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Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal
vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a
cohort of Ttalian FEVR patients. Eight probands (age range 7-19 years) were assessed by genetic analysis and comprehensive
age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR:
FZD4, LRP5, TSPANI12, and NDP. Clinical and genetic evaluations were extended to relatives of probands positive to genetic
testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel
genetic variants, one variant already described in association with Norrie disease and one previously described linked to
autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR
(caused by FZD4 and TSPANI2 variants) and two X-linked FEVR probands (NDP variants). None of the patients showed
variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in
agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even
when it manifests in the same family.

1. Introduction

Familial exudative vitreoretinopathy (FEVR, OMIM 133780)
is a complex disorder characterized by incomplete develop-
ment of the retinal vasculature. Typical signs of this disorder
include avascular areas in the peripheral retina detectable by
fluorescein angiography due to abnormal congenital angiogen-
esis that can cause early-onset neovascularization, falciform
folds, lipid exudation, and tractional retinal detachment [1, 2].

Insights into genetic causes of this disorder have emerged
in the last few years. Four genes involved in the Norrin/
B-catenin signaling pathway are linked to the disease: NDP,
FDZ4, LRP5, and TSPANI2, and are responsible for about
50% of FEVR cases [3].

Norrin/Frizzled signaling is known to be critical for
retinal angiogenesis by controlling retinal vascular growth
and architecture both in the developing eye and in adult vas-
culature; impairment of the signaling system has profound
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effects on retinal vascular organization and leads to severe
vascular abnormalities [4, 5].

Depending on which gene is defective, FEVR may have
different patterns of inheritance. Autosomal dominant inher-
itance, due to FZD4, LRP5, and TSPANI2 gene variations
[6-8], is prevalent. Autosomal recessive and X-linked
inheritances have also been reported due to variations in
the LRP5 and NDP genes, respectively [9, 10]. Recessive
variants in TSPANI12 have also been described in a family
with retinal dysplasia and severe FEVR [11].

Clinical features are extremely variable, ranging from
absence of symptoms to complete blindness, even in the same
family [12].

This evidence has led researchers to suspect the
involvement of other unknown genes [3, 8]. Two other genes,
ZNF408 encoding zinc finger protein 408 and KIF11 encod-
ing kinesin family member 11, are linked to FEVR, although
the evidence of their association needs to be clarified. When
genetic testing was performed on the patients enclosed in
the present study, the above-mentioned novel genes had
not yet been discovered; therefore, we only focused on testing
for the NDP, FDZ4, LRP5, and TSPANI2 genes.

In literature on Italian FEVR patients, only three genetic
association studies describing a total of six probands are
reported [13-15]. Here, we present the results of clinical
and genetic characterization of the largest Italian FEVR
population, consisting of six probands and ten relatives, as
a contribution to the FEVR disease molecular epidemiology
in our country.

We identified four new variants, one variant already
described in association with Norrie disease and a variant
previously described in association with autosomal dominant
FEVR. The genotype-phenotype correlation of each variant
was evaluated by a family segregation study, and new variants
were further characterized for their putative pathogenic
potential by in silico evaluation.

2. Materials and Methods

Probands (age ranging from 7 to 19 years) and their fam-
ilies were examined in two different eye clinics: the Eye
Clinic, Department of Neurosciences, Biomedicine and
Movement, (University and Azienda Ospedaliera Univer-
sitaria Integrata of Verona, Italy) and the Department of
Ophthalmology (Bambino Gestt IRCCS Children’s Hospital,
Rome, Italy).

Probands and relatives underwent comprehensive
age-appropriate ophthalmic examination, including best-
corrected visual acuity (BCVA) measurement with the Early
Treatment Diabetic Retinopathy Study (ETDRS) charts,
expressed as a logarithm of the minimum angle of resolution
(logMAR), slit-lamp biomicroscopy, indirect ophthalmos-
copy with 15 D noncontact lens (Volk), fluorescein angiogra-
phy or color fundus photos (obtained by RetCam in younger
patients requiring examination under anaesthesia and by
Daytona wide-field retinography in compliant older sub-
jects), optical coherence tomography (OCT), and full-field
electroretinogram (ERG) recorded according to the ISCEV
standards. Refractive errors ranged between +2 and -2
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spherical equivalent. All examinations were performed at
the referring clinic, and the results were collected at the end
of the study.

