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Some enzymes degrading amino acids have evolved in

mammals to dampen immune responses and maintain

peripheral tolerance. The enzymes metabolizing L-arginine and

L-tryptophan are particularly powerful, contributing to restrain

immunity towards fetal tissues and establish neonatal

tolerance. Solid tumors can hijack these formidable pathways

to construct a microenvironment highly unfavorable to anti-

tumor T lymphocytes able to recognize them, one of

mechanisms for their immune evasion. In this review, we

analyze emerging concepts in the cross-talk between cells

expressing these enzymes, their immune regulatory functions

and pharmacological approaches that can target them to

enhance cancer immunotherapy.
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Introduction
Cancer immunotherapy has profoundly changed the out-

come of cancer patients. However, recent evidence indi-

cates that immunotherapy, including novel antibodies

blocking T cell checkpoints, is successful in a proportion

of patients. For example, the efficacy of Nivolumab, an

anti-PD1 monoclonal antibody that has been approved by

the Food and Drug Administration (FDA) for the treat-

ment of patients with advanced non-small cell lung

cancer, is far from optimal with a response rate of 15–

20% [1]. Therefore, there is an urgent need to identify

and remove tumor microenvironment cues that limit T
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cell functionality. One emerging strategy, which is being

tested in clinical trials (Tables 1–3), is based on the

pharmacological modulation of enzymes that degrade

amino acids.

Arginase in the tumor microenvironment
L-arginine is a non-essential amino acid that is involved in

the synthesis of many metabolites, such as nitric oxide

(NO) and polyamines (putrescine, spermidine, sper-

mine), as well as in protein post-translational modification

and immune regulation [2]. Therefore, L-arginine avail-

ability can intervene in different aspects of reprogram-

ming energy metabolism, recently identified as a new

hallmark of cancer [3]. High levels of intracellular L-

arginine not only favor the T cell fitness, activation,

differentiation and function by neutralizing the Warburg

effect [4] through the shift from glycolysis to oxidative

phosphorylation (OXPHOS), but also support the gener-

ation of central memory-like T (TCM) cells with superior

survival capacity and anti-tumor activity [5��]. On the

contrary, L-arginine depletion profoundly suppresses T

cell immune responses by decreasing cyclin D mRNA

translation and blocking the activity of several cyclin-

dependent kinases, which are essential for the cell cycle

advancement from G0/G1 to S-phase [6] as well as pro-

moting T-cell anergy/paralysis via the down regulation of

the T cell receptor (TCR) z chain [7]. Arginase (ARG) is

the key enzyme that catalyzes L-arginine towards the

downstream byproducts L-ornithine and urea. In mam-

mals, two distinct ARG enzymes are present: ARG1 and

ARG2. These two enzymes share 58% homology and

catalyze the same biochemical reaction but they are

distinguished by different cellular expression, molecular

regulation and subcellular localization [8]. ARG1 is a

constitutive cytosolic enzyme mainly expressed in the

liver [9], erythrocytes [10] and human tertiary neutrophil

granules where it is inactive but becomes active after its

extracellular release [11,12]. In mouse, ARG1 is also

present in other immune cells such as mouse lung-resi-

dent group 2 innate lymphoid cells [13], macrophages and

dendritic cells (DCs) [14]. In association with the gamma

amino butyric acid signaling pathway, ARG1 drives both

neural maturity and neuroblastoma development [15].

ARG2 is a mitochondrial enzyme preferentially expressed

in the lactating mammary glands, kidney and prostate [9].

It is activated also in the CD71-expressing erythroid cell

subset in both neonatal mice and human cord blood,

conferring them immunosuppressive and tolerogenic

function post-birth [16].
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Table 1

ARG and IDO1 inhibitors: from bench to beside

Enzyme inhibitor Chemical structure Chemical formula Cas-number Validation of immunomodulation effect

NG-hydroxy-L-arginine

[NOHA]

(ARG Inhibitor)

C6H14N4O3 � C2H4O2 53598-01-9 � In human prostate carcinoma organ cultures, NOHA rescued the T cell

proliferation [19].

� No clinical trials on cancer patients.

