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Abstract

Objective

To demonstrate a method to calculate phase amplitude coupling (PAC) quickly and robustly

for realtime applications.

Methods

We designed and implemented a multirate PAC algorithm with efficient filter bank process-

ing and efficient computation of PAC for many frequency-pair combinations. We tested the

developed algorithm for computing PAC on simulated data and on intraoperative neural

recording data obtained during deep brain stimulation (DBS) electrode implantation surgery.

Results

A combination of parallelized frequency-domain filtering and modulation index for PAC esti-

mation provided robust results that could be calculated in real time on modest computing

hardware.

Conclusion

The standard methods for calculating PAC can be optimized for quick and robust

performance.

Significance

These results demonstrated that PAC can be extracted in real time and is suitable for neuro-

feedback applications.
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Introduction

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a common treatment for

advanced motor-predominant Parkinson’s disease (PD) [1–3]. The exact mechanism of DBS

remains unclear, but STN stimulation has shown to improve the main motor symptoms of PD

[4, 5]. DBS efficacy and patient tolerance to stimulation depend greatly on accurate and precise

electrode placement [6], which relies on preoperative surgical planning and intraoperative

neurophysiological mapping.

Neurophysiological mapping requires a site-by-site inspection of microelectrode recorded

(MER) signals by experts, and is time consuming and laborious. This process can be auto-

mated and optimized utilizing state of the art digital signal processing and machine learning

techniques along with the knowledge of Parkinsonian STN. For example, abnormal beta band

(β: 14-30 Hz) oscillations were observed in local field potentials via DBS electrodes of PD

patients suffering from bradykinesia and rigidity [7]. Recent evidence suggested that Parkinso-

nian motor dysfunctions may not be due to abnormal β power alone, but rather its effect on

the entire spectra of neural activity, including broadband gamma (γ2: 50-200 Hz) and higher

frequency oscillations (HFO: 200-500 Hz) [4].

Phase-amplitude coupling (PAC) is used to analyze the interactions between frequencies

within a signal [4, 8–11]. PAC magnitude is proportional to the level of synchronization

between the phase of the lower frequency rhythm signal and the amplitude envelope of the

higher frequency rhythm signal.

PAC is most commonly used in studies of rhythmic relationships of brain signals, and

may represent a method for communication within and between distinct anatomical regions

of the brain [12, 13]. Studies have shown that β–γ2[12] and β–HFO [4, 14] PAC are present

in the basal ganglia of PD patients, and PAC reduction during therapy is observed with

symptom improvement [13]. Currently, realtime estimation of β power is being investigated

as a signal to operantly condition to reduce PD dysfunction [15] or as a trigger for DBS stim-

ulation [16, 17]. As β–γ2 or β–HFO PAC may be a better biomarker of dysfunction in PD

than β power alone [4, 12, 13], realtime PAC estimation may be valuable in these applications

as well.

There are a number of described methods to calculate PAC [9, 10]. In most of these

methods, the first step is to obtain the analytic signal for each of the low- and high-fre-

quency components of the source signal. The second step is to quantify PAC, either by map-

ping the amplitude-phase information to polar coordinates, by using the phase-amplitude

distribution [4, 8–11], or by statistical determination of the correlation/coherence between

the phase signal and the amplitude envelopes. These steps are computationally intensive

and cannot support real time use with current processing limitations. Further, it is often

necessary to calculate PAC separately for many combinations of low- and high-frequency

band pairs because the coupling frequencies vary among individuals and cannot be pre-

dicted precisely. Computation time increases exponentially with each frequency added to

the test set.

PAC is traditionally used in offline analysis only, where computation time is not a major

constraint and signal artefacts can be mitigated prior to PAC processing. However, for PAC

to be useful in realtime applications, such as to assist with DBS electrode localization [1–3, 18]

or closed loop stimulation control in the treatment of PD [16, 17], PAC must be calculated

quickly and robustly [19]. In this study, we investigate different PAC calculation methods and

their suitability for realtime applications. We developed a customized approach to calculate

PAC and optimized its parameters for analysis of human intracranial recordings obtained dur-

ing DBS implantation surgery.

