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ABSTRACT Aiming to dynamic modeling of a three-link manipulator subjected to motion constraints,
a novel explicit approach to the dynamical equations based on Udwadia–Kalaba (UK) theory is established.
The motion constraints on the three-link manipulator can be regarded as external constraints of the system.
However, it is not easy to obtain explicit equations for the dynamic modeling of constrained systems. For
a multibody system subjecting to motion constraints, it is common to introduce Lagrange multipliers, but
obtaining an explicit dynamical equation using traditional Lagrange multipliers is difficult. In order to obtain
such equations more simply, motion constraints are handled using the UK equation. Compared with the
Lagrange method, the UK approach can simplify the analysis and solution of a constrained system, without
the need to introduce additional auxiliary variables to solve the Lagrange equation. Based on a more real-
life nominal system (whose parameters are known) model considering the uncertain environment, this paper
develops a nonlinear controller that satisfies the required trajectory. This controller allows the nonlinear
nominal system to track the desired trajectory exactly without linearizations or approximations. These
continuous controllers compensate extra force to eliminate the errors caused by uncertainties. The controllers
are based on a generalization of sliding surfaces. Error bounds on tracking caused by uncertainties are
analytically obtained. The numerical results show the simplicity and efficacy of the proposed methodology,
and the reliability of the error bounds.

INDEX TERMS Manipulator, Udwadia-Kalaba theory, dynamic modeling, trajectory tracking, constrained
mechanics, uncertain systems control, generalized sliding mode control.

I. INTRODUCTION
The main methods currently used for dynamic modeling
of manipulators with motion constraints are the Newton–
Euler method [1], Lagrange’s method [2], [3], and Kane’s
method [4]. The Newton–Euler method describes motion
and force through the use of vectors. In the modeling pro-
cedure, every component of the mechanism is isolated and
the corresponding Newton–Euler equations are established.
Calculations of this method is quite efficient, but it is hard to
use this approach when attempting to design control systems
for manipulators. For a multibody system with motion con-
straints, Lagrange’s method can be used, generally with the
introduction of Lagrange multipliers [5], which is a widely
used technique for constrained systems. However, controlling
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these multipliers is difficult, and the approach is not very well
suited for symbolic considerations. Kane’s method combines
the advantages of vector mechanics and analytical mechanics,
with a generalized rate being used as an independent variable
in the equations of motion of the system. The fundamental
vector projection of themain force and the inertial force of the
system is extended directly to derive the equations of motion.
However, with this method, these dynamical equations cannot
be obtained in the appropriate analytical form for a con-
strained mechanical system. As is well known, the generation
of dynamical equations for constrained systems in symbolic
form has a number of advantages with regard to issues of both
control and mechanical design [6]. In addition, controller
design relies on analytical model of the mechanical system
under control, so it is important to find an appropriate, and
accurate, dynamical model.
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In 1992, Udwadia and Kalaba [7]–[10] derived a basic
equation of motion for describing constraint dynamics,
the Udwadia–Kalaba equation, which is obtained by using
Gauss’s principle rather than the more commonly used
principles of Lagrange, Hamilton, Gibbs, and Appell [11].
This equation takes constraints into account in the dynam-
ical equation and involves the generalized Moore–Penrose
inverse [12]. Therefore, it provides a simple and general
explicit equation of motion for constrained mechanical sys-
tems without the need for Lagrange multipliers [13]. This
relatively simple approach allows detailed dynamical analysis
of such systems and should improve fundamental understand-
ing of constrained motion in multibody dynamics. It has
been used to solve problems in the dynamical analysis of
multibody systems [14]–[16], flexible systems [17], and con-
trol of mechanical systems [18]–[21], including tethered
satellites [22] and parallel [23]–[25], industrial [26], [27],
underwater [28], and mobile [29] robots. This method has the
advantage that it is possible to obtain both the constraining
force required to control the manipulator and the dynamical
equations in an explicit form that is easy to implement in a
computer program [30].

To deal with the control problem of the manipulator,
valuable control methods have been proposed. For exam-
ple, Deng et al. [31] addressed the output feedback tracking
control problem of a category of multiple input and output
nonlinear systems subjecting to time-varying input delay
and additive bounded disturbances based on backstepping
design approach. To track the issue of uncertainties of non-
linear system, Yao et al [32] designed an active disturbance
rejection adaptive controller for tracking control of nonlin-
ear systems with both parametric and uncertain nonlinear-
ities. Unlike most control methods for the tracking control
problem of manipulator, this paper does not make any lin-
earization or approximations and obtains exact, analytical
solutions to the tracking control problem of manipulator in
which the desired trajectory can be any (suitably smooth)
arbitrarily prescribed function of time. In this paper, in order
to obtain explicit control torque to control the three-link
manipulator to move on the desired trajectory, an analyti-
cal dynamical model of a three-link manipulator is estab-
lished by using UK equation. Considering there are always
uncertainties in the description of any real-life dynamical
systems.

