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Sommario 

 

Mutazioni della proteina RBM20 sono state recentemente riportate causare la 

Cardiopatia Umana Dilatativa (DCM) (Brauch et al., 2009, Li et al., 2010). DCM 

è la causa principale di arresto cardiaco e mortalità nel mondo (Jefferies and 

Towbin, 2010). Complessivamente, il 25–50% dei casi di DCM sono mutazioni 

familiari e causative, descritte in più di 50 geni che codificano principalmente per 

componenti strutturali dei cardiomiociti. 

RBM20 appartiene alla famiglia delle proteine SR e proteine associate alle 

proteine SR, che si assemblano nello spliceosoma prendendo parte allo splicing 

del pre-mRNA. RBM20 è espressa principalmente nel muscolo striato, con i 

livelli più alti nel cuore (Guo et al., 2012). A causa del suo coinvolgimento nella 

DCM, RBM20 è stata molto studiata per svelare il suo meccanismo d’azione ed i 

suoi target sull’RNA (Guo et al., 2012, Li et al., 2013). Guo e colleghi, tramite 

un’analisi del trascrittoma su ratto e uomo, hanno riportato un gruppo di 31 geni 

che presentano uno splicing dipendente da RBM20 (Guo et al., 2012). Più 

recentemente, Maatz e colleghi hanno riportato un ulteriore gruppo di 18 geni di 

ratto ed osservato che le sequenze di RNA riconosciute da RBM20 molto 

probabilmente si trovano nei 400 nucleotidi fiancheggianti gli esoni il cui splicing 

alternativo è regolato da RBM20 (Maatz et al., 2014). Tuttavia, sia la sequenza di 

RNA suggerita per essere riconosciuta da RBM20, che la sua sovra 

rappresentazione nelle regioni fiancheggianti degli esoni affetti, rimangono 

predittori deboli per identificare i geni che presentano uno splicing alternativo 

regolato da RBM20. 

Lo scopo di questo lavoro è stato, perciò, quello di caratterizzare, attraverso un 

approccio bioinformatico, i motivi di sequenza degli esoni il cui splicing 

alternativo era regolato da RBM20, con l’intento di migliorare la predizione dei 

geni (esoni) influenzati da RBM20. 

È stata fatta un’analisi di espressione differenziale per selezionare il gruppo di 

esoni regolati da RBM20; un ulteriore gruppo di esoni è stato ricavato da dati 
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presenti in letteratura (Maatz et al., 2014). 

Una Macchina a Vettori di Supporto (SVM) è stata usata valutando più tipi di 

elementi genetici che possono legarsi nelle regioni fiancheggianti dei nostri esoni 

target. Si è scelto un approccio SVM per classificare gli esoni affetti e non affetti 

da RBM20, ma altri algoritmi di machine learning avrebbero potuto essere 

utilizzati; l’approccio SVM, comunque, è fra quelli più usati. Dalle analisi, il 

nostro modello è risultato discriminare bene gli esoni regolati da quelli non 

regolati da RBM20. 

Da un punto di vista biologico e funzionale, questo approccio ci aiuta ad 

individuare nuovi geni candidati associati a malattie che dipendono da una 

disregolazione di RBM20. 

Questo studio ha fornito informazione aggiuntiva sulla regolazione di RBM20 

degli esoni target, basandosi non solo sul sito di legame all’RNA, ma anche su 

altri elementi genetici associati al sito di legame. Inoltre, abbiamo proposto il 

primo modello basato su un algoritmo di SVM per la classificazione degli esoni 

regolati e non regolati da RBM20. 
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Abstract 

 

Mutations of RNA binding motif protein 20 (RBM20) have been recently reported 

to cause Human dilated cardiomyopathy (DCM) (Brauch et al., 2009, Li et al., 

2010). DCM is the major cause of heart failure and mortality around the world 

(Jefferies and Towbin, 2010). Overall, 25–50% of DCM cases are familiar and 

causative mutations which have been described in more than 50 genes encoding 

mostly for structural components of cardiomyocytes. 

RBM20 belongs to the family of the SR and SR-related RNA binding proteins 

which assemble in the spliceosome taking part in the splicing of pre-mRNA. 

RBM20 is mainly expressed in striated muscle, with the highest levels in the heart 

(Guo et al., 2012). Due to its involvement in DCM, RBM20 was studied a lot to 

unveil its mechanism of action and its RNA targets (Guo et al., 2012, Li et al., 

2013). Guo and colleagues reported a set of 31 genes showing a RBM20 

dependent splicing from a whole transcriptome analysis in rats and humans (Guo 

et al., 2012). More recently, Maatz and colleagues reported an additional set of 18 

rat genes and observed that RNA sequences recognized by RBM20 are likely to 

be located in the 400 nucleotides flanking the exons whose alternative splicing is 

regulated by RBM20 (Maatz et al., 2014). However, both the suggested RNA 

sequence which is recognized by RBM20 and its over-representation over the 

flanking regions of affected exons remain poor predictors to target genes 

presenting splicing events regulated by RBM20. 

The aim of this work was, thus, to characterize, through a bioinformatic approach, 

the sequence motifs of the exons whose alternative splicing was affected by 

RBM20, in order to ameliorate the prediction of the genes (exons) affected by 

RBM20. 

A differential expression analysis was performed to select the dataset of RBM20 

affected exons; a further dataset was retrieved from literature data (Maatz et al., 

2014). 

A Support Vector Machine (SVM) approach evaluating more kinds of genetic 
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elements binding in the flanking regions of our target exons was used. A SVM 

method was chose to classify RBM20 affected and not affected exons, but other 

machine learning algorithms could have been used as well; however, SVM is 

among the most commonly used ones. From the analyses, our model resulted to 

well discriminate RBM20 affected from not affected exons. 

From a biological and functional point of view, this approach helps us to target 

novel candidate genes associated to diseases depending on a dysregulation of 

RBM20. 

This study provided additional information about RBM20 regulation of target 

exons, based not only on the RNA binding site, but also on other genetic elements 

associated to the binding site. Furthermore, we proposed the first model based on 

a SVM algorithm for the classification of RBM20 affected and not affected exons. 
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1 Introduction 

 

1.1 Dilated cardiomyopathy 

1.1.1 A general overview 

Dilated cardiomyopathy (DCM) is a condition in which the heart becomes 

enlarged and cannot pump blood efficiently. The decreased heart function can 

affect the lungs, liver and other body systems. DCM is one of the 

cardiomyopathies, a group of diseases that affect primarily the heart muscle; in 

particular, it is the most common form of non-ischemic cardiomyopathy. Different 

cardiomyopathies have different causes and affect the heart in different ways. In 

DCM a portion of the myocardium is dilated, often without any obvious cause. 

Left or right ventricular systolic pump function of the heart is impaired, leading to 

progressive heart enlargement via ventricular hypertrophy and ventricular dilation, 

a process called ventricular remodelling (Jameson et al., 2005) (Figure 1). As the 

heart chambers dilate, the heart muscle doesn't contract normally and can't pump 

well blood, the heart becomes weaker and heart failure can occur. 

Common symptoms of heart failure include shortness of breath, fatigue and 

swelling of the ankles, feet, legs, abdomen and veins in the neck. Dilated 

cardiomyopathy also can lead to heart valve problems, arrhythmias (irregular 

heartbeats) and blood clots in the heart. 

DCM is the major cause of heart failure and significant source of mortality and 

morbidity worldwide (Jefferies and Towbin, 2010), it occurs more frequently in 

men than in women, in African-Americans than in Caucasians (Coughlin et al., 

1993), and it is most common from the ages of 20 to 60 years (Robbins et al., 

2003), even though sometimes it occurs in children too. 
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Figure 1. Differences of a normal heart from an heart with DCM (Blausen.com staff. 

"Blausen gallery 2014"). 
 

 

1.1.2 Causes of disease 

Although in many cases there is no apparent cause, DCM is probably the result of 

the damage to the myocardium produced by a variety of toxic, metabolic or 

infectious agents. It may be due to fibrous change of the myocardium from a 

previous myocardial infarction or it may be the consequence of acute viral 

myocarditis (Mitchell et al., 2007), possibly mediated through an immunologic 

mechanism (Martino et al., 1994). Other common causes include: Chagas disease 

due to Trypanosoma cruzi (this is the most common infectious cause of DCM in 

Latin America), pregnancy (DCM occurs late in gestation or from several weeks 

to months post-partum as a peri-partum cardiomyopathy; it is reversible in half of 

cases (Mitchell et al., 2007)), alcohol abuse (although the cause-and-effect 

relationship with alcohol alone is debated (Mitchell et al., 2007)), thyroid disease, 

muscular dystrophy, tuberculosis (Agarwal et al., 2005), autoimmune mechanisms 

(San Martin et al., 2002), and recently also an extremely high occurrence of 

premature ventricular contractions (extrasystole) (Shiraishi et al., 2002; 

Belhassen, 2005). 