Realtime PAC of MER signals
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Materials and methods

Phase-amplitude coupling (PAC)

Many algorithms for quantifying PAC have been described [8–10, 20–22], each with relative

strengths for different applications. Fig 1 illustrates a signal containing PAC and some visuali-

zations of PAC quantification. The signal is filtered to obtain its low frequency (14-30 Hz) and

high-frequency (80-200 Hz) oscillations. The Hilbert transform is applied to each filtered sig-

nal to express them in analytical form, then the instantaneous phase of the low-frequency sig-

nal (ϕ(n)) and the instantaneous amplitude of the high-frequency signal (A(n)) are obtained.

These phase and amplitude signals are then used to quantify PAC.

PAC quantifications. Some methods for quantifying PAC in a signal map A(n) and ϕ(n)

to the polar form, as illustrated in Fig 1B. This can be mathematically expressed as

zðnÞ ¼ AðnÞej�ðnÞ; ð1Þ

where n is the index sample. In the absence of PAC, A(n) is a step function and z(n) is a circle.

This circle deforms with PAC emerging in the signal.

The mean vector length (MVL) is used for quantifying PAC from the polar form. The MVL

is defined as

PAC MVL ¼
�z

maxðAðnÞÞ

















; ð2Þ

Fig 1. An illustrative description of PAC. A: The top multi-colored line depicts a generated signal containing PAC. Each line segment’s colour indicates the

phase bin of the 16 Hz signal corresponding to the binning scheme in panel C. The bottom line is A(n), the norm of xa(n). B: A polar plot, defined with Eq (1),

of A(n) as a function of ϕ(n). The mean vector is shown in red and mean vector length (MVL) is one quantification of PAC magnitude. C: The phase-

amplitude distribution is constructed by binning A(n) according to the corresponding values in ϕ(n) and averaging within each bin. This test signal has higher

amplitudes on its way to the trough of xp(n), and lower amplitudes on its way to the peak. D: PAC magnitude for many different combinations of frequency

pairs is presented in a comodulogram. There are 20 different centre low frequencies between 4-50 Hz used for phase. There are 15 different centre high

frequencies between 60-250 Hz used for amplitude. The colour indicates the PAC magnitude (using MI) for each frequency pair.

https://doi.org/10.1371/journal.pone.0204260.g001
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where �z is the mean vector from the polar form in Eq (1) and normalized by the maximum

amplitude in A(n). The mean vector is illustrated as the red line on the polar plot shown in

Fig 1B. The MVL increases in magnitude as the polar form deforms asymmetrically, but

approaches zero as it gains symmetry. This symmetry sensitivity is the main disadvantage of

MVL as it cannot detect PAC if it is multi-modal and the modes are diametrically opposed in

phases [8–10, 20, 21].

Phase-locking value (PLV) is defined as kmean(exp(jϕp − jϕa))k, where ϕp and ϕa are the

phases of low-frequency signal and A(n), respectively [9, 10]. It can be observed that PLV is

also a polar form representation with unit length radius, and it compares the synchronization

of phases between two signals by quantifying the ratio between the two unit circles. PLV is

1 when the phases are locked, but nearly 0 when they are desynchronized. PLV is poor at dif-

ferentiating small variations of PAC magnitude, but can detect the presence of PAC reliably

[9, 10].

PAC can also be calculated from the phase-amplitude distribution (PAD) illustrated in Fig

1C. In PAD, A(n) is segmented according to ϕ(n) using J phase bins (J 2 Zþ). Let PAD in bin j
be defined as

PAD j ¼
�Aj

PJ
k¼1

�Ak

; ð3Þ

where �Aj is the mean of A(n) segments that are in bin j. Note that the normalization applied in

PADj characterizes PAD as a discrete probability density function (pdf). Absence of PAC in

the raw signal results in a uniform distribution and the PAD diverges away from a uniform

distribution as PAC increases.

