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Abstract8

An improved understanding of the consumption patterns, end-uses, and tem-

poral variations of electrical loads in houses is warranted because a significant

fraction of a society’s total electricity consumption occurs within residential build-

ings. In general, there is a lack of high-temporal-resolution data describing oc-

cupant electrical consumption that are available to researchers in this field. To

address this, new measurements were performed and combined with data ema-

nating from an earlier study to provide a database of annual measurements for

23 houses at a 1-minute resolution that characterizes whole-house, non-HVAC,

air conditioner, and furnace fan electrical draws, as well as the draw patterns of

some major appliances. All houses were located in Ottawa, Canada. The non-

HVAC measurements of this 23-house sample were shown to be in agreement

with published estimates for the housing stock. The furnace fan was found to

be the most significant end-use. These high-temporal-resolution data of electrical

demands in houses can be used by researchers to increase the fidelity of build-

ing performance simulation analyses of different micro-generation technologies

in residential buildings.
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1. Introduction11

Power flow in the reverse direction caused by distributed generation is the12

main issue limiting PV penetration levels in existing electricity distribution net-13

works [1]. As was noted by Castillo-Cagigal et al. [2], in the future as higher levels14

of PV penetration occur, it will be more important to consume the electricity pro-15

duced by PV on-site and the current widespread practice of exporting electricity16

generated by PV to the local electrical supply network will become less attractive.17

This is also true for any micro-generation technology. Consequently, electrical18

consumption characteristics of occupants will play an increasingly important role19

in determining the performance of micro-generation systems.20

Saldanha and Beausoleil-Morrison [3] pointed out that both the magnitude and21

the temporal distribution of non-HVAC electrical loads influence the operation22

of energy conversion equipment within the building and in the electrical supply23

network. Their work also demonstrated that efforts to synthetically derive non-24

HVAC electric loads (e.g. references [4, 5, 6, 7, 8, 9]) may not adequately capture25

either the temporal variability nor the variation between households observed in26

the measurements.27

Saldanha and Beausoleil-Morrison [3] summarized some of the past efforts in28

measuring and characterizing residential electrical demand patterns, such as those29

of Pratt et al. [10], Parker [11], Firth et al. [12], Knight and Ribberink [13], and30

Isaacs et al. [14]. Of these past efforts, the finest temporal resolution of gathered31

data was achieved by Firth et al. [12] and Knight and Ribberink [13] (who sampled32
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Figure 1: Non-HVAC profile of one volunteer (H15) for a single day shown at various sample

periods

the electric consumption of 72 houses in the U.K. at 5-minute periods) and Isaacs33

et al. [14] (who sampled the electric consumption of 400 houses in New Zealand34

at 10-minute periods).35

Although references [12, 13, 14] had robust samples, the major limitation of36

these works was that the temporal resolution of the gathered data was too coarse37

to accurately represent the magnitude of some peak loads. Figure 1 is shown to38

better illustrate this limitation.39
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In Figure 1, the non-HVAC profile that was measured for one of the volunteers40

of this present research is shown for one sample day. This profile is plotted four41

times at increasing sample periods (from top to bottom) to demonstrate the effect42

that temporal resolution of this type of data has on the magnitude of observed43

peak loads. Longer sample periods were obtained by averaging the 1 minute-44

timescale resolution data over longer periods. As can be seen, by increasing the45

sample period from 1 to 5 minutes, the observed peak load that occurs near hour46

7 of the day has been dramatically reduced from approximately 3.5 kW to 2 kW.47

This effect is further exacerbated when the sample period is further increased to48

10 minutes and 1 hour. Note that 5 minutes was the previous best sample period49

achieved by Firth et al. [12] and Knight and Ribberink [13].50

To address this knowledge gap, Saldanha and Beausoleil-Morrison [3] pro-51

vided new measured data on the electrical consumption of 12 Canadian houses52

sampled at 1-minute periods for an entire year. They argued that high-temporal-53

resolution data are required to increase the fidelity of building performance simu-54

lation analyses and to better support the study of innovative energy conversion sys-55

tems (micro-cogeneration, on-site renewable electricity production, etc.). Cetin56

et al. [15] have also gathered end-use data at a 1-minute timescale resolution from57