 

1.1.3 Genetic causes of disease 

Estimates suggest that the 25–50% of DCM cases are familiar; indeed, causative 
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mutations have been described in more than 50 genes encoding mostly structural 

components of cardiomyocytes. Among the most prevalent, there are mutations in 

lamin A/C and beta-myosin heavy chain, each accounting for up to 10% of cases 

of familiar DCM in some series (Parks et al., 2008; Villard et al., 2005). 

The disease is genetically heterogeneous, but the most common form of 

transmission is an autosomal dominant pattern (Mitchell et al., 2007). Autosomal 

recessive, X-linked and mitochondrial inheritance of the disease were also found 

(Schönberger and Seidman, 2001). Some relatives of those affected by DCM have 

preclinical, asymptomatic heart-muscle changes (Mahon et al., 2005). 

Recently, a genetic linkage analysis in families with autosomal dominant DCM 

led to the discovery of heterozygous missense mutations in an arginine/serine-rich 

(RS) domain of RNA binding motif protein 20 (RBM20). Subsequent profiling of 

a large cohort of idiopathic DCM patients identified additional missense 

mutations, all of which cluster within an RS-rich protein domain (Brauch et al., 

2009). Mutations in RBM20 represent at least 3% of idiopathic DCM cases (Guo 

et al., 2012) and over 13% of those with a history of sudden cardiac death (SCD) 

(Marwan et al., 2012). 
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1.2 Splicing 

1.2.1 Introduction 

The most of the eukaryotic genes are formed by coding regions, called exons, and 

not coding regions, called introns; exons and introns are alternated. The genetic 

information contained in DNA is transcribed in pre-mRNA, which becomes 

mRNA only after post-transcriptional modifications. One of them is splicing, the 

process which removes the introns from the pre-mRNA and joins the exons in the 

mRNA (Figure 2). Only when mRNA is mature it can be translated in the 

correspondent protein. 

 

 

 

Figure 2. Schematic representation of the splicing process (modified from 

http://lestrangebiologist.blogspot.it/2012/05/tarea-splicing.html). Introns (black lines) are 

removed and exons (coloured squares) are joined in the mature transcript (mRNA). 
 

 

Specific sequences are needed to let splicing happen: the boundary exon-intron at 

the 5’-end of the intron, called 5’-splice site or donor site, the boundary intron-

exon at the 3’-end of the intron, called 3’-splice site or acceptor site, and another 

sequence, called branch point, which is inside the intron, near the 3’-end of the 

intron, and it is followed by a polypyrimidine tract. The most preserved sequences 

are “GU” for the 5’-splice site, “AG” for the 3’-splice site and “A” for the branch 

point; all of them are inside introns and specific proteins are meant to recognize 

them. For the very few introns which have different sequences for splicing, other 

proteins exist in order to recognize also these sequences. 
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1.2.2 The spliceosome 

Splicing process can happen through reactions mediated by a molecular 

mechanism called spliceosome. It is composed by about 150 proteins and 5 RNA 

molecules (U1, U2, U4, U5 and U6; U3 is not involved in mRNA splicing). The 

RNAs are called small nuclear RNAs (snRNA) and form complexes RNA-

proteins with proteins of the spliceosome, called small nuclear ribonuclear 

proteins (snRNPs). The spliceosome composition varies during the different steps 

of the process: different snRNPs take part in the process in different moments, 

each of them with its own function. 

The role of snRNPs in splicing is three-fold: they recognize 5’-splice site and the 

branch point, bring them near, and catalyse the cut and the junction of pre-mRNA. 

Interactions RNA-RNA, protein-RNA and protein-protein are all necessary, but 

also some proteins which don’t form complexes with RNA are involved in 

splicing. One of these proteins is the U2 auxiliary factor (U2AF) which 

recognizes the polypyrimidine tract and the 3’-splice site. The other proteins help 

the interactions RNA-snRNP. 

 

1.2.3 General splicing mechanism 

In the splicing mechanism, U1 binds to the sequence GU at the 5’-end and U2 

binds to the sequence A within the branch site with the help of the U2AF protein. 

The complex at this stage is called spliceosome “A complex”. The formation of 

the “A complex” is usually the key step in determining the ends of the intron to be 

spliced out and defining the ends of the exon to be retained. U4, U5 and U6 join 

to the spliceosome, U6 replaces U1, and U1 and U4 leave. The remaining 

complex performs two trans-esterification reactions. In the first reaction, the 5’-

end of the intron is cleaved from the upstream exon and joined to the branch point 

A by a 2’,5’-phosphodiester bond; in the second reaction, the 3’-end of the intron 

is cleaved from the downstream exon and the two exons are joined by a 

phosphodiester bond. The intron is then released in loop form and degraded. 
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Splicing process is regulated by trans-acting proteins (repressors and activators) 

and corresponding cis-acting regulatory sites (silencers and enhancers, 

respectively) on the pre-mRNA. However, it was noted that the effects of a 

splicing factor are often position-dependent (Lim et al., 2011). The secondary 

structure of the pre-mRNA transcript is involved in splicing regulation too, such 

as by bringing splicing elements together or by masking a sequence that would 

otherwise serve as a binding element for a splicing factor (Warf and Berglund, 

2010; Reid et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic representation of factors implied in splicing repression and activation 

(modified from https://en.wikipedia.org/wiki/Alternative_splicing). a) The main splicing 

repressor proteins, hnRNPs, bind to ISS and ESS preventing the binding of the 

spliceosome proteins U2, U2AF and U1, in order to reduce the probability of a splicing 

event; the result is a mRNA containing only exons 1 and 3. b) The main splicing 

activators proteins, SR proteins, bind to ISE and ESE promoting the binding of the 

spliceosome proteins U2, U2AF and U1, in order to increase the probability of a splicing 

event; the result is a mRNA containing exons 1, 2 and 3. Blue and yellow squares: exons, 

black horizontal lines joining them: introns, green small squares: ISE or ESE, red small 

squares: ISS or ESS, red curve lines: repressor effect of hnRNPs, green curve lines: 

activator effect of SR proteins, blue thin lines: exons included in the final transcript. 

 

 

Splicing silencers (Figure 3a) are cis-acting regulatory sites to which trans-acting 

repressor proteins bind, in order to reduce the probability that a nearby site will be 

used as a splice junction. They can be located in the intron itself (intronic splicing 
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silencers, ISS) or in a neighbouring exon (exonic splicing silencers, ESS). They 

have variable sequence, as well as the types of proteins which bind to them. The 

most of splicing repressors are heterogeneous nuclear ribonucleoproteins 

(hnRNPs), such as polypyrimidine tract binding protein (PTB). Splicing 

enhancers (Figure 3b) are cis-acting regulatory sites to which trans-acting 

activator proteins bind, in order to increase the probability that a nearby site will 

be used as a splice junction. They also may occur in the intron (intronic splicing 

enhancers, ISE) or the exon (exonic splicing enhancers, ESE). The main splicing 

activator proteins are members of the SR protein family. Such proteins contain 

RNA recognition motifs and arginine and serine-rich (RS) domains (Matlin et al., 

2005; Wang and Burge, 2008). 

In general, the determinants of splicing work in an inter-dependent manner that 

depends on the presence of other RNA sequence features and on cellular 

conditions. 

Some cis-acting RNA sequence elements influence splicing only if multiple 

elements are present in the same region, and a cis-acting element can have 

opposite effects on splicing, depending on which proteins are expressed in the 

cell. The adaptive significance of splicing silencers and enhancers is attested by 

studies showing that there is strong selection in human genes against mutations 

that produce new silencers or disrupt existing enhancers (Fairbrother et al., 2004; 

Ke et al., 2008). 

 

1.2.4 Alternative splicing 

Alternative splicing is a kind of splicing in which not only introns are removed, 

but sometimes also the exon between the introns, with the aim of obtaining 

different mRNA from the same initial pre-mRNA. In this way, a single pre-

mRNA transcript can code for more proteins, different from each other and often 

with different biological functions (Figure 4). 