Height ratio (HR) is the simplest technique used to quantify PAC from PAD. The HR is

defined as

PAC HR ¼
maxðPADÞ � minðPADÞ

maxðPADÞ
¼ 1 �

minðPADÞ
maxðPADÞ

; ð4Þ

However, because it only relies on the amplitude information of two phase bins (correspond-

ing to the minimum and the maximum amplitudes in the distribution), it cannot differentiate

between multi-modal or uni-modal PAC, it also cannot differentiate the modal width of PAC

[9].

Modulation index (MI) quantifies PAC from PAD as

PAC MI ¼
SKLðPADÞ

ln ðJÞ
; ð5Þ

where

SKLðPÞ ¼
XJ

j¼1

PAD j ln ðJPAD jÞ; ð6Þ

is the Kullback-Liebler (KL) divergence of PAD from a uniform distribution. This method is

rigorously compared to other PAC quantifying techniques in [9]. Unlike HR, MI considers the

shape of the PAD distribution for quantification. MI addresses the disadvantages of both HR

and MVL [9].

Another quantification of PAC is the coefficients of correlation between amplitude and

phase [9, 10]. Direct correlation with phase is sensitive to “null phases”, e.g., ϕ(n) = k/4, k = 1,

3, 5,. . ., so A(n) should be modelled with multiple regression of sin ϕ + cos ϕ [9, 10]. This
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technique assumes A(n) modulates sinusoidally rather than as periodic bursts of impulses. It

was shown that this approach cannot reliably track changes in PAC.

Finally, the most recently introduced method for quantifying PAC is called the driven auto-

regressive (DAR) method [23]. This method uses a modified multivariate AR technique to

model the power spectral density (PSD) of the high-frequency signal with the given low-fre-

quency signal. PAC is quantified by measuring the level of fluctuations in the PSD using the

KL divergence over a range of given phases. This method introduces additional complexity

due to the necessity of keeping the AR filter stable at all times, since the AR filter coefficients

are time-varying quantities. The key advantage of this method is that a probabilistic model is

generated and used for PAC estimation, and thus a robust quantification can be made with a

shorter signal segment.

Comodulogram. The described PAC quantification methods provide the magnitude for

only a single pair of frequency bands. A phase-amplitude comodulogram can be used to visual-

ize PAC values of multiple frequency pairs simultaneously. The comodulogram supports rapid

visual identification of the frequency pair that exhibits the strongest coupling. The heat map in

Fig 1D is a comodulogram using MI for PAC quantification. We generated comodulograms

with M frequencies in the lower band and N frequencies in the higher band, yielding M × N
frequency pairs. The original signal must be filtered M + N times to generate the analytical sig-

nals used to calculate all PAC values in the comodulogram. Although the comodulogram is

computationally demanding, it is necessary when there are no a priori assumptions about the

frequency bands of the phase-giving and amplitude envelope signal components.

PAC innovations

Our PAC algorithms are packaged into a module for the Python programming language that

we have named MSPACMan (Multirate Sub-banded Phase-Amplitude Coupling for Micro-

electrode Acquisitions with Noise), which is available at https://github.com/SachsLab/

mspacman. There are currently other well-developed Python modules available for calculating

PAC (i.e., pacpy and pactools). pacpy is available online at https://github.com/voytekresearch/

pacpy, and pactools [21] is available at https://github.com/pactools/pactools. Both pacpy and

pactools are not designed for real time online analysis and are not appropriate for our pur-

poses, however we used them as a baseline comparison for our module. MSPACMan imple-

ments several optimizations during filtering and PAC quantification that make it suitable for

online processing. MSPACMan performs filtering in the frequency domain, which enables the

following optimizations:

• Fast Fourier Transform or FFT is performed only once per data segment;

• For each filter, a single element-wise multiplication of the frequency-domain signal is per-

formed instead of a convolution of the time-domain signal;

• The desired output is the analytic signal which only requires positive frequency components,

therefore only half of the data need to be multiplied by the filter’s frequency response;

• Filtering is achieved via vectorized broadcast multiplication in Numpy and parallelized pro-

cessing across multiple channels or multiple frequency bands in a filter bank;

• Views of Numpy array are used to avoid copying of data.