Based on clinical data, each patient was classified accord-
ing to the FEVR clinical staging system [16].

All patients received genetic counseling to explain the
risks and benefits of genetic testing, and informed consent
was obtained from their parents. The study followed the
tenets of the Declaration of Helsinki.

Demographic details and information on personal and
family medical history were recorded and used to determine
the inheritance pattern and to draw pedigrees according to
the recommendations of the National Society of Genetic
Counselors [17] using the HaploPainter software [18].

Genetic testing was performed at MAGI’s Laboratories
(MAGI - Human Medical Genetics Institute, Rovereto and
Bolzano, Italy). Extracted DNA (Blood DNA Kit E.ZZN.A;
Omega Bio-Tek Inc., Norcross, GA, USA) underwent
polymerase chain reaction (PCR) to amplify all coding
regions and the intron/exon junctions of the FZD4
(OMIM *604579, NM_012193), LRP5 (OMIM *603506,
NM_002335), TSPANI12 (OMIM *613138, NM_012338),
and NDP (OMIM *300658, NM_000266) genes. Purified
products were sequenced with a Beckman Coulter CEQ
8000 sequencer (Beckmann Coulter, Milano, Italy). All
laboratory protocols are available on request.

The electropherograms of amplified fragments were
analyzed using ChromasPro 1.5 (Technelysium Pty. Ltd.,
Australia) and Sequencher 5.0 (Gene Codes®; Ann Arbor,
MI, USA) software and compared to GenBank reference
sequences with the Basic Local Alignment Search Tool
(BLAST; http://blast.ncbi.nlm.nih.gov). All detected genetic
variations were sequenced bidirectionally at least twice
for confirmation.

To identify variants previously reported as pathogenic,
the Human Gene Mutation Database (HGMD; http://
www.biobase-international.com/product/hgmd) was con-
sulted. To evaluate Minor Allele Frequencies (MAF) in
populations, all discovered genetic variants were also
looked up in the public database of single-nucleotide variants
(dbSNP; www.ncbi.nlm.nih.gov/SNP/) and the Exome
Variant Server (EVS; http://evs.gs.washington.edu/EVS/)
database. New nucleotide variations were assessed for patho-
genicity using the PolyPhen 2 algorithm (Polymorphism
Phenotyping v2; http://genetics.bwh.harvard.edu/pph2)
considering the HumVar-trained model [19], the SIFT
algorithm (Sorting Intolerant From Tolerant; http://sift.
bii.a-star.edu.sg/) [20] and MutationTaster (http://www.
mutationtaster.org) [21]. Defective splicing was evaluated
using the Human Splicing Finder online software version
3 (http://www.umd.be/HSF3/HSF.html) [22]. When possi-
ble, wild-type amino acid properties were compared with
the variations (http://www.russelllab.org/aas/aas.html) [23].

Variants were reported following the current nomencla-
ture as described by the Human Genome Variation Society
(http://www.hgvs.org/mutnomen/recs.html).

To classify sequence variants, we used the criteria by
the American College of Medical Genetics and Genomics
(ACMG) Standards and Guidelines [24].
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TaBLE 1: Features of genetic variations found in FEVR families.

