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ABSTRACT The conventional sine cosine algorithm (SCA) does not appropriately balance exploration
and exploitation, causing premature convergence, especially for complex optimization problems, such as
the complex shifted or shifted rotated problems. To address this issue, this paper proposes an enhanced
brain storm SCA (EBS-SCA), where an EBS strategy is employed to improve the population diversity,
and by combining it with two different update equations, two new individual update strategies [individual
update strategies (IUS): IUS-I and IUS-II] are developed to make effective balance between exploration
and exploitation during the entire iterative search process. Double sets of benchmark suites involving
46 popular functions and two real-world problems are employed to compare the EBS-SCA with other
metaheuristic algorithms. The experimental results validate that the proposed EBS-SCA achieves the overall
best performance including the global search ability, convergence speed, and scalability.

INDEX TERMS Sine cosine algorithm (SCA), brain storm optimization (BSO), metaheuristic algorithm,
global optimization.

I. INTRODUCTION
In the real world, many scientific and engineering prob-
lems are inevitably transformed into global optimization
problems. To solve global optimization problems, many
researchers have developed various optimization algorithms.
In general, those optimization algorithms are divided into
traditional mathematical optimization algorithms and meta-
heuristic algorithms. Traditional mathematical optimization
algorithms such as gradient descent mathematical [1] are usu-
ally employed to solve convex optimization problems. How-
ever, they are not suitable for solving complex optimization
problems that are highly nonlinear, non-differentiable, and
non-convex. Therefore, researchers are depending on meta-
heuristic algorithms to address such complex optimization
problems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Honghao Gao.

Metaheuristic algorithms are competitive approaches that
can conduct stochastic search and achieve the optimal solu-
tion by simulating various biological behaviors or physical
phenomena. Since metaheuristic algorithms own simple con-
cepts, easy implementation, and promising performance in
a variety of scientific and engineering applications, they are
becoming increasingly prevalent.

In accordance with different inspiration sources, meta-
heuristic algorithms can be normally separated into four
groups. The first group is referred to swarm intelligence
algorithms inspired by the social behaviors of animal, such
as ant colony optimization (ACO) [2], particle swarm opti-
mization (PSO) [3], artificial bee colony (ABC) [4], firefly
algorithm (FA) [5], bat algorithm (BA) [6], and fruit fly
optimization algorithm (FOA) [7]. The second is enlightened
by the phenomenon of natural evolution such as the genetic
algorithm (GA) [8], culture algorithm (CA) [9], differential
evolution (DE) [10], and covariance matrix adaptation evolu-
tion strategy (CMA-ES) [11]. The third group is motivated by
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physic rules in the real world such as the simulated annealing
(SA) [12], gravitational search algorithm (GSA) [13], and
water cycle algorithm (WCA) [14]. The fourth comes from
other source of inspirations like the brain storm optimiza-
tion (BSO) [15], harmony search (HS) optimization algo-
rithm [16], flower pollination algorithm (FPA) [17], state of
matter search (SMS) [18], fireworks algorithm (FWA) [19],
Negatively Correlated Search (NCS) [20], and estimation of
distribution algorithm (EDA) [21].

However, none of the metaheuristic algorithms can provide
excellent performance for solving all optimal problems so far.
Some metaheuristic algorithms can conduct much better for
some optimal problems, but worse for other problems. For
instance, PSO performswell on unimodal problems, however,
it is prone to encounter premature convergence when dealing
with multimodal problems. To enhance the adaptability of
metaheuristic algorithms to different problems, a variety of
modified metaheuristic algorithms are developed, such as
MIIBSO [22] and SBSO-PQLS [23] that can provide the
different strategies for enhancing the performance of the
original BSO. On the other hand, to address various differ-
ent optimal problems, many new metaheuristic algorithms
with different inspiration sources are also proposed, such
as MFO [24].

Most recently, inspired by the mathematical technique,
Mirjalili [25] proposed a novel metaheuristic algorithm,
named sine cosine algorithm (SCA), which randomly ini-
tialize a group of individuals as candidate solutions in the
solution space, and then simulates the sine and cosine func-
tion fluctuating inward and outward around the abscissa to
continuously update the individuals and acquire the global
optimal solution. Reference [25] has demonstrated that
SCA can provide the promising performance compared with
other metaheuristic algorithms such as FA [5], BA [6],
GSA [13], PSO [26], and GA [8] in 19 benchmark func-
tions. Furthermore, as a competitive metaheuristic algorithm,
SCA has been also successful in resolving various real sci-
entific and engineering problems, involved in many research
fields such as image process [27], feature selection [28],
power control system [29], multi-objective optimization [30],
neural network [31], electricity market planning prob-
lem [32], and solar energy devices [33].

However, in the original SCA, all individuals can learn
from the global best solution obtained so far in the entire
swarm, resulting in premature convergence. In order to
address this issue, many SCA variants have recently been
proposed. Kumar et al. [33] introduced Weibull and Pareto
distribution function into SCA algorithm, inhibiting the
loss of population diversity as well as avoiding the pre-
mature convergence. Furthermore, Kumar et al. [34] also
proposed a novel Cauchy and Gaussian sine cosine optimiza-
tion (CGSCO) algorithm, which introduces the Cauchy and
Gaussian combination operator to avoid premature conver-
gence. Bairathi and Gopalani [35] proposed an opposition-
based Sine Cosine algorithm (OSCA) by using the
opposition based learning (OBL) to improve the global

search performance. Similarly, Elaziz et al. [36] proposed
a novel opposition-based Sine Cosine algorithm (OBSCA),
which also introduces the opposition based learning (OBL)
to balance the exploration and exploitation performance.
Rizk-Allah [37] proposed a multi-orthogonal search
SCA algorithm (MOSCA), which integrates the advantages
of SCA and Multi-Orthogonal Search (MOS) technique
to balance the exploration and exploitation performance.
Sindhu et al. [38] invented an improved sine cosine algo-
rithm (ISCA) by using elite strategy and optimal individual
update mechanism to enhance the global search performance.
Reference [39] proposed an adaptive SCA algorithm, which
combines the regenerative operator and differential evolution
mutation operator to improve the global search performance.
Li et al. [40] proposed a Levy-flight-based sine cosine
algorithm (LSCA). In LSCA, the Levy-flight operator is
employed to improve the algorithm’s global and local search
ability when individuals may fall into local optima.

Furthermore, various hybrid metaheuristic algorithms
are also introduced into SCA to compromise the global
and local search performance. Reference [41] incorporated
the grey wolf optimizer into the original SCA algorithm
to improve the global search performance for SCA.
Nenavath and Jatoth [42] introduced a differential evolution
technique as a local search operator to avoid premature
convergence. Furthermore, Nenavath et al. [43] proposed
a hybrid SCA-PSO algorithm, which uses the Pbest and
Gbest component of PSO as an internal historical memory
to guide the entire search process and improve the premature
convergence.

In fact, to achieve a global optimal solution to a problem,
SCA variants mentioned above should possess two search
behaviors, namely exploration and exploitation [44]; the for-
mer indicates the global search that explores all over the
search space to discover promising domains; on the other
hand, the latter denotes local search that exploits the ascer-
tained promising domains to refine the search accuracy for
the optimal solution. Too much emphasis on exploration
may spend time in searching inferior domains in the entire
solution space, which declines the convergence speed and
weakens the accuracy of the solution. Conversely, too much
emphasis on exploitation may suffer from the loss of popula-
tion diversity too early during the search procedure, thereby
resulting in the premature convergence. Thus, it is critical for
SCA algorithms to implement a reasonable compromise
between exploration and exploitation of the search space.
However, the SCA algorithms mentioned above do not
achieve enough effective compromise between exploration
and exploitation. For instance, CGSCO can provide the
promising exploration and exploitation capability for dealing
with the basic optimal problems [45], whereas it is vulnerable
to premature convergence in tackling the complicated optimal
problems [46].

To further improve the balance between exploration
and exploitation, this paper proposes a hybrid SCA
algorithm, called enhanced brain storm sine cosine
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algorithm (EBS-SCA). In EBS-SCA, inspired by the BSO
algorithms, a new enhanced brain storm (EBS) strategy
is first developed to increase the population diversity and
improve the premature convergence; then, two different indi-
vidual update strategies (IUS), namely IUS-I and IUS-II
are constructed via hybridizing the new EBS strategy with
two different individual update equations, which can suf-
ficiently balance the exploration and exploitation. Specif-
ically, the entire iterative search process is separated into
the exploration and exploitation phase; for the exploration
phase, EBS-SCA performs IUS-I in each iterative search
to enhance the exploration performance and improving the
global search ability; however, for the exploitation phase,
EBS-SCA executes IUS-II in each iterative search to enhance
the local search ability and accelerate the convergence speed.
To summarize, by IUS-I and IUS-II, EBS-SCA can reach
reasonable balance between exploration and exploitation and
achieve the promising global search ability.

This paper is arranged as follows: the related work involv-
ing SCA and BSO are illustrated in Section II and EBS-SCA
is demonstrated in Section III. In Section IV, the performance
of EBS-SCA algorithm is experimented using benchmark test
suites and compared with other state-of-art SCA and other
metaheuristic algorithms. Discussions and conclusions with
future works on EBS-SCA are detailed in section V.

II. RELATED WORKS
A. ORIGINAL SCA ALGORITHM
The original SCA is a novel metaheuristic algorithm,
proposed by Seyedali Mirjalili [25] in 2016. In SCA, each
individual is randomly initialized and then updated based on
the mathematical models of sine and cosine function, that
is, the updated individual can fluctuate outward or toward
the global optimal solution. The details of the original
SCA algorithm are detailed below.

For D-dimensional problem space, it is assumed that there
are N individuals in the entire swarm of SCA; each indi-
vidual is called a candidate solution described as X ti =[
x ti1, x

t
i2, · · · , x

t
iD

]
, where i ∈ {1, 2, · · · ,N }, and t stands

for the current iteration number. Note that x tij denotes the
jth dimension of the ith candidate solution X ti ; x

t
ij ∈

[
lj, uj

]
,

j ∈ {1, 2, · · · ,D}, where lj and uj denote the minimum and
maximum boundaries of the jth dimensional search space,
respectively. The best-so-far individual among the entire
swarm is defined as Gt =

[
gt1, g

t
2, · · · , g

t
D

]
.

