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Optimal execution strategy in liquidity framework
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Abstract: A trader wishes to execute a given number of shares of an illiquid asset. 
Since the asset price also depends on the trading behaviour, the trader main aim is 
to find the execution strategy that minimizes the related expected costs. We solve 
this problem in a discrete time framework, by modeling the asset price dynamic 
as an arithmetic random walk with drift and volatility both modeled as Markov 
stochastic processes. The market impact is assumed to follow a Markov process. 
We found the unique execution strategy minimizing the implementation shortfall 
when short selling is allowed. This optimal strategy is given as solution of a forward-
backward system of stochastic equations depending on conditional expectations of 
future values of model parameters. In the opposite case, namely when short selling 
is prohibited, we numerically obtain the solution for the associated Bellman equa-
tion that an optimal trading strategy must satisfy.

Subjects: Mathematics & Statistics; Mathematical Finance; Quantitative Finance; 
Probability Theory & Applications; Stochastic Models & Processes; Statistics for Business, 
Finance & Economics; Banking; Risk Management

Keywords: pricing model; liquid / illiquid market; forward-backward stochastic differential 
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1. Introduction
The present work deals with the problem of optimally selling a fixed number of share of an asset in 
an illiquid economy. This means that the price process of the asset depends also on the trading 
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strategy implemented by the trader. Therefore every transaction implies a change on the price, 
which is called market impact. Consequently, a large order may be split into more smaller orders to 
reduce the overall market impact. We assume that these smaller orders are finitely many so that the 
problem can be treated in a discrete-time framework. It follows that the main goal is to find the 
execution strategy, i.e. to choose the size of each individual order, which minimizes the related 
expected cost.

Optimal selling strategies in a liquidity framework have been studied in Almgren and Chriss (1999, 
2001), where the so called Almgren-Chriss model is developed. In the Almgren-Chriss model the as-
set price process is modeled as a risk-neutral Arithmetic Random Walk (ARW) characterized by a 
constant volatility over all the liquidation interval. Moreover the market impact functions are linear 
in the sold quantities and the involved parameters are also assumed to be constants. In Almgren 
and Chriss (2001) optimal execution strategies are found explicitly by considering a minimization 
criterion based on a combination between the expectation and the variance of the cost, namely the 
mean-variance criterion.

In Cheridito and Sepin (2014) the authors extended the previous approach by modeling the volatil-
ity and the liquidity parameters by stochastic processes. When the objective is to minimize the ex-
pectation of the implementation cost the optimal solution is found explicitly. On the other hand, 
using the mean-variance criterion the optimal execution strategy cannot be stated explicitly, never-
theless the related Bellman equations are derived and then exploited to numerically obtain the as-
sociated optimal solutions by a discretization of the control space. It is worth to mention that such 
an approach could be in principle used also in rather different contexts as the ones related, e.g. to 
microbiological modelization, see, e.g. Barbu, Cordoni, and Di Persio (2016), or the abstract analysis 
of signals traveling through networks, see, e.g. Di Persio and Ziglio (2011), and references therein.

In what follows we generalize previous results by removing the restriction of a zero drift term in 
the asset price dynamic. In particular we model the drift of the asset price process as a Markov chain. 
We would like to underline that, even if the obtained results are not surprising, our approach allows 
to treat a rather general setting. In particular, we get explicitly some of those further useful insights 
claimed by Almgren and Chriss (2001, Section 6).

Note that the optimal execution problem has been also studied in a continuous time setting. In 
Gatheral and Schied (2011), resp. in Brigo and Di Graziano (2014), explicit solutions have been pro-
vided under the assumption that the unaffected price process, that is the price process when the 
trader does not enter in the market, follows a Geometric Brownian Motion (GBM), resp. a displaced 
diffusion process. Moreover in Schied (2013) a robustness property for the optimal strategies is 
proved. Indeed, under a specified cost criterion, the form of the solution is independent on the unaf-
fected price process, provided that it is a square integrable martingale.

We underline that similar problems have been  studied, e.g., in Cetin and Rogers (2007), in Ku, Lee, 
and Zhu (2012), see also references therein, as well as in  Gökay, Roch, and Soner (2010) and Benazzoli 
and Di Persio (2014), where continuous time frameworks have been considered. The paper is organ-
ized as follows: in Section 2 we present the model; Section 3 is devoted to the computation of the 
trading solution that minimizes expected costs in a market where short-selling is allowed; while 
Section 4 addresses the same problem but in a market where short-selling is banned; finally, in 
Section 5, we provide the simulation results.