Family ID
Gene

Genotype Nucleotide change Amino acid change SIFT Polyphen Mutation taster

Classification References

Fam. 1
FZD4 Het
NM_012193

Fam. 2
FZD4 Het
NM_012193

Fam. 3
FZD4 Het
NM_012193

Fam. 4
NDP Hemi
NM_000266

Fam. 5
NDP Hemi
NM_000266

Fam. 6
TSPANI12 Het
NM_012338

c.277C>T p-(GIn93™)

c.542G>A p.(Cys181Tyr)
c.611G>T p-(Cys204Phe)
c.362G>A p.(Argl121Gln)
¢.313G>C p-(Alal05Phe)

c.67-2A>G Defective splicing

T PrD DC

D PrD DC

D PrD DC

D PrD DC

Pathogenic Novel variant
Pathogenic [31]

Likely pathogenic Novel variant
Pathogenic [25]

Likely pathogenic Novel variant

Likely pathogenic Novel variant

(ii) /v

1
E+ (FZD4 p.[(GIn93*)];[=])

2
E+ (FZD4 p.[(GIn93")];[=])

FIGURE 1: Pedigree and ocular features of family 1. Color fundus photographs by RetCam and fluorescein angiograms from the 9 y/o male
proband (II:1) of family 1. The RE presented normal posterior pole; however, the fluorescein angiography showed a large area of avascular
retina in the peripheral retina (FEVR stage 1). No signs of neovascularization or peripheral exudation were noticed. The LE presented a
falciform retinal fold anchored to the temporal retinal sector without signs of peripheral exudation (FEVR stage 3A). *Documented
clinical evaluation; E+ and E—, positive and negative to genetic test, respectively; RE, right eye; LE, left eye.

3. Results

Genetic testing revealed that 6 out of 8 (75%) probands had a
genetic variation in one of the genes analyzed. Consequently,
a segregation study was performed by extending clinical and
genetic analyses to a total of 10 relatives.

Pedigree analysis of patients with inherited forms of the
disease led to the classification of four autosomal dominant
cases of FEVR (FZD4 and TSPANI2 variations) and one
X-linked FEVR proband (NDP variation) (see Table 1).

None of the patients showed variations in the LRP5 gene.

No MAF are reported for the identified variants in all the
questioned database.

In silico evaluation of genetic variations identified in
FEVR families; genotype heterozygous (Het), hemizygous

(Hemi); SIFT score system: tolerated (T), deleterious (D);
Polyphen 2 score system: benign (B), possibly damaging
(PoD), probably damaging (PrD); Mutation Taster score
system: polymorphism (P), disease causing (DC); VUS:
variation of unknown significance.

3.1. Family 1. The male proband (II:1) came to our attention
only recently at the age of nine years.

Previously performed fluorescein angiography with
RetCam showed a large avascular area in the peripheral
retina without signs of neovascularization or peripheral
exudation in his right eye and a falciform retinal fold
anchored to the temporal retinal sector without signs of
peripheral exudation in the left eye (Figure 1). The patient
was diagnosed with stage 1 and stage 3A FEVR in the right
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FIGURE 2: Pedigree and ocular features of family 2. Red-free images and fluorescein angiograms from the proband’s father (I:1) showing
similar findings in both eyes consisting of slight abnormalities of the peripheral retinal vasculature as indicated by the arrows. The
posterior pole and the mid periphery were normal. Daytona wide-field color fundus photos and OCT scan of the proband (II:1) at the age
of 2 years showing the presence of a falciform fold and peripheral avascular retina in the RE. The wide-field angiography of the LE (early
and late phases) revealed a normal posterior pole and a severe leakage from undiscovered peripheral neovascular networks that were
treated promptly to avoid exudation and visual impairment. *Documented clinical evaluation; E+ and E—, positive and negative to genetic
test, respectively; lasymptomatic/presymptomatic carrier (stage 1 FEVR); RE, right eye; LE, left eye.

and left eyes, respectively. Clinical conditions are currently
stable, and visual acuity is 0.0 LogMAR in the right eye and
1.0 LogMAR in the left eye. It was not possible to perform a
complete clinical examination on the proband’s mother
(I:2) and father (I:1). The last fundus examination of the
mother showed normal retinal features; however, we could
not proceed with any instrumental examinations due to the
patient’s refusal to undergo further testing.