The following additional optimizations are made for the PAC quantification step:

• The input data (low-frequency and high-frequency signal) are vectorized to enable broad-

casting in Numpy and Scipy built-in functions;

Realtime PAC of MER signals
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• Parallel processing across multiple channels or multiple frequency bands are also enabled;

• Processing of compressed data (uneven decimation of low-frequency and high-frequency

signal) are enabled to reduce the number of samples to process.

Further, MSPACMan separates its initialization from its signal processing. As long as the

data segments to be processed have a consistent number of samples, calculating filter coeffi-

cients and allocating shared memory for parallel processes only need to be performed once

during initialization.

Filter bank. The input signal must be filtered independently N times, where N is at least 2

for a single phase-frequency amplitude-frequency pair, and possibly much larger for the calcu-

lation of the comodulogram. A filter bank is an array of bandpass filters that separates the

input signal into N sub-banded signals. Efficient filtering from each filter is desirable for quick

processing through the filter bank. Fig 2 shows a block diagram representation of an efficient

parallel uniform modulated filter bank (UMFB) as a single-input N-output network. Fig 3

shows a filtered result of the signal shown in Fig 1 using the filter bank illustrated in Fig 2.

The UMFB can be realized as shown in Fig 2, where the frequency components of x(n) are

shifted in frequency to the lowpass band, decimated in frequency (decimation factor M in Fig

2) by windowing 4 times the bandwidths about 0 Hz, multiplied by H(z), the frequencies are

Fig 2. A block diagram representation of the filter bank. The block
! ejωNn denotes that the signal’s frequency response has

been shifted left such that ωN is now at 0. The block #M denotes the decimation in frequency with the factor M. The block H(z)

denote the prototype filter. The block
! e−jωNn denotes that the signal’s frequency response has been shifted from 0 back to ωN.

https://doi.org/10.1371/journal.pone.0204260.g002
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shifted back with the new sampling rate, and then the frequency components are transformed

back to time domain signal, xi(m).

Frequency domain filtering is useful because it is faster (element-wise multiplication

instead of convolution) when the input signal has many samples. Frequency domain filtering

is especially useful in PAC calculation because it shares common steps with the calculation

of the analytical signal required for PAC quantification. The Hilbert transform—a common

Fig 3. Illustration of the filtering process within each filter of the filter bank. A: The Fourier transform of the signal shown in Fig 1. The shaded patch

indicates the frequency band of interest, centred on the filter’s centre frequency, cf. The edge of the patch is the Nyquist frequency after decimation, which is

an integer fraction of the original sampling rate. B: The magnitude response of an 8000-tap FIR prototype filter. The patch falls completely under the length of

the filter, where the frequency length under the passband is the bandwidth (bw). The Nyquist rate indicated must ideally be twice the bandwidth. Once the

signal is shaped by the frequency response of the filter, it is shifted back to cf before applying inverse discrete Fourier Transform (IDFT). C: The filtered signal

obtained after IDFT.

https://doi.org/10.1371/journal.pone.0204260.g003
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method to obtain the time-domain analytical signal for PAC quantification—comprises

frequency transformation, windowing, and inverse transformation. Filter coefficient multipli-

cation can be built into the windowing step, turning the Hilbert transform into a filtering Hil-

bert transform. Further, filter coefficient multiplication can be performed on the frequency-

domain signal independently for each filter, thus the FFT need only be applied once to the

input signal, instead of to each output of the filter bank.