2. The model
A trader, who holds X0 ∈ ℝ

+ shares of an asset, wants to liquidate his entire position within a fixed 
deadline T. If the investor cannot sell (and buy) the asset continuously, then a discrete time model is 
obtained. The time interval [0, T] is divided into N subintervals of the same length, denoted by �: = T

N
 

and, at every time step tn−1 = (n − 1)�, with n = 1, … , N, the trader chooses the volume, i.e. the 
number of shares yn, to sell in the succeeding subinterval (tn−1, tn]. A trading list is the N-tuple of the 
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sold quantities {yn}
N
n=1, whereas an execution strategy is a (N + 1)-tuple (x0, x1, … , xN) where xn 

represents the volume of shares still held by the trader at time tn. The execution strategy is strictly 
related to the related trading list, since yn = xn−1 − xn and xn = X0 −

∑n

k=1 yk =
∑N

k=n+1 yn, and 
therefore by knowing the strategy x, the corresponding trading list y(x) is computable, and 
viceversa.

Since the asset is illiquid, when a treader acts in the market, this causes a direct variation of the 
price. Such a phenomenon is called market impact, being modeled by two parts, namely the tempo-
rary, resp. the permanent, component. The former refers to the price modification, in a given time 
interval, only due to the sale occurred in the immediately preceding time window, whereas the latter 
takes into account the price variation that persists throughout the remaining trading time.

The initial asset price is a known, fixed value S0. Then the dynamic of the price follows the stochas-
tic process S̃t defined by the equation

where

Due to the two different components of the market impact, the actual price S̃n is built in more steps. 
Consider the process {S̄n}n defined by S̄n = S̄n−1 + 𝜎n

√
𝜏𝜉n + 𝛼n𝜏. S̄, called the unaffected price, 

represents the price per share of the asset which would occur in a impact-free market. Therefore the 
parameter c models the permanent market impact and it is assumed to be positive and constant 
over all the liquidation time [0, T]. Note that the asset price at time tn, i.e. S̃n, depends through the 
permanent component of the market impact c on all the previous sold quantities, namely on 
y1, … , yn−1, summed up in Sn−1. On the other hand, S̃n depends on the temporary market impact, 
modeled by the stochastic process {�n}n only through the shares sold at time tn, namely yn. The 
stochastic processes {�n}n and {�n}n represent the drift process, resp. the volatility process, of the 
asset. Furthermore the process {�n}n is a sequence of independent standard normal random varia-
bles, i.e. �n ∼ N(0, 1), ∀n ∈

{
0, … , N

}
.

In what follows, we assume that the random variables Sn, �n, �n and �n are observable at time tn, 
and moreover, being n the filtration �(Si , �i , �i , �i :0 ≤ i ≤ n), �n is assumed to be independent of 
the �-algebra �(n−1, �n, �n, �n). We assume that (�n, �n, �n) can take finitely many values in 
ℝ ×ℝ

2
+
, and we set

Hence, (�n, �n, �n)n is a Markov chain with finite state space V, and pvwn−1 denotes the related transi-
tion probability. In order to simplify the notation, we shall indicate by �vn[⋅] the expectation computed 
at time tn knowing that (�n, �n, �n) = v. We assume that �vn−1[𝜂̃n] > 0 for all v ∈ V and n ≥ 1, so 
that, on average, a sale of the asset lowers the asset price down while a buying raises it.

In this setting, an execution strategy x is admissible if it satisfies the following conditions:

(1) � {xn}
N
n=0 is predictable with respect to {n}

N
n=0 ;

(2) � x0 = X0 and xN = 0.

(1)S̃n = Sn−1 − 𝜂nyn ,

Sn = Sn−1 + �n

√
��n + �n� − cyn.

ℙ
[
(�n, �n, �n) = w|n−1

]
= ℙ

[
(�n, �n, �n) = w|(�n−1, �n−1, �n−1) = v

]
= :pvwn−1.
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Condition xN = 0 is crucial for the problem we are interest in, since it guarantees that the asset has 
been completely liquidated within the deadline T. The set of all admissible strategies is denote by . 
Note that we do not request that admissible strategies have to fulfill the pure selling property, hence 
the trader is allowed to short sell the asset to lower the implementation shortfall. For an admissible 
strategy x ∈ , the implementation shortfall C(x) is defined as the difference between the market 
value of the initial position and the total gain, namely

where 𝜂̃n = 𝜂n −
c

2
. It provides the ex-post transaction cost of the strategy.