The choice of a particular splice site depends on the presence of silencers or 
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enhancers in the sequence and on the trans-acting proteins which bind them. 

This mechanism explain why in the higher organisms there is not linear relation 

between the number of genes and the number of proteins in the organism; in 

humans, alternative splicing allows the genome to direct the synthesis of many 

more proteins than would be expected from its 20,000 protein-coding genes. 

Alternative splicing occurs as a normal phenomenon in higher eukaryotes (Black, 

2003) (in humans, about 95% of multi-exonic genes are alternatively spliced (Pan 

et al., 2008)) and it is involved in evolution too (Keren, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of alternative splicing (modified from 

https://en.wikipedia.org/wiki/Alternative_splicing). Protein A is formed by all exons, 

protein B lacks exon 3 and protein C lacks exon 4. The different mRNAs code for 

proteins with different domains and so with different functions too. 

 

 

There are 5 main kinds of alternative splicing (Black, 2003; Pan et al., 2008; 

Matlin et al., 2005; Sammeth, 2008) (Figure 5): 

1. exon skipping or cassette exon: in this case, an exon may be spliced out of 

or retained in the primary transcript; this is the most common model in 

mammalian pre-mRNAs; 

2. mutually exclusive exons: one of two exons is retained in mRNAs after 

splicing, but not both; 

3. alternative donor site: an alternative 5’-splice site (donor site) is used, 
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changing the 3’-boundary of the upstream exon; 

4. alternative acceptor site: an alternative 3’-splice site (acceptor site) is used, 

changing the 5’-boundary of the downstream exon; 

5. intron retention: a sequence may be spliced out as an intron or retained; it 

is distinguished from exon skipping because the retained sequence is not 

flanked by introns. This is the rarest model in mammals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. The 5 main kinds of alternative splicing (modified from 

https://en.wikipedia.org/wiki/Alternative_splicing). Blue and yellow squares: exons, 

black lines joining them: introns, blue thin lines: exons included in the final transcript. 

The final transcript will include exons: a) 1-2-3 or 1-3, b) 1-2-4 or 1-3-4, c) 1-3 or 2-3, d) 

1-2 or 1-3, e) 1-2-3 or 1-3. 

 

 

In addition to these main kinds of alternative splicing, there are two other main 

mechanisms by which different mRNAs may be generated from the same gene: 

6. multiple promoters: is properly described as a transcriptional regulation 
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mechanism rather than alternative splicing; by starting transcription at 

different points, transcripts with different 5’-starting exons can be 

generated; 

7. multiple polyadenylation sites: provide different 3’-end points for the 

transcript. 

Both of these mechanisms are found in combination with alternative splicing and 

provide additional variety for the mRNAs derived from the same gene. 

 

1.2.5 Alternative splicing and disease 

Changes in the RNA processing machinery may lead to mis-splicing of multiple 

transcripts, while single-nucleotide alterations in splice sites or in cis-acting 

splicing regulatory sites may lead to differences in splicing of a single gene and 

thus in the mRNA produced from a mutant genic transcript. 

A number of splicing-related diseases do exist (Ward and Cooper, 2010). A study 

in 2005 found that more than 60% of mutations which cause human diseases 

affect splicing rather than directly affecting coding sequences (Lopez-Bigas et al., 

2005); a more recent study indicates that one-third of all hereditary diseases are 

likely to have a splicing component (Lim et al., 2011). Also chromatin structure 

and histones modifications could have a key role in the regulation of alternative 

splicing, so epigenetic regulation could determine not only what parts of the 

genome are expressed but also how they are spliced (Luco et al., 2011). 

 

1.2.6 Alternative splicing at genome level 

Genome-wide analysis of alternative splicing is a challenging task. Typically, 

alternatively spliced transcripts were found by comparing EST sequences, but this 

required sequencing of very large numbers of ESTs. Thus, high-throughput 

approaches to investigate splicing have been developed: DNA microarray-based 

analyses, RNA-binding assays and deep sequencing. These methods can be used 

to screen for polymorphisms or mutations in or around splicing elements which 
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affect protein binding. 

Results from use of deep sequencing indicate that, in humans, an estimated 95% 

of transcripts from multi-exon genes undergo alternative splicing, with a number 

of pre-mRNA transcripts spliced in a tissue-specific manner (Pan et al., 2008). In 

order to predict functions for alternatively spliced isoforms, functional genomics 

and computational approaches based on multiple instance learning have also been 

developed integrating RNA-seq data (Eksi et al., 2013). Deep sequencing has also 

aided in the in vivo detection of the transient loops which are released during 

splicing, in the determination of branch site sequences, and the large-scale 

mapping of branch points in human pre-mRNA transcripts (Taggart et al., 2012). 
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1.3 RNA binding motif protein 20 

1.3.1 SR proteins 

SR proteins are required for constitutive pre-mRNA splicing and also regulate 

alternative splice site selection in a concentration-dependent manner (Cáceres et 

al., 1997), being involved in the assembly of the spliceosome machinery. The 

choice of splice sites depends on the relationship between the particular SR 

protein and the cis-acting factors within the exonic or intronic sequences. These 

protein contain an RS domain, which is a region of variable length rich in 

repetitive arginine-serine dipeptides, and one or two N-terminal RNA recognition 

motifs (RRMs), which enable their interaction with a particular pre-mRNA and 

can be highly phosphorylated on their serine residues (Sahebi et al., 2016). 

 

1.3.2 RBM20 

RNA binging motif protein 20 (RBM20) belongs to the family of the SR and SR-

related RNA binding proteins. RBM20 is mainly expressed in striated muscle, 

with the highest levels in the heart (Guo et al., 2012). Recently, mutations in 

RBM20 have been shown to cause human dilated cardiomyopathy (DCM) 

(Brauch et al., 2009, Li et a. 2010). RBM20-DCM is a novel example of heart 

failure owing to a global defect in post-transcriptional regulation (Wyles et al., 

2016). Due to the involvement of RBM20 in DCM, this protein was studied a lot 

in order to unveil its mechanism of action and its RNA targets (Guo et al., 2012; 

Li et al., 2013). 

In vitro and in vivo animal studies have significantly contributed to characterize 

the structural and functional pathogenesis of RBM20 deficiency. Disease 

pathology recapitulated in RBM20 loss-of-function and deletion models involves 

altered splicing of numerous genes including several linked to cardiomyopathy, 

ion transport and contractile function (Guo et al., 2012; Guo et al., 2013; Beraldi 

et al., 2014). A naturally occurring loss-of-function RBM20 deletion in rats 

demonstrated that RBM20 plays a major role in alternative splicing in cardiac 
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adaptive responses mediated by Titin (Ttn) and Calcium/Calmodulin-dependent 

protein kinase II (Camk2δ) (Guo et al., 2012; Beraldi et al., 2014). Deficient 

RBM20 resulted in impaired both sarcomere organization and ion transport in the 

sarcoplasmic reticulum, and premature cell death. Additionally, knock-down 

studies in murine cells revealed RBM20-deficient cardiogenesis attributable to 

early disruption of RNA processing and sarcomere remodeling, establishing its 

pathogenesis as a developmental disorder (Beraldi et al., 2014). A general 

workflow of RBM20 regulation is displayed in Figure 6. 

 

Figure 6. Loss-of-function mutations in the splicing factor RBM20 cause DCM via the 

pathological splicing of cardiac proteins (Linke and Bücker, 2012). From botton to up 

of the figure: DNA is transcribed into pre-mRNA, from which introns are removed and 

exons reconnected in multiple ways to generate mature mRNA; the mature mRNA is then 

exported from the nucleus and translated into protein. a) In a healthy heart, splice factors 

such as RBM20 are part of the machinery which controls mRNA splicing patterns. b) 

Loss-of-function mutations in RBM20 result in aberrant mRNA splicing patterns of 

cardiac proteins, for example by the inclusion of a different alternative exon (shown in 

red). Mis-spliced mRNAs are exported from the nucleus, leading to the expression of 

pathological protein isoforms in cardiomyocytes. Among the proteins with aberrant exons 

splicing patterns in RBM20-mutant hearts were found Titin (TTN), protein kinase 

CaMKIIδ, the sarcomere-associated protein Cypher (PGM1 can no longer bind Cypher), 

triadin (TRDN), sorbin and SH3 domain–containing protein-1 (SORBS1), and the α1C 

subunit of the L-type calcium channel (CACNA1C). The result is a dilated heart. 
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For this study, we focused on a set of 18 rat genes whose alternative splicing was 

regulated by RBM20 (Maatz et al., 2014). Furthermore, RBM20 RNA binding 

site sequence pattern at nucleotide resolution was revealed and a significant over-

representation of the site was found to map in the 400 nucleotides flanking the 

exons whose alternative splicing is regulated by RBM20 (Maatz et al., 2014). A 

detailed rule about RBM20 regulation on target exons is, nevertheless, so far 

unknown. 
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1.4 RNA sequencing 

1.4.1 Introduction 

Initial gene expression studies relied on low-throughput methods, such as northern 

blots and quantitative polymerase chain reaction (qPCR), that are limited to 

measuring single transcripts. The initial transcriptomics studies were performed 

using hybridization-based microarray technologies which provide a high-

throughput option at relatively low cost (Schena et al., 1995). However, these 

methods present several limitations: they need to know a priori the sequences 

being queried, problematic cross-hybridization artefacts in the analysis could 

happen due to possible highly similar expressed sequences (i. e. paralogue genes), 

and quantification of both lowly and highly expressed genes could result 

problematic (reduced dynamic range) (Casneuf et al., 2007; Shendure, 2008). 

