQLS does 
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not use the quantum-behaved individual updating strategy; 

however, the QBIU-PL strategy with T = 0 achieves a 

better overall ranking on the 28 CEC2013 benchmark 

functions than do the QBIU-PL strategies when 𝑇 ∈{1, 50, 

100, 200, 1000}. This is because the quantum-behavior of 

the QBIU-PL strategies with 𝑇 ∈{1, 50, 100, 200, 1000} 

causes the SBSO-PQLS algorithm to perform excessive 

exploration with sketchy exploitation to. On the other hand, 

the QBIU-PL strategy with T = 500 achieves better 

performance than the QBIU-PL strategy with T = 0, which 

indicates that the QBIU-PL strategy can effectively 

enhance the performance of the SBSO-PQLS algorithm 

when an appropriate T value is selected. 

TABLE VII 

COMPARISON OF DIFFERENT PARAMETER T WITH 𝑏0=0.9 IN QBIU-PL STRATEGY 

Function Evaluation Criteria T=0 T=1 T=50 T=100 T=200 T=500 T=1000 

Overall Average rank 3.68 5.07 4.50 4.04 3.75 2.68 3.75 

Overall Final rank 2 7 6 5 3 1 3 

(2) Configuration for Parameter 𝑏0 

Next, we varied parameter 𝑏0 . Using different 𝑏0 

parameter values in the SBIU-PL strategy also influences 

the global search capability of SBSO-PQLS. To verify the 

effects of different b0 parameter values we tested SBSO-

PQLS with 𝑏0 ∈{0.1, 0.5, 0.9} when T = 500. Table S-V 

of Section S-II of the supplementary material shows the 

error mean and standard deviation values of the 28 

functions from each 𝑏0 ∈{0.1, 0.5, 0.9}. In terms of the 

error mean and standard deviation values of the 28 

functions, we can compute the average and final ranks for 

𝑏0 ∈{0.1, 0.5, 0.9}, listed in Table VIII. The results show 

the QBIU-PL strategy with b0 = 0.9 achieved the best final 

rank on the 28 CEC2013 benchmark functions. Therefore, 

the SBIU-PL strategy with parameters T = 500 and b0 = 0.9 

enables the SBSO-PQLS algorithm to achieve its best 

performance on the 28 CEC2013 benchmark functions. 

In particular, as shown in Table II, the SBSO-PQLS 

algorithm with T = 100 and b0 = 0.9 achieved the best 

performance on the 28 CEC2013 benchmark functions 

compared with the other nine algorithms. However, in 

Table VII, the SBSO-PQLS algorithm with T = 100 and b0 

= 0.9 was always the fifth best overall performance on the 

28 CEC2013 benchmark functions compared with the 

SBSO-PQLS algorithm with different the values of T and 

b0 = 0.9, indicating that SBSO-PQLS with  𝑇 ∈{0, 200, 

500, 1000} and b0 = 0.9 can perform better compared with 

the other nine algorithms listed in Table I. 
TABLE VIII 

COMPARISON OF DIFFERENT PARAMETER 𝑏0 WITH T = 500 IN QBIU-PL 

STRATEGY  

Function 
Evaluation 

Criteria 
𝒃𝟎=0.1 𝒃𝟎=0.5 𝒃𝟎=0.9 

Overall Average rank 1.50 2.43 𝟏. 𝟑𝟔 
Overall Final rank 2 3 𝟏 

VI DISCUSSION AND CONCLUSION 

The BSO algorithm proposed by Shi in 2011 is a young and 

promising swarm intelligence optimization algorithm. Its 

fundamental principle is to simulate the human 

brainstorming process. Its major procedures consist of 

individual clustering, cluster center disruption, individual 

updating, and individual selection. However, most BSO 

algorithms tend to become trapped in local optima when 

solving complex optimization problems, such as the 

CEC2013 functions. In addition, most BSO algorithms 

include a complex individual clustering strategy and a 

redundant individual updating strategy, resulting in high 

computational costs. To overcome these defects, this study 

developed SBSO-PQLS. Compared with other BSO 

variants, the SBSO-PQLS algorithm has the following 

characteristics and advantages. 

First, the SIC strategy is developed to improve the 

individual clustering strategy. Unlike the clustering 

strategies used in most BSO algorithms, such as K-means, 

the SIC strategy sorts the entire swarm based on the fitness 

values of all the individuals and then rationally assigns 

individuals to various clusters. Because the SIC strategy 

can generate a reasonable population diversity, SBSO-

PQLS can avoid premature convergence and has an 

improved global search capability. In addition, because the 

SIC strategy does not need to compute the distances among 

all individuals, it effectively reduces the computational 

cost.  

Second, the SIU strategy used in the SBSO-PQLS 

algorithm was developed to improve the individual 

updating strategy. In contrast to the individual updating of 

most BSO algorithms, the SIU strategy enriches the 

generating pattern for new individuals, reduces the 

redundant information, and improves the step size function. 

Therefore, the SIU strategy further enhances the global 

search capabilities of the SBSO-PQLS algorithm and 

reduces its computational cost. 

Third, the QBIU-PL strategy for the SBSO-PQLS 

algorithm was developed by incorporating a quantum-

behaved mechanism into SBSO-PQLS to generate new 

momentum and cause individuals to escape local optima. 

Furthermore, a periodic learning strategy is integrated with 

the quantum-behaved mechanism to avoid the problem of 

excessive exploration with sketchy exploitation caused by 

the quantum-behaved mechanism. In addition, fitness 

evaluation is adopted for new individuals in the QBIU-PL 

strategy to select the most competitive individuals for the 

next iteration instead of the probability selection 

mechanism of the QBSO algorithm in formula (10). 

Therefore, the QBIU-PL strategy effectively improves the 

global search capability and avoids premature convergence. 

The results of the experiments on the CEC2013 

benchmark functions confirm the contributions of the three 
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new strategies to the SBSO-PQLS algorithm. By using the 

CEC2013 benchmark functions, we compared the SBSO-

PQLS algorithm with seven popular BSO variants, PSO, 

and DE. The results demonstrate that SBSO-PQLS can 

effectively avoid premature convergence and that it 

achieves the best global search performance among all ten 

algorithms.  
In general, the SIC strategy, the SIU strategy, and the 

QBIU-PL strategy cooperate in SBSO-PQLS to achieve its 

effective global search ability and reduce its computational 

burden when tackling complex optimizations.  

Since swarm intelligence optimization algorithms share 

many similar features with evolution algorithms and are 

also treated as the evolution algorithm family [28], we will 

plan to incorporate evolution algorithms such as ACO [9], 

various DE strategies [11], and the imperialist competitive 

algorithm [29] into the BSO algorithm to further achieve 

an effective balance between the local exploitation and 

global exploration capabilities. Moreover, we will plan to 

exploit the SBSO-PQLS algorithm to optimize some 

specific science and engineering issues, such as the 

parameter estimation of the bio-impedance model of 

electro-tactile devices [30] and spectrum Management in 

cognitive radio Ad Hoc Networks [31]. 
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