Although the uncertain real-life system can’t be fully-
known, but the uncertainties are bounded. We refer the
best assessment of a given real-life uncertain system as
the ‘‘nominal system’’. By using UK equation, we obtain
the closed-form control force needed to track the con-
straint trajectory requirements for the nominal system model.
Once the nominal system model gets fixed, no lineariza-
tions/approximations are made in the description of the
dynamics. Then, we augment this nonlinear controller by
an additional additive controller based on sliding mode con-
trol, which can provide a general approach to the control of
the nonlinear uncertain system, and leads to a closed-form

nonlinear controller that satisfies the desired constraint tra-
jectory requirements with error bounds.

This paper is organized as follows. In section II, we intro-
duce the Udwadia-Kalaba theory. In section III, by using
UK equation obtained the joint control force, based on nom-
inal system, we adopt a nonlinear controller to control the
uncertain three-link manipulator. In section IV, we carry out
numerical simulation to control the three-link manipulator to
track the desired trajectory and use Braun’s method for com-
parison. The conclusions of this paper are given in section V.

II. UDWADIA–KALABA THEORY
Consider an unconstrained mechanical system, moving under
the influence of gravity alone, described by n generalized
coordinates q := [q1, q2, · · · , qn]T , and with equations of
motion expressed in Newtonian or Lagrangian form as

M (q, t) q̈ = Q (q, q̇, t) , (1)

with initial condition

q (0) = q0, q̇ (0) = q̇0. (2)

Here t is the independent variable, M is an n × n matrix
that can be either positive-semidefinite (M ≥ 0) or positive-
definite (M > 0) at each instant of time. q̇ is the n×1 velocity
vector, q̈ is the n×1 acceleration vector, andQ (q, q̇, t), called
the given force, collects together the normal and Coriolis
inertial terms and the applied forces related to q, q̇, and t .
From (1), when q, q̇, and t are known, the acceleration can be
obtained as follows:

a (q, q̇, t) := M−1 (q, t)Q (q, q̇, t) . (3)

It is assumed that the constrained form of this system can
be described by m = m1 + m2 equations

ϕi (q, t) = 0, i = 1, 2, . . . ,m1 (4)

and

ψj (q, q̇, t) = 0, j = 1, 2, . . . ,m2, (5)

where ϕ is an m1 vector and ψ is an m2 vector. Equations (4)
and (5) include all the usual varieties of holonomic or non-
holonomic constraints. Differentiating (4) twice with respect
to time and (5) once yield a set of constraint equations in
matrix form as [33]

A (q, q̇, t) q̈ = b (q, q̇, t) , (6)

where the constraint matrix A (q, q̇, t) is an m× nmatrix and
b (q, q̇, t) is an m× 1 vector.

When the system is constrained, an additional set of forces
act on the manipulator system, and the equation of motion of
this constrained manipulator system can then be written as

M (q, t) q̈ = Q (q, q̇, t)+ Qc (q, q̇, t) , (7)

whereQc (q, q̇, t) is an n×1 vector, which is present because
of the additional constraint force and satisfies the constraint
conditions.
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In Lagrangian mechanics, when the constraints are ideal,
Qc (q, q̇, t) is governed by the usual D’Alembert principle.
However, the constraints can also be nonideal, and the con-
strained system can be subject to both ideal and nonideal
constraints at the same time, under that Qc (q, q̇, t) can be
written as

Qc (q, q̇, t) = Qcid (q, q̇, t)+ Q
c
nid (q, q̇, t) , (8)

where Qcid (q, q̇, t) is the ideal constraint force and
Qcnid (q, q̇, t) the nonideal constraint force.

Assuming that the virtual displacement [34] is ν, the work
done by the ideal constraint force is zero, i.e.,

νTQcid = 0, (9)

while the work done by the nonideal constraint force
Qcnid (q, q̇, t) is nonzero. i.e.,

νTQcnid 6= 0 (10)

Udwadia and Kalaba showed that the ideal constraint force
is given by

Qcid (q, q̇, t) = M
1
2B+

(
b− AM−1Q

)
(11)

and the nonideal constraint force by

Qcnid (q, q̇, t) = M
1
2B+

(
I − B+B

)
M−

1
2 c, (12)

where the matrix B = AM−
1
2 and the superscript ‘‘+’’

indicates the Moore–Penrose inverse matrix. The vector c is
a known vector, which can be obtained experimentally or by
observation of a given mechanical system.