Genetic testing revealed that the proband and his mother
were heterozygous for the new p.(GIn93*) variation in the
FZD4 gene.

3.2. Family 2. This male proband (II:1) presented exotropia
of the right eye at the age of 2 years. Ophthalmological
examination under general anaesthesia showed inoperable
falciform fold in the right eye and vascular alterations in
the left eye. The patient was diagnosed with stage 3 and stage
2 FEVR in the right and left eyes, respectively. At the age
of 3 years, scleral buckle, cryo treatment, and laser treat-
ment for retinal detachment were performed in the right
eye and laser treatment of the retinal periphery in the left
eye. After a period of clinical stationary conditions, at the
age of 5 years, the patient required further laser treatment
in the left eye due to reactivation of the disease. Visual
acuity is currently 0.1 and 0.2 LogMAR in the right and
left eye, respectively.

The fundus examination of the father (I:1) showed slight
abnormalities of the peripheral retina suggesting a condition
of FEVR healthy carrier.

Genetic testing revealed that the proband and his father
were heterozygous for a variation of the gene FZD4,
p-(Cys181Tyr); the mother was not assessed. Figure 2 shows
the autosomal dominant transmission of the variant
p-(Cys181Tyr) in the FZD4 gene and the clinical features of
the family.

3.3. Family 3. The proband (II:2), a 19 y/o male, presented
disease onset at the age of 13 years, with bilateral exudative
retinopathy associated with slight visual acuity reduction.
In detail, the patient showed exotropia of the right eye from
early infancy and visual acuity of 0.1 LogMAR in both eyes.
At the age of 13 years, he suffered a sharp decline in visual
acuity (0.3 LogMAR in both eyes), associated with hard
retinal exudates in the temporal periphery at the fundus
examination. Based on the presence of posterior hyaloid con-
traction, macular edema, macular dragging, and accentuated
peripheral exudation in both eyes, bilateral stage 4A FEVR
was postulated. A few months after diagnosis, the patient
underwent vitrectomy, cryo treatment, and injection of
humanized anti-VEGF monoclonal antibody (Bevacizumab)
in both eyes.

The patient was monitored every 6 months for the
following three years by visual acuity measurements, OCT
scans, and fluorescein angiographies. Since the peripheral
exudations remained active, with angiographic evidence
of leakage, the patient underwent multiple sessions of
Argon laser, cryo treatment, and Bevacizumab injections
(Figure 3). At the time of this report, visual acuity was
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F1GURE 3: Pedigree and ocular features of family 3. Daytona wide-field color fundus photos and OCT scans of the proband (II:2) at the age of
19 years with bilateral exudative manifestation of FEVR stage 4A. Peripheral retinal signs of cryo treatment and Argon laser barrage,
performed after evidence of fluorangiographic leakage, can be seen in the inferior temporal sectors in both eyes. Daytona wide-field color
fundus photographs of the proband’s mother (I:2), showing treatment with Argon laser in the retinal periphery of both eyes. Angiograms
from the posterior pole and from the midperiphery do not present signs of disease’s activity after laser treatment. *Documented clinical
evaluation; E+ and E—, positive and negative to genetic test, respectively; RE, right eye; LE, left eye.

(i)

I /

E+ (NDP p.[(Argl121GIn)]) E+ (NDP p.[(Argl121Gln)])

FI1GURE 4: Pedigree and ocular features of family 4. Fluorescein angiograms by RetCam from the 7 y/o male proband (II:2) of family 4, showing
FEVR stage 2B with slight optic nerve pallor, areas of chorioretinal atrophy due to previous laser treatment and a persisting small area of
leakage in the peripheral retina of the RE. Color fundus photographs by RetCam of the LE with FEVR stage 3B clearly show the presence
of a falciform fold arising from the optic nerve head, with partial traction on the surrounding retina. Stage 3A FEVR of the proband’s
older brother (II:1) is shown in the color fundus photograph from his LE. Macular OCT images of proband’s father and mother are also
shown in upper left and upper right quadrants of figure, respectively. The mother’s exam shows a slight reduction of macular thickness.
*Documented clinical evaluation; E+ and E—, positive and negative to genetic test, respectively; .obligate carrier; RE, right eye; LE, left eye.