Nv-hydroxy-nor-Arginine

[nor-NOHA]

(ARG Inhibitor)

C6H14N4O3 � C2H4O2 1140844-63-8 � In vitro nor-NOHA blocked suppressive activity of MDSCs.

� In vivo nor-NOHA administration in tumor-bearing mice promoted a

dose-dependent T cell-mediated anti-tumor response [53].

� Nor-NOHA was tested in a phase I clinical trial (NCT02009527) to

evaluate the effect of arginase inhibition in ischemia-reperfusion injury; as

well as in phase I and II clinical trial (NCT02687152) to test the therapeutic

effect on controlling microvascular endothelial dysfunction in patients

affected by type 2 diabetes.

� No clinical trials on cancer patients.

S-(2-Boronoe

thyl)-L-cysteine hydrochloride

[BEC hydrochloride]

(ARG Inhibitor)

C5H12BNO4S � XHCL 63107-40-4 � In vitro BEC hydrochloride decreased arginase activity [54].

� The inhibitor administration in association with immunotherapy

(adoptive cell transfer) limited cancer progression in tumor-bearing mice

[54].

� No clinical trials on cancer patients.

CB-1158

(ARG Inhibitor)

C18H27BCl2N2O4 1345810-21-0 � CB-1158 in combination with standard treatment promoted a better

control of tumor growth in preclinical tumor settings [57].

� CB-1158 is currently in a Phase I clinical trial in solid tumor patients.

Phosphodiesterase

5 inhibitors [Tadalafil,

Sildenafil]

(ARG transcription Inhibitor)

C22H19N3O4 171596-29-5 � Inhibitor administration in tumor-bearing mice blocked MDSC function

favoring a spontaneous anti-tumor response [56].

� Inhibitor administration in tumor-bearing mice increased the

therapeutic impact of adoptive T cell therapy [56].

� Inhibitor treatment of peripheral blood mononuclear cells isolated from

multiple myeloma patients resulted in increased T cell proliferation in

vitro.

� Tadalafil is currently in Phase II clinical trial in tumor patients.

NCX 4016

[Nitroaspirin]

(ARG transcription Inhibitor)

C16H13NO7 175033-36-0 � In vivo administration of nitroaspirin in tumor-bearing mice blocked

MDSC function restoring immunotherapy efficacy [55].

� NCX4016 was tested in a phase II clinical trial (NCT01256775) to

improve the functional capacity of peripheral arterial disease patients

affecting atherosclerosis progression; as well as in phase I clinical trial

(NCT00331786) to prevent colorectal cancer.

AT38

([3-(aminocarbonyl) furoxan-

4-yl] methyl salicylate)

(ARG transcription Inhibitor)

C11H9N3O6 148:553081 � In vivo administration of AT38 to tumor-bearing mice controls the

generation of reactive nitrogen species in tumor microenvironment

favoring a massive T cell infiltration [27].

� No clinical trials on cancer patients.
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Table 1 (Continued )

Enzyme inhibitor Chemical structure Chemical formula Cas-number Validation of immunomodulation effect

INCB024360

[Epacadostat]

(IDO inhibitor)

C11H13BrFN7O4S 1204669-58-8 � INCB024360 promoted the proliferation of several immune cells,

including NK cells, and T-lymphocytes, as well as the production of IFN-g

in tumor-bearing mice.

� NCB024360 administration in tumor-bearing mice induced a

contraction of tumor-associated Tregs [61].

� INCB024360 is currently in Phase I, II and III clinical trials in tumor

patients.

NLG8189

[Indoximod,1-methyl-D-

tryptophan]

(IDO inhibitor)

C12H14N2O2 110117-83-4 �NLG8189 administration in tumor-bearing mice limited the expansion of

tumor-associated Tregs [59].

� NLG8189 enhanced the adaptive immunologic response induced by

DC vaccine in preclinical models [60].

� INCB024360 is currently in Phase I and II clinical trials in tumor patients.

GDC-0919

(IDO inhibitor)

C18H22N2O 1402836-58-1 � GDC-0919 restored the physiological tryptophan levels that favor, NK

cell and T lymphocyte proliferation and induces a specific cytotoxic

immune response against IDO1-expressing tumor cells.