There are several conditions to be considered to properly design the filter bank for comput-

ing PAC. For simplicity, let us denote H(z) and G(z) as the prototype filters for obtaining the

phase-giving and amplitude enveloping signal, respectively. It is desirable that the phase char-

acteristics of the filters are as linear as possible because the phases of the different banded sig-

nals are being analyzed directly. As the signals are filtered in segments, it is possible to use

non-causal zero-phase filtering (or forward-backward filtering) on each segment. The band-

widths for G(z) should be wide enough to capture all components including the side bands as

shown in Fig 3. The duration of the segments and the amount of overlap depend on the appli-

cation (online or offline) and desired frequency resolution.

In the design of the filter bank, each prototype filter (H(z) or G(z)) can be specified with

any filter order, bandwidth, or filter type (FIR or IIR). A fifth order IIR Butterworth filter

was used as the prototype filters in the computation of the comodulogram for offline analysis

because it is maximally flat in the passband.

In realtime processing, the number of available samples increases over time; the signal must

be segmented into constant length blocks for FFT filtering to reuse the previously initialized

filter coefficients. The overlap-add method is an efficient way to perform FFT filtering of a

long input signal with an FIR filter [22]. The overlap-add method can be used in theory on a

zero-phase IIR filter of segments of signal that are zero-padded on both sides. The zero-padded

lengths must be greater or equal to the length of the IIR filter’s impulse response (infinite

length, which is practically impossible). In practice, the infinite length can be truncated at the

point where the response drops below the desired noise floor, then the errors at the overlap-

ping segments of the overlap-add method is related to the IIR length beyond the truncated seg-

ments. To reduce any further complexity, the prototype filter we used is now changed to an

8000-tapped FIR filter with linear phase characteristic.

Multirate phase-amplitude coupling. To process a signal quickly, it is common to com-

press signals (decimation) and process fewer data points. The phase-giving signal operates at a

narrow frequency band, whereas the amplitude-enveloping signal requires a wide frequency

band due to the need for capturing modulations in the amplitude. As a consequence, the

phase-giving signal can be sampled at a lower rate than the amplitude-enveloping signal,

resulting in uneven lengths of signals. Currently available methods for estimating PAC magni-

tude, however, require the phase-giving and the amplitude-enveloping signals to have the

same length. We circumvented this limitation by setting the amplitude-enveloping signal sam-

pling rate to an integer multiple of the phase-giving signal rate. We then upsampled the phase

values to match the rate of amplitude values.

Test environment

We developed and tested MSPACMan using generated signals and microelectrode recordings

(MERs) obtained during DBS surgery.

Generated signals. The generated signal, represented in a sequence, is composed of two

elementary sinusoidal sequences

xðnÞ ¼ xpðnÞ þ xaðnÞ; ð7Þ

Realtime PAC of MER signals
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where

xpðnÞ ¼ sin opn; ð8Þ

xaðnÞ ¼ AaðnÞ sin oan; ð9Þ

AaðnÞ ¼
1

4
ðP sin ðoamnþ pÞ þ 2 � PÞ; ð10Þ

oi ¼ 2p
Fi

Fs
; ð11Þ

Fp, Fa, Fam are frequencies characterizing periodic sequences, Fs is the sampling rate, and

P is the magnitude of PAC ranging between 0 and 1. In this study, the parameters are set as

Fp = Fam = 16 Hz (in the β band), Fa = 130 Hz (in the γ2 band), Fs = 16, 384 Hz, and P remained

as a controllable variable depending on simulation scenarios.

Eq (9) assumes that Aa(n) modulates sinusoidally, but it could instead be modulated as peri-

odic bursts. This can be modelled by convolving an impulse train (periodic impulse functions,

δ(n)) to a Gaussian function

f ðnÞ ¼
1

s
ffiffiffiffiffiffi
2p
p exp

� ðn � mÞ
2

2s2
; ð12Þ

where μ and σ are the mean and standard deviation of the Gaussian distribution, respectively,

which shape the Gaussian function of each burst. The equation for the signal generator, Eq (9)

is modified as

AaðnÞ ¼ f ðnÞ �
X

p2Z

dðn � pTamÞ; ð13Þ

and

Tam ¼ F � 1
am : ð14Þ

In practice, some common noise sources are observed in recorded biological signals. For

example, repeated measurements of the same signal varies based on statistical variances, this

is referred to as measurement noise. Measurement noise can be replicated from values drawn

from a zero mean white Gaussian noise of a random process, and thus have the property of

constant intensities across all frequencies.