3. Optimal execution strategy

In our setting, the trader seeks the strategy that minimizes the expectation of the implementation 
shortfall over all admissible strategies , that is x∗ = argminx∈ �

v
0[C(x)]. The following theorem 

provides a complete answer to this question.

Theorem 3.1  The minimum of the expected implementation shortfall is given by

where the coefficients avn, b
v
n and cvn are computed by the backwards recursion

and

for n < N − 1. The unique optimal execution strategy that realizes such a minimum is recursively 
given by

for all n = 1, … , N − 1.

Similarly as in Almgren and Chriss (2001), the trajectory is the sum of two distinct terms: the first 
one depending only on the process {�n}n and the number of shares held by the trader, and the sec-
ond one which takes into account {�n}n and the processes {�n}n and {�n}n, hence it is independent 
on the portfolio’s volume.

Proof  Let n(z) be the set of all predictable strategies {xk}
N
k=n such that xn = z and xN = 0, and define 

the functional Jvn(z): = minx∈n(z)
�
v
n[Qn(x)], where

C(x) = X0S0 −

N�
n=1

ynS̃n

=
c

2
X20 +

N�
n=1

�
𝜂̃n(xn−1 − xn)

2
− (𝜎n

√
𝜏𝜉n + 𝛼n𝜏)xn

�

min
x∈

�
v
0
[C(x)] =

(
av
0
+
c

2

)
X2
0
− bv

0
X
0
+ cv

0
,

avN−1 = �
v
N−1[𝜂̃N], bvN−1 = c

v
N−1 = 0,

avn−1 =
�
v
n−1[𝜂̃n]

∑
w∈V p

vw
n−1a

w
n

�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

bvn−1 =
�
v
n−1[𝜂̃n](�

v
n−1[𝛼n]𝜏 +

∑
w∈V p

vw
n−1b

w
n )

�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

cvn−1 = −

�
�
v
n−1[𝛼n]𝜏 +

∑
w∈V p

vwbwn
�2

4(�vn−1[𝜂̃n] +
∑

w∈V p
vw
n−1a

w
n )

+
�
w∈V

pvwcwn

xn�xn−1, (𝛼n−1, 𝜎n−1, 𝜂n−1) =
�
v
n−1[𝜂̃n]

�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

xn−1

+
�
v
n−1[𝛼n]𝜏 +

∑
w∈V p

vw
n−1b

w
n

2
�
�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

�
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Moreover, we have that

since, by previous assumptions, each �k, with k > n, is independent on the �-algebra �(n−1, �n, �n, �n) 
and it is normally distributed with mean 0. In what follows we show, by backward induction on n, 
that, for each n ≤ N − 1, it holds

where avn, b
v
n and cvn are as in Theorem 3.1. For n = N − 1, property (P) follows immediately since by the 

definitions of Q and J 

Assuming that the claim (P) holds for n > 1,

where the function to minimize is strictly convex; hence there exists a unique minimum which can 
be found solving the first order condition, i.e.

Therefore the minimum is given by

Equation (4) gives the optimal quantity to hold at time tn knowing the quantity held at the previous 
time, tn−1, so that x∗ = (X

0
, x∗

1
, … , x∗N−1, 0) is the optimal execution strategy as stated in the Theorem, 

and, replacing xn by (4) in Equation (2), we have

that implies (P) for n − 1, concluding the proof. � ✷

Remark 1  In the case of constant parameters, i.e. �n ≡ �, �n ≡ � and �n ≡ �, the problem under 
consideration becomes

Qn(x): =

N�
k=n+1

�
𝜂̃k(xk−1 − xk)

2
− (𝜎k

√
𝜏𝜉k + 𝛼k𝜏)xk

�
.

�
v
n[Qn(x)] = �

v
n

[
N∑

k=n+1

[
𝜂̃k(xk−1 − xk)

2
− 𝛼k𝜏xk

]]

Jvn(xn) = a
v
nx

2

n − b
v
nxn + c

v
n, (P)

JvN−1(xN−1) = �
v
N−1[𝜂̃N](xN−1 − xN)

2

= �
v
N−1[𝜂̃N](xN−1)

2.