40 houses in Texas (United States).58

To further demonstrate that there is a demand for this type of data, several59

other researchers ([16],[17],[18] and [19]) have supported their work with these60

data provided by Saldanha and Beausoleil-Morrison [3]. A thorough literature61

review of all studies in this field was performed by Rowlands et al. [20]. They62

concluded by identifying that generating this type of additional electricity end-63

use data is a research priority going forward which indicates that the demand for64
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this type of data is not yet satisfied.65

1.1. Contributions66

The purpose of this research is to improve the understanding of residential67

electricity consumption patterns at a high temporal resolution primarily to en-68

hance the fidelity of building performance simulation based research efforts of69

micro-generation systems. Particular emphasis is given to the improving the un-70

derstanding of non-HVAC consumption patterns because in this field HVAC con-71

sumption patterns are often simulated.72

For this purpose, the current article builds upon the work of Saldanha and73

Beausoleil-Morrison [3] by gathering new measured high-temporal-resolution data74

on an additional 11 Canadian houses and making them available to other interested75

researchers.1 These new measurements are predominantly from more recently76

constructed houses of row-house design compared to the houses sampled by Sal-77

danha and Beausoleil-Morrison [3] that were predominantly of single-detached78

design and of older vintages. This current work is an expansion of a paper ini-79

tially published in a conference [21].80

The article first describes the methods used to gather and process these data in81

Section 2. These data are then combined with those of Saldanha and Beausoleil-82

Morrison [3] to provide a database of annual measurements for 23 houses at a83

1-minute resolution that characterizes whole-house, non-HVAC, air conditioner84

(A/C), and furnace electrical draws, as well as the individual draw patterns of85

some major appliances. Also in Section 2, some characteristics potentially rele-86

1Interested researchers are invited to contact Ian Beausoleil-Morrison for access to any of these

load profiles (ian beausoleil-morrison@sbes.ca).
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vant to electricity consumption (number of occupants, age, size) of the sampled87

houses are described to demonstrate the range of these characteristics contained88

within the sample.89

For this database to be useful for its purpose, it is important to understand how90

well the 23 house sample represents the population. In Section 3, data from these91

23 houses are compared to aggregate data representing Ontario’s residential sector92

to demonstrate how well the sample reflects the annual electricity consumption of93

the population. In Section 4, the percentages of total consumption that occur94

within Ontario’s time-of-use periods for these data are compared to estimates for95

the entire residential sector.96

Aside from being a useful tool for building performance simulation, data from97

these 23 houses can be used on their own to improve the understanding of elec-98

tricity consumption patterns at a high-temporal resolution. As a case study, in99

Section 5 some analyses are performed to characterize the draw patterns of some100

major end-uses before conclusions are finally drawn in Section 6.101

2. New measurements102

2.1. Methods103

The electrical demands of 11 houses in the Ottawa area were measured be-104

ginning in the summer of 2011 for approximately 1 year. The experimental105

apparatuses that were used by Saldanha and Beausoleil-Morrison [3] were re-106

commissioned for this research. For each of the 11 houses the total electrical im-107

port from the grid was monitored with 50 A current transformers (CT), whereas108

30 A CTs were used to measure individual circuits (refer to Section 3 of refer-109

ence [3]). As documented in detail in that earlier study, with this instrumentation110
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Table 1: Characteristics of the 11 houses monitored in this study

Label Type Vintage a Size (m2)b Occupants

H13 mid 2010s 180 2

H14 mid 2010s 150 2

H15 mid 2000s 185 1

H16 mid 2000s 155 2

H17 mid 2010s 180 2

H18 mid 1990s 130 2

H19 mid 1970s 125 1

H20 end 1970s 125 2

H21 end 1940s - 1950s 150 3

H22 mid 2000s 150 2

H23 mid 1990s 180 2

a Decade of construction.
b Approximate floor area of liveable space, including

finished portion of basement.