The measurement of a signal emitted from a biological source is often corrupted by the

echoes of neighbourhood sources. Biological noise, or pink noise (1/f noise), is also modelled

from a random process with the frequency domain property where the magnitude is inversely

proportional to the corresponding frequencies. These noise models are added to the signal in

Eq (7) to approximate a recorded signal.

Recorded signals. The MER signals were recorded using the AlphaOmega Microguide

Pro (Alpha Omega, Inc, Nazareth, Israel) from microelectrodes inserted into the putative STN

during the neurosurgical procedure to implant DBS electrodes. The signals were amplified

10,000-fold and digitized at 24 kHz with 12-bit resolution. In this study we use a single 3-

channel trajectory from one hemisphere from one patient. Use of anonymized intraoperative

patient data for this study has been approved by the Ottawa Health Science Network Research

Ethics Board.
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Sensitivity analysis. MSPACMan, pactools, and pacpy were compared on their ability to

compute a MI comodulogram. We quantify the performance from the determination of PAC-

containing frequency pairs from the comodulograms, from the ability to track changes in

PAC, and finally the processing time to calculate each comodulogram.

PAC-containing frequency pairs were determined using a simple threshold-based blob

detection algorithm on the comodulograms. The blob detection algorithm identifies pixel

groups with MI above the threshold. The blob centre denotes the main contributing frequency

pairs of PAC in the test signal. This detection algorithm is only useful for simulated signals

because it is overly sensitive to noise.

Signals were simulated four times at each of 10 levels of specified PAC (from 0.0 to 1.0) and

10 levels of noise, specified by signal to noise ratio (SNR) of oscillatory amplitude to standard

deviation of the noise, (from SNR 10.0 to SNR 1.0). For each algorithm, the comodulogram

was calculated and the average MI value in the detected blob was averaged across the four repe-

titions and used as the PAC output value. PAC output values were normalized within-algo-

rithm to the range of PAC values calculated at SNR 10.0.

We also quantified the processing time of the comodulograms. Unlike MSPACMan which

exposes distinct initialization, filtering, and PAC quantification, pacpy and pactools perform

the entire process from initialization to PAC quantification in one top-level function. There-

fore, to compare processing time across the different modules, the measured processing time

includes both the filter bank and PAC quantification. Each process was performed 40 times,

and the mean and the standard deviation of the computation time were reported.

The machine used to test computation times is a 2012 MacBook Pro with a 2.5 GHz dual-

core Intel Core i5 processor. The PAC algorithms and analysis tools were written in Python 3

using packages for numerical and scientific processing (Numpy and Scipy) optimized with the

Intel Math Kernel Library.

Results

Comparing different Python modules for PAC. Two other Python modules for comput-

ing PAC were identified: pacpy and pactools. We compared the MI comodulograms computed

using MSPACMan, pactools, and pacpy, shown in Fig 4A. For each method, the automated

blob detection algorithm detected the centre of peak PAC close to the specified frequency pair

for the test signal. The specified PAC frequency pair was (16, 130) Hz and all modules detected

peak PAC near that frequency pair (MSPACMan (15, 120) Hz; pactools (15, 120) Hz; pacpy

(15, 120) Hz). For each PAC module, the average MI value from the blob was calculated at

multiple levels of specified PAC and noise (Fig 4B). Detected PAC magnitude at the identified

frequency pair(s) was positively related to the specified PAC magnitude in the simulated signal

and negatively related to the amount of noise in the signal. The relationship between input

PAC and calculated PAC at a constant signal-to-noise ratio (SNR) of 3.0 is plotted for all three

methods in Fig 4C. Calculated PAC values were similar across methods, except pacpy yielded

greater PAC at middle ranges of specified PAC. Fig 4D shows the time required for each

Python module to compute a 15 × 15 comodulogram. MSPACMan required 0.1 s, pactools

required 2.2 s, and pacpy required 33.8 s.