For the next iteration, the jth dimension of the ith candidate
solution is updated as follows:

x t+1ij =

{
x tij + λ1sin (λ2) |λ3g

t
j − x

t
ij|, λ4< 0.5

x tij + λ1cos (r2) |λ3g
t
j − x

t
ij|, λ4 ≥ 0.5.

(1)

Here, t and t + 1 are the current and next iteration number,
respectively; |·| denotes the absolute value.
In particular, as the individual update equation of SCA,

(1) covers four important parameters: λ1, λ2, λ3, and λ4; their
roles in (1) are described as follows.

FIGURE 1. Changes of the sine cosine dynamic range at ρ = 2 [25].

FIGURE 2. Sine or cosine with the range in [-2, 2] allows a solution
outward or around to the best solution [25].

First, λ1 is a linearly decreasing variable from ρ to 0,
described as

λ1 = ρ − t
ρ

T
(2)

where t is the current iteration number; T is the maximum
iteration number; ρ is a constant, generally set to 2. As shown
in Fig. 1, λ1 can enable (1) to linearly attenuate the dynamic
range of sine and cosine with the number of iterations increas-
ing. In other words, λ1 ensures that (1) provides exploration
and exploitation in the early and latter iteration, respectively.

Second, λ2 denotes a random number uniformly dis-
tributed between the interval [0,2π], which determines how
far the movement of the updated x tij should be towards or
outwards gtij, shown in Fig. 2. Specially, if the absolute value
of λ1sin (λ2) or λ1cos (λ2) varies between [1, 2], x tij fluctuates
outwards gtij; on the other hand, if the absolute value of
λ1sin (λ2) or λ1cos (λ2) varies between [0, 1], x tij fluctuates
between itself and gtij.

Third, λ3 is a random number uniformly distributed
between the interval [0, 2], denotes the destination weight,
and stochastically emphasizes (λ3 > 1) or weakens (λ3 < 1)
the effect of gtij in describing the distance

∣∣∣λ3gtij − x tij∣∣∣.
Finally, λ4 is a random number uniformly distributed

between the interval [0, 1], which is employed to equally
switches between the sine and cosine component.

For each individual of the entire swarm, the
aforementioned (1) is executed repeatedly in the specified
multiple iterations until some specific termination conditions
are matched.

B. ORIGINAL BSO ALGORITHM
Since Osborne [47] first proposed the concept of brainstorm-
ing in 1939, brainstorming has been extensively employed to
inspire creative thinking. Specifically, a brainstorming pro-
cess is a special creative exercise where a crowd of people
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with diverse backgrounds can cluster together and dedicate
their best thoughts to solve a specific issue. Inspired by such a
process, Shi [15] put forward a new metaheuristic algorithm,
named the original BSO (OBSO) algorithm, which contains
three major processes: the brain storm (BS) strategy, ideas
update, and ideas selection as follows.

1) BRAIN STORM STRATEGY
The BS strategy includes two different procedures: ideas
grouping and ideas generation mechanism.

a: IDEAS GROUPING
Assume that the entire swarm includes N ideas (individ-
uals) called candidate solutions in D-dimensional problem
space, expressed as X ti =

[
x ti1, x

t
i2, · · · , x

t
iD

]
, where i ∈

{1, 2, · · · ,N }, and t stands for the current iteration number.
Note that x tij indicates the jth dimension of X ti ; x

t
ij ∈

[
lj, uj

]
,

j ∈ {1, 2, · · · ,D}, where lj and uj represent the minimum
and maximum value of the jth dimensional search space,
respectively.

For each iterative search, OBSO first divides N ideas into
M different groups through the K-means grouping strategy.
Then, the optimal idea in each group m ∈ {1, 2, · · · ,M} is
selected as the group center C t

m =
[
cti1, c

t
i2, · · · , c

t
iD

]
. Thus,

M centers are described as
{
C t
1,C

t
2, · · · ,C

t
M

}
.

b: IDEAS GENERATION MECHANISM
OBSO employs ideas generation mechanism (IGM) to gen-
erate different new ideas, which can improve the population
diversity.

If r1 < pr1 where r1 and pr1 denote a uniform distribution
random number within [0, 1] and a predetermined probability,
respectively, a new ideaX tnew_i, i ∈ {1, 2, · · · ,N } is generated
by randomly selecting one idea from one group as follows:

X tnew_i =

{
X ta, r11 ≥ pr11
C t
a, r11 < pr11

. (3)

Here, X ta is one idea randomly selected from group a;
C t
a is the center of group a; the group a, a ∈ {1, 2, · · · ,M}

is randomly selected from M groups; r11 and pr11 denote
a uniform distribution random number within [0, 1] and a
predefined probability, respectively.

If r1 ≥ pr1, the new idea new ideaX tnew_i, i ∈ {1, 2, · · · ,N }
is generated by randomly selecting two ideas from two differ-
ent groups as follows:

X tnew_i =

{
R⊗ X ta + (1− R)⊗ X

t
b, r12 ≥ pr12

R⊗ C t
a + (1− R)⊗ C

t
b,r12 < pr12

(4)

where C t
a and C t

b are the group centers that are randomly
selected from

{
C t
1,C

t
2, · · · ,C

t
M

}
; X ta and X tb are two ideas

that are randomly selected from groups a and b, respec-
tively where a, b ∈ {1, 2, · · · ,M} and a 6= b; R rep-
resents a positive vector [r1, r2, · · · , rD] where each rj,
j ∈ {1, 2, · · · ,D} indicates a uniformly distributed ran-
dom number within [0, 1]; ⊗ denotes hadamard product;

t denotes the current iteration number; r12 and pr12
are also a uniform distribution random number within
[0, 1] and a predefined probability, respectively.

2) IDEAS UPDATE
For each iterative search, the OBSO algorithm adopts the
following ideas update equation:

X t+1i = X tnew_i + N (µ, σ )8 (t) (5)

where N (µ, σ ) represents a Gaussian random vector,
[n1 (µ, σ ) , n2 (µ, σ ) , · · · ,nD (µ, σ )]; each nj (µ, σ ), j ∈
{1, 2, · · · ,D} indicates a Gaussian random number with
mean µ and variance σ . 8(t) is a step size vector,
described as [φ1 (t) , φ2 (t) , · · · , φD (t)] where each φj,
j ∈ {1, 2, · · · ,D} is defined as

φj(t) = rjlogsig
[
(0.5×T − t)

/
η
]
. (6)

Here, T and t denote the maximum iteration number and
current iteration number, respectively; η is used for switching
the slope of logsig[·] function and improving the global and
local search capability; each rj, j ∈ {1, 2, · · · ,D} indicates a
uniformly distributed random number within [0, 1]

3) IDEAS SELECTION
The OBSO algorithm adopts ideas selection strategy to pick
out all competitive solutions in the entire swarm. More pre-
cisely, the fitness value of X t+1i , i ∈ {1, 2, · · · ,N } is com-
pared with that of X ti , i ∈ {1, 2, · · · ,N }. The idea with the
better fitness value is selected for the next iterative update.

Without loss of generality, we consider solutions for mini-
mization. Thus, the ideas selection is given as

X t+1i =

{
X t+1i , f [X t+1i ] < f [X ti ]
X ti , f [X t+1i ] ≥ f [X ti ]

, (7)

where f
[
X t+1i

]
and f

[
X ti
]
denote the fitness value of the

idea X ti and X t+1i , respectively. The ideas selection strategy
is for the purpose of achieving the essence of each idea in
each iteration.

Once the OBSO algorithm has executed the ideas selection
strategy for all individuals in each iteration, the stop crite-
rion for OBSO will be identified. If such a criterion is true,
OBSO will stop the iteration search process. Otherwise,
the iteration search process will continue.

C. IDEAS GENERATION MECHANISM BASED ON
DIMENSION UPDATE SCHEME
In [48], a global BSO algorithm (GBSO) was presented,
where an ideas generation mechanism based on individual
dimension update scheme (IGM-IDUS) is developed to fur-
ther enhance the population diversity. IGM-DUS is detailed
below.

If r1 < pr1, where r1 and pr1 denote a uniform
distribution random number within [0, 1] and a pre-
determined probability, respectively, as a new idea
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X tnew_i =
[
x tnew_i1, x

t
new_i2, · · · , x

t
new_iD

]
, its each dimension

x tnew_ij, j ∈ {1, 2, · · · ,D} is created through the correspond-
ing dimension x taj of X

t
a =

[
x ta1, x

t
a2, · · · , x

t
aD

]
, or ctaj of

C t
a =

[
cta1, c

t
a2, · · · , c

t
aD

]
as follows:

x tnew_ij =

{
x taj, r11 ≥ pr11
ctaj, r11 < pr11

. (8)

Note that in (8), for each x tnew_ij, j ∈ {1, 2, · · · ,D}, group a,
a ∈ {1, 2, · · · ,M} is randomly selected fromM groups; then,
X ta is randomly selected from group a, and C t

a is the center of
group a; finally, x taj of X

t
a or c

t
aj of C

t
a is used to update x

t
new_ij.

If r1 ≥ pr1, for the new idea new idea X tnew_i, i ∈
{1, 2, · · · ,N }, its each dimension x tnew_j, j ∈ {1, 2, · · · ,D}
is created according to the combination of x taj and x

t
bj cor-

responding to X ta and X tb, respectively, or that of c
t
aj and c

t
bj

corresponding to C t
a and C

t
b, respectively as follows:

x tnew_ij =

{
rjx taj +

(
1− rj

)
x tbj, r12 ≥ pr12

rjctaj +
(
1− rj

)
ctbj, r12 < pr12

. (9)

Note that in (9), for each x tnew_ij, j ∈ {1, 2, · · · ,D}, groups
a and b, a, b∈ {1, 2, · · · ,M} are first randomly selected
from M groups; then, X ta =

[
x ta1, x

t
a2, · · · , x

t
aD

]
and X tb =[

x tb1, x
t
b2, · · · , x

t
bD

]
are randomly selected from groups a

and b, respectively; C t
a =

[
cta1, c

t
a2, · · · , c

t
aD

]
and C t

b =[
ctb1, c

t
b2, · · · , c

t
bD

]
correspond to the centers of groups a

and b, respectively; rj, j ∈ {1, 2, · · · ,D} indicates a uni-
formly distributed random number within [0, 1]; r12 and pr12
are also a uniform distribution random number within [0, 1]
and a predefined probability, respectively.