In contrast to hybridization-based methods, sequence-based approaches have been 

developed in order to elucidate the transcriptome by directly determining the 

transcript sequence. Initially, the generation of expressed sequence tag (EST) 

libraries by Sanger sequencing of complementary DNA (cDNA) was used in gene 

expression studies, but this approach is relatively low-throughput and not ideal for 

transcripts quantification (Adams et al., 1991; Itoh et al., 1994; Adams et al., 

1995). 

To overcome these technical constraints, tag-based methods, such as serial 

analysis of gene expression (SAGE) and cap analysis of gene expression (CAGE), 

were developed with the aim to enable higher throughput and more precise 

quantification of expression levels. The fact that these tag-based methods quantify 

the number of tagged sequences, which directly corresponded to the number of 

mRNA transcripts, provides advantages over measuring analogue intensities as in 

array-based methods (Velculescu et al., 1995; Shiraki et al., 2003). However, 

these assays are insensitive to measuring expression levels of splice isoforms and 

can't be used for novel gene discovery. Their use was further limited due to the 

laborious cloning of sequence tags, the high cost of automated Sanger sequencing 

and the requirement for large amounts of input RNA (Kukurba and Montgomery, 

2015). 
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The development of high-throughput next-generation sequencing (NGS) 

revolutionized transcriptomics by enabling RNA analysis through the direct 

sequencing of complementary DNA (cDNA) (Wang et al., 2009). Global gene 

expression measurement based on NGS (RNA-Seq) is able to identify and 

quantify all the individual transcripts (known and unknown) in any cell type at 

any time (for instance, drug time course experiments). It has distinct advantages 

over previous approaches. Specifically, RNA-Seq facilitates the ability to look at 

alternative gene spliced transcripts, post-transcriptional modifications, gene 

fusion, mutations and changes in gene expression over time, differences in gene 

expression in different groups or treatments, and allele-specific expression (Maher 

et al., 2009). In addition to precursor messenger RNA (pre-mRNA) and 

messenger RNA (mRNA) transcripts, RNA-Seq can look at different populations 

of RNAs including total RNA, ribosomal RNA (rRNA), transfer RNA (tRNA), 

small nuclear RNA (snRNA), and many others (Ingolia et al., 2012). RNA-Seq 

can also be used to determine exon-intron boundaries and verify or correct 

previously annotated 5’- and 3’-gene boundaries. Recently, advances in the RNA-

Seq workflow, from sample preparation to sequencing platforms to bioinformatic 

data analysis, have enabled deep profiling of the transcriptome and the 

opportunity to elucidate different physiological and pathological conditions 

(Kukurba and Montgomery, 2015). 

 

1.4.2 Transcriptome sequencing 

The introduction of high-throughput next-generation sequencing (NGS) 

technologies revolutionized transcriptomics. A typical RNA-Seq experiment 

consists of isolating RNA, converting it to complementary DNA (cDNA), 

preparing the sequencing library, and sequencing it on an NGS platform (Kukurba 

and Montgomery, 2015) (Figure 7). 
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Figure 7. Workflow of transcriptome sequencing for RNA-Seq experiments (modified 

from Kukurba and Montgomery, 2015). a) RNA is extracted from the biological 

material of choice (e.g., cells, tissues). b) Second, subsets of RNA molecules are isolated 

using the specific protocol for each RNA specie, such as the Poly-A selection protocol to 

enrich for polyadenylated mRNA transcripts, or a Ribo-depletion protocol to remove 

rRNAs, or a selection based on RNAs size. c) RNA is then converted to complementary 

DNA (cDNA) by reverse transcription and d) sequencing adaptors are ligated to the ends 

of the cDNA fragments. e) Following amplification by PCR, the RNA-Seq library is 

ready for sequencing. 

 

The first step in transcriptome sequencing is the isolation of RNA from a 

biological sample. To ensure a successful RNA-Seq experiment, the RNA should 

be of sufficient quality to produce a library for sequencing. Low-quality RNA can 
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substantially affect the sequencing results and lead to erroneous biological 

conclusions. Therefore, high-quality RNA is essential for successful RNA-Seq 

experiments (Tomita et al., 2004; Thompson et al., 2007; Rudloff et al., 2010). 

Following RNA isolation, the next step in transcriptome sequencing is the 

creation of an RNA-Seq library, which can vary by the selection of RNA species 

and between NGS platforms. The construction of sequencing libraries principally 

involves isolating the RNA molecules of interest, reverse transcribing the RNA to 

cDNA, fragmenting or amplifying randomly primed cDNA molecules and ligating 

sequencing adaptors. Within these basic steps, there are several choices in library 

construction and experimental design that must be carefully made (Kukurba and 

Montgomery, 2015). 

Reverse transcription results in loss of strandedness, which can be avoided with 

chemical labelling that let distinguish the second strand from the fisrt strand of 

cDNA. RNA, cDNA, or both are fragmented. Fragmentation and size selection 

are performed to select sequences that are of the appropriate length for the 

experiment. Fragmentation of the RNA reduces 5’ bias of randomly primed 

reverse transcription and the influence of primer binding sites (Mortazavi et al., 

2008), with the downside that the 5’- and 3’-ends are converted to DNA less 

efficiently. Another consideration for constructing cost-effective RNA-Seq 

libraries is testing multiple indexed samples in a single sequencing lane. The large 

number of reads (i.e. short sequences) that can be generated per sequencing run 

permits the analysis of increasingly complex samples. Indexing cDNA with 

barcodes enables the pooling and sequencing of multiple samples in the same 

sequencing reaction, because the barcodes identify which sample the read 

originated from. For any given study, it is further important to consider the level 

of sequencing depth required to answer experimental questions with confidence 

(Kukurba and Montgomery, 2015). 

The majority of high-throughput sequencing platforms use a sequencing-by-

synthesis method to sequence tens of millions of sequence clusters in parallel. The 

NGS platforms can often be categorized as either ensemble-based (i.e. sequencing 

many identical copies of a DNA molecule) or single-molecule-based (i.e. 
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sequencing a single DNA molecule). The differences between these sequencing 

techniques and platforms can affect downstream analysis and interpretation of the 

sequencing data. An important consideration for choosing a sequencing platform 

is transcriptome assembly. Transcriptome assembly is necessary to transform a 

collection of short sequencing reads into a set of full-length transcripts. In general, 

longer sequencing reads make it simpler to accurately and unambiguously 

assemble transcripts, as well as identify splicing isoforms, which may not be 

discovered with too short reads. The extremely long reads are ideal for de novo 

transcriptome assembly, in which the reads are not aligned to a genome or 

transcriptome reference (Kukurba and Montgomery, 2015). 

The quality of the raw sequence data should be evaluated to ensure high-quality 

reads. User-friendly software tools designed to generate quality overviews include 

the FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). 

Parameters which should be evaluated include the sequence diversity of reads, 

adaptor contamination, base qualities, nucleotide composition and percentage of 

called bases. These technical artifacts can arise at the sequencing stage or during 

the construction of the RNA-Seq. If possible, actions to correct for these biases 

should be performed, such as trimming the ends of reads, to expedite the speed 

and improve the quality of the read alignments (Kukurba and Montgomery, 2015). 