Realtime applications of PAC calculation. We calculated PAC magnitude of a signal

recorded during an STN-DBS surgery (Fig 5). In the comodulogram calculated from the entire

16-second duration of the signal (Fig 5B), PAC magnitude peaks with the phase-giving fre-

quencies of 6-50 Hz and amplitude-envelope frequencies of 60-500 Hz. PAC magnitude for

this frequency pair calculated from shorter signal segments varies significantly across time (Fig

5C). Selected comodulograms from short segments (Fig 5D) demonstrate that PAC magnitude
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Fig 4. Comparison of MSPACMan with other existing PAC packages. A: 15 × 15 comodulograms with the suprathreshold PAC blobs identified. B: Normalized PAC

magnitudes (MI) at the frequency pairs identified in A, calculated for multiple levels of specified PAC and noise-level in the simulated signal. C: Overlay of normalized

PAC magnitudes for the three different methods at varying levels of specified PAC and a constant SNR of 6:1. D: The processing time for computing each

comodulogram.

https://doi.org/10.1371/journal.pone.0204260.g004
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at the frequency-pairs of interest was transient and that PAC magnitude at other frequencies

was not observed.

Discussion

We developed MSPACMan, a signal analysis module for the Python programming language

that can calculate phase amplitude coupling quickly and robustly and is suitable for realtime

analysis of neurophysiological signals. MSPACMan accelerates PAC calculation by several

modifications to traditional PAC algorithms including embedding of the Hilbert transform

in a frequency domain filtering step, signal decimation, and parallelization. We compared

MSPACMan to other available PAC analysis algorithms and found that our approach is 20-

300 times faster and yields results that are qualitatively similar or better.

MSPACMan allows the user to specify the PAC quantification method. In this study, we

used exclusively the MI as the PAC quantification method. MI is commonly used in the neuro-

scientific literature as the primary PAC measure due to its tolerance to noise, sensitivity to

multimodality in PAD, sensitivity to the modulation widths of the amplitude-modulation, and

its ability to reliably track the changes in PAC intensities [9].

When the modulating and modulated frequencies are not known in advance, it may be nec-

essary to calculate a comodulogram of PAC values for all frequency combinations. Comodulo-

grams obtained from MSPACMan were similar to those obtained from pactools, and both

identified a smaller set of PAC-containing frequency pairs than pacpy, though all three pack-

ages identified the same peak frequency combination closest to the specified combination. The

precision of the identified peak frequency combination can be made more precise by increas-

ing the frequency resolutions of the comodulogram.

For all three tested methods, the calculated PAC value had a monotonically increasing rela-

tionship with the specified PAC magnitude at low levels of noise. In general, as the amplitude

of the noise in the generated signal increased, the calculated PAC magnitude decreased. How-

ever, for pacpy, at low levels of specified input PAC, calculated PAC magnitude increased as

noise increased, suggesting that noise might be contributing to spurious PAC detection.

We tested MSPACMan for its ability to calculate PAC from neurophysiological data

recorded from MERs in the STN of patients undergoing DBS surgery. While PAC was evident

when analyzing a long signal segment (16 s), when examined more precisely it was only pres-

ent in one 4-second segment within the longer segment (Fig 5). MSPACMan can measure

PAC from 4-second window segments and it can use small time steps between updates of the

output PAC value because it is fast (Fig 5B). We further demonstrated that MSPACMan is sen-

sitive enough to identify the lack of PAC in the initial 4-second window segment, to its emer-

gence in subsequent segments, and its return to baseline shortly thereafter (Fig 5C and 5D).