Particularly, due to the utilization of individual dimension
update for X tnew_i in (8) and (9), the IGM-IDUS of GBSO
can further enhance the population diversity compared with
IGM of OBSO that only adopts individual update scheme
in (3) and (4).

D. RANDOM GROUPING STRATEGY
Recently, [49] developed a random grouping (RG) strategy to
replace the k-means grouping, decreasing the computational
cost of the OBSO algorithm. The RG strategy is simple and
effective, demonstrated as follows.

All N ideas of the entire swarm are written as{
X t1,X

t
2, · · · ,X

t
N

}
; they are then randomly sorted as{

X t1,X
t
2, · · · ,X

t
N

}
; those ideas are further separated into

M groups; each group includes δ ideas where δ is
equal to N

/
M . For the mth group, its δ ideas is

described as
{
X t(m−1)δ+1,X

t
(m−1)δ+2, · · · ,X

t
(m−1)δ+δ

}
, m ∈

{1, 2, · · · ,M}, where the idea with the best fitness value is
chosen as the group center C t

m ∈
{
C t
1,C

t
2, · · · ,C

t
M

}
.

III. PROPOSED EBS-SCA ALGORITHM
SCA allows each individual to simulate sine and cosine func-
tions fluctuating inward and outward the global best solution
obtained so far in the entire swarm, which can result in rapid

information interactions between the global best solution
and other individuals. Due to rapid information interactions,
SCA fails to effectively ensure the balance of exploration and
exploitation during the entire iterative search process. In other
words, rapid information interactions are unable to enable the
individuals to substantially explore the promising domains
that include the global optimal solution. More specially, rapid
information interactions cause different individuals to gather
quickly so that they trend to become prematurely similar to
the global best individual. Once the global best individual is
trapped into the local optima, other individuals will also be
attracted towards the local optima, resulting in the premature
convergence of SCA.

Furthermore, various SCA variants have been devel-
oped for improving the performance of exploration and
exploitation during the entire iterative search process.
However, those SCA variants fail to consider the suffi-
cient balance between exploration and exploitation. Thus,
those SCA variants still cannot effectively deal with
some complex optimal problems such as CEC2013 test
suite [46]. For instance, CGSCO offers the worse perfor-
mance than SCA on the CEC2013 test suite [46] (see details
Section IV-B), although it has better performance than SCA
for dealing with the optimal problems [45] (see details in
Section S-II of Supplementary File).

To effectively balance the exploration and exploitation,
a new EBS-SCA algorithm is developed. In EBS-SCA,
the EBS strategy is first developed for improving the popula-
tion diversity; then, by combing the EBS strategy with two
different individual update equation, two different individ-
ual update strategies are developed to generate the effective
balance between exploration and exploitation for EBS-SCA.
Such details are given as follows.

A. ENHANCED BRAIN STORM STRATEGY
In the OBSO algorithms, the BS strategy adopts the K-means
strategy to perform individuals grouping. However, the
K-means grouping strategy owns the high computational cost,
which affects the computational efficiency of the OBSO algo-
rithm. In order to decline the computational cost, [49] pro-
posed a random grouping BSO (RGBSO) algorithm, where
the random grouping (RG) strategy is allowed to replace the
k-means grouping method.

Furthermore, IGM of the OBSO algorithm fails to pro-
vide the sufficient diversity of population, which leads to
premature convergence. To overcome the disadvantage over
the OBSO algorithm, [48] proposed the GBSO algorithm,
which adopts IGM-IDUS to further enhance the diver-
sity of population. However, too-frequent utilizations of
IGM-IDUS may provide the excessive population diversity
so that the GBSO algorithm executes meaningless and pur-
poseless exploration, degenerating its search efficiency.

Based on the above analysis, we develop an EBS strategy
that includes two parts: the RG strategy and the modified
individual generation mechanism (MIGM). First, we adopt
the RG strategy [49] to perform the individuals grouping,
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enhancing the population diversity and decreasing the
computational cost. Second, more importantly, we pro-
pose MIGM that makes a compromise between IGM and
IGM-IDUS to offer the reasonable diversity of the popu-
lation, overcome the premature convergence, and enhance
search efficiency. The implementation of the EBS strategy is
described below.

1) RG STRATEGY
The RG strategy (see details in part D of Section II) divides
all N individuals of the entire swarm into M groups, and
each group includes δ = N

/
M individuals. Note that the

RG strategy can randomly select various ideas for each group
in each iterative search, so it effectively increases the diversity
of population for the EBS strategy.

2) MIGM
MIGM supplies the reasonable diversity of population by
compromising IGM and IGM-IDUS as follows.
a) If both r1 < pr1 and r11 ≥ pr11 are true, where

both r1 and r11 are uniform distribution random numbers
within [0, 1], and both pr1 and pr11 denote two predeter-
mined probability values, a new idea X tnew_i is generated by
randomly selecting two ideas from one group as follows:

X tnew_i = R⊗ X ta1 +
(
E1− R

)
⊗ X ta2. (10)

Here, both X ta1 and X ta2 are two ideas randomly selected
from group a, a ∈ {1, 2, · · · ,M}; specially, group a is
randomly selected from M groups; R is a positive vector
[r1, r2, · · · , rD] where each rj, j ∈ {1, 2, · · · ,D} represents
a uniformly distributed random number within [0, 1]; E1 rep-
resents a D-dimensional vector with 1 for per dimensional
element; ⊗ denotes hadamard product; t denotes the current
iteration number.

Note that in (10), X tnew_i will be equal to X
t
a1, X

t
a2, or R ⊗

X ta1 +
(
E1− R

)
⊗ X ta2 (any combination of X ta1 and X ta2) if

R = E1, R = E0, or R = [r1, r2, · · · , rD], where E0 denotes
a D-dimensional vector with 0 for per dimensional element.
For instance, if X ta1 = C t

a with R = E1, X
t
new_i is equal to C

t
a;

if X ta1 = X ta with R = E1, X
t
new_i is equal to X

t
a. Consequently,

(10) can not only provide the same individual as (3) in IGM
of OBSO, but it also does more potential new ideas compared
with (3).
b) If both r1 < pr1 and r11 < pr11 are true, for a

new idea X tnew_i =
[
x tnew_i1, x

t
new_i2, · · · , x

t
new_iD

]
, its each

dimension x tnew_j, j ∈ {1, 2, · · · ,D} can be generated via the
corresponding dimension ctaj of C

t
a =

[
cta1, c

t
a2, · · · , c

t
aD

]
as

follows:

x tnew_ij = ctaj. (11)

Note that for each x tnew_ij, j ∈ {1, 2, · · · ,D}, C
t
a is first

randomly selected from
{
C t
1,C

t
2, · · · ,C

t
M

}
, and then the cor-

responding dimension ctaj ofC
t
a is employed to update x tnew_ij.

Thus, (11) adopts the dimension update scheme for X tnew_i.

c) If both r1 ≥ pr1 and r12 ≥ pr12 are true, where
r12 and pr12 are also a uniform distribution random number
within [0, 1] and a predefined probability, respectively, a new
ideaX tnew_i is generated by randomly selecting two ideas from
two different groups, respectively as follows:

X tnew_i = R⊗ X ta +
(
E1− R

)
⊗ X tb. (12)

Here,X ta andX
t
b are two ideas that are randomly selected from

groups a and b, respectively where a, b ∈ {1, 2, · · · ,M} and
a 6= b; groups a and b are randomly selected fromM groups.

Particularly, (12) is equivalent to the first row of (4) in IGM
of OBSO. Actually, (12) will be also equivalent to the second
row of (4) if X ta = C t

a and X
t
b = C t

b. Thus, (12) is equivalent
to (4) of the OBSO algorithm.
d) If both r1 ≥ pr1 and r12 < pr12 are true, for a

new idea X tnew_i =
[
x tnew_i1, x

t
new_i2, · · · , x

t
new_iD

]
, its each

dimension x tnew_ij, j ∈ {1, 2, · · · ,D} can be generated via the
corresponding dimension x taj of X

t
a =

[
x ta1, x

t
a2, · · · , x

t
aD

]
as

follows:

x tnew_j = x taj. (13)

Note that for each x tnew_ij, j ∈ {1, 2, · · · ,D}, group a,
a ∈ {1, 2, · · · ,M} is randomly selected from M groups;
then X ta is randomly selected from group a; finally, the corre-
sponding dimension x taj of X

t
a is used to update x tnew_ij. Con-

sequently, like (11), (13) also utilizes the dimension update
scheme for creating X tnew_i.

Note that (11) and (13) are equivalent to (8) of IGM-IDUS
in GBSO. Specifically, (11) can enrich the diversity of group
centers and avoid the premature of the group centers through
dimensional update scheme; (13) aims to heighten the diver-
sity of ideas (individuals) in the entire swarm. Particularly,
the proposed MIGM does not consider (9) of IGM-IDUS
in GBSO. This is due to the fact that (9) may cause too
frequent dimension updates, which may lead to meaningless
exploration and makes search efficiency drop.

It should be noted that in [52], both pr11 and pr12 are set
to 0.7, and pr1 is linearly decreasing between 0.9 and 0.2 to
balance the exploration and exploitation during the entire iter-
ative process. The EBS strategy uses the same configurations
of pr1, pr11, and pr12 as [52].
The pseudocode for the EBS strategy is shown

in Algorithm 1.
In summary, the proposed MIGM implements the reason-

able compromise between IGM and IGM-IDUS by com-
bining (10)-(12), which not only enhances the diversity of
population in IGM, but also avoids the excessive exploration
caused by the too frequent dimension update in IGM-IDUS.