 

1.4.3 Experimental parameters 

A variety of parameters are considered when designing and conducting RNA-Seq 

experiments: 

 tissue specificity: gene expression varies within and between tissues and 

RNA-Seq measures this mix of cell types. This can make it difficult to 

isolate the biological mechanism of interest; 

 time dependence: gene expression changes over time and RNA-Seq only 

takes a snapshot. Time course experiments can be performed to observe 

changes in the transcriptome; 

 coverage or depth: number of reads which include a given nucleotide in 

the reconstructed transcript. RNA harbours the same mutations observed in 
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DNA and their detection requires deeper coverage. To detect transcripts of 

moderate to high abundance, about 30-40 million reads are required to 

accurately quantify gene expression; to obtain coverage over the full-

sequence diversity of complex transcript libraries, including rare and 

lowly-expressed transcripts, up to 500 million reads is required (Fu et al., 

2014). With high enough coverage, RNA-Seq can be used to estimate the 

expression of each allele too. The depth of sequencing required for specific 

applications can be extrapolated from a pilot experiment (Li et al., 2008); 

 data generation artifacts (or technical variance): the reagents (i. e. library 

preparation kit), personnel involved and kind of sequencer can result in 

technical artifacts that might be mis-interpreted as meaningful results. As 

with any scientific experiment, it is prudent to conduct RNA-Seq in a well 

controlled setting. If this is not possible, another solution is to detect 

technical artifacts by inferring latent variables and subsequently correcting 

for these variables (Stegle et al., 2012); 

 data management: a single RNA-Seq experiment in humans is usually on 

the order of 1 Gb (Kingsford and Patro, 2015); this large volume of data 

can pose storage issues. One solution is compressing the data using multi-

purpose computational schemas or genomics-specific schemas. 

 

1.4.4 RNA-Seq data analysis workflow 

Gene expression profiling by RNA-Seq provides an unprecedented high-

resolution view of the global transcriptional landscape. As the sequencing 

technologies and protocol methodologies continually evolve, new informatics 

challenges and applications develop. Beyond surveying gene expression levels, 

RNA-Seq can also be applied to discover novel gene structures, alternatively 

spliced isoforms and allele-specific expression (ASE). In addition, genetic studies 

of gene expression using RNA-Seq have observed genetically correlated 

variability in expression, splicing, and ASE (Montgomery et al., 2010; Pickrell et 

al., 2010; Battle et al., 2013; Lappalainen et al., 2013). 

The conventional pipeline for RNA-Seq data includes generating files containing 
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reads sequenced from an NGS platform, aligning these reads to an annotated 

reference genome or transcriptome, and quantifying expression of genes (Figure 

8). RNA-Seq analysis presents unique computational challenges not encountered 

in other sequencing-based analyses and requires specific consideration to the 

biases inherent in expression data (Kukurba and Montgomery, 2015). 

 

 

Figure 8. Workflow of RNA-Seq data analysis (modified from Kukurba and 

Montgomery, 2015). a) Sequenced reads are aligned to a reference genome. b) Reads 

may be assembled into transcripts using reference transcript annotations or de novo 

assembly approaches. c) The expression level of each gene is estimated by counting the 

number of reads which align to each exon or full-length transcript. d) Downstream 

analyses with RNA-Seq data include testing for genes or exons differential expression 

between samples, detecting allele-specific expression, and identifying expression 

quantitative trait loci (eQTLs). 
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When we map RNA-Seq reads (in FASTQ format) to a genome reference (Figure 

8a), we have to pay attention because many reads map across splice junctions 

(Figure 9). In fact, conventional read mapping algorithms are not recommended 

for mapping RNA-Seq reads to the reference genome because of their inability to 

handle spliced transcripts (Kukurba and Montgomery, 2015). One approach to 

resolve this problem is to supplement the reference genome with sequences 

derived from exon–exon splice junctions acquired from known gene annotations 

(Mortazavi et al., 2008). A preferred strategy is to map reads with a “splicing-

aware” aligner which can recognize the difference between a read aligning across 

an exon–intron boundary and a read with a short insertion. The more commonly 

used RNA-Seq alignment tools include GSNAP (Wu and Nacu, 2010), MapSplice 

(Wang et al., 2010a), RUM (Grant GR et al., 2011), STAR (Dobin et al., 2013) 

and TopHat (Trapnell et al., 2009). Each aligner has different advantages in terms 

of performance, speed, and memory utilization. Selecting the best aligner to use 

depends on these metrics and the overall objectives of the RNA-Seq study 

(Kukurba and Montgomery, 2015). 

 

 

Figure 9. Graphical representation of RNA-Seq reads mapping on exon-exon junctions 

(https://en.wikipedia.org/wiki/RNA-Seq). After pre-mRNA is converted into mRNA by 

removing all introns, and mRNA is fragmented in short reads, converted to cDNA, 

amplified and sequenced, reads are usually aligned to a genome reference in order to 

assemble transcripts. Reads mapping on the exon-exon junctions are difficult to be found, 

so specific splicing-aware algorithms are used. 
 

 

After RNA-Seq reads are aligned, we obtain SAM or BAM format files reads 
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which can be assembled into transcripts (Figure 8b). Two methods are used to 

infer transcript models: a reference-based assembly and a de novo assembly. In 

the first approach, a genome or transcriptome (based on the use we need) 

reference is used, on which reads map in order to reconstruct transcripts. This is 

particularly helpful when reads don't cover all exons and gaps could be introduced 

in the reconstructed transcriptome sequence. Typically, alignment algorithms have 

two steps: align short portions of the read and use dynamic programming to find 

an optimal alignment, sometimes in combination with known annotations. 

Software tools that use reference-guided alignment include Bowtie (Langmead et 

al., 2009), TopHat (Trapnell et al., 2009), STAR (Dobin et al., 2013) and GMAP 

(Wu and Watanabe, 2005). 

De novo assembly doesn't require a genome or transcriptome reference to 

reconstruct the transcriptome and it is typically used when the genome is 

unknown, incomplete or altered compared to the reference (Grabherr et al., 2011). 

Challenges when using short reads for de novo assembly include determining 

which reads should be joined together into contiguous sequences (contigs), 

robustness to sequencing errors and other artifacts, and computational efficiency. 

The early algorithm used for de novo assembly transitioned from overlap graphs, 

which identify all pair-wise overlaps between reads, to de Bruijn graphs, which 

break reads into sequences of length k and collapse all k-mers into a hash table 

(Illumina, 2016). Overlap graphs were used with Sanger sequencing, but don't 

scale well to the millions of reads generated with RNA-Seq. Paired-end 

sequencing (sequencing of both ends of a fragment) and long read sequencing of 

the same sample can mitigate the deficits in short read sequencing by serving as a 

template or skeleton. 

A note on assembly quality: assembly quality can vary depending on which metric 

is used, assemblies which scored well in one specie don't necessarily perform well 

in all other species, and combining different approaches might be the most 

reliable thing to do (Lu et al., 2013). The nature of the transcriptome (i. e. gene 

complexity, degree of polymorphisms, alternative splicing, dynamic range of 

expression), common technological challenges (i. e. sequencing errors) and steps 
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of the bioinformatics workflow (i. e. gene annotation, inference of transcripts) can 

substantially affect transcriptome assembly quality (Kukurba and Montgomery, 

2015). 

A common downstream characteristic of transcripts reconstruction softwares is 

the estimation of gene expression levels (Figure 8c). Computational tools such as 

Cufflinks (Trapnell et al., 2010) and MISO (Katz et al., 2010) quantify expression 

by counting the number of reads that map to full-length transcripts. Alternative 

approaches, such as HTSeq (Anders et al., 2014), can quantify expression without 

assembling transcripts, but counting the number of reads that map to an exon 

(Anders et al., 2013). To accurately estimate gene expression, reads count must be 

normalized to correct for systematic variability, such as library fragments size, 

sequence composition bias and reads depth (Oshlack and Wakefield, 2009; 

Roberts et al., 2011b). To account for these sources of variability, RPKM (reads 

per kilobase of transcripts per million mapped reads) metric was introduced, 

which normalizes a transcript reads count by both the gene length and the total 

number of mapped reads in the sample (Kukurba and Montgomery, 2015). In the 

case of paired-ends reads, RPKM is replaced by FPKM (paired fragments per 

kilobase of transcript per million mapped reads) metric, which accounts for the 

dependency between paired-end reads in the RPKM estimate (Trapnell et al., 

2010). Another technical challenge for transcript quantification is the mapping of 

reads to multiple transcripts which are the result of genes with multiple isoforms 

or close paralogs. One solution to correct for this “read assignment uncertainty” is 

to exclude all reads that do not map uniquely; however, this strategy is far from 

ideal for genes lacking unique exons. An alternative strategy is to construct a 

likelihood function which models the sequencing experiment and estimates the 

maximum likelihood that a read maps to a particular isoform (Kukurba and 

Montgomery, 2015). 