(2)

Jvn−1(xn−1) = min
x∈n−1(xn−1)

�
v
n−1[Qn(x)]

= min
x∈n−1(xn−1)

�
v
n−1[𝜂̃n](xn−1 − xn)

2
− �

v
n−1[𝛼n]𝜏xn + �

v
n−1[Qn+1(x)]

= min
xn

�
v
n−1[𝜂̃n](xn−1 − xn)

2
− �

v
n−1[𝛼n]𝜏xn +

∑
w∈V

pvwn−1J
w
(xn)

= min
xn

�
v
n−1[𝜂̃n](xn−1 − xn)

2
− �

v
n−1[𝛼n]𝜏xn +

∑
w∈V

pvwn−1(a
w
n x

2

n − b
w
n xn + c

w
n ),

(3)−2�vn−1[𝜂̃n](xn−1 − xn) − �
v
n−1[𝛼n]𝜏 +

∑
w∈V

pvwn−1(2a
w
n xn − b

w
n ) = 0.

(4)x∗n =
�
v
n−1[𝜂̃n]

�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

xn−1 +
�
v
n−1[𝛼n]𝜏 +

∑
w∈V p

vw
n−1b

w
n

2
�
�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

� .

Jvn−1(xn−1) =
�
v
n−1[𝜂̃n]

∑
w∈V p

vw
n−1a

w
n

�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

(xn−1)
2

−
�
v
n−1[𝜂̃n]

�
�
v
n−1[𝛼n]𝜏 +

∑
w∈V p

vw
n−1b

w
n

�

�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

xn−1

−

�
�
v
n−1[𝛼n]𝜏 +

∑
w∈V p

vw
n−1b

w
n

�2
4
�
�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

� +
�
w∈V

pvwn−1c
w
n ,
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where 𝜂̃ = 𝜂 −
c

2
. Since the function we want to minimize is a strictly convex quadratic function in the 

control parameter x
1
, … , xN−1, its unique minimum can be found by solving the following 

equations

for n = 1, … , N − 1, whose solutions are given by

b and c being constant parameters that can be estimated by using the boundary constraints x
0
= X

0
 

and xN = 0. Therefore the unique optimal solution is

If the asset price process has no drift, i.e. � ≡ 0, the optimal strategy reads as x∗(tk) = X0 − X0
tk

T
. The 

latter is called the naive strategy, since the trader sells the same amount of shares at every time step 
tk, namely the adopted strategy is simply linear in time. Note that the naive strategy does not de-
pend neither on the market impact �, nor on the volatility �, nor on the frequency of selling N.

Remark 2  It is interesting to observe that in the case of zero-drift, namely in the setting considered 
in Cheridito and Sepin (2014), the coefficients bvk and cvk are all zero and then the optimal solution 
reduces to

where the coefficients avk are defined as in Theorem 3.1. Note that if we assume zero drift, then the 
amount of shares sold in each interval time may vary depending on the expected future parameters, 
contrary to the constant parameters case, as seen in Remark 1.

4. Pure sell strategies
In this section the problem considered in Section 3 will be studied when the admissible set is re-
duced to only the pure sell strategies. In this frame, an admissible strategy is a (N + 1)-tuple 
x = {xn}

N
n=0 such that:

• � x0 = X0 and XN = 0;

• � xn−1 ≥ xn;

• � {xn}
N
n=0 is predicable with respect to {n}

N
n=0.

In this scenario, short selling is not allowed since, for each n, xn ≥ XN = 0, i.e. xn is positive, and our 
purpose is to find the strategy that solves

where ′ denotes the new admissible strategies set. Let J be the functional defined as before, but 
this time with respect to ′, then the following holds true.

Theorem 4.1  The functional J satisfies the Bellman equations

min
x∈

�
v
0
[C(x)] = min

x∈

N∑
n=1

𝜂̃(xn−1 − xn)
2
− 𝛼𝜏xn,

−2𝜂̃(xn−1 − xn) + 2𝜂̃(xn − xn+1) − 𝛼𝜏 = 0,

xn = x(tn) =
𝛼

4𝜏𝜂̃
(tn)

2
+ b(tn) + c,

(5)x∗(tk) =

(
X
0

T
+

𝛼

4𝜂̃
tk

)
(T − tk).