� GDC-0919 is currently in a Phase I clinical trial in solid tumor patients.

PF-06840003

(IDO inhibitor)

C12H9FN2O2 198474-05-4 � PF-06840003 reversed IDO1-associated T-cell anergy in vitro.

� PF-06840003 inhibited tumor growth in multiple preclinical syngeneic

mouse tumor models in combination with immune checkpoint inhibitors

[64].

�PF-06840003 is currently in a Phase I clinical trial in solid tumor patients.

Table 2

Clinical trials involving ARG inhibitor (source: https://clinicaltrials.gov/)

Enzyme inhibitor Trial number Phase Cancer Status Combined treatment Primary outcome

CB-1158

(ARG inhibitor)

NCT02903914 I Advanced and

metastatic solid tumors

Recruiting Nivolumab � Safety and tolerability

NCX 4016

(ARG transcription inhibitor)

NCT00331786 I Colorectal Cancer Completed � Effects of NCX 4016 on aberrant cryptic foci

multiplicity after the second dose at 6 months

Tadalafil (ARG transcription

inhibitor)

NCT01858558 I Multiple Myeloma Recruiting Prevnar vaccine,

Lenalidomide

� Progression free survival

NCT01374217 I Multiple Myeloma Terminated Lenalidomide

dexamethasone

� Anti-tumor efficacy

NCT02544880 I, II Head and Neck Cancer Recruiting Anti-Tumor MUC1 Vaccine � Safety and tolerability
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Table 3

Clinical trials involving IDO inhibitors (source: https://clinicaltrials.gov/)

Enzyme inhibitor Trial number Phase Cancer Status Combined treatment Primary outcome

INCB024360

(Epacadostat)

NCT01685255 II Reproductive tract tumors Completed Compared to Tamoxifen Progression free survival

NCT02166905 I, II Reproductive tract tumors Recruiting DEC-205/NY-ESO-1

Fusion protein

CDX-1401

Maximum tolerated dose (I) and progression free survival (II).

NCT02118285 I Reproductive tract tumors Recruitment

suspended,

pending

amendment

NK cells, IL-2 Maximum tolerated dose

NCT01822691 II Myelodysplastic syndromes Completed Overall response rate

NCT02042430 Pilot study Reproductive tract tumors Ongoing Number of participants with an increase in CD8+ T cells and

its correlation with IDO expression.

NCT01961115 II Melanoma Recruiting Multipeptide Melanoma

Vaccine (MELITAC 12.1)

Changes in the concentration and number of CD8+ TILs

NCT02785250 I Reproductive tract tumors Recruiting DPX-Survivac,

cyclophosphamide

Safety, cell mediated immunity and evaluation of treatment-

induced changes in TILs

NCT02575807 I, II Reproductive tract tumors Recruiting CRS-207 Number of patients reporting treatment-related adverse

events; ratio of CD8/Treg TILs; plasma L-Kyn/L-Trp ratio

NCT01604889 I, II Metastatic melanoma Ongoing Ipilimumab Safety and tolerability, overall survival.

NCT02959437 I, II Advanced solid tumors Recruiting Azacitidine

Pembrolizumab

Frequency, duration, and severity of adverse events;

objective response rate

NCT02559492 I Advanced solid tumors Recruiting JAK inhibitor

(INCB039110)

PI3K-delta inhibitor

(INCB050465)

Dose-limiting toxicities

NCT01195311 I Advanced malignancies Completed Safety and tolerability.

NCT03006302 II Metastatic pancreatic

adenocarcinoma

Not yet recruiting Pembrolizumab,

cyclophosphamide,

CRS-207, GVAX

Recommended dose of Epacadostat and 6 month survival.