 

1.4.5 Differential gene expression 

Downstream analyses with RNA-Seq data include testing for genes or exons 

differential expression between samples, detecting allele-specific expression 
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(ASE), and identifying expression quantitative trait loci (eQTLs) (Figure 8d). 

The primary objective of many gene expression experiments is to detect 

transcripts or exons showing differential expression across various conditions, 

such as healthy vs. unhealthy, drug-treatment vs. not-treated, and to find which of 

them are up- or down-regulated. Hence, negative binomial distribution models 

which take into account over-dispersion or extra-Poisson variation are used to fit 

the distribution of read counts across biological replicates (Kukurba and 

Montgomery, 2015). A variety of statistical methods have been designed 

specifically to detect differential expression for RNA-Seq data. Among them, we 

mention Cuffdiff (which is part of the Tuxedo suite of tools: Bowtie, Tophat and 

Cufflinks) (Trapnell et al., 2013), edgeR (Robinson et al., 2010), DESeq (Anders 

and Huber, 2010), DEGseq (Wang et al., 2010b), and the one that I used, DEXSeq 

(Anders et al., 2012). Although these packages can assign significance to 

differentially expressed transcripts or exons, the biological observations should be 

carefully interpreted (Kukurba and Montgomery, 2015). 

 

1.4.6 Allele-specific expression 

A major advantage of RNA-Seq is the ability to profile transcriptome dynamics at 

a single-nucleotide resolution. Therefore, the sequenced transcript reads can 

provide coverage across heterozygous sites, representing transcription from both 

the maternal and paternal alleles. If a sufficient number of reads cover a 

heterozygous site within a gene, the null hypothesis is that the ratio of maternal to 

paternal alleles is balanced. Significant deviation from this expectation suggests 

allele-specific expression (ASE). Potential mechanisms for ASE include genetic 

variation (i. e. single-nucleotide polymorphism in a cis-regulatory region 

upstream of a gene) and epigenetic effects (i. e. genomic imprinting, methylation, 

histone modifications) (Kukurba and Montgomery, 2015). Early studies showed 

that ASE differences can affect up to 30% of loci within an individual (Ge et al., 

2009) and that are caused by both common and rare genetic variants (Pastinen, 

2010). Studies have also applied ASE to identify expression modifiers of protein-

coding variation (Lappalainen et al., 2011; Montgomery et al., 2011), effects of 
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loss-of-function variation (MacArthur et al., 2012) and differences between 

pathogenic and healthy tissues (Tuch et al., 2010). 

 

1.4.7 Expression quantitative trait loci 

Another prominent direction of RNA-Seq studies has been the integration of 

expression data with other types of biological information, such as genotyping 

data. The combination of RNA-Seq with genetic variation data has enabled the 

identification of genetic loci correlated with gene expression variation, also 

known as expression quantitative trait loci (eQTLs) (Kukurba and Montgomery, 

2015). This expression variation, caused by both common and rare variants, is 

postulated to contribute to phenotypic variation and susceptibility to complex 

disease across individuals (Majewski and Pastinen, 2011). The goal of eQTL 

analysis is to identify associations that will uncover underlying biological 

processes, discover genetic variants causing disease and determine causal 

pathways. Most of the eQTLs identified directly influenced gene expression in an 

allele-specific manner and were located near transcriptional start sites (TSS), 

indicating that eQTLs could modulate expression directly (cis-eQTL) (Kukurba 

and Montgomery, 2015). Later studies identified trans-eQTLs, which are variants 

that affect the expression of a distant gene (>1 Mb) by modifying the activity or 

expression of upstream factors that regulate the gene (Fehrmann et al., 2011; 

Battle et al., 2013; Westra et al., 2013). 
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1.5 Support Vector Machine 

1.5.1 Machine learning 

Significant advances in biotechnology and more specifically high-throughput 

sequencing result incessantly in an easy and inexpensive data production, thereby 

ushering the science of applied biology into the area of big data (Marx, 2013; 

Mattmann, 2013). 

Up to date, besides high performance sequencing methods, there is a plethora of 

digital machines and sensors from various research fields generating data, 

including super-resolution digital microscopy, mass spectrometry, Magnetic 

Resonance Imaging (MRI). Although these technologies produce a big amount of 

data, they do not provide any kind of analysis, interpretation or extraction of 

knowledge. Thus, the area of Biological Data Mining or otherwise Knowledge 

Discovery in Biological Data, is more than ever necessary and important. The 

primary objective is to investigate the rapidly accruing body of biological data and 

set the basis potentiating answers to fundamental questions in biology and 

medicine (Kavakiotis et al., 2017). 

The power and effectiveness of these approaches are derived from the ability of 

methods to extract patterns and create models from data, particularly significant 

ability in the Big Data era, when the dataset can reach Terabytes or Petabytes of 

data. Consequently, the abundance of data has strengthened considerably data-

oriented research in biology. In such a hybrid field, one of the most important 

research applications is prognosis and diagnosis related to human-threatening 

and/or life quality reducing diseases. Applying machine learning and data mining 

methods in research is a key approach to utilizing large volumes of available data 

for extracting knowledge (Kavakiotis et al., 2017). 

Machine learning is the scientific field dealing with the ways in which machines 

learn from experience. The purpose of machine learning is the construction of 

computer systems that can adapt and learn from their experience (Wilson and 

Keil, 1999). It represents a set of methods and techniques recently developed 

which explore the study and construction of algorithms that can learn from and 
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make predictions on data (Kohavi and Provost, 1998). Such algorithms overcome 

following strictly static program instructions by making data driven predictions or 

decisions, building a model from input samples. 

A core objective of a learner is to generalize from its experience (Bishop, 2006; 

Mohri et al., 2012). Generalization in this context is the ability of a learning 

machine to perform accurately on new, unseen examples/tasks after having 

experienced a learning data set. The training examples come from some generally 

unknown probability distribution (considered representative of the space of 

occurrences) and the learner has to build a general model about this space that 

enables it to produce sufficiently accurate predictions in new cases. 

Machine learning tasks are typically classified into three broad categories (Russell 

and Norvig, 2003): supervised learning (in which the system infers a function 

from labelled training data), unsupervised learning (in which the system tries to 

infer the structure of unlabelled data), and reinforcement learning (in which the 

system interacts with a dynamic environment). However, not all learning tasks 

can be associated uniquely to these categories. 

Some of the most common techniques of supervised learning are Decision Trees 

(DT), Random Forest (RF), and Support Vector Machines (SVM); a technique of 

unsupervised learning is k-Nearest Neighbors (k-NN). 

 

1.5.2 Supervised learning 

In supervised learning, the system must learn inductively a function called target 

function, which is an expression of a model describing the data. The function is 

used to predict the value of a variable, called dependent variable or output 

variable or label or class, from a set of variables, called independent variables or 

input variables or characteristics or features. The set of possible input values of 

the function, i.e. its domain, are called instances. Each element is described by a 

set of characteristics (features). In order to train the model, the set of all elements, 

for which the output variable value is known, is divided in two subsets. A subset 
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is the training set and is used to create the model, based on the feature of its 

elements. The other subset is the testing set and is used to test the model on 

elements with known output variable value. 

A lot of different approaches can be applied to select the training and testing sets; 

usually, the 75-80% of the elements are considered as training, the rest as testing. 

The training set can further be divided in subsets, in which some of them act as 

training subsets and some as testing subsets (cross-validation). The most used 

approach is the k-fold cross-validation, in which the training set is divided in k 

subsets, of which k-1 are training subsets and 1 is the testing subset, in turns. In 

our analysis, we used the 10-fold cross-validation with 5 repeats. 

In order to infer the best target function, the learning system, given a training set, 

takes into consideration alternative functions, called hypothesis (Kavakiotis et al., 

2017). Once found the best function able to represent our data, it can be applied 

on a new set of data, for which the output variable value is unknown, in order to 

predict it. 