(6)x∗n�xn−1, (𝛼n−1, 𝜎n−1, 𝜂n−1) =
�
v
n−1[𝜂̃n]

�
v
n−1[𝜂̃n] +

∑
w∈V p

vw
n−1a

w
n

xn−1,

(7)x∗ = argmin
x∈�

�
v
0[C(x)],

(8)
JvN−1(xN−1) = �

v
N−1[𝜂̃n]x

2

N−1,
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and

for all n ≤ N − 1. Moreover there exists a unique strategy x ∈ 
� that solves (8)–(9) given by the solu-

tion of the minimizing problem (7).

Proof  Taking n = N − 1 we have JvN−1(xN−1) = �
v
N−1[𝜂̃N](xN−1 − xN)

2
= �

v
N−1[𝜂̃N](xN−1)

2, while, for 
n ≤ N − 1 we obtain

and, since the function to be minimized is strictly convex due to the assumption �vn−1[𝜂̃n] > 0, there 
exists a unique solution (optimal strategy) x∗ to (7). � ✷

Remark 3  Notice that if the asset price process has zero drift the optimal execution strategy found 
in the previous case, i.e. (6), is already of pure sell.

5. Simulations
In what follows we shall present different simulations related to the results obtained in previous 
sections. In particular some explicit numerical examples for the behaviour of the trader in a market 
with liquidity risks in different economic scenarios are provided. The values chosen for the model 
parameters are as in Table 1.

Throughout this section, the following assumptions will be in place. The processes {�n}n, {�n}n, 
{�n}n and {�n}n evolve independently of each other and the first three are time-homogeneous 
Markov chains with three state space, resp. low, med and high. Therefore the transition probability 
matrices denoted by p�, p� and p� do not depend on time, and, indeed, in our numeric implementa-
tion they read as follows:

The trading time interval is set to be equal to 100 min and the asset can be traded every minute, i.e. 
the trader cannot split his sale into more than 100 trades.

We first consider a scenario where the trader believes that the asset price is likely to rise, namely 
the drift process is positive. The initial state of the parameters’ processes is equal to (�med, �med, �med). 
Theorem 3.1 states that, by following the optimal execution strategy, the expected cost equals 
�[C(x)] = −750.9407.

We simulate 50.000 possible paths of {(�n, �n, �n, �n)}n and the related optimal strategies. In 
Figure 1(a) there are shown the average value of the optimal strategies (on the left side) and the 

(9)

Jvn−1(xn−1) = min
xn∈[0, xn−1]

[
�
v
n−1[𝜂̃n](xn−1 − xn)

2

−�
v
n[𝛼n]𝜏xn +

∑
w∈V

pvwn−1J
w
n (xn)

]
,

Jvn−1 = min
x∈n−1(xn−1)

�
v
n−1[Qn(x)]

= min
x∈n−1(xn−1)

�
v
n−1[𝜂̃n](xn−1 − xn)

2
− �

v
n−1[𝛼n]𝜏xn + �

v
n−1[Qn+1(x)]

= min
xn∈[0, xn−1]

�
v
n−1[𝜂̃n](xn−1 − xn)

2
− �

v
n−1[𝛼n]𝜏xn +

∑
w∈V

pvwn−1J
w
(xn),

p� =
⎡
⎢⎢⎣

0.62 0.18 0.20

0.30 0.57 0.13

0.21 0.19 0.60

⎤
⎥⎥⎦

p� =

⎡
⎢⎢⎣

0.9349 0.0434 0.0217

0.7164 0.2239 0.0597

0.4400 0.4800 0.0800

⎤⎥⎥⎦

and p� =
⎡⎢⎢⎣

0.50 0.30 0.20

0.15 0.80 0.05

0.05 0.05 0.90

⎤⎥⎥⎦
.
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corresponding standard deviation (on the right side), while Figure 1(b) shows the realizations of the 
implementation cost, with average cost of the simulated strategies equal to −792.2788.

We would like to underline that in the previous case the expected and the average cost are nega-
tive, which means that the trader may take advantage from the fact that the price is likely to rise and 
make a positive gain. In particular Figure 1(a) shows that at first the trader actually buys other 
shares with the intention of reselling them later at a higher price.