NCT02298153 I Non-small Cell Lung Cancer

Urothelial Carcinoma

Recruiting Atezolizumab Incidence of adverse events and incidence of dose-limiting

toxicities

NCT02318277 I, II Selected advanced

solid tumors

Recruiting Durvalumab (MEDI4736) Dose-limiting toxicities and frequency, duration, and severity

of adverse events; objective response rate

NCT02178722 I, II Selected solid tumors Recruiting Pembrolizumab Dose limiting toxicities and objective response rate

NCT02327078 I, II Selected solid tumors Recruiting Nivolumab Safety and tolerability (I) and overall objective response rate,

overall survival (II)

NCT02862457 I Advanced solid tumors Recruiting Pembrolizumab Dose-limiting toxicities and adverse events

NCT02752074 III Melanoma Recruiting Pembrolizumab Progression-free and overall survival

NCT01982487 I, II Reproductive tract tumors Withdrawn ALVAC(2)-NY-ESO-1 (M)/

TRICOM vaccine

Maximum tolerated dose of IDO1 inhibitor

NCT03085914 I, II Advanced and metastatic

solid tumors

Not yet recruiting Nivolumab,

Pembrolizumab and

chemotherapy

Safety and tolerability (I) and overall objective response rate,

overall survival (II)
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Table 3 (Continued )

Enzyme inhibitor Trial number Phase Cancer Status Combined treatment Primary outcome

1-methyl-D-tryptophan

(Indoximod)

NCT02460367 I, II Non-small Cell Lung Cancer Recruiting Docetaxel

Tergenpumatucel-L

Limiting Toxicity and progression free survival

NCT02502708 I Malignant brain tumor Recruiting Temozolomide,

radiation

Limiting Toxicity and objective response rate

NCT01792050 II Metastatic breast cancer Ongoing Docetaxel, Paclitaxel Progression free survival

NCT02073123 I, II Metastatic melanoma Recruiting Ipilimumab, Nivolumab,

Pembrolizumab

Safety and tolerability (I), overall response rate (II)

NCT02052648 I, II Malignant brain tumor Recruiting Temozolomide

Bevacizumab

Radiation

Determine phase 2 dosing (I); efficacy as 6 month

progression-free survival (II)

NCT02077881 I, II Metastatic pancreatic

cancer

Recruiting Gemcitabine

Paclitaxel

Dosing, limiting toxicity, survival

NCT00567931 I Adult solid tumor Completed Incidence of adverse events and definition of maximum

tolerated dose

NCT02835729 I, II Acute myeloid leukemia Recruiting Cytarabine, Idarubicin Safety and tolerability (I), overall survival (II)

NCT00739609 I Selected solid tumors Terminated Safety and efficacy of administration of D-1MT

NCT01560923 II Metastatic prostate cancer Ongoing Sipuleucel-T Immune response to Sipuleucel-T

NCT01042535 I, II Metastatic breast cancer Ongoing Adenovirus-p53

transduced dendritic cell

vaccine

Maximum tolerated dose and number of participants with

stable disease in response to study therapy

NCT01302821 Pilot study Breast cancer Withdrawn Adenovirus-p53

transduced dendritic cell

vaccine

Occurrence of Detected Changes in Regions of Interest

NCT01191216 I Adult solid tumor Completed Docetaxel Maximum tolerated dose

GDC-0919

(IDO inhibitor)

NCT02048709 I Solid tumor Completed Limiting Toxicity

NCT02471846 I Metastatic incurable

solid tumor

Recruiting Atezolizumab Dose-limiting toxicities and adverse events

PF-06840003

(IDO inhibitor)

NCT02764151 I Oligodendroglioma

Astrocytoma

Malignant Glioma

Recruiting Dose-limiting toxicities and disease control

IDO peptide

vaccine

NCT03047928 I, II Metastatic melanoma Ongoing, Not

yet recruiting

Nivolumab

PD-L1/IDO peptide

Safety and tolerability

NCT01219348 I Lung cancer Completed Safety and tolerability

NCT01543464 II Malignant melanoma Terminated GM-CSF, Imiquimod and

Temozolomide

Clinical benefit rate

NCT02077114 I Malignant melanoma

with metastasis

Completed Ipilimumab, Vemurafenib Safety and tolerability
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In many cancers, such as breast [17], gastric [18], prostate