0.1 LogMAR in both eyes without signs of pathological ~ 3.4. Family 4. This 7 y/o male proband (II:2) came to our
activity for the last three years. attention at the age of one year presenting congenital sensory

The proband’s father (I:1) and sister (II:1) are healthy,  nystagmus. Ophthalmological examination under sedation
whereas his mother (I:2), 52 years old, was diagnosed  revealed the presence of a falciform fold arising from the
with stage 2B FEVR and related mild macular edema at  optic nerve head, with partial traction on the surrounding

the age of 46. Both eyes were treated with Argon laser,  retina in the left eye and slight optic nerve pallor with areas
and her current visual acuity is 0.0 LogMAR in both  of chorioretinal atrophy due to previous laser treatment in
eyes (Figure 3). the peripheral retina in the right eye. Consequently, stages

Autosomal dominant inheritance was suspected before ~ 3B and 2B FEVR were diagnosed in the left and right eyes,
genetic evaluation (Figure 3). Genetic evaluation showed that ~ respectively. A fluorescein angiography exam performed
the proband and his mother were heterozygous for a new  with RetCam showed a small area of hyperfluorescence next
p.(Cys204Phe) variant in the FZD4 gene, while the father =~ to the laser-treated areas, which required further laser
and the sister were negative to the test. treatment (Figure 4). At subsequent examinations, both eyes



0 O

(i)

/[ 1

E+ (NDP p.[(Alal05Phe)])

Journal of Ophthalmology

FI1GURE 5: Pedigree and ocular features of family 5. Color fundus photographs by RetCam from the 3 y/o male proband (II:1) of family 5
showing a closed funnel total retinal detachment in the right eye and peripheral exudation with vascular abnormalities before and after
laser treatment in the left eye. Fluorescein angiograms performed with RetCam before and after laser treatment showing peripheral
ischemic areas with leakage mainly in temporal and inferior peripheral retina in the left eye. Top right, OCT macular scans from the
proband’s mother (I:2) showing normal retinal features. *Documented clinical evaluation; E+, positive to genetic test; RE, right eye; LE,
left eye; LE*, images taken at a subsequent examination after the laser treatment.

were stable. At the orthoptic examination, torticollis due to
nystagmus with the face rotated to the right to favour fixation
of the right eye in adduction was found. Visual acuity was
0.1 LogMAR in the left eye and 0.4 LogMAR in the right
eye, respectively.

The proband’s 10 y/o brother (II:1) was diagnosed with
bilateral retinal dystrophy and falciform retinal fold at the
age of three, suggesting a stage 3A FEVR (Figure 4). The left
eye also showed a slight posterior opacity of the lens while the
ectopic pupil was visible in the right eye. Visual acuity was
lower than 0.1 LogMAR in both eyes.

The children’s parents have visual acuities of 0.0 Log-
MAR in both eyes. The father’s fundus was normal, whereas
the mother showed slight mottling of the retinal pigmen-
ted epithelium, more evident at the periphery. Full-field
electroretinography was within normal limits in the par-
ents, though the mother’s scotopic ERG responses were
borderline and her macular OCT scans showed a reduction
of foveal thickness suggesting a condition of asymptomatic
carrier (Figure 4).

Genetic testing revealed the p.(Arg121Gln) variant in the
NDP gene, already associated in literature with Norrie disease
(MIM *310600) [25] (Figure 4).