the average power draw over each 1-minute logging interval could be resolved to111

within 45 W (30 A CTs) or 75 W (50 A CTs) over a wide range of power draws112

and with a bias error of 2% or less on the derived electrical energy consumption.113

All 11 houses were of a row-house design with full basements. The type, vin-114

tage, size, and number of occupants of each house is provided in Table 1. Whether115

a particular row-house was attached on one (end-unit) or two (mid-unit) sides is116

indicated by its “type” column in Table 1. Each house is identified with a label117
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in this table. As the houses monitored by Saldanha and Beausoleil-Morrison [3]118

were identified as H1 through H12, the newly measured houses have been labelled119

H13 through H23. All houses used natural gas as the primary heating fuel and for120

domestic hot water heating, and all but one (H21) had central A/C for cooling.121

A single house employed an auxiliary electric space heater in its basement. All122

houses also contained a range (cooker), fridge, dishwasher, microwave, clothes123

washer and dryer.124

Each house’s total electricity draw from the grid was measured. The power125

drawn by the circuits supplying the furnaces (controls, ignition system, air cir-126

culation fan) and by the circuits supplying the A/Cs (compressor, condenser fan,127

controls) was also measured. Note that when cooling was provided, power would128

be drawn by both the A/C circuit to power the cooling device as well as by the129

furnace circuit to distribute the conditioned air to the house. Additional circuits130

were monitored in some of the houses:131

• The electric range (cooker) was monitored in house H13 (full year), H14132

(full year), and H15 (9 months).133

• The electric clothes dryer was monitored in house H13 (full year), H14 (full134

year), and H15 (9 months).135

• The dishwasher was monitored in house H13 (10 months) and H14 (full136

year).137

• The auxiliary electric space heater in house H18 was monitored from Octo-138

ber 15, 2011 until March 31, 2012 (169 days).139

It was not feasible to measure these additional circuits in all houses due to the140

available number of apparatuses. Also, the measured end-uses were restricted to141
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Table 2: Numer of records that required data filling to create processed annual files

Label Filled Records

Number of minutes Fraction of year

H13 7359 1.4%

H14 36097 6.9%

H15 240 <0.1%

H16 18750 3.6%

H17 60 <0.1%

H18 8712 1.7%

H19 7236 1.4%

H20 29611 5.6%

H21 57 <0.1%

H22 25974 4.9%

H23 1489 0.3%

those end-uses that were powered from a separate circuit that could be separately142

monitored. Lighting, for example, was an end-use that could not be directly mea-143

sured since all houses in this study had several electrical circuits that contained not144

only lighting, but various plug-in end-uses as well. The methods described in de-145

tail by Saldanha and Beausoleil-Morrison [3] were utilized to derive non-HVAC146

power draws (the sum of major appliances, lighting, and plug loads) from the147

measurements, to treat missing time records, and to eliminate some measurement148

artefacts in cases of very low power draws.149

As in this earlier study, these data from houses H13 to H23 have been archived150
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in two formats to make them available for future research. The first format in-151

cludes the average power draw of each measured circuit over each 1-minute in-152

terval. These data are made available for each house’s total monitoring period,153

although there are some missing records due to interruptions that occurred when154

the data loggers were out of commission.155

In the second format of archived files, these data have been processed to facil-156

itate future analyses and for use in building performance simulations. These files157

include the derived non-HVAC electricity draws as well as data from the individ-158

ual circuits. Each file includes a full year’s worth of data at 1-minute intervals. To159

compose these, missing records were filled as mentioned above. In cases where160

individual appliances were monitored for only a subset of the year (H13 and H15),161

the missing periods were filled with data from other periods to ensure complete162

annual files. For all cases, the periods selected to fill missing data were from the163

nearest day, at the same time of day, where data were not missing. The advan-164

tage of this technique was that the periods selected to fill missing data contained165

similar seasonal occupant behaviour as the periods of data that were missing. The166