From (7), (8), (11), and (12), we can get the general equa-
tion describing the dynamics of the constrained system

Mq̈ = Q+M
1
2B+

(
b− AM−1Q

)
+M

1
2B+

(
I − B+B

)
M−

1
2 c. (13)

If the work done by constraint forces under virtual dis-
placements is zero, then Qcnid = 0, then the general equation
of the constrained system can be simplified to

Mq̈ = Q+M
1
2B+

(
b− AM−1Q

)
. (14)

FIGURE 1. Three-link manipulator.

III. DYNAMICS OF A THREE-LINK MANIPULATOR
A. UNCONSTRAINED MANIPULATOR DYNAMICS
In order to calculate the dynamics of the three-link manipula-
tor in Figure 1, to each link we attach a frame Ci at the center
of mass and aligned with the principal axes of inertia of the
link [35]. The coordinates of the manipulator are denoted by
θ = [θ1, θ2, θ3]T .
We choose a reference configuration of the manipulator,

i.e., the configuration where all the joint variables are 0,
and let ξ1, ξ2, ξ3 denote the joint twists in this configuration
expressed in the global coordinate frame S. Then the joint
twist corresponding to a screw is

ξi =

[
−ωi × qi
ωi

]
, (15)

where the axis of rotation is ω ∈ R3, ‖ω‖ = 1, and q ∈ R3 is
a point on the axis, so

ξ1 =


−

 0
0
1

×
 0
0
0

 0
0
1




=



0
0
0
0
0
1


,

ξ2 =


−

−10
0

×
 0

0
l0

−10
0




=



0
−l0
0
−1
0
0


,

ξ3 =


−

−10
0

×
 0
l1
l0

−10
0




=



0
−l0
l1
−1
0
0


.

(16)

The transformation between the frames Ci and base frame
at θ = 0 is given by

gSC1 (0) =

 I
 0

0
r0


0 1

,

gSC2 (0) =

 I
 0
r1
l0


0 1

,

gSC3 (0) =

 I
 0
l1 + r2
l0


0 1

.

(17)
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The forward kinematics about the center of mass are given
by

gSCi (θ) = eξ̂1θ1 · · · eξ̂iθigSCi (0) , (18)

with

eξ̂1θ1 =


C1 −S1 0 0
S1 C1 0 0
0 0 1 0
0 0 0 1

,

eξ̂2θ2 =


1 0 0 0
0 C2 S2 −l0S2
0 −S2 C2 l0 (1− C2)

0 0 0 1

,

eξ̂3θ3 =


1 0 0 0
0 C3 S3 l1 (1− C3)− l0S3
0 −S3 C3 l0 (1− C3)+ l1S3
0 0 0 1

.

(19)

Here Si = sin θi, Ci = cos θi, Sij = sin
(
θi + θj

)
, and

Cij = cos
(
θi + θj

)
. To calculate the manipulator inertia

matrix, the body velocity of the center of mass of the ith link
is described as

V b
SCi = JbSCi (θ) θ̇ , (20)

where JbSCi (θ) is a configuration-dependent 6 × n body
manipulator Jacobian matrix corresponding to gSCi (θ):

JbSCi (θ) =
[
ξ+1 · · · ξ

+

i 0 · · · 0
]
, (21)

where ξ+j = Ad−1(
eξ̂jθj ···eξ̂iθigSCi (0)

)ξj (j ≤ i) is the jth instanta-

neous joint twist relative to the ith link frame Ci. Calculating
of the body Jacobian yields

J1 = JbSC1
(0) =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0


,

J2 = JbSC2
(0) =



−r1C2 0 0
0 0 0
0 −r1 0
0 −1 0
−S2 0 0
C2 0 0


,

J3=JbSC3
(0)=



−l2C2 − r2C23 0 0
0 l1S3 0
0 −r2 − l1C3 −r2
0 −1 −1
−S23 0 0
C23 0 0


.

(22)

With this choice of link frames, the link inertia matrices
have the general form [36]

Mi = diag
(
mi,mi,mi, Ixi , Iyi , Izi

)
, (23)

where mi is the mass of the object and Ixi ,Iyi , and Izi are the
moments of inertia about the x-, y-, and z-axes of the ith link
frame.