3.5. Family 5. The 3 y/o male proband (II:1) came to our
attention at the age of four months presenting leukocoria
in the right eye. The fundus examination under sedation
showed an inoperable macula-involving retinal detachment
with subretinal exudate in the right eye and peripheral
exudation with vascular abnormalities in the left eye. A
fluorescein angiography exam performed with RetCam
showed peripheral ischemic areas with leakage mainly in
temporal and inferior peripheral retina which required
laser treatment in the left eye. Consequently, stages 4B
and 1B FEVR were diagnosed in the right and left eyes,

respectively. At subsequent examinations, the right eye
progressed into a closed funnel total retinal detachment
whereas the left eye was stable. The child’s father could
not be examined while the mother showed a visual acuity
0f 0.0 LogMAR in both eyes. Her fundus was normal present-
ing only a slight mottling of the retinal pigmented epithelium
in the peripheral retina. Full-field electroretinography and
macular OCT scans were within normal limits in both eyes.
(Figure 5). Genetic testing revealed that the proband and
his mother (I:2) have a p.(Alal05Phe) variation in the
NDP gene.

3.6. Family 6. The 7 y/o male proband (II:1) was periodically
monitored for visual loss due to FEVR since the age of one.
The fundus examination under sedation showed a falciform
retinal fold arising from the optic nerve head, involving the
macula and anchored in the temporal periphery in his left
eye (Figure 6). No exudation was evident near the fold or
the temporal or nasal periphery. Based on aforementioned
clinical data, stage 3A FEVR was postulated. No significant
changes were found at the subsequent follow-up. The
ophthalmological examination performed at the age of three
showed residual visual acuity of 1.0 LogMAR in both eyes.
The proband’s father did not present any sign of ocular
pathology while the mother was diagnosed with stage 1
FEVR in both eyes.

Genetic testing revealed the heterozygous IVS2 c.67-
2A>G variant in the TSPANI2 gene, and the same variant
was found in the proband’s mother (I:2), thus configuring
an autosomal dominant transmission (Figure 6).

4. Discussion

In the present work, we reported the clinical findings and
the genetic analysis from a cohort of 6 unrelated Italian
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FIGURE 6: Pedigree and ocular features of family 6. RetCam color
fundus photograph from the LE of the 7 y/o male proband (II:1)
of family 6, showing FEVR stage 3A for the presence of a
falciform retinal fold arising from the optic nerve head, involving
the macula and anchored in the temporal periphery without signs
of exudation. *Documented clinical evaluation; E+ and E-,
positive and negative to genetic test, respectively. |Asymptomatic/
presymptomatic carrier (stage 1 FEVR); LE, left eye.

families made up of 6 probands and 10 family members,
thus presenting the results from the largest cohort of Italian
FEVR families and data from four novel genetic variants
linked to FEVR.

Retinal vascularization during eye development and
maintenance of its normal architecture are processes finely
orchestrated by the Norrin/fB-catenin signaling pathway.
This pathway is distinguished from the Wingless (Wnts)
signaling pathways, which include a large family of ligands
and are involved in many cell processes, and is specific for
the development and maintenance of the retinal vasculature.
The bond in NDP is in fact highly specific for the receptor
complex FZD4-LRP5 [26] while TSPAN12 is required for
FZD4/f-catenin signaling induced by Norrin. Moreover,
TSPAN12 expression is restricted to the vasculature within
the retina [27].

Aberrations and malfunctioning of this signaling system
affect the development of the retinal vasculature, and this
translates into a variety of eye diseases such as Norrie disease,
FEVR, and retinopathy of prematurity [5, 6, 28]. All these
disorders are clinically and genetically heterogeneous.
Nucleotide alterations in the genes’ coding for fundamental
components of this signaling pathway, such as NDP growth

factor (NDP gene), FZD4 receptor (FZD4 gene), LRP5
coreceptor (LRP5 gene), and tetraspanins (TSPANI2 gene)
are described as associated with different pathological
phenotypes, ranging from mild to severe, even in the same
family, or with clinically indistinguishable patterns caused
by variations in different genes.

Our genetic testing investigated on the four genes most
widely associated in literature with FEVR: NDP, FDZ4,
LRP5, and TSPANI2 [3].