technique that was used to fill missing records was described in more detail in Sal-167

danha and Beausoleil-Morrison [3]. The number of records from each of the 11168

houses that were filled is indicated in Table 2. All analyses subsequently reported169

in this article are based upon this second format.170

2.2. Variations between houses171

These new data from houses H13 to H23 were combined with data provided172

by Saldanha and Beausoleil-Morrison [3] (houses H1 to H12). A wide range of173

annual consumption levels between homes was observed for the combined set:174

7.7 to 39.5 GJ for non-HVAC loads; 0.8 to 13.1 GJ for furnace circuit; and 0.1 to175
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4.8 GJ for A/C circuit.176

To further describe the various measured non-HVAC consumption levels, a177

k-means algorithm [22] was used to cluster the homes according to each home’s178

measured yearly non-HVAC consumption. In this iterative algorithm, a number179

of cluster centre values are determined and each house is associated with the cen-180

tre whose value is closest to the house’s consumption. For this application, only181

the values of three centres were sought after that represent low, medium and high182

non-HVAC consumption levels. The result is shown in Table 3 and reveals that183

the newly gathered data are most often associated with the low consumption level184

(H15, H17-H20, H22 and H23) while the original data are mostly clustered into185

medium (H1, H3-H7) and high (H9-H12) consumption levels. This is an indica-186

tion that the newly gathered data represent lower consumption levels than were in187

the original sample.188

The necessity of gathering measured high-temporal-resolution data from a189

larger sample of houses is also demonstrated by Figure 2. This plot shows the190

average non-HVAC power consumption of each of the monitored houses as solid191

markers. Note that these data were unavailable for house H8. The standard de-192

viations observed from these measured data at increasing sample periods (1, 5,193

10-minutes and 1-hour) are represented by the four different sizes of error bars.194

Shown to the far right of Figure 2 are statistics for “All” houses that represent195

values for the aggregate of the entire sample of houses.196

As can be seen from Figure 2, significant differences are observed between197

the average values and standard deviations of non-HVAC power consumption of198

the individual houses. This shows that the characteristics of this type of data vary199

dramatically between houses and larger sample sizes are necessary to describe200
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Table 3: Clustering of homes according to yearly non-HVAC consumption using a k-means algo-

rithm [22]

non-HVAC

Consumption

Level

Cluster Centre

(GJ year−1)

Housesa

Low 10.6 H2,H15,H17,H18,

H19,H20,H22,H23

Medium 18.0 H1,H3,H4,H5,H6,

H7,H13,H14,H16

High 33.4 H9,H10,H11,H12,H21

anon-HVAC consumption not measured for H8

these variations.201

It can also be seen that longer sample periods can significantly reduce the202

spread (standard deviation) of this type of data because peak draws of high mag-203

nitude and short duration are averaged to lesser values over longer sample periods204

as was observed in Figure 1. These additional data gathered from houses H13 to205

H23 provided by this research ensure that the combined data set of 23 houses has206

a greater statistical significance and should better represent the behaviour of the207

population at a 1-minute resolution.208

2.3. Significant predictors of annual consumption209

The differences observed between the consumption patterns of the 23 houses210

observed are due to a variety of factors relating to climate, house construction211

and occupant characteristics. Information describing some of these characteris-212
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tics (number of occupants, house size and age) was available for each of these 23213

houses. In this section, the relationship between these characteristics and electric-214

ity consumption is further investigated to demonstrate that this 23 house sample215

describes a reasonably broad range of these factors and electricity consumption216

values.217

To determine the degree that different characteristics affect total annual elec-218

tricity consumption, a multiple linear regression significance test was performed219

based on information that was available for each of the 23 houses in the sample.220

A detailed description of this type of test is given by Kutner et al. [23]. For this221

test, a linear function to regress the annual electricity consumption of the total,222

non-HVAC, furnace and A/C categories based on several variables was assumed,223

Ei = β0 +β1 ·X1 +β2 ·X2 +β3 ·X3 (1)