In what follows we shall consider the optimal execution strategy problem when the price is likely 
to decrease, hence the drift parameters are negative, and we assume that short selling is allowed. 
As before, we assume that the Markov chain {(�n, �n, �n)}n starts from (�med, �med, �med). Figure 
2(a) shows the average value of the optimal strategies (on the left side) and the corresponding 
standard deviation (on the right side) when 50.000 possible paths are simulated. Note that for this 
choice of parameters, the average strategy achieves negative values, therefore the trader actually 
short sells the asset. The corresponding costs are shown in the histogram of Figure 2(b). The expect 
cost is �[C(x)] = 530.5309$ while the average cost over the 50,000 simulations is 523.0289$.

Figure 3 shows how the optimal execution strategy depends on the drift parameter. In the positive 
drift case we consider the following states

while for in the negative drift case we assume

(� low, �med, � high) = (0.42, 0.8, 1.1) × 10−4

(� low, �med, � high) = −(1.2, 0.8, 0.23) × 10−4.

Table 1. Parametres value
Parameter Symbol Value
Initial asset price S0 172 $/share

Initial asset position X0 35,000 share

Liquidation time T 100 min

Number of subintervals N 100

Permanent impact c 2.5 × 10−7

Temoprary impact � low 1 × 10−6

�med 5 × 10−6

� high 25 × 10−6

Volatility state � low 3.51 × 10−3

�med 3.33 × 10−2

� high 1.172 × 10−1

Positive drift state � low 2.2 × 10−4

�med 0.3 × 10−3

� high 0.8 × 10−3

Negative drift state � low −4.2 × 10−4

�med −1.8 × 10−4

� high −8.3 × 10−5
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As shown by the provided graphs, the drift determines the rate of selling, in particular we have that 
the financial player tends to sell slower in case of positive drift, being faster if we assume a negative 
drift. As a consequence, if the average drift is great enough, then the trader buys more shares of the 
asset even if his main goal is to liquidate them.

The accuracy of the proposed model can be studied by analysing the behaviour of the errors with 
respect to the number of simulations, the results are shown in Table 2. Notice that 50,000 simula-
tions are enough to reduce the relative error in both cases below 5% and with 100,000 simulations 
both these errors are less than 1.5%. Obviously such an increment in the accuracy has to be payed 
in terms of increasing execution time, which grows linearly with the number of simulations. The lat-
ter is due to the fact that the majority of the algorithm’s running time is spent simulating the Markov 
chain {(�n, �n, �n, �n)}n.

Remark 4  We would like to underline that both the absolute and the percentage error show the 
same behaviour with respect to different values for the parameters �, � and �. In particular, they 
decrease if we increase the number of simulations, paying the price of higher executions times. 
Concerning the time-step, when the liquidation deadline T is fixed, the execution time increases as 
N increases, namely as the length � between two subsequent trades is shortened. Indeed we have 
to simulate more states for the related Markov chain {(�n, �n, �n, �n)}n, and also more values for the 
optimal executions strategy.

Figure 1. (a) Average and 
standard deviation of the 
optimal trading strategies with 
parameters given by Table 1 
when the drift process is 
positive, and (b) Histogram of 
the implementation cost for the 
optimal trading strategies.

(a)

(b)
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Figure 2. (a) Average and 
standard deviation of the 
optimal trading strategies with 
parameters given by Table 1  
when the drift process is 
negative and short selling is 
allowed and (b) Histogram of 
the implementation cost for the 
optimal trading strategies.

(a)

(b)

Figure 3. Comparison between 
optimal trading strategies for 
different drift values.
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In order to have a direct comparison between the optimal trading strategies obtained when short 
selling is allowed and when not, we simultaneously report in Figure 4 the results related to those two 
different settings. When short selling is allowed the trader is more aggressive, this means he sells 
faster, and with the chosen parameters the optimal strategy reaches negative values. The average 
cost when short selling is allowed equals 538.0753$, while when the trading strategy is forced to be 
positive, the average cost is grater, indeed it equals 558.5057$.