In the present report, families 1, 2, and 3 had three
different heterozygous variants in the FZD4 gene. FZD4
codes for FZD4, a member of the Frizzled family of seven-
transmembrane Wnt-binding receptors. The binding of
Wnt or Norrin ligands with FZD4 in conjunction with
LRP5 coreceptors results in the activation of canonical f3-
catenin-dependent signaling. The N-terminal extracellular
cysteine-rich domain (CRD), conserved among Frizzled
family members, is necessary for binding to ligands [29].

The p.(GIn93*) variation in the FZD4 gene found in
family 1 introduces a premature stop codon, and therefore,
it is predicted to be pathogenic.

In families 2 and 3, the two variants are found in the
extracellular N-terminal domain of the receptor, in amino
acid positions 181 and 204, respectively. Both are presumably
downstream of the CRD required for ligand binding, accord-
ing to Smallwood et al. (ie., the 114-amino acid region
extending from the first to the tenth conserved CRD cyste-
ine) [30], but their importance is relevant because variations
in both codons, associated with a pathological phenotype,
have already been described in literature and both can
therefore be considered mutational hot spots.

The variant p.(Cys181Tyr) has already been described
by Drenser et al. and associated with autosomal dominant
FEVR [31]. The author concluded that this cysteine resi-
due is not known to form an intracellular disulphide
bond; it is nevertheless the 11th of 13 cysteine residues
that are conserved in vertebrates and may be required
for receptor dimerization [32], a function that may be
relevant to the mechanism of Wnt binding and signaling
[33]. In family 2, the healthy father, who carries this var-
iant, showed a subclinical phenotype (stage 1 FEVR). It is
well known that variations in this gene have complete
(100%) penetrance but variable expression: members of
the same family may have the same variant and show
different severities of the disorder or may have retinal
changes detectable only by diagnostic tools such as fluo-
rescein angiography. Moreover, the disease phenotype in
this family showed interesting aspects of FEVR pathology:
(1) an asymmetrical impairment of the retina, (2) the
importance of a follow-up in patients by fluorescein angi-
ography, even in case of a normal (left eye) posterior pole,
(3) the necessity of a different treatment approach for the
lesions depending on the stages of the disease, and (4) the
evidence that inactive lesions may later on constitute an
ophthalmological emergency (retinal detachment in the
right eye).

Similarly, variations in the 204 codon, as we found in
family 3, have already been associated with autosomal dom-
inant FEVR in two reports, one describing the amino acid



change p.(Cys204Arg) [34] and the other, the p.(Cys204Tyr)
change [35].

A functional study by Zhang et al. showed that FZD4
binding to NDP is disrupted by Cys204Arg, suggesting that
the CRD may be beyond the previously predicted region,
as described by Smallwood et al. [30], or that NDP bind-
ing to FZD4 requires the CRD plus additional residues,
C-terminal to the CRD [29]. The autosomal dominant
feature of FZD4 variants could be due either to haploin-
sufficiency or to a dominant-negative effect, as previous
findings suggest [36].

In family 4, the proband and the brother are affected by
an X-linked form of FEVR due to a variant in the NDP gene.
NDP is a protein ligand not belonging to the Wnt family
which recognises and binds with high affinity and specificity
to the CRD of FZD4 (and not to CRDs of the other 14
mammalian Frizzled and secreted Frizzled-related proteins)
[30] and activates the canonical signaling pathway [26].

The p.(Argl21Gln) variant in the NDP gene has already
been reported in literature, and the amino acid residue 121
seems to be a mutational hot spot. Indeed, the same amino
acid change from arginine to glutamine has been associated
with Norrie disease [25]; however, variants in the same
codon, specifically p.(Argl21Gly) [37] and p.(Argl21Trp)
[38], have been associated both with Norrie disease and
with X-linked FEVR, that is, the p.(Argl21Leu) [39] and
p-(Argl21Trp) variants [40].

Similarly, the p.(Alal05Phe) found in family 5 lies in a
mutational hot spot since two other variants in the same
codon, namely, the p.(Alal05Thr) and the p.(Alal05Glu),
were described as associated with Norrie Disease [13] and
FEVR [41], respectively.