B. MODIFIED INDIVIDUALS UPDATE STRATEGIES
Two new individual update strategies (IUS) including IUS-I
and IUS-II are presented to sufficiently balance the explo-
ration and exploitation. Actually, by setting the value of $ ,
the entire iterative search process is separated into the explo-
ration phase (1 ≤ t ≤ $T ) and exploitation phase
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Algorithm 1 EBS Strategy
1: /∗RG ∗/
2: Randomly sort

{
X t1,X

t
2, · · · ,X

t
N

}
as
{
X t1,X

t
2, · · · ,X

t
N

}
;

3: δ = N
/
M ;

4: for m = 1 to M
5:

{
X t(m−1)δ+1,X

t
(m−1)δ+2, · · · ,X

t
(m−1)δ+δ

}
of{

X t1,X
t
2, · · · ,X

t
N

}
are assigned into the mth group;

6: C t
m= arg[min{f [X t(m−1)δ+1], f [X

t
(m−1)δ+2], · · · ,

f [X t(m−1)δ+δ]}];
7: end for
8: /∗MIGM ∗/
9: for i = 1 to N
10: if r1<pr1
11: if r11≥pr11
12: Randomly select group a,{

X t(a−1)δ+1,X
t
(a−1)δ+2, · · · ,X

t
(a−1)δ+δ

}
;

13: Randomly select two individuals X ta1 and X
t
a1

from group a, a∈ {1, 2, · · · ,M};
14: X ta1,X

t
a2∈

{
X t(a−1)δ+1,X

t
(a−1)δ+2, · · · ,X

t
(a−1)δ+δ

}
;

15: X tnew_i = R⊗ X ta1 +
(
E1− R

)
⊗ X ta2;

16: else
17: for j = 1 to D
18: Randomly select a center

C t
a∈
{
C t
1,C

t
2, · · · ,C

t
M

}
;

19: x tnew_ij = ctaj;
20: end for
21: end if
22: else
23: if r12≥pr12
25: Randomly select group a,{

X t(a−1)δ+1,X
t
(a−1)δ+2, · · · ,X

t
(a−1)δ+δ

}
;

26: Randomly select group b,{
X t(b−1)δ+1,X

t
(b−1)δ+2, · · · ,X

t
(b−1)δ+δ

}
;

27: Randomly select two individuals X ta1 and X
t
b from

groups a and b, respectively,
a, b∈ {1, 2, · · · ,M}, a 6= b;

28: X tnew_i = R⊗ X ta +
(
E1− R

)
⊗ X tb;

29: else
30: for j = 1 to D
31: Randomly select group a,{

X t(a−1)δ+1,X
t
(a−1)δ+2, · · · ,X

t
(a−1)δ+δ

}
;

32: Randomly select an individual X ta from group
a, a∈ {1, 2, · · · ,M};

33: x tnew_j = x taj;
34: end for
35: end if
36: end if
37: end for

($T < t ≤ T ); t and T denote the current iteration number
and maximum iteration number, respectively; $ denotes a
constant factor, satisfying the condition: 0 < $ < 1. IUS-I

and IUS-II are performed in the exploration and exploitation
phase, respectively. More specifically, for the exploitation
phase (1 ≤ t ≤ $T ), EBS-SCA employs IUS-I to explores
all over the search space to discover promising domains; on
the other hand, for the exploitation phase ($T < t ≤ T ),
EBS-SCA adopts IUS-II to refine the search accuracy for
the optimal solution. Therefore, by selecting the reasonable
value of$ , EBS-SCA can effectively combine the IUS-I and
IUS-II to balance the global exploration and local exploitation
and provide the competitive performance. The details for the
IUS-I and IUS-II are described as follows.

1) IUS-I
IUS-I is executed in the exploration phase, that is, 1 ≤ t
≤ $T . First, IUS-I uses the EBS strategy (see details in
part A of section III) to generate the corresponding X tnew_i,
i ∈ {1, 2, · · · ,N } for each individual X ti .

Second, IUS-I generates the new individual X t+1i via a new
individual update equation as follows:

x t+1ij =

{
x tnew_ij + λ1sin (λ2) λ3|x

t
new_ij − x

t
ij|, λ4< 0.5

x tnew_ij + λ1cos (λ2) λ3|x
t
new_ij − x

t
ij|, λ4 ≥ 0.5

(14)

where x t+1ij , x tij and x
t
new_ij, j∈ {1, 2, · · · ,D} are the jth dimen-

sion of X t+1i , X ti , and X
t
new_i, respectively; t and t + 1 are the

current and next iteration number, respectively; |·| denotes the
absolute value; the definitions of λ1, λ2, λ3, and λ4 see details
in part A of section II.

Finally, IUS-I applies the selection strategy (see
equation (7) for details) for each updated X t+1i in (14), which
aims to determine whether X ti needs to be replaced by X t+1i .
Therefore, each X t+1i of (14) is constantly regarded as its own
individual historical best solution.

Note that in the IUS-I, we specifically develop the new
individual equation (14) to match the EBS strategy. Owing to
the EBS strategy with (14), each X tnew_i, i ∈ {1, 2, · · · ,N }
can generate a variety of potential solution information in
different iterations. Consequently, by the collaboration of
X tnew_i and X

t
i in (14), X t+1i can have enough opportunities

to explore the promising domains between X tnew_i and X
t
i for

the global optimum. Thus, IUS-I can highlight more towards
exploration that heartens all the individuals to wander via the
entire solution space without gathering around local optima.

2) IUS-II
IUS-II is conducted in the exploitation phase, that is,
$T < t ≤ T . In this case, IUS-II constantly uses
equation (1) to update the current individual X ti if the best-so-
far individual Gt among all individuals does not suffer from
3 consecutive stagnations.
Otherwise, Gt is considered to be trapped in local optima.

Then, IUS-II executes the EBS strategy for once by using
the individual best solutions of the entire swarm to cre-
ate N individuals

{
X tnew_1,X

t
new_2 · · · ,X

t
new_N

}
. For each
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FIGURE 3. Framework of EBS-SCA.

X tnew_i, i∈ {1, 2, · · · ,N }, it is substituted into X ti of (1) to
update X t+1i .
Note that for the IUS-II, eachX ti , i ∈ {1, 2, · · · ,N } directly

interacts with Gt according to (1), so each X t+1i acquires
enough opportunities to search the domains between X ti
and Gt . This can lead X t+1i to cluster quickly around Gt .
To avoid the premature convergence, IUS-II will conduct
the EBS strategy for all individuals if Gt constantly ceases
improving for a certain number of iterations. Therefore,
IUS-II not only emphasizes more on exploitation that can
accelerate the convergence speed toward the global optimum,
but also applies the EBS strategy to avoid the premature
convergence.

The pseudocode for IUS-I and IUS-II is shown
in Algorithm 2.

Particularly, because IUS-I conducts the selection strategy
between X t+1i and X ti (see details in the lines 12 to 16 of
Algorithm 2), X t+1i of equation (14) generally preserves the
individual historical best solution for the next iterative update.
Conversely, in the absence of the selection strategy, X t+1i of
equation (1) cannot do that. To conduct the EBS strategy by
utilizing the individual historical best solutions of the entire
swarm, the IUS-II can provide the individual historical best
solution through the lines 30 to 32 of Algorithm 2 when the
persistent stagnations of Gt stagnation occurs.
In summary, by combining IUS-I with IUS-II,

EBS-SCA obtains the effective balance between exploration
and exploitation.

C. PROCEDURE OF EBS-SCA
Fig. 3 show the framework of EBS-SCA, its implementation
procedure demonstrated as below.
Step 1: In EBS-SCA, the random initialization is conducted

for all individuals {X1,X2, · · · ,XN } in the search space; the
global historical best solution G is also done;
Step 2: For each iteration, if the current iteration number t

is less than or equal to $T , EBS-SCA executes IUS-I,
where the EBS strategy (see details in Algorithm 1)

Algorithm 2
1: /∗IUS-I∗/
2: if t ≤ $T
3: Create N individuals

{
X tnew_1,X

t
new_2, · · · ,X

t
new_N

}
byAlgorithm 1;

4: for i = 1 to N
5: for j = 1 to D
6: if λ4< 0.5
7: x t+1ij = x tnew_ij + λ1sin (λ2) λ3

∣∣∣x tnew_ij − x tij∣∣∣;
8: else
9: x t+1ij = x tnew_ij + λ1cos (λ2) λ3

∣∣∣x tnew_ij − x tij∣∣∣;
10: end if
11: end for
12: if f

[
X t+1i

]
< f

[
X ti
]

13: X t+1i = X t+1i ;
14: else
15: X t+1i = X ti ;
16: end if
17: Xtemp_i = X t+1i ;
18: end for
19: /∗IUS-II∗/
20: else
21: for i = 1 to N
22: for j = 1 to D
23: if λ4< 0.5
25: x t+1ij = x

t

ij
+ λ1sin (λ2)

∣∣∣λ3gtj − x tij∣∣∣;
26: else
27: x t+1ij = x

t

ij
+ λ1cos (λ2)

∣∣∣λ3gtj − x tij∣∣∣;
28: end if
29: end for
30: if f

[
X t+1i

]
< f

[
Xtemp_i

]
31: Xtemp_i = X t+1i ;
32: end if
33: end for
34: Gt+1= arg[min{f [X t+11 ], f [X t+12 ], · · · , f [X t+1N ]}];
35: if f

[
Gt+1

]
< f

[
Gt
]

36: Gt+1 = Gt+1;
37: sg =0;
38: else
39: Gt+1 = Gt ;
40: sg = sg+1;
41: end if
42: if sg == 3
43: {X t+11 ,X t+12 , · · · ,X t+1N }

= {Xtemp_1,Xtemp_2, · · · ,Xtemp_N };

44; Create N individuals
{
X t+1new_1,X

t+1
new_2, · · · ,X

t+1
new_N

}
by Algorithm 1;

45;
{
X t+11 ,X t+12 , · · · ,X t+1N

}
=

{
X t+1new_1,X

t+1
new_2, · · · ,X

t+1
new_N

}
;

46: sg =0;
47: end if
48: end if
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is first performed on
{
X t1,X

t
2, · · · ,X

t
N

}
to create{

X tnew_1,X
t
new_2, · · · ,X

t
new_N

}
; then

{
X t1,X

t
2, · · · ,X

t
N

}
and{

X tnew_1,X
t
new_2, · · · ,X

t
new_N

}
are substituted into

equation (14) to generate
{
X t+11 ,X t+12 , · · · ,X t+1N

}
; other-

wise EBS-SCA executes IUS-II, where
{
X t1,X

t
2, · · · ,X

t
N

}
and Gt are substituted into equation (1) to gener-
ate

{
X t+11 ,X t+12 , · · · ,X t+1N

}
; if Gt ceases improving for

3 iterations, the EBS strategy adopts the individual his-
torical best solutions of

{
X t+11 ,X t+12 , · · · ,X t+1N

}
to gen-

erate
{
X t+1new_1,X

t+1
new_2, · · · ,X

t+1
new_N

}
that is used to replace{

X t+11 ,X t+12 , · · · ,X t+1N

}
for the next iteration;

Step 3:Step 2 is conducted repeatedly in the specified
iterations until the specific termination condition is satisfied.