[19], neuroblastoma [20] and acute myeloid leukemia [21]

the ARG activity in tumor environments is enhanced,

generating an inhospitable milieu for T cell fitness. Local

immune suppression can be driven by ARG2-expressing

cancer-associated fibroblasts [22] but, overall, the most

common observation is the expansion and accumulation

of ARG1-producing tumor-infiltrating myeloid cells, such

as tumor-associated macrophages (TAMs), myeloid-

derived suppressor cells (MDSCs) and DCs. In these

cells, ARG1 is turned on in response to several tumor-

derived soluble factors and metabolites, such as interleu-

kin (IL)-4, IL-13, IL-6, macrophage and granulocyte

macrophage colony-stimulating factor (M-CSF and

GM-CSF), transforming-growth factor (TGF)-b, lactate

and cyclic adenosine monophosphate (cAMP), but also by

molecular pathways controlled by the hypoxia inducible

factor-1 alpha (HIF-1a) (reviewed in Refs. [23,24]).

The ARG1 expression is finely tuned by cell-specific

transcription factors and nuclear receptors. Indeed, the

peroxisome proliferator-activated receptors (PPARg and

PPARd), members of signal transducer and activator of

transcription family (STAT6, STAT3), the CCAAT-

enhancer-binding proteins (c/EBPb) and the interferon

regulator factor 8 (IRF8), as well as CHOP, PU.1, Krup-

pel-like factor 4 (KLF4) and activator-protein 1 (AP-1)

transcriptional factors promote ARG1 expression binding

directly to distinct region of the ARG1 gene promoter

(reviewed in Refs. [23,25]).

Since many of these tumor-associated myeloid cells also

trigger nitric oxide synthase enzymes (iNOS or NOS2),

which normally produce NO from L-arginine and oxygen,

the low level of L-arginine induced by the forced ARG1

activity promotes NOS uncoupling and consequent pro-

duction of superoxide anion (O2
�). Under pathological

contexts, such as cancer, NO and O2
� levels raise and

combine to generate a variety of reactive nitrogen species

(RNS) such as peroxinitrites (ONOO�), which compro-

mise both the activity and migration of T cells in tumor

site [26–28].

However, we recently demonstrated that ARG1 has a

hierarchical negative role when compared to NOS2 in

creating a tumor-derived immunosuppressive environ-

ment since NOS2-expressing myeloid cells (such as

TipDCs) can mediate a strong anti-tumor effect collabo-

rating with adoptively transferred T cells in tumor

debulking [29��]. It is still not clear whether ARG1

activity in patients negatively affects the anti-tumor

immune response. However, the prompt reduction in

ARG1+ myeloid cells in melanoma patients treated with

Ipilimumab suggests that the anti-tumor activity of this

checkpoint inhibitor might involve, in part, ARG1 sys-

temic modulation [30]. It remains to be determined

whether the drop in ARG1+ myeloid cells is predictive
www.sciencedirect.com 
of a better clinical outcome following different immuno-

therapy approaches.

IDO1: not just catabolism of tryptophan
An important mechanism of immune resistance in tumors

involves the metabolism of L-tryptophan (Trp), the rarest

essential amino acid found in food. More than 90% of Trp

entered with diet is catabolized via the kynurenine path-

way, a cascade of enzymatic steps that produces several

biologically active molecules, collectively known as

kynurenines, before finally producing the essential pyri-

dine nucleotide, NAD+ (nicotinamide adenine dinucleo-

tide) [2,31–33]. NAD+ is a fundamental coenzyme for

various physiological processes including DNA repair,

cell growth and energy metabolism [34]. The most inter-

esting enzymes along the pathway are indoleamine 2,3-

dioxygenase 1 (IDO1) and tryptophan dioxygenase

(TDO), which mediate the first rate-limiting step by

promoting the oxidative breakdown of the Trp indole

group. Though catalyzing the same enzymatic reaction,

IDO1 and TDO show quite distinct structural features. In

fact, the definition of the crystal structure of human

IDO1, a monomeric and cytoplasmic enzyme, has

revealed a folding into a catalytic large C-terminal

domain, a noncatalytic small N-terminal domain, and a

long loop connecting the two domains. In contrast, TDO

has a homotetrameric structure, in which each monomer,

when aligned to IDO1, appears to contain the large

catalytic but not the small domain. IDO1 and TDO

are also endowed with a distinct tissue expression, being

IDO1 highly inducible in immune cells and TDO con-

stitutive and mainly confined in the liver. Nevertheless,

both of them have been found to be also expressed in

several types of tumors and to play a major role in

dampening anti-tumor immunity. Although indicated

for years as the third immunoregulatory Trp catabolizing

enzyme, the IDO1 paralogue IDO2 seems rather to be

pro-inflammatory and to catalyze a distinct reaction [35].