Both variants found in families 4 and 5 are located in the
C-terminal end of the Norrie protein, probably affecting the
secondary structure and function of the protein.

Norrie disease is a complex disorder in which blindness
in early childhood may be accompanied by sensorineural
deafness and progressive mental retardation, inherited by
X-linked recessive transmission. Heterozygous carriers rarely
manifest clinical features of the disorder, though some cases
have been described [42, 43]. The absence of a syndromic
pattern with extraocular manifestations and preservation of
some vision suggested a diagnosis of FEVR rather than
Norrie disease, in both families.

Furthermore, the description of the same variant in sub-
jects with different clinical patterns may indicate the involve-
ment of other factors that might modify the phenotype.

In family 6, the proband and his mother harbour the
same heterozygous variant IVS2 ¢.67-2A>G in the TSPANI2
gene. TSPANI2 is a member of the tetraspanin superfamily
characterized by four transmembrane domains. It is a key
component of the NDP-FZD4-LRP5 signaling complex that
cooperatively promotes multimerization of FZD4 and its
associated proteins to elicit physiological levels of signaling
[27]. Both dominant and recessive variants in TSPAN12 have
been described in FEVR [8, 11].

The novel variant reported here is predicted to interfere
with the consensus sequence for the splice acceptor site of
intron 2, as confirmed using HSF.
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Poulter et al. described the ¢.67-1G>C variant in
both homozygous and heterozygous states in two FEVR
Indian cousins; the ¢.67-1G>G splice variant causes exon
3 deletion, resulting in a frameshift and a premature termina-
tion codon (p.Leu23GlyfsX66) [11]. Considering that the
€.67-2A>G variant reported in our work involves the same
acceptor splicing site, it is reasonable to expect the same
pathogenetic effect.

The severe clinical expression of the disease observed
in our patient is consistent with previous studies where
variations in TSPANI2 gene are reported to be associated
with very severe disease phenotypes [11, 27].

5. Conclusions

To our knowledge, this is the largest cohort study of Italian
FEVR patients. In the present retrospective study involving
different clinical sites, the probands and their family mem-
bers were clinically examined and identified by standard
diagnostic tests, albeit performed by different operators; this,
together with the limited observed population, impedes
critical analysis of the phenotypic differences associated
with the variations in different genes of the Norrin/
Frizzled signaling pathway in our group of FEVR patients.
Variations of the analyzed genes were found in 6 out of 8
(75%) patients, and four novel variants responsible for the
phenotype were identified.

The variants in the FZD4 gene found in families 1, 2, and
3 were associated with the mildest phenotype: in families 1
and 2, FEVR manifested with late onset and vision was
preserved in the affected family members, whereas in family
3, patients showed earlier disease onset with relatively pre-
served vision in the proband and mild loss of visual acuity
in the mother.

The X-linked FEVR variants involving the NDP gene in
families 4 and 5 are considered severe because they determine
an early onset of the disease with relevant retinal alterations.
Minimal signs of retinal abnormalities were detected also in
the mother of the two affected children who carried the same
variant in family 4, while in family 5, the variant exerted no
effects in the proband’s mother.

The variant in the TSPANI2 gene in family 6 caused a
very severe phenotype that manifested from the first months
of life with almost complete vision loss.

Our results are in agreement with the previously
described literature confirming that familial exudative
vitreoretinopathy presents a penetrance close to 100% [16]
but is clinically and genetically heterogeneous [12], even in
the same family [44]. Indeed, the two new heterozygous
variants found in the FZD4 gene and those in NDP and
TSPANI2 genes, respectively, were correlated with variable
phenotypical presentation ranging from relatively mild to
severe anatomical and functional impairment. Severity of
phenotype was dependent on gene involvement and site of
nucleotide variations.

Analysis of new genes recently found to be associated
with FEVR will make it possible to improve the understand-
ing of the pathogenesis of the disease.
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