Notice that as for i ∈ {1, 2, · · · ,N } and j ∈ {1, 2, · · · ,D},
the x tij of X

t
i is constrained to min

{
uj,max

{
lj, x tij

}}
where lj

and uj denote the minimum and maximum boundaries of the
jth dimensional search space, respectively.

The pseudo code of the above process is given
in Algorithm 3.

Algorithm 3 EBS-SCA
1: /∗Initialization∗/
2: Each Xi, i∈ {1, 2, · · · ,N } is randomly initialized;
3: Evaluate f [Xi], i∈ {1, 2, · · · ,N };
4: G= arg [min {f [X1] , f [X2] , · · · , f [XN ]}];
5: while (cease condition is not satisfied) do
6: k=k+1;
7: Conduct Algorithm 2;
8: Gt+1= arg[min{f [X t+11 ], f [X t+12 ], · · · , f [X t+1N ]}];
9: end while

D. COMPUTATIONAL COMPLEXITY OF EBS-SCA
Note that D, N , and T are the individual dimension, the pop-
ulation size, and the maximum iterative number, respec-
tively. As for SCA, its computational complexity essentially
involves three parts including the individual initialization
(tii), individual update (tiu), and individual evaluation (tie)
for all individuals. Hence, the total computational cost of
SCA can be written as

tSCA = tii + tiu + tie (15)

= DN + DNT + DNT

where DN , DNT , and DNT represent tii, tiu, and tie
of SCA, respectively. Consequently, the total computational
complexity of SCA is described as O (DNT ).

In terms of the EBS-SCA algorithm, its computational
complexity also covers the individual initialization (tii), indi-
vidual update (tiu), and individual evaluation (tie). Like
tii and tie of SCA, those of EBS-SCA are assessed as
DN and DNT , respectively. Particularly, individual update

(tiu) of EBS-SCA includes two different update equations(
tiu_1

)
and the EBS strategy consisting of the RG mecha-

nism
(
tiu_2

)
andMIGM

(
tiu_3

)
. Considering the worst case,

we assume that both the RG mechanism
(
tiu_2

)
and MIGM(

tiu_3
)
are executed in each iteration. Thus, tiu_1, tiu_2, and

tiu_3 can be assessed as DNT , NM , and DNT . The total
computational cost of EBS-SCA can be given as

tEBS−SCA = tii + tiu + tie (16)

= DN + (DNT + NM + DNT )+ DNT .

Therefore, the total computational complexity of EBS-SCA
is also described as O (DNT ).

From the above analysis, EBS-SCA has higher com-
putational cost than SCA. This is due to the fact that
EBS-SCA involves some extra computational cost such as
the RG mechanism

(
tiu_2

)
and MIGM

(
tiu_3

)
compared

with SCA. However, the computational cost of EBS-SCA
does not increase significantly in comparison with that
of SCA. Their computational complexity is still O (DNT ).

IV. EXPERIMENTAL EVALUATIONS AND COMPARISONS
A. EXPERIMENTAL ESTABLISHMENT
1) TWO SETS OF POPULAR BENCHMARK SUITES
Two sets of popular benchmark suites comprising a total
of 46 benchmark functions are executed to systematically
appraise the performance of EBS-SCA.

The first is a basic function test suite including 18 basic
benchmark functions [45] listed in Table s1 of Section S-I
of Supplementary File, due to space constraints.
Functions F1-F13 belong to high-dimensional benchmark
functions; F1-F7 are attached to unimodal functions and
each of them owns only one global optimal value without
local optima; F6 is a discontinuous step function with one
minimum; F7 is a noisy quartic function; F8-F13 are affil-
iated with multimodal functions and each of them includes
many local minimums whose number depends on the dimen-
sion number of the corresponding problem. Conversely,
F14-F18 are affiliated with low-dimensional benchmark
functions with multiple local minimums.

The second comprises 28 popular CEC2013 benchmark
functions [46] including the complex shifted or shifted rotated
benchmark functions listed in Table s2 of Section S-I of Sup-
plementary File, due to space constraints. Functions f 1–f 5,
functionsf 6–f 20, and functions f 21–f 28 belong to unimodal,
multimodal, and composition functions, respectively. They
are executed to evaluate the diverse algorithms in extremely
complex cases.

2) COMPARED VARIOUS METAHEURISTIC ALGORITHMS
First, the proposed EBS-SCA first is compared with seven
peer SCA algorithms: the original SCA [25], CGSCO [34],
OBSCA [36], ISCA [38], LSCA [40], SCADE [42], and
SCAPSO [43] on two sets of popular benchmark suites with
30-D problems. Actually, in the literature, the above seven
SCA algorithms have rendered the promising performance
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TABLE 1. Parameter settings for all comparative SCA algorithms.

TABLE 2. Parameter settings for EBS-SCA and the other nine
metaheuristic algorithms.

TABLE 3. Parameter settings for GLPSO, MPEDE, and MIIBSO.

and their parameter settings are listed in Table 1. Particularly,
due to space limitation, four main parameters M , ρ, $ , and
3 for EBS-SCA are discussed on Section S-IX of Supple-
mentary File. In general, M = 10, $ = 0.8, ρ = 1, and
3 = 5 can offer the promising performance for EBS-SCA,
thus recommended in this paper. Specially, due to ρ = 1, λ1
in (2) is linearly decreasing between 1 and 0.

Second, to further reveal the advantages of EBS-SCA,
we provide the comparisons between it and the other nine
popular metaheuristic algorithms, involving OBSO [15],
GBSO [48], RGBSO [49], PSO [26], DE [10], ABC [4],
CMA-ES [11], the comprehensive learning PSO (CLPSO)
[51], andWCA [14] on the second test suite (CEC2013 bench-
mark test suite) with 50-D problems. Table 2 shows these
algorithms’ parameter settings.

Finally, three state of the art of metaheuristic algorithms
are applied to further evaluate the proposed EBS-SCA on
the 28 CEC2013 functions with 30-D, 50-D, and 100-D.
Particularly, the three metaheuristic algorithms involve
GLPSO [53], MPEDE [54], and MIIBSO [22], which are the
recently proposed new PSO, DE, and BSO variant, respec-
tively and have the excellent global search capability. Follow-
ing the references [53], [54], and [22], their parameter settings
are listed in Table 3.

To provide fair comparisons among the 20 algorithms,
we independently execute each of the 20 algorithms 30 times
on every benchmark function with the same maximum num-
ber of fitness evaluations (MaxFEs) set to 10000D. In general,

the population size for each algorithm is set to N = 50. For
CMA-ES, however, its population size is set to 4 + 3ln bDc,
counting on the dimension of the problem being solved. Addi-
tionally, PSO and DE are executed on the global version and
the DE/rand/1/bin version, respectively. In addition, the max-
imum iterative number (T ) is set based on T = MaxFEs/N .

All the above algorithms are programmed in MATLAB
R2017a, then performed on a PC with Intel Core (TM) CPU
i7-4790U CPU @ 3.60 GHz with 8 GB RAM.

3) PERFORMANCE INDEX
As a general performance index, error mean value (Mean) is
defined as the mean value of the difference between the best
fitness value (f [X ]) obtained by an algorithm and the global
optimumfitness value (fmin

[
X∗
]
) over 30 independent oper-

ations on each benchmark function as follows:

Mean =
30∑
k=1

[
f [X ]− fmin

[
X∗
]] /

30 (17)

where X and X∗ represent the best solution acquired by
an algorithm and the global optimal solution, respectively.
Another general performance index is the standard deviation
value (Std), defined as

Std = 2

√√√√ 30∑
k=1

[f [X ]−Mean]2
/
(30− 1) (18)

Furthermore, with a significance level of 0.05, six non-
parametric statistical tests involving Wilcoxon signed-
rank test [50], Friedman’s test [50], Nemenyi’s test [50],
Holm’s test [50], Shaffer’s test [50], and Bergmann-
Hommel’s test [50] are executed to identify the difference
property between a pair of different algorithms at the sta-
tistical level. Once the p-value generated by the above tests
is smaller than 0.05, a remarkable difference between two
different algorithms will be reflected in the corresponding
benchmark function.

The ‘‘Cohen’s d’’, which is defined as the difference
between two means divided by a standard deviation for the
data [59], [60], is also employed to evaluate the effect size
between the proposed EBS-SCA and each compared algo-
rithm listed in on each test function.

4) LIST OF EXPERIMENTS FOR EVALUATING EBS-SCA
Comprehensive experimental evaluations are established to
check the efficiency of the proposed EBS-SCA algorithm and
these experiments are listed in the following Table 4.

B. EXPERIMENTAL COMPARISONS WITH SEVEN
SCA ALGORITHMS
We compare the proposed EBS-SCA algorithm with seven
SCA algorithms on the first and second benchmark suite.
Due to space constraints, the results and analysis for these
SCA algorithms on the first basic benchmark suite are placed
in Section S-II of Supplementary File. Here, we provide only
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TABLE 4. The list of experiments for evaluating EBS-SCA.

the analysis of the algorithms on the second benchmark suite
(CEC2013 benchmark suite), which are extremely compli-
cated and thorny to solve.

The error mean and standard deviation values on the 28
30-D CEC2013 functions are used for ranking all SCA algo-
rithms. Due to space constraints, those results are also shown
in Table s7 of Section S-III of Supplementary File.