Where Ei is the annual electricity consumption (GJ) of a specific category, X1 is224

the number of occupants in a house, X2 is the age of the house relative to 2010225

(years), X3 is the size of the house (m2), and βi are the coefficients determined226

through regression. These values of βi determined from a linear regression are227

shown in Table 4.228

The results of the significance test are the p-Values shown in Table 4. The229

p-Value is defined as the probability that the null hypothesis can produce a sample230

as extreme as the one observed. The null hypothesis for each p-Value is defined231

as equation 1 where the corresponding βi coefficient has been set to zero. There-232

fore, the lower the p-Value for a coefficient, the more significant the variable that233

it modifies is for predicting annual consumption. From Table 4 it can be seen that234

the number of occupants has the lowest p-Value for the total and non-HVAC cate-235
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Table 4: Multiple regression coefficient hypothesis test

Total Non-HVAC Furnace A/C

βi p-Value βi p-Value βi p-Value βi p-Value

β0 -8.026a 0.416 -8.636a 0.19 -0.569a 0.85 1.7571 a 0.179

occupants 7.498b 0.017 6.617 b 0.002 0.4406b 0.613 -0.0037b 0.992

age 0.061c 0.562 0.0931c 0.224 -0.0317c 0.334 -0.0153c 0.284

size 0.085d 0.053 0.0576d 0.050 0.0250d 0.057 0.0041d 0.456

a GJ year−1

b GJ year−1 occupants−1

c GJ year−1 age−1

d GJ year−1 m−2

gories and is likely the strongest predictor, of the variables that were examined, for236

annual consumption. House size may or may not be a predictor (p-Value = 0.053237

and 0.050) for these two respective categories, but is likely less significant than238

the number of occupants. For annual furnace consumption, house size was po-239

tentially the only significant predictor (p-Value = 0.057). The p-Value associated240

with house age was high for all annual consumption categories and is likely not a241

significant predictor of any of them. All characteristics had high p-Values for the242

A/C category, therefore, these characteristics are not likely significant predictors243

of annual consumption for this category.244

There are a variety of characteristics that were not included in the analysis245

in Table 4. Environmental characteristics (outdoor temperature, solar insolation,246

wind speed, etc.) are very significant to the yearly consumption of the A/C and247

furnace and, therefore, to the total consumption as well. Other building con-248

struction characteristics (building orientation, fenestration area, building envelope249
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insulation levels, etc.) are also significant to these categories. Even occupant be-250

havioural characteristics (thermostat setpoint, usage of natural ventilation, furnace251

fan operational mode, etc.) could strongly affect these categories. In comparison,252

it is logical to assume that there is a much weaker link between the non-HVAC253

consumption category and either environmental or building construction charac-254

teristics as this category is not as directly affected by the thermal comfort of occu-255

pants. Since the major objective was to produce non-HVAC load profiles to sup-256

port building performance simulation based research, an analysis that considered257

environmental characteristics or more in-depth building construction characteris-258

tics was considered outside of the scope of this research.259

3. Comparison to housing stock260

This section contrasts data from the 23 monitored houses to data published261

by Natural Resources Canada (NRCan) for the Ontario housing stock [24, 25] to262

demonstrate the statistical validity of the 23 house sample. NRCan draws upon263

published aggregate data on residential energy use and then employs stock ac-264

counting modelling methods along with data drawn from industry associations265

and external studies to estimate the disaggregated energy end-uses in a number of266

categories.267

The database of 23 houses includes annual consumption data for the follow-268

ing end-uses: non-HVAC (22 houses), A/C circuit (22 houses), furnace circuit (23269

houses), range (6 houses), clothes dryer (5 houses), and dishwasher (4 houses).270

These data are presented as box plots in Figure 3. The band inside each box is the271

median of that end-use, while the bottom and top of a box indicate that end-uses’272

first and third quartiles, respectively. The ends of the whiskers represent the min-273
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Figure 3: Distribution of annual electricity end-uses of monitored houses and comparison to NR-