The kinetic energy of the ith link is

T
(
θ, θ̇

)
=

1
2

(
V b
SCi

)T
MiV b

SCi=
1
2
θ̇T JTi (θ)MiJi (θ) θ̇ . (24)

Now the total kinetic energy can be written as

T
(
θ, θ̇

)
=

1
2
θ̇TM (θ) θ̇ , (25)

where

M (θ) =

n∑
i=1

JTi (θ)MiJi (θ) (26)

is the manipulator inertia matrix. The body manipulator Jaco-
bian JbSCi (θ) is given by (22). The potential energy of the
linkage typically consists of the sum of the gravitational
potential energies of each link. Let hi (θ) denote the height
of the center of mass of the ith link. The potential energy of
the link is Vi (θ) = mighi (θ), and the potential energy of the
linkage is

V (θ) =
n∑
i=1

mighi (θ) . (27)

hi (θ) can be found using the forward kinematics mapping:
substituting (17) and (19) into (18) gives

h1 (θ) = r0,
h2 (θ) = l0 − r1 sin θ2,
h3 (θ) = l0 − r1 sin θ2 − r2 sin (θ2 + θ3) .

(28)

The Lagrangian for the manipulator is the difference
between the kinetic and potential energies: for typical manip-
ulators, the Lagrangian function is

L
(
θ, θ̇

)
= T

(
θ, θ̇

)
− V (θ) =

1
2

n∑
i,j=1

Mij (θ) θ̇iθ̇j − V (θi),

(29)

where T
(
θ, θ̇

)
is the kinetic energy and V (θ) the potential

energy of the system. The Lagrange equations describing the
dynamics for each generalized coordinates are

d
dt
∂L

∂θ̇i
−
∂L
∂θi
= ϒi, (30)

where ϒi represents the actuator torque and other nonconser-
vative generalized forces acting on the ith joint. Using (30),
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we have

d
dt
∂L

∂θ̇i
=

d
dt

 n∑
j=1

Mij (θ) θ̇j


=

n∑
j=1

(
Mij (θ) θ̈j + Ṁij (θ) θ̇j

)
,

∂L
∂θi
=

1
2

n∑
j,k=1

∂Mkj (θ)

∂θi
θ̇k θ̇j −

∂V (θ)
∂θi

.

(31)

The Ṁij (θ) term can now be expanded in terms of partial
derivatives to yield

n∑
j=1

Mij (θ) θ̈j +

n∑
j,k=1

(
∂Mij

∂θk
θ̇jθ̇k −

1
2
∂Mij

∂θi
θ̇k θ̇j

)
+
∂V (θ)
∂θi

= ϒi. (32)

Equation (32) can be rewritten as

M (θ) θ̈ + C
(
θ, θ̇

)
θ̇ + G

(
θ, θ̇

)
= τ, (33)

where τ is the vector of actuator torques, C
(
θ, θ̇

)
is the

Coriolis matrix for the manipulator, with components

Cij
(
θ, θ̇

)
=

n∑
k=1

0ijk θ̇k

=
1
2

n∑
k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
−
∂Mkj

∂θi

)
θ̇k , (34)

and

Gi
(
θ, θ̇

)
=
∂V (θ)
∂θi

(35)

includes gravity terms and other forces acting at the joints.
By substituting (22) and (23) into (26) gives

M (θ) =

M11 M12 M13
M21 M22 M23
M31 M32 M33


= JT1 M1J1 + JT2 M2J2 + JT3 M3J3. (36)

The components of M are given by

M11 = Iy2S
2
2 + Iy3S

2
23 + Iz1 + Iz2C

2
2 + Iz3C

2
23

+m2r21C
2
2 + m3 (l1C2 + r2C23)

2 ,

M12 = M21 = 0,
M22 = Ix2 + Ix3 + m3l21 + m2r21 + m3r22 + 2m3l1r2r3,
M13 = M31 = 0,
M23 = M32 = Ix3 + m3r22 + m3l1r2r3,
M33 = Ix3 + m3r22 .