1) SOLUTION QUALITY COMPARISONS
a: OVERALL RANK
Table s7 of Section S-III of Supplementary File shows that
EBS-SCA wins the first rank on 24 out of all the 28 bench-
mark functions except f 15, f 16, f 23, and f 26. Furthermore,
EBS-SCA offers the second rank on f 15 and f 23, the third
on f 16, and the seventh on f 26, respectively. SCAPSO gives
the best results on f 15 and f 23; ISCA wins the best on
f 16 and f 26, respectively. Therefore, EBS-SCA wins the
best overall and final rank among the eight SCA algorithms.
SCAPSO offers the second-best overall and final rank, fol-
lowed by ISCA. However, CGSCO only achieves the second
worst overall and final rank on the 28 CEC2013 functions.

b: UNIMODAL, MULTIMODAL, AND COMPOSITION
FUNCTIONS
Table s7 of Section S-III of Supplementary File shows that
EBS-SCA achieves the first rank on all unimodal functions
f 1-f 5; SCAPSO does the second on f 1-f 5; SCADE wins
the third on f 1 and f 5, the fourth on f 2 and f 3, and the
sixth on f 4; ISCA does the third on f 2-f 4 and the sixth
on f 1 and f 5. Therefore, EBS-SCA, SCAPSO, SCADE,
and ISCA achieve the first, second, third, and fourth final
rank on all the unimodal functions, respectively. However,
CGSCO obtains the second worst rank, because it has the
seventh rank on f 1-f 5.
On multimodal functions f 6-f 20, Table s7 of Section S-III

of Supplementary File shows that EBS-SCA wins the first
rank on 13 out of the 15 functions apart from f 15 and f 16,
so it achieves the first final rank on multimodal functions.
Moreover, SCAPSO and ISCA do the second and third final
rank, respectively, however, CGSCO still does the second
worst rank.

In terms of composition functions f 21-f 28, Table s7 of
Section S-III of Supplementary File shows that EBS-SCA
wins the first rank on six out of eight functions excluding
f 23 and f 26. Thus, it obtains the first rank on all the com-
position functions. Furthermore, SCAPSO and ISCA pro-
vide the second and third final rank, respectively. Note that

TABLE 5. Comparisons between EBS-SCA and each of seven
SCA algorithms on the second benchmark suite with
30-D by Wilcoxon signed-rank test.

CGSCO still does the second worst. Briefly, amongst all
SCA algorithms, EBS-SCA has the best performance on uni-
modal, multimodal, or composition functions, respectively.

c: STATISTICAL ANALYSIS
Due to space constraints, the detailed results of the Wilcoxon
signed-rank test between EBS-SCA and each of the other
compared SCA algorithms on f 1−f 28 have been added to
Table s8 of Section S-III of Supplementary File. Table 5 only
shows the number of notably better performance (sign ‘‘1’’),
no notable difference (sign ‘‘0’’), and notably worse perfor-
mance (sign ‘‘-1’’) of the Wilcoxon test between EBS-SCA
and each SCA algorithm on f 1−f 28. Interestingly, EBS-SCA
offers considerably better solutions than each SCA algorithm
on most functions.

We also calculate the Effect Size (ES) between EBS-SCA
and each of seven SCA algorithms on second benchmark suite
by using ‘‘Cohen’s d’’ [59], [60]. Due to space constraints,
the Cohen’s d and ES are listed in Table s9 of Section S-III
of Supplementary File. The results indicate that EBS-SCA
outperforms the seven SCA algorithms.

These further confirm that EBS-SCA wins the best overall
performance amongst the eight SCA algorithms.

2) CONVERGENCE ANALYSIS
The convergence curves of eight SCA algorithms are
employed to visually express their convergence characteris-
tics. Due to space limitation, these convergence curves are
sketched in Fig. s2 of Section S-III of Supplementary File,
where EBS-SCA acquires the best promising convergence
performance on 24 of the 28 benchmark functions apart
from f 15, f 16, f 23, and f 26 amongst the eight algorithms.
Furthermore, EBS-SCA has the second and third best con-
vergence performance on f 15 and f 23, and f 16 among all the
algorithms. Particularly, EBS-SCA also has the second worst
convergence performance on f 26; however, its convergence
performance on f 26 does not show significant difference
than that of ISCA that has the best convergence performance
on f 26 among the eight SCA algorithms.

C. EXPERIMENTAL COMPARISONS WITH NINE
METAHEURISTIC ALGORITHMS
We further compare EBS-SCAwith nine popular metaheuris-
tic algorithms listed in Table 2 on the second benchmark
suite (28 CEC2013 functions f 1-f 28). The error mean and
standard deviation values on the 28 50-D CEC2013 func-
tions are used for ranking these algorithms. Due to space
constraints, these results are shown in Table s10 of
Section S-IV of Supplementary File.
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FIGURE 4. Boxplots of the result of EBS-SCA, and nine Metaheuristic algorithms on 28 CEC2013 functions with dimension 50.

Boxplots of the result of EBS-SCA and nine popular meta-
heuristic algorithms on the CEC2013 benchmark suite with
dimension 50 are shown in Fig. 4, where the horizontal and

vertical axis represent the algorithms and the corresponding
error values, respectively. Note that S0, MA1, MA2, MA3,
MA4, MA5, MA6, MA7, MA8 and MA9 mean EBS-SCA,
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OBSO, RGBSO, PSO, CLPSO, CMA-ES, ABC, DE and
WCA, respectively.

1) SOLUTION QUALITY COMPARISONS
a: OVERALL RANK
Fig. 4 and Table s10 of Section S-IV of Supplementary File
show that both EBS-SCA and ABC obtain the best results
on six out of the 28 functions; CMA-ES does the best on
five; both DE and RGBSO do the best on three; both GBSO
and CLPSO do the best on two; either OBSO or WCA does
the best on one. Particularly, both DE and EBS-SCA win the
best results on function f 5. Furthermore, EBS-SCA, GBSO,
and CLPSO all win the second best rank on five out of the
28 functions; ABC obtains the second best results on four;
either RGBSO or DE does the second best on two; OBSO,
PSO, CMA-ES, andWCA all achieve the second-best on only
one.Moreover, EBS-SCA owns the third best results on seven
of the 28 functions; GBSO does the third best on six; DE does
the third best on five; both OBSO and CLPSO do the third
best on three; PSO, CMA-ES, ABC, and WCA all obtain the
third best on only one. From the above analysis, an interesting
thing is that amongst all the ten algorithms, EBS-SCA is the
only one algorithm that wins the largest number of the first,
the second and the third best results on the 28 functions.

Furthermore, another interesting thing is that amongst all
the ten algorithms, EBS-SCA is the only one algorithm that
does not achieve the worst and the second worst results on
any of the 28 functions. Thus, EBS-SCA possesses the best
overall performance on the second benchmark suite among
all the ten algorithms.

b: UNIMODAL FUNCTIONS AND MULTIMODAL FUNCTIONS
On unimodal functions f 1-f 5, Fig. 4 and Table s10 of
Section S-IV of Supplementary File show that EBS-SCA
receives the first, second, and fifth rank once, and the third
rank twice, respectively. CMA-ES wins the first rank twice.
However, it receives the seventh rank twice, and the tenth
once, respectively. Both RGBSO and WCA receive the
first rank once. But, RGBSO receives both the sixth and
eighth rank once, and WCA receives the sixth, eighth, and
ninth rank once, respectively. Accordingly, EBS-SCA wins
the best overall performance on unimodal functions f 1-f 5
among all the ten algorithms.

On multimodal functions f 6-f 20, Fig. 4 and Table s10 of
Section S-IV of Supplementary File show that EBS-SCA is
ranked the first for four times, the second for once, the third
for four times, the fourth for three times, the fifth, sixth,
eighth for once, respectively. CMA-ES is ranked the first for
three times, however, it also receives the worst rank three
times, respectively. CLPSO wins both the first and second
rank twice, whereas it receives the worst rank once, the eighth
rank once, and the sixth rank twice, respectively. RGBSO also
obtains both the first and second rank twice, while it has the
worst rank five times. Consequently, EBS-SCA achieves the
best overall rank on multimodal functions f 6-f 20 among all
the algorithms.

On composition functions f 21-f 28, Fig. 4 and Table s10 of
Section S-IV of Supplementary File show that EBS-SCA
achieves the first, second, third, fourth, and fifth rank on
one, three, one, two, and one out of the eight composition
functions, respectively. ABC achieves the first rank on four,
however, it also has the sixth and seventh rank on one,
respectively. DE receives the first rank on two, while it
has the sixth, seventh and tenth rank on one, respectively.
CLPSO has the second rank on three, whereas it also does the
sixth and seventh rank on one, respectively. From the above
illustrations, both EBS-SCA and ABC win the best overall
performance on composition functions f 21-f 28, among all
the algorithms.

c: STATISTICAL ANALYSIS
The Wilcoxon signed-rank tests are still utilized to execute
comparisons between EBS-SCA and one of the nine popular
metaheuristic algorithms on the 50-D 28 functions. Due to
space limitation, the results of the Wilcoxon test between
EBS-SCA and each algorithm on functions f 1−f 28 are listed
in Table s11 of Section S-IV of Supplementary File. These
results confirm that compared with each of nine algorithms,
EBS-SCA has better performance.

Effect Size (ES) is also further executed to identify the
statistical difference between EBS-SCA and each of the
nine metaheuristic algorithms. Due to space constraints,
the Cohen’s d and ES are listed in Table s12 of Section S-IV
of Supplementary File. The results indicate that EBS-SCA
wins the better overall performance than the other nine meta-
heuristic algorithms.

In brief, EBS-SCA generates considerably better results
on most of the 28 CEC2013 benchmark functions compared
with each of the other nine algorithms, further verifying that
EBS-SCA can provide the promising overall performance.

2) CONVERGENCE ANALYSIS
We also use convergence curve graphs to evaluate the ten
algorithms on the 28 functions with 50-D problems. Due
to space limitation, all the convergence curves are sketched
in Fig. s3 of Section S-IV of Supplementary File, where
EBS-SCA has the most number of the fastest conver-
gence speed on the 28 functions, concerning f 5, f 12, f 13,
f 18, f 20 and f 25 amongst all the algorithms. Furthermore,
EBS-SCA also wins the most number of the second, third,
fourth fastest speed amongst the ten algorithms on the
28 benchmark functions, corresponding to five (f 1, f 7, f 23,
f 24 and f 27), seven (f 3, f 4, f 9, f 11, f 17, f 19 and f 21), and
five (f 6, f 10, f 14, f 22 and f 28), respectively.