Can data for Ontario housing stock

17



imum and maximum, respectively, of each end-use. The non-HVAC electricity274

consumption is plotted using the vertical scale on the left of the graph, whereas275

the end-uses of individual appliances are plotted using the vertical scale on the276

right of the graph.277

Figure 3 also plots NRCan’s estimates of the disaggregated electricity con-278

sumption of these end-uses for Ontario’s housing stock from 1990 to 2013. These279

were determined by dividing the NRCan stock estimates for Ontario by the num-280

ber of housing units in the province. The NRCan data for each end-use spans a281

range because of technology and usage changes with time, and because the NR-282

Can stock model takes into account the influence of year-to-year weather varia-283

tions.284

The presentation of Figure 3 allows a direct comparison between the measured285

data and NRCan’s stock estimates. However, the shortcomings of this comparison286

must be recognized. For example, for the A/C end-use the box plot contains the287

measured data from the 22 houses that had central A/C. Whereas the NRCan data288

show the estimated A/C electricity consumption for the average Ontario house. As289

NRCan does not publish data on the number of Ontario houses with A/C, their data290

could not be normalized by houses with A/C. Notwithstanding these deficiencies,291

some interesting observations can be made from Figure 3. For example, the non-292

HVAC electricity consumption of half of the measured houses (i.e. quartiles 1293

to 3 that are represented by the box) are in close agreement with the range of294

NRCan stock data. Furthermore, the median value of the measured non-HVAC295

consumption is close the middle of the range of the NRCan stock data.296

It can also be seen that the measured A/C consumption tends to be less than the297

NRCan stock estimates. This is somewhat surprising given the earlier observation298

18



on how the NRCan data are represented in the figure. Recall that the figure plots299

the estimated A/C electricity consumption for Ontario houses normalized by the300

number of homes. Given that not all Ontario homes have A/C, one would expect301

that the NRCan data would be lower than the measurements, but the opposite is the302

case. There are a number of possible explanations for this observation: differences303

in climate conditions between the monitoring period and location and the stock304

data; or, differences in the occupant behaviour (e.g. use of shading, ventilation,305

and other measures to minimize the use of A/C) between the monitoring sample306

and the NRCan stock modelling.307

Figure 3 also reveals that the measured data show lower range and clothes308

dryer electricity consumption than the NRCan stock data. However, it must be309

cautioned that the measured data are based upon limited sampling (6 ranges, 5310

clothes dryers).311

It can also be observed from Figure 3 that the A/C, range, and clothes dryer all312

contribute significantly to the annual electricity consumption, although the most313

significant single end-use is the furnace. The electricity consumption of the fur-314

nace was particularly high for 5 houses (H7, H9, H10, H13 and H16).315

High furnace fan annual electricity consumption was caused by fans that were316

either active for long durations or fans that drew electricity at high rates. A de-317

tailed analysis of the furnace fan and A/C operating characteristics for all of the318

houses revealed that H7, H9 and H10 had active fans for long durations (65.5%,319

100% and 100% of the year). Although H13 and H16 had active fans for compar-320

atively modest durations (40.7% and 35.1% of the year respectively), the annual321

furnace fan electricity consumption of these houses was still high because their322

furnace fans drew electricity at high rates (0.594 kW and 0.550 kW respectively323
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when active) as will be shown later in Figure 6.324

4. Time of Use Consumption Patterns325

midnight

7 h

11 h

17 h

19 h

Off Peak

Mid Peak

On Peak

Summer (May 1 to Oct. 31) Winter (Nov. 1 to Apr. 30)

Mid Peak

Off Peak

On Peak

Figure 4: Ontario’s time-of-use pricing scheme’s on-peak, mid-peak, and off-peak periods