The latter result is not surprising, since in the second case we add a condition for a strategy to be 
admissible, hence we are reducing the set from which the trader can choose the strategy to follow. 
A different reason which causes a higher average cost when short selling is forbidden is of computa-
tional type. Indeed by numerically solving the Bellman equation in Theorem 4.4, we discretize the 
position state [0, X0], therefore adding a further constraint for admissible trading strategies. In the 
previous case, we allowed the trader to sell in lots of 350 shares, that is the one percent of his initial 
position. How this constraint affects the optimal trading strategy can be better seen when the drift 
parameters are nearly zero, e.g. � low = −9.2 × 10−5, �med = −7.8 × 10−5 and � high = −8.3 × 10−6, 
that is the case when although it is possible to sell short, the trader rarely uses such a strategy, so 
that the discrepancy between the two different strategies and their respective average costs is 
mostly due to the discretization.

Figure 4. Comparison between 
optimal trading strategies 
when short selling is allowed 
and when it is denied.
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Table 2. Sensitivity and run-time performance
Simulation Effective cost [$] Absolute error [$] Percent error Execution time [s]
Positive drift case

10,000 −823.2395 72.2888 0.0963 39.2656

25,000 −689.8894 61.0514 0.0813 97.0904

50,000 −714.0665 36.8742 0.0491 195.8398

100,000 −741.1059 9.8348 0.0131 388.8039

200,000 −747.2075 3.7332 0.0050 779.3230

Negative drift case

10,000 519.2613 11.2696 0.0212 39.4368

25,000 540.1277 9.5309 0.0181 97.9121

50,000 523.0289 7.5020 0.141 194.0890

100,000 524.0302 6.5007 0.0123 390.6021

200,000 533.5788 3.0408 0.0057 774.7577
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In the first case, i.e. Figure 5(a), when shortselling is forbidden the trader is allowed to sell in lots 
of one percent of his initial position (350 shares), while in the second one, i.e. Figure 5(b), in lots of 
0.5 percent of his initial position (175 shares). In this second case the two optimal strategies are very 
similar, and so are the average costs which equal 348.6095$, resp. 351.2562$ when short selling is 
allowed, resp. when it is not. Instead, in the first case, the gap between the two average costs is 
greater, in fact the average costs equal 370.9495$, resp. 393.3549$.

Last, but not least, we study how the optimal strategy depends on the parameter N in order to 
better understand the role of the time discretization. Since N represents the maximum number of 
trades in which a sale can be divided, then the trader can sell his asset with a higher frequency as N 
increases. Figure 6(a) and (b) show the optimal execution strategy for  
three different value of N, namely taking N = 50, 100, 200, when the drift  
equals (� low, �med, � high) = (0.42, 0.8, 1.1) × 10−4, resp. it equals 
(� low, �med, � high) = −(1.2, 0.8, 0.23) × 10−4. The average costs, which have been computed run-
ning 50,000 simulations, are 291.9287$, 119.5949$, and 78.6512$ for N = 50, resp. N = 100, 
resp. N = 200, for the first choice of the drift, while they equal 500.4851$ for N = 50, resp. 
382.6879$ for N = 100, resp. 297.4120)$ for N = 200, in the second case. Such an analysis allows 
us to conclude that the execution cost decreases as N increases.

Figure 5. Comparison between 
optimal trading strategies 
when short selling is allowed 
and when it is denied with 
different discretization size.
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The latter result is mainly due to the fact that higher values of N imply a larger set of degrees of 
freedom, since the trader can buy/sell more often, or he can decide to stay out of the market. Figure 
6 shows that when the investor can frequently trade in the market, i.e. N = 200, is more aggressive. 
In the first case, see Figure (a), the player buys shares, reselling them later at a higher price, while in 
the case of negative drift, he short sells the asset. On the contrary, when the trader can split his order 
only in N = 50 actions, his behavior becomes more cautious, and his best strategy mimics a linear 
one.

6. Conclusion
In this paper, exploiting a recursive approach, we have provided the execution strategy minimizing 
the expected implementation shortfall for trading an illiquid asset in a discrete time model. In par-
ticular we have analysed the case when the asset price dynamic is given by an ARW with drift and 
volatility both modeled as Markov stochastic processes. Our study covers the case of a market where 
short selling is allowed, as well as the one where it is banned. Numerical simulations for the studied 
model have been also provided with respect to different scenarios to better underline the depend-
ence of the optimal execution strategy on both the dynamic of the asset price, and on the allowance 
of short selling in the market.

Figure 6. Comparison between 
optimal trading strategies with 
different time discretization 
size.
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