IDO1- and TDO-mediated immunoregulatory effects

involve Trp deprivation but also production of kynure-

nines. As a result, the catalytic activity of these enzymes

mediates multiple effects on T lymphocytes, including

inhibition of proliferation, apoptosis, and differentiation

towards a regulatory phenotype [33]. Whereas Trp depri-

vation mainly downregulates the expression of CD3z in T

lymphocytes similarly to ARG1 [36], L-kynurenine, the

product of both IDO1 and TDO, is an endogenous

agonist of the arylhydrocarbon receptor (AhR), a

ligand-activated transcription factor in both T cells and

DCs, the most professional antigen presenting cells. As a

result, AhR activation promotes conversion of effector T

lymphocytes into regulatory T (Treg) cells and upregu-

lates IDO1 expression in DCs, further amplifying immu-

noregulatory effects and blocking anti-tumor immunity [

37–39].
Current Opinion in Pharmacology 2017, 35:30–39
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Few years ago, a completely new perspective was pro-

vided for IDO1 but not TDO or IDO2 biology [39,40].

IDO1 does not merely degrade Trp and produce kynur-

enines, but it also acts as a signal-transducing molecule,

an effect that leads to long-term expression of IDO1 in

DCs and immune tolerance in vivo and is mostly inde-

pendent of IDO1’s enzymic activity. IDO1’s signaling

function relies on the presence of two immunoreceptor

tyrosine-based inhibitory motifs (ITIMs) in the noncata-

lytic, small domain of IDO1. Interestingly, IDO2 contains

only one functional ITIM and does not transduce signals.

IDO1 nonenzymatic activity is triggered in DCs by the

immunosuppressive cytokine TGF-b, which promotes

IDO1 phosphorylation by kinases of the Src family and

consequent direct interaction of the phosphorylated

enzyme with tyrosine phosphatases SHP-1 and SHP-2.

In contrast, pro-inflammatory IL-6 shortens IDO1’s half-

life driving direct interaction with suppressor of cytokine

signalling 3 (SOCS3) [41�,42]. In fact, SOCS3, upon

binding the same phosphorylated ITIMs bindable by

SHPs, leads to ubiquitination and subsequent proteaso-

mal degradation of IDO1 by recruiting members of the

E3 ubiquitin ligase complex. Thus, depending on envi-

ronmental conditions, IDO1 can bind distinct molecular

partners, which can either prolong IDO1’s half-life and

promote long-term immunoregulatory effects or reduce

IDO1’s half-life and favor inflammatory responses. Very

recently, by means of IDO1 mutants, we were able to

ascertain that each phosphorylated IDO1 ITIM would

favor binding of SHPs (ITIM1) or SOCS3 (ITIM2) [43].

As a whole, these observations would indicate that the

noncatalytic portion of IDO1 is a regulatory domain,

which can act either positively or negatively for IDO1

expression depending on the cellular microenvironment

and, in addition to the catalytic site, may represent a novel

drug target.

TGF-b, Arg1, and IDO1: an
immunosuppressive triad at work in
dendritic cells
As a whole, data available on IDO1 and ARG1 suggest that

the two enzymes work in different cells, either through

pathways that deplete the amino acids or via the combined

effects of immunoregulatory metabolites and signaling

activity. While IL-4 and IFN-g are the main inducers of

ARG1 [24] and IDO1 [31] in myeloid cells, respectively,

the cytokine TGF-b can affect both enzymes, although

apparently in different cell types. TGF-b is indeed able to

confer both IDO1 competence and tolerogenic activity on

otherwise immunogenic CD8� DCs [44] and enhance the

ARG1 activity in rat peritoneal macrophages [45].