An important consideration for a robust realtime signal processing tool is its ability to han-

dle signal artefacts with minimal impact on its output. PAC analyses are commonly applied to

electrocorticography (ECoG) signals, in which the electrodes are located on the surface of the

brain. As such a variety of environmental or experimental artefacts are commonly encoun-

tered. However, an intracortical signal like the MER has a significantly higher SNR, and

thus signal artefacts are less common. The two that are most commonly seen in our data are

short duration bursts induced by mechanical disturbances (e.g. patient tremor that shakes the

lead wire) and signal clipping due to the recorded signal amplitudes exceeding the hardware

tolerance.

We tested MSPACMan for its ability to calculate PAC from artefact-contaminated neuro-

physiological data by artificially generating artefacts and comparing performance between the

original data with that artefact-infused data. The simulated artefacts mimicked the quantity
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and quality of the occasional signal clipping that occurs during neurosurgical microelectrode

recording. Although small differences are observed, they are insufficient to justify preprocess-

ing with tools to detect and replace such artefacts. We also performed the comparisons with

pactools and pacpy (see the results at S1 and S2 Figs) with similar results.

Two important applications of realtime PAC calculation enabled by MSPACMan are for

the treatment of PD either as a trigger for closed loop DBS [16, 17] or as a neurofeedback target

to induce and guide adaptive plasticity using brain-computer interfaces [15]. It was demon-

strated that PAC quantified in putative human STN can be transient, emerging in the signal

for only a few seconds (Fig 5). This is important because both of these applications that

requires temporal precision in PAC onset will require PAC quantification from small window

of data and rapid updates. Although this property was commonly observed in the data we

examined, its occurrence probability study is outside the scope of this manuscript.

Conclusion

We developed a Python module, MSPACMan, for realtime calculation of phase-amplitude

coupling. The algorithm details are provided and its performance is compared to already avail-

able Python modules for PAC. We tested MSPACMan with generated and clinical signals. We

demonstrated that MSPACMan can calculate PAC and the comodulogram much faster than

currently available solutions, and that it reliably detects and quantifies PAC of a given signal.

The fast and robust calculation of PAC magnitude provided by our module may have clinical

applications and will enable future studies into the clinical relevance of PAC modulation on

short time scales. The algorithms developed herein may be of additional benefit in fields such

as computer vision, finance, and geophysics that require fast processing of spectral and syn-

chronization features of multichannel time series data.

Fig 5. Estimates of PAC in window segments of a signal recorded during an STN-DBS surgery. A: 16 seconds duration of a raw voltage signal. B: The

comodulogram of the full length of A. C: The β − γ2 PAC of A calculated in 4-second windows with a step size of 250 ms (i.e., 95% overlap). D: The

comodulograms of A in non-overlapping segments of 4-second windows indicated.

https://doi.org/10.1371/journal.pone.0204260.g005
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Supporting information

S1 Fig. Comparison of MSPACMan with pactools and pacpy on the effect of clipping. A) A

16-second duration of the original raw voltage signal (blue), and a artificially clipped version

of the same signal (orange). B) The β-γ2 PAC of both signals in A) calculated in 4-second win-

dows with a step size of 250 ms (i.e., 95% overlap). C) The comodulogram of the full lengths

signals in A).

(TIF)

S2 Fig. Comparison of MSPACMan with pactools and pacpy on the effect of signal arte-

facts. A) A 16-second duration of the original raw voltage signal (blue), and a artificially gener-

ated spiking artefacts added the same signal (orange) at 6 s and 12 s with 0.5 s of bursts. B) The

β-γ2 PAC of both signals in A) calculated in 4-second windows with a step size of 250 ms (i.e.,

95% overlap). C) The comodulogram of the full lengths signals in A).

(TIF)

S1 Appendix. Descriptions of simulating and the PAC processing of simulated artefacts

signals.

(PDF)

S1 Dataset. The data files required to replicate the results of this report. There are two .mat

files compressed into S1_Dataset.zip.

(ZIP)
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