Both the magnitude and the temporal distribution of electricity demand pat-326

terns are significant from the perspective of the electricity supply network. To this327

end, many jurisdictions, including Ontario, have implemented time-of-use (TOU)328

pricing schemes to incent homeowners to shift their electricity consumption from329
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periods of high demand on the electricity supply network to periods of lower de-330

mand. Ontario’s TOU billing periods in 2011 for weekdays (Monday through331

Friday) are illustrated in Figure 4. As can be seen, the on-peak and mid-peak332

periods vary by season. Weekends (Saturday and Sunday) and statutory holidays333

are treated as off-peak periods. An analysis of the measured data from the 23334

houses for the full year period revealed that 18% of the electricity consumption335

occurred during the on-peak periods, 17% during mid-peak periods, and 65% dur-336

ing off-peak periods. These observations are consistent with provincial-wide data337

which show that 18% of Ontario residential consumption occurs on-peak, 18%338

mid-peak, and 64% off-peak [26].339

Figure 5 uses box plots to examine in greater detail the distribution of each340

house’s electricity consumption in the summer and winter TOU billing periods.341

The band inside each box represents the house with the median fractional con-342

sumption in a given TOU billing period. The bottom and top of the boxes rep-343

resent the first and third quartiles, while the ends of the whiskers represent the344

extreme values. As can be seen, the TOU consumption patterns vary significantly345

between individual houses. This figure also shows that greater consumption tends346

to occur during the summer mid-peak period than during the winter mid-peak347

period.348

5. Case study: Significant end-uses349

Statistics characterizing the end-uses that were monitored for each of the 23350

houses are summarized in Figure 6. The markers in Figure 6 indicate the mean351

power draw that was measured for a specific end-use for an individual house when352

the specific end-use was active. For the purposes of this analysis, an end-use was353
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Figure 5: Distribution of TOU consumption patterns of measured houses
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considered active if its measured power draw was 45 W or greater for 2 consec-354

utive minutes. This definition was necessary to respect the resolution of exper-355

imental apparatuses previously described. The error bars represent the standard356

deviation of an active end-use.357

Also shown, to the far right, in Figure 6 are statistics for “All” houses. The358

means and standard deviations for end-uses shown here were calculated from the359

aggregate set of active loads for a specific end-use from all houses where this360

end-use was monitored. For example, the dishwasher was only monitored for361

H12-H15, therefore, the set of active dishwasher loads is the aggregate of active362

dishwasher loads from houses H12-H15. Note that the dishwasher from H15 was363

most active so the mean calculated from “All” houses is heavily weighted towards364

H15.365

When compared to similar sized non-HVAC end-uses, HVAC end-uses draw366

electricity in a more consistent manner. For example, “All” A/C systems drew367

a similar mean but lower standard deviation compared to the range. “All” fur-368

nace fans drew a similar mean but lower standard deviation compared to the dish369

washer. This suggests that there is greater variability in the manner non-HVAC370

end-uses consume electricity compared to HVAC end-uses.371

A number of the 23 houses’ monitored appliances had significant power draws372

when operating. “All” clothes dryers and A/C drew a mean of 2.9 kW and 1.4 kW373

respectively.374

6. Conclusions375

To improve the knowledge of consumption patterns, end-uses, and temporal376

variations of electrical loads in the important residential sector, new measurements377
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were taken in 11 houses located in Ontario (Canada). These have been combined378

with data emanating from an earlier study to provide a database of annual mea-379

surements for 23 houses at a 1-minute resolution that characterizes whole-house,380

non-HVAC, A/C, and furnace electrical draws, as well as the draw patterns of381

some major appliances. These data have been documented and archived in two382

formats to make them available to researchers to support their studies of other383

micro-generation systems. These data may be used as occupant load profiles in384

building performance simulations or for other case-study analyses (e.g. further385

study disaggregation of loads according to season, examine the correlation be-386

tween occupant loads and environmental variables, investigate the complementar-387

ity of loads and the availability of renewable energy, etc.)388

The high-temporal-resolution data provided by this research have been shown389

to more accurately characterize short-duration peaks in demand that occur in res-390

idential electric consumption profiles than previous efforts could. The major con-391

tribution of this work has been to increase the number of high-temporal-resolution392

residential demand profile data sets available to researchers from 12 to 23 and393

demonstrate that this larger sample reflects some important characteristics seen in394

the larger population.395
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