 

1.5.3 Unsupervised learning 

In unsupervised learning, the system tries to discover the hidden structure of our 

data or associations between variables. In that case, the dataset consists of 

instances without any corresponding label. The system doesn't have any 

information about the correctness of the predicted output variable value or about 

the target function to be approximated, but it takes information through 

environment experimentation. The system itself has to identify regularities from 

the set of all elements. Once identified, it has the capability of generalize on 

unknown new elements. An example of unsupervised learning is clustering. 

 

1.5.4 Reinforcement learning 

The term Reinforcement Learning is a general term given to a family of 
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techniques, in which the system attempts to learn through direct interaction with 

the environment so as to maximize some notion of cumulative reward (Alpaydin, 

2004). It is important to mention that the system has no prior knowledge about the 

behaviour of the environment and the only way to find out is through trial and 

failure (trial and error) (Kavakiotis et al., 2017). It can be associative and not 

associative, immediate and with delay, direct and indirect. Reinforcement learning 

is mainly applied to autonomous systems, due to its independence in relation to its 

environment. 

 

1.5.5 Classification 

Classification is a theme of extraordinary importance for the resolution of 

problems in the real world and it can be applied to very different situations. There 

are two main kinds of classification: a supervised classification, in which each 

element of the dataset is assigned to one specific class already known, or a 

unsupervised classification, in which classes or clusters are found among the 

dataset of all elements. 

From the point of view of the statistical learning theory (Vapnik, 1995), the 

classification consists in the building of the function f: R
n
 × R → R which, if 

applied to a element x in the space R
n
 to whom is associated a real parameter α, it 

can predict the class to whom it belongs (usually, label y ∈ R): 

ypred = f (x, α)     (1.1) 

Given a set of pre-classified samples taken from an unknown probability 

distribution P (x, y), it is important to choose between all functions f (x, α), the 

one which minimize the theoretical error: 

R(α) = ∫L(y, f (x, α)) dP (x, y)             (1.2) 

where L is the loss function and is defined as: 

L(y, f (x, α)) = |yreal − f (x, α)|            (1.3) 
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indicating the discrepancy between the real and the predicted class of the element 

x. 

R(α), also called expected risk, is a measure of how much the hypothesis 

performed on the prediction of y for an element x is far from its real value. 

In the case of binary classification, when the set of all elements can be divided 

only in 2 classes, both yreal and α can assume only values {0, 1}; thus, the loss 

function can be defined as follows: 

  

(1.4) 

 

 

For this loss function, R(α) determines the probability of a wrong classification: 

the case of differences between the real and the predicted class is called 

classification error. The aim is, thus, to find the function f which minimizes R(α), 

i. e. the probability of error, in a given dataset. 

Furthermore, it is necessary also to minimize the VC dimension (from the name of 

its creators Vapnik-Chervonenkis), defined as the number of vectors which the 

system can separate in two classes; it is a sort of complexity of the classificator. 

Besides the classification problem, other situations, in which the output variable 

value corresponds to continuous variable values, exist in the machine learning 

field. These problems are called regression problems and the function to be 

approximated is just the regression function. 

 

1.5.6 Linear Support Vector Machine 

An algorithm which can solve the classification problem is the Support Vector 

Machine (SVM) algorithm. SVM is a new and powerful machine learning 

approach developed by Vapnik (Vapnik, 1995), which can minimize both the 

number of errors of the prediction and the VC dimension. 
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Now I will focus on binary classification, in which the set of all elements is 

divided in two classes and each element can belong only to a class. 

Suppose the elements of our training set are linearly separable, i. e. it exists an 

hyperplane which can separate the elements which belong to a class from the 

elements which belong to the other class (Figure 10). 

 

 
Figure 10. Example of linearly separable classes (modified from http://efavdb.com/svm-

classification). The elements of the red class can be linearly separated from the elements 

of the blue class through a separator hyperplane (black line). 
 

 

If we call w the vector normal to the hyperplane and b the intercept in the origin, 

all points laying on the separator hyperplane have to satisfy the equation: 

w · x + b = 0     (1.5) 

Considering xi the i-th element of the training set and yi the class of the i-th 

element, in binary classification in which the two possible classes are {-1,+1}, all 

elements of the training set satisfy the following conditions: 

w · xi + b ≥ 1   if   yi = 1          (1.6) 

w · xi + b ≤ −1   if   yi = −1           (1.7) 

which we can join in a single disequation: 
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yi (w · xi + b) − 1 ≥ 0 ∀ i     (1.8) 

Infinite hyperplanes exist which can satisfy these disequations, but in order to 

obtain a good classification it is necessary to determine the parameters w and b of 

the hyperplane which best separates the two subsets of elements, minimizing the 

classification error. 

The elements for which w · xi + b = 1 all lay on the hyperplane H1, the elements 

for which w · xi + b = -1 all lay on the hyperplane H2. H1 and H2 are parallel 

between them and also parallel with the separator hyperplane; any element can be 

found in the space between them. The distance between them is called margin and 

it measures 2/||w|| (Figure 11). 

 

 

Figure 11. Linear classification with SVM 

(https://it.wikipedia.org/wiki/Macchine_a_vettori_di_supporto). A hyperplane (solid line) 

was found that separates the elements in two classes (black circles and empty circles). No 

elements were observed between the hyperplanes H1 and H2 (dashed lines). 
 

 

All elements laying on H1 or H2 are called support vectors and are the critical 

elements for SVM. All other elements, instead, don't affect SVM in any way; if 

they would be removed or moved without going over the hyperplanes H1  or H2, 

and the algorithm would be repeated, we will obtain exactly the same separator 
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hyperplane. 

The algorithm which SVM uses in order to find the two parameters of the optimal 

separator hyperplane consists in maximizing the margin between the two classes 

and minimizing the difference intra-classes. 

 

1.5.7 Not Linear Support Vector Machine 

In the case in which it doesn't exist an hyperplane which linearly separate the 

elements of our dataset, i. e. some elements lay on the wrong semiplane, we can 

say that our dataset is not linearly separable. 

Thus, the elements of the training set satisfy the following conditions: 

w · xi + b ≥ 1 – ξi   if   yi = 1          (1.9) 

w · xi + b ≤ −1 + ξi   if   yi = −1         (1.10) 

which we can join in a single disequation: 

yi (w · xi + b) ≥ 1 – ξi   ∀ i     (1.11) 

where ξi ≥ 0 is the slack variable and is as higher as farer the i-th element is from 

its correct class. 

The separator hyperplane, determined through support vectors, is far −b/||w|| from 

the origin and every misclassified element is far −ξ/||w|| from its correct class. 

The function which separates the two classes of elements is, thus, not linear (it 

could be quadratic or cubic or another function). Nevertheless, if we want to 

separate through an hyperplane even not linearly separable datasets, we have to 

map our elements in a higher dimensional space, called features space. If we 

consider m > n, the function which we use to map the elements in the new space 

is: 

Φ : R
n
 → R

m
            (1.12) 

The two classes which are not linearly separable in the input space became 
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linearly separable in the feature space through the mapping function Φ (Figure 

12). 

 

Figure 12. Mapping in a higher dimensional features space 

(https://www.linkedin.com/pulse/support-vector-machine-srinivas-kulkarni). Features not 

linearly separable in the input space (on the left of the figure) becomes linearly separable 

in the features space (on the right of the figure) through the mapping function Φ. 
 

 

Thus, now, we should replace each element x of our dataset with the function 

Φ(x). Since the function Φ can be very expensive to be calculated, we use the 

kernel trick, i. e. an inexpensive kernel function K which directly calculates the 

inner product of two elements, without explicitly calculating Φ: 

K(xi , xj) = Φ(xi) · Φ(xj)         (1.13) 

In that way, we can get SVM to learn in the high dimensional features space given 

by Φ, without explicitly calculating Φ, but calculating only K. 

The most used kernels are: 

 linear kernel: K(x, y) = x · y 

 polynomial kernel: K(x, y) = (x · y)
d
 or K(x, y) = (1 + x · y)

d
 

 Gaussian Radial Basis Function (RBF) kernel: K(x, y) = exp(−|x-y|
2
)/(2σ

2
) 

 sigmoid kernel: K(x, y) = tanh(κx · y − δ) 

For this work, I used a SVM with the RBF kernel, which is computationally cost-

effective. 
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1.5.8 Features selection 

Features selection is one of the most important processes. Especially when we 

have a lot of features in our features space, many of them could be irrelevant or 

redundant features, so the features selection analysis is applied to select a subset 

of features from the features space which is more relevant to and informative for 

the construction of a model. The aims of a features selection analysis are three: 1) 

improving the overall prediction performance, 2) providing faster and more cost-

effective analysis, and 3) providing a better understanding of the underlying 

process that generated the observations (Guyon and Elisseeff, 2003). 