(37)

The components of 0 are given by

0112 =
(
Iy2 − Iz2 − m2r21

)
C2S2

+
(
Iy3 − Iz3

)
C23S23 − m3 (l1C2 + r2C23) (l1S2 + r2S23) ,

0113 =
(
Iy3 − Iz3

)
C23S23 − m3r2S23 (l1C2 + r2C23) ,

0121 =
(
Iy2 − Iz2 − m2r21

)
C2S2

+
(
Iy3 − Iz3

)
C23S23 − m3 (l1C2 + r2C23) (l1S2 + r2S23) ,

0131 =
(
Iy3 − Iz3

)
C23S23 − m3r2S23 (l1C2 + r2C23) ,

0131 =
(
Iy3 − Iz3

)
C23S23 − m3r2S23 (l1C2 + r2C23) ,

0211 =
(
−Iy2 + Iz2 + m2r21

)
C2S2 +

(
−Iy3 + Iz3

)
C23S23

+m3 (l1C2 + r2C23) (l1S2 + r2S23) ,
0233 = −l1m3r2S3,
0232 = −l1m3r2S3,
0233 = −l1m3r2S3,
0311 =

(
−Iy3 + Iz3

)
C23S23 + m3r2S23 (l1C2 + r2C23) ,

0322 = l1m3r2S3.
(38)

Substituting (27) and (28) into (35), we get

G
(
θ, θ̇

)
=
∂V
∂θ

=

 0
− (m2gr1 + m3gl1)C2 − m3r2C23

−m3gr2C23

. (39)

B. CONSTRAINTS ON MOTION
The forward kinematic mapping of the three-linkmanipulator
is given by

gST (θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3gST (0) , (40)

where

gST (0) =

 I
 0
l1 + l2
l0


0 1

. (41)

Substituting (19) and (41) into (40), we get

gST (θ)

=


C1 −S1C23 −S1S23 −S1 (l1C2 + l2C23)

S1 C1C23 C1S23 C1 (l1C2 + l2C23)

0 −S23 C23 l0 − l1S2 − l2S23
0 0 0 1

.
(42)

Based on (42), the position of the end-effector can be
written as

x = − sin θ1 (l1 cos θ2 + l2 cos (θ2 + θ3)) ,
y = cos θ1 (l1 cos θ2 + l2 cos (θ2 + θ3)) ,
z = l0 − l1 sin θ2 − l2 sin (θ2 + θ3) .

(43)
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The task description is given by the end-effector trajectory
as constraint with [37]

x = rdX (t)
y = rdY (t)
z = rdZ (t)

(44)

in which 
rdX (t) = η cos(4π t) cos(2π t)+ x0
rdY (t) = η cos(4π t) sin(2π t)+ y0
rdZ (t) = η cos(4π t) sin(2π t)+ z0

(45)

Then, on differentiating (44) with respect to time t twice
and combining the result with (6), the constraints can be
written in matrix form as

A

=

−C1(l1C2 + l2C23) S1(l1S2 + l2S23) l2S1S23
−S1(l1C2 + l2C23) −C1(l1S2 + l2S23) l2C1S23

0 −l1C2 − l2C23 l2C23


(46)

and

b = [b1, b2, b3]T (47)

in which

b1 = (l1C2 + l2C23)S1θ̇21 + 2C1(θ̇3l2S23 + θ̇2(l1S2
+ l2S23))θ̇1 + 2ηπ2(cos(2π t)+ 9 cos(6π t))

+ S1(l1C2θ̇
2
2 + (θ̇2 + θ̇3)2l2S2S3),

b2 = −C1(l1C2 + l2C23)θ̇21 − 2S1(−θ̇2 − (θ̇2 + θ̇3)l2S23)θ̇1
+C1(−l1C2θ̇

2
2 − (θ̇2 + θ̇3)2l2C23)

+ 20ηπ2 cos(4π t) sin(2π t)

+ 16ηπ2 cos(2π t) sin(4π t),

b3 = S2θ̇22 + (θ̇2 + θ̇3)2l2S23 + 20ηπ2 cos(2π t) sin(2π t)

+16ηπ2 cos(2π t) sin(4π t). (48)

C. DYNAMIC EQUATIONS AND CONSTRAINT TORQUE
We have obtained the dynamical model and kinematic con-
straints of the three-link manipulator, and now we impose the
additional motion constraints on the unconstrained system.
The explicit dynamical equation includingmotion constraints
can be written as:

M (θ) θ̈ = −C
(
θ, θ̇

)
θ̇ − G

(
θ, θ̇

)
+M

1
2

(
AM−

1
2

)+
×

(
b− AM−1

(
−C

(
θ, θ̇

)
θ̇ − G

(
θ, θ̇

)))
. (49)

According to the Udwadia–Kalaba equation, the constraint
force, which represents the inverse dynamics of the manipu-
lator, can be written in the form

Qc=M
1
2

(
AM−

1
2

)+ (
b−AM−1

(
−C

(
θ, θ̇

)
θ̇−G

(
θ, θ̇

)))
.