Besides, we also compare the convergence property
between EBS-SCA and each of the other nine algorithms
on the 28 benchmark functions. Fig. s3 of Section S-IV of
Supplementary File shows that EBS-SCA wins the more
number of faster convergence speed than each of the other
nine algorithms. As an example, EBS-SCA has faster con-
vergence speed than GBSO on 16 out of the 28 benchmark
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functions, containing f 1, f 3, f 5-f 7, f 10-f 13, f 17-f 20, f 24,
f 25, and f 28.
As a result, EBS-SCA is unable to provide the fastest con-

vergence speed on each of the 28 benchmark instances among
all the ten algorithms, whereas it does the better convergence
speed on the most of these benchmark functions.

D. DIMENSIONAL SCALABILITY ANALYSIS
We make further comparisons involving scalability between
EBS-SCA and the nine algorithms listed in Table 2 to val-
idate whether their performance degenerates significantly
from the 30-D to 50-D CEC2013 benchmark functions. The
corresponding comprehensive results including average rank,
final rank, Wilcoxon signed-rank and effect size are given
in Tables s16-s18 of Section S-VI of Supplementary File due
to space limitation.

The results from Tables s16-s18 show that EBS-SCA
achieves the best overall average and final rank on both the
30-D and 50-D functions among the ten algorithms. This con-
firms that the overall scalability performance of EBS-SCA
does not degenerate with the dimension number increasing
from 30-D to 50-D.

E. FIVE OTHER NONPARAMETRIC STATISTICAL
TESTS FOR SIX ALGORITHMS
Five other nonparametric statistical tests involving
Friedman’s, Nemenyi’s, Holm’s, Shaffer’s, and Bergmann-
Hommel’s test are applied to further evaluate the overall
performance of EBS-SCA on the 50-dimensional CEC2013
functions. With the same significance level of 0.05,
EBS-SCA is compared with ISCA, SCAPSO, GBSO,
CLPSO, and ABC. Note that excluding EBS-SCA, ISCA and
SCAPSO are the best two algorithms on the cec2013 func-
tions among all the SCA variants listed in Table 1; similarly,
GBSO, CLPSO, and ABC are also the best amongst all
metaheuristic algorithms in Table 2. Due to space limitation,
Table s19 of Section S-VII in Supplementary File lists Mean
and Std of the above algorithms on the 50-dimensional
CEC2013 functions.

The results of Friedman’s test for the above six algorithms
are shown in Table 6, where the proposed EBS-SCA has the
minimum value of Friedman ranking. Therefore, the overall
performance of the proposed EBS-SCA is better than those
of the other compared metaheuristic algorithms.

Furthermore, Table 7 lists the p-values of all 15 multiple
pairwise comparisons between the six metaheuristic algo-
rithms for Nemenyi’s, Holm’s, Shaffer’s, and Bergmann-
Hommel’s test. From Table 7, we can observe that only six
hypotheses are rejected by the Nemenyi’s test, indicating that
EBS-SCA, GBSO, ABC, and CLPSO all have significantly
better performance than ISCA; both EBS-SCA and GBSO
are significantly better than SCAPSO. TheHolm and Shaffer’
test reject an additional hypothesis, which denotes that ABC
is significantly better than SCAPSO.Moreover, the Bergman-
Hommel’s test rejects eight hypotheses, and the last rejected
hypothesis indicates CLPSO over SCAPSO. The remaining

TABLE 6. Rank values of Friedman’s test between EBS-SCA and five
algorithms on the second benchmark suite (28 CEC2013 functions)
with dimension 50.

TABLE 7. P-values of Nemenyi’s, Holm’s, Shaffer’s, and Bergmann-
Hommel’s procedures for the compared algorithms that are EBS-SCA,
GBSO, CLPSO, ABC, ISCA and SCAPSO on the second benchmark suite
(28 CEC2013 Functions) with dimension 50.

seven hypotheses were not rejected by the four statistical
tests. This indicates that the overall performance of EBS-SCA
is not notably superior to those of GBSO, CLPSO, and ABC
according to Nemenyi’s, Holm’s, Shaffer’s, and Bergmann-
Hommel’s tests.

In summary, Friedman’s test shows that EBS-SCA has
better overall performance compared with GBSO, CLPSO,
ABC, ISCA, and SCAPSO. The other four statistical tests
show that EBS-SCA, GBSO, CLPSO, and ABC are all better
than each of ISCA and SCAPSO.

F. COMPARISON WITH THE STATE-OF-THE-ART
ALGORITHMS
We also adopt three state of the art of metaheuris-
tic algorithms, GLPSO, MPEDE, and MIIBSO listed
in Table 3 to further evaluate the proposed EBS-SCA on
the 28 CEC2013 functions with 30-D, 50-D, and 100-D.
The corresponding experimental results including Mean-Std,
Wilcoxon signed-rank, effect size and five nonparametric
statistical tests are given in Tables s20-s 24 of Section S-VIII
of Supplementary File due to space limitation.

1) EXPERIMENTAL COMPARISONS ON THE CEC2013
TEST SUITE
Table 8 lists the summarized results of effect size between
EBS-SCA and each of the three algorithms on 30-D, 50-D,
and 100-D CEC2013 functions. Due to space limitation,
the detailed results of the effect sizes and ‘‘Cohen’s d’’ are
shown in Table s25 of Section S-VIII of Supplementary
File. It should be note that all benchmark functions are
minimizing problems. Therefore, the Effect size with a
‘‘−’’ sign represents that the performance of EBS-SCA
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TABLE 8. Effect size between EBS-SCA, GLPSO, MPEDE, and MIIBSO on
30-D, 50-D, and 100-D CEC2013 functions.

TABLE 9. Comparison on two real-world problems; min and max are
best; and worst experimental results, respectively.

is significantly better than the comparison algorithm.
‘‘+’’ sign represents that the performance of EBS-SCA
notably worse than the comparison algorithms,
‘‘NO’’ denotes that there is no significant difference between
ESA-SCA and the compared algorithms, and ‘‘LARGE’’,
‘‘MODERATE’’, and ‘‘SMALL’’ mean that this difference
has a large effect size, moderate effect size, and small effect
size, respectively. From Table 8, the proposed EBS-SCA
demonstrates the best overall performance among four algo-
rithms on 30-D, 50-D, and 100-D problems except for
a slight loss to MPEDE on 30-D problems. Particularly,
EBS-SCA completely defeated the three state of the art algo-
rithms (including MPEDE) on 50-D and 100-D problems.
This also further confirms that the EBS-SCA has excellent
scalability.

In summary, the proposed EBS-SCA achieves the bet-
ter overall performance compared with MPEDE, GLPSO,
and MIIBSO.

2) EXPERIMENTAL COMPARISONS ON TWO REAL-WORLD
OPTIMAL PROBLEMS
Two real-world engineering optimal problems, Gear Train
Design [55] and Parameter Estimation for Frequency-
Modulated (FM) Sound Waves [56], are introduced to val-
idate the effectiveness of EBS-SCA in solving real-world
problems.

In this experiment, the maximum number of iterations and
population size are set to 1000 and N = 20, respectively.
Each algorithm is executed 30 times independently.

Table 9 shows that the first real-world problem has been
solved by each of EBS-SCA,GLPSO,MPEDE, andMIIBSO.
Although the solution accuracy of EBS-SCA is slightly
inferior to those of the other three algorithms on the first
problem, its solution accuracy still reaches the order of 10−12,
which is far enough to meet the demand of engineering
problem. However, on the second real-world, Table 9 shows
that EBS-SCA achieves the best effective solution among the

TABLE 10. Comparisons of different BS strategy.

four algorithms. It is concluded that the proposed EBS-SCA
algorithm can effectively solve some real-world optimization
problems.

G. IMPACTS OF INDIVIDUAL COMPONENTS OF
PROPOSED ALGORITHM
To clearly observe the impacts of EBS, IUS-I, and IUS-II, this
section presents five new SCA variants, called OBS-SCA,
RGBS-SCA, GBS-SCA, IUS-I-SCA, and IUS-II-SCA.
Unlike EBS-SCA using the EBS strategy, BS-SCA,
RGBS-SCA, and GBS-SCA adopt the original brain storm
(OBS), random grouping brain storm (RGBS), and global
brain storm (GBS) strategy to replace the EBS strategy of
EBS-SCA, respectively. Specifically, EBS, OBS, RGBS,
and GBS consist of RG and MIGM, K-Means and IGM,
RG and IGM, and RG and IGM-IDUS, respectively. Besides,
different from EBS-SCA utilizing the combination of
IUS-I and IUS-II, IUS-I-SCA and IUS-II-SCA only execute
the IUS-I and IUS-II, respectively.

Twenty functions involving the F1-F10 of the first bench-
mark suite and the f 1-f 10 of the second benchmark suite
(CEC2013 suite) are independently executed 30 times to
compare EBS-SCA with five new SCA variants. The popu-
lation size, the dimensional number of the 20 functions, and
MaxFEs are assigned to 50, 30, and 300000, respectively. The
maximum iterative number is assigned to 6000. Thanks to
space constraints, error mean values and standard deviation
values of the above algorithms on 20 functions are listed
in Tables s26 and s27 of Section-IX of the supplementary file.
Here, we only give the average rank and final rank for each
compared algorithm on 20 functions.

1) IMPACT OF EBS STRATEGY
Table 10 gives the average and final rank of BS-SCA,
RGBS-SCA,GBS-SCA, and EBS-SCAon the above 20 func-
tions with 30-D to evaluate the impacts of four different
BS strategies. An attractive observation is that EBS-SCA
achieves the best overall performance on the 20 functions
among the compared four algorithms. This demonstrates that
EBS can supply the best performance among four different
BS strategies.

Note that EBS has better performance compared with
RGBS and GBS. However, only a difference between
RGBS, GBS, and EBS is that they adopt IGM, IGM-IDUS,
and MIGM, respectively. This indicates that the proposed
MIGM also has better performance compared with IGM and
IGM-IDUS.
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TABLE 11. Comparisons of different IUS strategy.