Recently, we proposed a new ‘relay’ pathway in mature

conventional DCs based on the sequential actions of

TGF-b, ARG1, and IDO1 [46��]. We found that TGF-b
Current Opinion in Pharmacology 2017, 35:30–39 
induces both ARG1 and IDO1 in DCs, with ARG1

being upregulated much more rapidly than IDO1. The

sequence between the two enzymes also implies the

need of ARG1 activity to increase IDO1 expression. As

opposed to IDO1, which is endowed with signaling

activity [47], ARG1 was found to affect cellular functions

through regulation of L-arginine and L-ornithine avail-

ability. L-ornithine is the substrate for both ornithine

decarboxylase (ODC) to produce polyamines, involved

in the control of inflammation, and ornithine aminotrans-

ferase (OAT) to generate proline, fundamental for the

synthesis of collagen and thus for tissue repair. As a

consequence of ARG1 activation by TGF-b, DCs start

to produce L-ornithine, which, in turn, favors the phos-

phorylation of IDO1 and the consequent activation of

long-term immunoregulatory signaling. However, this

activity is strictly dependent on the decarboxylation of

ornithine into polyamines, since it is blunted in the

presence of a pharmacological inhibitor of ODC.

Polyamines are bioactive polycations extensively studied

in tumors, where they promote cancer cell proliferation

via the activation of different kinases, such as MAPK and

Src kinase [48]. Our data thus unveiled a new role for the

polyamine spermidine that, through the activation of the

Src kinase, promotes IDO1 phosphorylation and signaling

events in DCs. This circuitry, turned on by TGF-b, can

occur not only between DCs, but also between DCs and

MDSCs. MDSCs, being an abundant source of TGF-b
and expressing high levels of ARG1, can educate DCs to

express an IDO1-dependent tolerogenic phenotype, via

the arginine metabolites (Figure 1).

The network established by TGF-b, ARG1, and IDO1

could be very important in the context of cancer. In order

to propel their progression and invasion, tumors are very

apt to co-opt metabolic and immunosuppressive net-

works, such as the one established between IDO1 and

ARG1 (Figure 1). In addition to direct amino acid degra-

dation by cancer cells themselves [49,50], tumors could

recruit immunoregulatory cells expressing ARG1 and

IDO1 and secrete immunosuppressive cytokines, such

as TGF-b and IL-10 [51,52]. Therefore, the simultaneous

inhibition of the ARG1 and IDO1 activities, and/or TGF-

b signaling, may provide a powerful strategy in tumor

immunotherapy.

Pharmacological control
The anti-tumor effect of ARG inhibitors is suggested by

in vitro and in vivo preclinical data: NG-hydroxy-L-argi-

nine [NOHA] inhibits ARG activity restores tumor-infil-

trating T lymphocyte responsiveness to stimulation in

human prostate carcinoma organ cultures [19]; Nv-

hydroxy-nor-Arginine [nor-NOHA] abrogates T cell pro-

liferative arrest, favoring the immune attack of cancer

cells [53]; analogously, the S-(2-Boronoethyl)-L-cysteine

hydrochloride [BEC hydrochloride] administration in
www.sciencedirect.com
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Figure 1
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Scheme of the relay pathway between L-arginine and L-tryptophan catabolism.

Cancer cells produce different cytokins such as IL-6, IL-4, IL-10, GM-CSF, M-CSF, TGF-b that collectively activate several arginase 1 (ARG1)-

regulating transcriptional factors on myeloid-derived suppressor cells (MDSCs). The up-regulation of ARG1 activity produces a consumption of

extracellular L-arginine (L-Arg) since it is converted into L-ornithine (L-Orn). Low levels of extracellular L-Arg blocks T cell fitness by favoring a

glycolysis metabolism. MDSCs convert L-Orn into polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) by the activation

of the enzyme ornithine decarboxylase (ODC). PUT, SPM and SPD can be released in the extracellular environment by MDSCs and condition

dendritic cells (DCs) to trigger IDO1. High concentrations of polyamines favor the activation of the Src kinase that promotes IDO1 phosphorylation

and SHP-related signaling events prolonging IDO1 expression and sustaining TGF-b production. This activated state is maintained by a positive

autocrine loop mediated by the release/uptake of TGF-b. After TGF-b binding to its receptor, DCs switch on the ARG1-dependent metabolism

that preserves their intracellular high concentration of both L-Orn and polyamines driving IDO1-related immunosuppression. Immunosuppressive

functions are based on either the TGF-b release that supports the clonal expansion of antigen-specific natural regulatory T (Treg) cells and

induces the conversion of naı̈ve CD4+ T cells into induced Treg cells or the catabolism of L-tryptophan (L-Trp) into L-kynurenine (L-Kyn) that blocks