(50)

D. END-EFFECTOR TRAJECTORY CONTROL
The constraints must be satisfied at each instant of time,
including the initial time, while in practice, due to various
factors, it is usually quite difficult for the initial conditions
to satisfy the constraint equations, for this reason, many
researches use famous Baumgarte’s method [38] to correct
numerical drift when the initial conditions are incompatible
with the constrained equations, see refs [6], [39]–[41]. How-
ever, the introduced parameters, α and β must be carefully
selected, since the selection can make the reformulated prob-
lem stiff. For this reason, Lin and Huang [42] presented a
stabilization parameters analysis method in digital control
theory. Floes et al [43] presented a parametric study on the
Baumgarte stabilization method, the influence of the stabi-
lization parameters, integration method, time step and quality
of the initial conditions on the dynamic response of planar
constrained multibody systems. Braun and Goldfarb [44]
proposed an approach which is based on Udwadia and Kal-
aba equation, and corrected it to enforce both the second
order derivative of holonomic constraints and the first order
derivative. But none of the above methods consider the uncer-
tainties of the system. By using the UK equation. Udwadia
et al [22], [33], [45]–[48] addressed the control problem of
nonlinear multibody mechanical systems with uncertainties.
Here, we extend the control methodology proposed in ref [46]
to control the uncertain three-link manipulator system.

The end-effector trajectory can be regarded as constraint
with f (θ (t)) − Xd (t) = X(t) − Xd (t) = 0, where X = f (θ )
denotes the forward kinematics [49], Xd (t) is the desired
workspace trajectory.Wemake use of the differential forward
kinematics,

Ẋ = J (θ )θ̇ ,

Ẍ = J (θ )θ̈ + J̇ (θ )θ̇ . (51)

We bring this equation into the form (6) with

A(θ, θ̇ ) = J ,

b(θ, θ̇ , t) = Ẍd − J̇ θ̇ . (52)

Based on existence of uncertainties, this control forceQc(t)
obtained from Eq.(50) needs to be compensated for these
uncertainties. In order to ensure that the real-life system
without an already knownmodel tracks the trajectory require-
ments of the nominal system [47], the constrained equation of
motion, Eq.(49) is replaced with

Ma(qc, t)q̈c = Qa(qc, t)+ Qc(t)+ Qu(qc, q̇c, t), (53)

where qc is the generalized coordinate n-vector of the con-
trolled system andQu is the additional control force n-vector,
which is a function of qc, q̇c and t that compensates for
the fact that the model is known only imprecisely. Ma is
the actual mass matrix of the real-life system, which is a
function of qc and t . The actual given force vector isQa. Since
uncertainties in themass of amechanical system have perhaps
the most pervasive effect on its response, we consider below
the situation wherein the uncertainty in our description of the
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three-link manipulator system resides in our lack of exact
knowledge of the mass of each body. Pre-multiplying both
sides of Eq.(53) by M−1a , the acceleration of this controlled
system can then be expressed as

q̈c = Ma(qc, t)−1(Qa(qc, t)+ Qc(t)+ Qu(qc, q̇c, t)). (54)

The tracking error between the actual and the nominal
system can be represented

eXa(t)=X− Xd , ėXa(t)= Ẋ− Ẋd = A(θ̇ − θ̇d )=Aėa(t)

(55)

where ea represents the error of joint angle. Using the equa-
tions of motion of the controlled nominal system (Eq.(49))
and the controlled actual system (Eq.(53)), we get

ëa = M−1a (Qa + Qc)−M−1(Q+ Qc)+M−1a Qu. (56)

Defining

δq̈ = M−1a (Qa + Qc)−M−1(Q+ Qc), (57)

where M is the mass matrix of the nominal system. By
substituting Eq.(57) into Eq.(56) we can get

ëa = δq̈+M−1a Qu (58)

A sliding surface is defined as,

s(t) = ėXa(t)+ keXa(t) (59)

where k > 0 is an arbitrary positive number. When the
actual system can be restricted to stay on the sliding nominal
system exactly, since they both start out with same surface
s = 0, when the actual system is restricted on the sliding
nominal system exactly, it can track the trajectories of the
nominal system exactly. However, since we want a smooth
function (instead of the traditionally used sigum function
and saturation functions), we can only ensure that the actual
system stays within a small region around the origin �ε :=
{s ∈ Rn

∣∣‖s‖ ≤ ε} can be made arbitrarily small, as will be
seen shortly [46]. The method requires the computation of
the following estimates

(i) λmin := min{eigenvalues of AM−1a A+},

(ii) β ≥
‖A‖‖δq̈‖ + (‖Ȧ‖ + k‖A‖)‖ėa‖

λmin
, ∀t > 0

(60)

In the above relations, ‖ ∗ ‖ denotes the L2 norm, the simple
closed form expression for the additional control force can be
written as