2) IMPACT OF IUS-I AND IUS-II
Table 11 gives the average and final rank of IUS-I-SCA,
IUS-II-SCA, and EBS-SCA on the above 20 functions
with 30-D to validate the impacts of different IUS strategy.
An interesting thing that EBS-SCA receives the best rank
among the three algorithms, indicating that the combina-
tion of IUS-I and IUS-II is more effective than either IUS-I
or IUS-II.

V. DISCUSSION & CONCLUSION
The original SCA and its variants fail to offer reasonable
balance between exploration and exploitation so that they are
prone to get trapped into local optima, especially for tackling
some complicated optimization issues, like the CEC 2013 test
suite.

To address this issue, we have developed a new EBS-SCA
algorithm that presents two individual update strategies IUS-I
and IUS-II by combing the proposed EBS and two different
individual update equations (1) and (14). Two groups of test
suites including 46 functions are employed to confirm the
validity of the proposed EBS-SCA algorithm. The first test
suite covers the 18 basic benchmark functions; the second
contains the 28 extremely complicated CEC2013 functions.
The proposed algorithm is compared with the seven SCA
variants on either the first or second test suite. Experiments
results show that whether on the first or second test suite,
the proposed EBS-SCA achieves the best overall perfor-
mance, such as the global search ability, convergence speed,
and scalability amongst the eight SCA algorithms.

Furthermore, the proposed EBS-SCA algorithm is fur-
ther compared with the other nine popular metaheuristic
algorithms on the second test suite with extremely compli-
cated benchmark functions. Experiment results further verify
that our algorithm still obtains the best overall performance
including the global search ability, convergence speed, and
scalability performance among the ten algorithms.

In addition, we also compare EBS-SCA with three state of
the art of metaheuristic algorithms on the second test suite
with dimension 30, 50 and 100. The results indicate that the
proposed algorithm is extremely competitive among the four
algorithms. Subsequently, EBS-SCA is employed to address
two engineering optimization problems in the real world.
On the two real-world engineering problems, EBS-SCA is
further compared with three state of the art of metaheuris-
tic algorithms. The experimental results fully demonstrate
that EBS-SCA can efficiently deal with some real-world
problems.

Note that the impacts of the EBS strategy, IUS-I, and
IUS-II on EBS-SCA are also assessed according to the
20 functions including F1-F10 of the first test suite and
f 1-f 10 of the second test suite. The results confirm the
effeteness of the EBS strategy and the combination of IUS-I
and IUS-II. Moreover, the reasonable parameter values of
EBS-SCA are set via experiments on F1-F10 and f 1-f 10.
The above comprehensive experimental evaluations sub-

stantially show that the proposed EBS-SCA has achieved
the competitive global search ability, convergence speed, and
scalability. In other words, this confirms that EBS-SCA can
reach the effective balance between exploration and exploita-
tion through both IUS-I and IUS-II that are implemented by
combining the EBS strategy and equations (1) and (14).

In comparison to most of the prevailing SCA algo-
rithms, EBS-SCA holds the following advantages and
characteristics:

1) First, most of the existing SCA algorithms adopt a
single swarm, leading to the direct information exchange
between each individual and the global best solution. Such an
information exchange makes individuals cluster quickly and
accelerates the convergence speed. However, it also enables
individuals to become similar and degenerate the population
diversity, causing the SCA algorithms to be vulnerable to
premature convergence. The premature convergence behavior
is particularly evident in solving complicated shift or shift
rotated test problems. For example, CGSCO can provide the
promising exploration and exploitation capability for dealing
with the first basic function test suite, whereas it is prone
to premature convergence in tackling the second complex
function test suite.

Different from the above SCA algorithms, motivated by
the OBSO, RGBSO, and GBSO algorithm, EBS-SCA adopts
a novel EBS strategy by usingmulti-subgroups to perform the
different information exchange between individuals or indi-
viduals’ dimensions, create new promising individuals, and
preserve the suitable population diversity for the EBS-SCA
algorithm. The EBS strategy involves the RG strategy
and MIGM. The former is introduced from RGBSO to exe-
cute the individuals’ random grouping and enhance the popu-
lation diversity; more precisely, the RG strategy can randomly
choose various individuals in the entire swarm into each sub-
group in each iterative search, so it effectively increases more
opportunities for information exchange between individuals
of the EBS-SCA algorithm. MIGM is proposed by making
a compromise between IGM of the OBSO and IGM-IDUS
of GBSO, which supplies the suitable population diversity
and overwhelm the premature convergence. More Specif-
ically, MIGM can generate new promising individuals by
using various information interchanges between individuals
or the different dimensions of individuals, which offers the
suitable and effective population diversity and helps to jump
out of the local optima. Therefore, by combing the RG strat-
egy and MIGM, the EBS strategy can preserve the effective
population diversity and improve premature convergence for
the EBS-SCA algorithm.
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2) Second, most existing SCA algorithms generally adopt
equation (1) to update individuals during the total iterative
process. Although the SCA variants attempt to balance the
global exploration and local exploitation by adjusting λ1 of
equation (1), they fail to achieve promising global search
capability on the complex CEC2013 benchmark suite. The
results in Section S-III of the supplementary file confirm such
a fact.

Unlike the above SCA algorithms, to appropriately balance
the exploration and exploitation in the entire iteration, two
new individual update strategies, IUS-I and IUS-II are pro-
posed in EBS-SCA. Concretely speaking, the total iterative
process is separated into the exploration and exploitation
phase. During the exploration phase, we first develop the
new individual update equation (14), and then IUS-I utilizes
the EBS strategy with (14) to explore the promising solution
space and generate a variety of potential solution information
in each iteration of the exploration phase. However, during
the exploitation phase, IUS-II usually applies the individual
update equation (1) of SCA to accelerate the convergence
speed. When the best-so-far individual of the entire swarm
suffers from premature convergence (consecutive stagna-
tions), IUS-II applies the EBS strategy to avoid the premature
convergence. Hence, IUS-I and IUS-II are employed to high-
light more towards exploration and exploitation, respectively.
Through merging IUS-I and IUS-II, EBS-SCA achieves the
effective balance between exploration and exploitation in the
entire iteration process.

Although the EBS-SCA is inspired by OBSO, RGBSO,
and GBSO algorithm, it still has two essential differences
compared with these BSO variants as follows:

1) Most of the existing BSO variants such as OBSO
and RGBSO adopt IGM to generate new individuals and
improve the population diversity, which can contribute
to enhance global exploration and avoid premature con-
vergence. However, IGM only considers the information
exchange between individuals, failing to offer the sufficient
population diversity on the complex CEC2013 benchmark
suite. On the other hand, IGM-IDUS of GBSO focuses on
the information exchange between the corresponding dimen-
sions of different individuals, so that it can offer more
information exchange and increase the population diversity.
However too-frequent information exchange between the
corresponding dimensions supplies the excessive population
diversity, causing some meaningless and purposeless explo-
rations and decreasing the convergence speed of GBSO.
In addition, OBSO of using the K-means grouping has high
computational cost, affecting the computational efficiency.
However, RGBSO of using RG strategy has low compu-
tational cost, contributing to decreasing the computational
efficiency.

Unlike the above BSO variants, to obtain the rational
population diversity and improve the computational effi-
ciency, the proposed EBS-SCA algorithm adopt the MIGM,
which not only covers the information exchange between
individuals, but also does that between the dimensions.

Therefore, on the one hand, MIGM can improve the popula-
tion diversity of IGM; on the other hand, MIGM can refrain
meaningless exploration caused by IGM-IDUS and enhance
search efficiency by using the appropriate dimension update
scheme. Briefly, by compromising the IGM and IGM-IDUS,
MIGM can supply the appropriate population diversity
for EBS-SCA.

2)Clearly, the OBSO, RGBSO, and GBSO algorithm
adopt equations (5) and (6) to update individuals. Although
equations (5) and (6) include the Gaussian number and con-
tribute to improving the global exploration capability, these
equations cannot provide sufficient effective exploitation
capability.

Unlike OBSO, RGBSO, and GBSO, the proposed
EBS-SCA adopts two different equations (1) and (14) to
update individuals. More importantly, equations (1) and (14)
are rationally combined with EBS strategy to achieve the
effective balance between exploration and exploitation.

In addition, different from the other metaheuristic algo-
rithms such as PSO, DE, and CMA-ES algorithm, the pro-
posed EBS-SCA is the multi-subgroup SCA algorithm,
which reasonably combines the advantages of the SCA
and BSO algorithm to preserve the population diversity
and balance the exploration and exploitation. More specifi-
cally, the proposed EBS-SCA rationally combines the EBS
strategy with equations (1) and (14) to generate two new
IUS-I and IUS-II strategies, which can effectively balance
the exploration and exploitation. Due to such an effec-
tive balance, EBS-SCA obtains the extremely promising
performance.

Although the experimental results have confirmed that
the EBS-SCA can provide the better overall performance
compared with the 19 metaheuristic algorithms on the above
two test suites, this still does not guarantee that EBS-SCA is
always able to handle any optimization problem. For instance,
on unimodal functions from the first test suite, CGSCO has
better performance than EBS-SCA on functions F4; on mul-
timodal function from the second test suite, CLPSO has more
optimal solution compared with EBS-SCA on function f 11.
According to the ‘‘No Free Lunch (NFL)’’ theorem [57],
an algorithm cannot be expected to solve any problem
of a well-established test suite. The same is true for the
proposed EBS-SCA. Actually, for a vast amount of pub-
lications concerning metaheuristic algorithms, finding an
algorithm that can surpass all compared algorithms on any
optimization is extremely rare. That is to say, different excel-
lent and sophisticated metaheuristic algorithms can devote
their superiorities to different optimization problems. On this
account, we will plan to hybridize various metaheuristic algo-
rithms such as immune inspired mutation algorithm [58] and
CMA-ES into the EBS-SCA algorithm to further enhance
the exploration and exploitation ability. Moreover, the pro-
posed EBS-SCA will be utilized to handle multi-objective
optimization issues from haptic devices, modeling of soft
tissue based on the mass-spring model in virtual surgery, and
other engineering problems [61]–[68].
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