T cell proliferation and sustain Treg differentiation.
association with immunotherapy limits cancer progres-

sion in tumor-bearing mice [54]. The in vivo injection of

drugs with multiple actions, including ARG transcription

inhibition, such as AT38 ([3-(aminocarbonyl) furoxan-4-

yl] methyl salicylate) [27] and NCX 4016 (nitroaspirine)

[55], restores the anti-cancer immune response favoring

immunotherapy success. Finally, the administration of

phosphodiesterase 5 inhibitors, another potential ARG

transcription inhibitor, increases the therapeutic impact

of adoptive T cell therapy [56] and one of such drugs is

being tested in a phase II clinical trial.

An impact on controlling tumor progression in several

preclinical cancer settings has been recently described
www.sciencedirect.com 
with a novel ARG-inhibitor, CB-1158 [57] (Table 1). A

phase I clinical trial is now investigating the safety profile

of CB-1158 in advanced solid tumors in a combination

therapy with the immune checkpoint inhibitor Nivolu-

mab (Table 2. Several compounds targeting IDO1 cata-

lytic activity have demonstrated anti-tumor effects

(Table 1). Among these, 1-methyl-DL-tryptophan (1-

MT) has been the most widely studied. 1-MT is a

tryptophan analogue with an N-methyl substitution at

the indolic ring. Biochemical and cellular assays have

revealed that 1-MT isomers have a different activity;

in particular, the S-stereoisomer (L-1MT) is more active

than the R-stereoisomer (D-1MT) [58]. However, despite

these in vitro evidences, D-1MT (indoximod) has proven
Current Opinion in Pharmacology 2017, 35:30–39
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to be more effective that L-1MT in delaying tumor

growth in vivo [59,60] and is actually in Phase I/II clinical

trials in combination with chemotherapeutic drugs

(Table 3). From a library of natural products, novel

modulators of IDO1 have been discovered, including

brassinin, exiguamine A, annulin B and NSC401366.

Although most of these natural compounds have been

used for lead optimization studies, none of them has

reached clinical trials. On the other hand, the screening

of synthetic small molecule libraries has led to the iden-

tification of potent and selective IDO1 ligands. One of the

most promising candidates is Epacadostat (also known as

INCB024360), a nanomolar inhibitor of IDO1 developed

by the Incyte Corporation. Epacadostat is an orally

administered, hydroxyamide small molecule inhibitor

of IDO1 that not only demonstrated an impact in restor-

ing NK and T cell function and reducing the T cell

conversion in Treg-like lymphocytes in vitro but also

suppressed in vivo kynurenine generation and tumor

growth in immunocompetent, but not immunodeficient,

mice [61]. Moreover, in association with Ipilimumab, this

oral inhibitor promotes both a favourable objective

response rate and an increase control disease rate in

patients with advanced cancer [62]. Interestingly,

CTLA-4, an inhibitory receptor expressed by T cells,

can activate a ‘reverse signalling’ via B7 molecules in DCs

and upregulate IDO1 [63], thus suggesting that Ipilimu-

mab may indirectly also inhibit the IDO1 pathway.

Recently, New Link Genetics developed the inhibitor

GDG-0919, a molecule active in nanomolar range with

good oral bioavailability. A phase I clinical trial is now

investigating the toxicity profile of this IDO1-inhibitor as

single therapy for advanced solid tumors. Finally a new

inhibitor designed by Pfizer and Iteos Therapeutic is

being tested in a phase I clinical trial [64] (Table 3).

In conclusion, achieving a better understanding of the L-

arginine and L-tryptophan metabolism in cancer, the

complexity of amino acid catabolism-sensing pathways

and immune response to tumor is warranted for providing

new strategies for cancer immunotherapy.
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