Qu(t) = −βA+(s/ε) (61)

In this expression, ε is a positive number, which is chosen
to meet desired tracking tolerances. The tracking errors of
workspace are guaranteed to be bounded:

eXa(t) ≤
ε

k
, ėXa(t) ≤ 2ε (62)

Thus, as seen in Eq.(62), decreasing the value of ε will
shrink the region �ε and reduce the upper bound of errors
of tracking. The Proof of this approach(based on [46]) to
tracking control of the end-effector of three-link manipula-
tor’s position and velocity as following

Proof: Noticing the definition of the sliding manifold
in Eq.(59), combine Eqs.(51),(52),and (58), we can write the
time derivative of the sliding manifold as,

ṡ(t) = ëXa(t)+ kėXa(t)

=

ëXa(t)︷ ︸︸ ︷
Aëa + Ȧėa+k Aėa︸︷︷︸

ėXa(t)

= A(δq̈+M−1a Qu)+ Ȧėa + kAėa (63)

Considering the Lyapunov function

Va =
1
2
sT s, (64)

whose derivative of the trajectories of the dynamical system
can be given as

V̇a = sT ṡ

= sT (A(δq̈+M−1a Qu)+ Ȧėa + kAėa)

= sT (A(δq̈−M−1a βA+(s/ε))+ Ȧėa + kAėa)

= sT (Aδq̈− βAM−1a A+(
s
ε
)+ Ȧėa + kAėa) (65)

Observing that sTAM−1a A+s ≥ λmin‖s‖2, we have

V̇a ≤ ‖s‖
(
‖A‖‖δq̈‖ − βλmin

‖s‖
ε
+ (‖Ȧ‖ + k‖A‖)‖ėa‖

)
= ‖s‖‖A‖(‖δq̈‖ − βλmin

‖s‖
‖A‖ε

+
‖Ȧ‖ + k‖A‖
‖A‖

‖ėa‖)

(66)

The region �ε is defined such that ‖s‖ ≤ ε, and
we have ‖s‖/ε > 1 outside �ε . Hence outside �ε ,
the right-hand side of Eq.(66) is strictly negative when β ≥
‖A‖‖δq̈‖+(‖Ȧ‖+k‖A‖)‖ėa‖

λmin
. Since the controlled actual system

starts inside the region �ε , it will stay within this attracting
region and never escape from it.

Inside the region �, ‖s‖ ≤ ε and hence,

|s| ≤ ε. (67)

From Eq.(59), we have

|ėXa(t)+ keXa(t)| < ε (68)

This inequality can be alternatively expressed as,

−ε ≤ ėXa(t)+ keXa(t) ≤ ε (69)

which can further be written as

−ε − keXa(t) ≤ ėXa(t) ≤ ε + keXa(t). (70)

If we can prove that eXa(t)ėXa(t) < 0 (which is the
derivative of the Lyapunov function 1

2eXaeXa) is outside a
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FIGURE 2. The end-effector of the three-link manipulator tracks the
Rhodonea path in Cartesian space. (a) Trajectory of the three-link
manipulator in xy plane. (b) Trajectory of the three-link manipulator in xz
plane. (c) Trajectory of the three-link manipulator in a yz plane.
(d) Trajectory of the three-link manipulator in 3D space.

region Lε , we can then give a conclusion that the region Lε
is an attracting region. Defining Lε as,

Lε := {eXa ∈ R
∣∣|eXa| ≤ ε

k
}, (71)

there are two possibilities in which eXa, could lie outside
Lε .
Case 1: If eXa > ε

k > 0, then ε− keXa < 0. From Eq.(70),
we then have

eXaėXa ≤ eXa(ε − keXa) < 0. (72)

Case 2: If eXa < − εk < 0, then ε + keXa < 0. From
Eq.(70), we also have

eXaėXa ≤ −eXa(ε + keXa) < 0. (73)

which further yields
|ėXa| ≤ ε + |keXa| ≤ 2ε (74)

�

IV. NUMERICAL SIMULATIONS
The equation of motion of controlled system given in
Eq.(53) is integrated in the MATLAB R2016b under Ubuntu
18.04 LTS, using the ODE15s package, with a relative
error tolerance of 10−9 and an absolute error tolerance of
10−11.The simulation time is 20 s. The numerical values of
the parameters used in simulation are : m1 = m2 = m3 =

1 kg, l0 = l1 = l2 = 1m, r0 = r1 = r2 = 1
2m, Iz1 = Ix2 =

Ix3 = Iy2 = Iy3 = Iz2 = Iz3 = 0.1 kg · m2, g = 9.8m/s2,η =
0.1, x0 = y0 = z0 = 0.2, 1m1 = 0.1 m1 sin(t), 1m2 =

0.1 m2 sin(t), 1m3 = 0.1 m3 sin(t). The initial condition
of the system given as θ (0) = [−0.9828, 0.0308, 2.2332]T ,
θ̇ (0) = [1.4450,−0.8954, 0.4781]T . We choose the control
parameters as follows: k = 10, β = 103, ε = 10−4. For these
chosen parameters, we are guaranteed that the tracking errors
in position and velocity as given by Eq.(62)

eXa(t) ≤
ε

k
= 10−5, ėXa(t) ≤ 2ε = 2× 10−4 (75)

FIGURE 3. Constraint torque Qc (control input) and compensate torque
Qu which compensate for uncertainties in describing the actual system.

The results of the numerical simulations are presented
in Figs. 2, 3, 4 and 5. Fig.2 reflects that the end-effector of the
three-link manipulator tracks the Rhodonea path in Cartesian
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FIGURE 4. Tracking error. (a) The error of tracking the nominal system on
position. (b) The error of tracking the nominal system on velocity.

space. We can see clearly from Fig.2 that the position is
well coincident with the desired trajectory. The required servo
joint forces are shown in Fig.3, where Qc denotes the control
input, andQu denotes the additional control torques for uncer-
tainties of the actual system. Fig4 shows the error of tracking
process of the nominal system.We can ensure the error bound
of position to be within 10−5 and the error bound of velocity
within 2×10−4. By integrated Eq.(54), we can see the actual
joint angle and angular velocity is the function of time.

Because it’s hard to decide the Baumgarte’s parameters,
and the selection of inappropriate parameters will cause the
instability of numerical integration. For comparison, we use
the method proposed by Braun [44] to control the three-link
manipulator. Themain equation to eliminating constraint drift
(here we regard the tracking error as constraint drift) can be
given as:

q̇ = v+M−1/2B+(bq − Av−8/dt),

v̇ = a+M−1/2B+(bv − Aa− 8̇/dt) (76)

in which

bq = −
d8
dt
=

−ηπ (sin(2π t)+ 3 sin(6π t))
ηπ (− cos(2π t)+ 3 cos(6π t))
ηπ (− cos(2π t)+ 3 cos(6π t))

 (77)

where v = q̇ is the constrained velocity, v̇ is the constrained
acceleration, 8 = [x − rdX , y− rdY , z− rdZ ]T is the motion

FIGURE 5. Actual joint angle and angular velocity as function of time.

FIGURE 6. Braun’s method to eliminating the error with uncertainties
dynamics parameters. (a) The error of tracking the nominal system on
position. (b) The error of tracking the nominal system on velocity.

constraints, bv obtained fromEq.(48), and dt is the integration
step. We consider system have uncertain parameters, then the
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Eq.(78) is replaced with

q̇ = v+M−1/2B+(bq − Av−8/dt),

v̇ = M−1a Qa +M−1/2B+(bv − AM−1a Qa − 8̇/dt) (78)

We solved Eq.(78) with a fourth order fixed step Runge-
Kutta method with 10−4 time step. The results of the numer-
ical simulations are presented in Fig.6, we can see no error
accumulation in motion constraints. The error in position
about 3 × 10−4 and the error in velocity about 3 × 10−3.
As shown by the Fig.6, when the dynamics parameters are
uncertain, Braun’s method still has good performance, but it
has no ability to control the error bounds.

V. CONCLUSION
In this paper, problems in the dynamic model and simulation
of the constrained mechanical system of a three-link manip-
ulator have been considered. The dynamical equations and
the constrained torque are obtained from Udwadia-Kalaba
equations, and a simple method for the tracking control prob-
lem with desired trajectory (treated as motion constrains)
requirements, with regard to model uncertainties, has been
developed. We use Braun’s method for comparison, although
the method proposed by Braun still has good performance
when the dynamics parameters are uncertain, but it is not
able to control the error bounds. The contribution of our study
includes
• We obtain explicit equations for dynamic modeling of

constrained three-link manipulator by using UK equation.
• Based on the Udwadia-Kalaba equation, we designed a

nonlinear controller which has controllable error bounds for
the three-link manipulator systems with uncertain dynamics
parameters.
• The obtained controller relies on state-of-art dynamic

modelling method rather than on control theory. Error bounds
on tracking due to uncertainties are analytically obtained.
• These control parameters can be adjusted to get desired

error bounds.
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