Various features selection algorithms have been published and they may be 

grouped into three main classes, based on how they determine the selected 

features (Dash and Liu, 1997; Guyon and Elisseeff, 2003; Liu and Yu, 2005). The 

first class contains the wrapper algorithms, which use a machine learning 

algorithm to evaluate different subsets of features and finally select the one with 

the best performance on classification accuracy; it uses heuristic rules to find 

locally optimal solutions. 

The second class has the filter algorithms, which measure the association of each 

feature or features subset with the labels of the dataset, and order all the features 

or features subsets based on this measure. The most of the filter algorithms 

evaluate individual features. 

The third class contains the hybrid algorithms, which aim to automatically 

generate an optimally selected features subset by integrating the wrapper and the 

filter strategies within different heuristic features selection steps. 

In the present work, we first assessed features individually through a single 

feature univariate association analysis, to understand their influence on the 

system, and then in pairs through a correlation test, to find high correlated 

features. Perfectly correlated features are truly redundant in the sense that no 

additional information is gained by adding them (Guyon and Elisseeff, 2003). 
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1.5.9 Testing 

After the features selection analysis and the training phase in which the SVM gets 

the parameters of the optimal separator hyperplane, based on the selected features, 

it can proceed classifying a new set of elements. This phase is called testing and it 

consists in assigning the correct class to a new element x. 

As concerning binary classification, the basis decision function is: 

f (x) = sign(w · x + b)     (1.14) 

which assigns the label 1 or -1 to each element, based on its predicted class. If we 

use a kernel function in our model, this function have to be slightly modified, but 

the principle is the same. 

Usually, before testing new unknown elements, the SVM is applied on a subset of 

elements of our dataset with known class (usually the 20-25% of all elements) in 

order to evaluate the performance of the prediction of the SVM on known data. 

There are a lot of measures of performance that we can use for this propose: the 

accuracy, sensibility, specificity, precision, recall, F1 score, 95% of the confident 

interval (CI), and the area under the curve (AUC) of the receiver operating 

characteristics (ROC) curve. 

Both the AUC of the model (0 ≤ AUC ≤ 1) and the accuracy of the prediction (0 ≤ 

accuracy ≤ 1) were calculated to evaluate the performance of this work. 

Once tested SVM on known data with good results, it can be used to predict new 

unknown data. 
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2 Materials and methods 

 

All analyses performed in this study are summarized in Figure 13. 

 

Figure 13. Workflow of the analyses performed in this study. The whole procedure can be 

divided in 3 main sections: exons extraction, collection of all features, and SVM analysis. 
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2.1 Public RNA-Seq data of RBM20 mutants 

Gene expression profiles of RBM20
+
 and RBM20

-
 cells were estimated by 

analysing published RNA-Seq data (Guo et al., 2012) from human and rat 

cardiomyocites. Three human samples (2 RBM20
+/+

 samples with dilated 

cardiomyopathy without mutations in RBM20 and 1 RBM20
-/-

 sample with 

dilated cardiomyopathy with mutations in RBM20) and nine rat samples (3 

RBM20
+/+

 wild-type, 3 RBM20
+/-

 heterozygous and 3 RBM20
-/-

 knock-out 

samples) were downloaded from the Sequencing Archive of the European 

Nucleotide Archive (accession code: ERP001301) (Table 1). 

 

Table 1 – Public RNA-Seq sample data used for the transcriptome analyses. Three human 

samples and nine rat samples were downloaded from ENA Sequencing Archive. Each 

FASTQ file had 100bp paired-ends sequences (100 PE). The mean number of 

sequences for sample was calculated summing the number of sequences of each sample 

of that group of samples, and then dividing for the number of samples of that group. 

“SD”: standard deviation. “*”: no SD value because only one sample was analysed. 

Specie Genotype 
Number of 

samples 

Mean number and SD of 

100 PE sequences for 

sample (Millions) 

Homo sapiens 
RBM20

+/+
 2 82.5 ±4.2 

RBM20
-/-

 1                 83.1 * 

Rattus norvegicus 

RBM20
+/+

 3 73.4 ±0.8 

RBM20
+/-

 3 78.5 ±4.9 

RBM20
-/-

 3 76.0 ±1.7 
 

 

2.2 Quality control 

Before alignment, FASTQ files underwent a quality control analysis performed 

with FastQC tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). To 

remove adaptors sequences from the reads (i.e. sequences) and to trim poor 

quality bases, Scythe and Sickle tools were used. Scythe removes 3’-end adapters, 

with a Naive Bayesian approach; Sickle removes 3’-ends and 5’-ends of reads 

with low quality, using sliding windows along with quality and length thresholds 

(Joshi and Fass, 2011). 
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2.3 Reads alignment 

Reference genome sequences (RGSC version 3.4 for Rattus norvegicus, and 

GRCh version 37 for Homo sapiens) were retrieved from Ensembl database 

(www.ensembl.org). Reads (100bp paired-ends - 100 PE) were mapped against 

the proper genome reference using Bowtie version 2 (Langmead and Salzberg, 

2012) and TopHat version 2.0.12 (Kim et al., 2013) with the additional 

information of a GTF file. 

Bowtie 2 is an ultrafast and memory-efficient tool for aligning sequencing reads 

to long reference sequences; it is particularly good at aligning reads of about 50 

up to 100bp or 1000bp, and at aligning to relatively long genomes (i. e. 

mammalian). It supports gapped, local, and paired-end alignment modes. 

TopHat 2 is a fast splice junction mapper for RNA-Seq reads. It aligns RNA-Seq 

reads to transcriptome, to genome, and to novel/known splice sites using the 

aligner Bowtie 2, and then it analyses the mapping results to identify splice 

junctions between exons. 

 

2.4 Exons counting and differential expression 

The expression of each exon was quantified counting the number of reads that 

map to it, and normalizing the reads count to correct for the systematic variability. 

Reads count was performed through HTSeq package (Anders et al., 2014). 

Package DEXSeq (Anders et al., 2012) was used to normalize data, estimate the 

number of reads per exon and the dispersion of such measurement, and then to 

test for differential exon expression among groups. DEXSeq uses generalized 

linear models (GLMs) to model read counts, and offers reliable control of false 

discoveries by taking biological variation into account. It detects with high 

sensitivity genes and exons which are subjected to differential exon usage. 

We tested the 2 human RBM20
+/+

 samples against the human RBM20
-/-

 sample, 

and the 3 groups of rat samples (RBM20
+/+

, RBM20
+/-

, RBM20
-/-

) in pairs to 

http://bowtie-bio.sourceforge.net/
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detect differentially spliced exons. An exon was defined to be differentially 

included/skipped when associated with a DEXSeq analysis showing an adjusted 

p-value < 0.05. 

 

2.5 Differentially expressed exons and extraction of target sequences regions 

According to DEXSeq results, a number of rat exons were retrieved for the 

following analyses, grouped as follows (Table 2): 1 dataset of differentially 

spliced exons (A1 of 232 exons), 1 dataset of exons found to be regulated by 

RBM20 (Maatz et al., 2014) (A2 of 80 exons), and 1 dataset of exons not 

regulated by RBM20 (N1 of 80 exons). 

 

Table 2 – Datasets of rat exons retrieved. Two datasets containing exons whose splicing 

was affected by RBM20 (A1 and A2), and a dataset containing exons whose splicing was 

not affected by RBM20 (N1) were retrieved. The number of exons contained in each 

dataset is indicated. 

Kind of retrieved exons Dataset Number of exons 

differentially spliced exons A1 232 

exons found to be regulated by RBM20 A2 80 

exons not regulated by RBM20 N1 80 

 

 

The datasets retrieved are arranged as follows: 

 the dataset A1 contains all the differentially expressed rat exons; 

 the dataset A2 includes the exons detected by Maatz (Maatz et al., 2014) 

analyzing the same raw data of Guo (Guo et al., 2012), and searching for 

RBM20 binding sites patterns in the differentially expressed exons; the 

dataset A2 includes 80 exons belonging to 18 genes; 

 the dataset N1 contains random exons retrieved from Ensembl, in order to 

obtain half exons in the forward strand and half in the reverse strand, one 

exon for gene. 
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Exons sequences of each dataset were extracted from the genome reference 

sequence (RGSC3.4 for Rattus norvegicus) using the Samtools program 

(http://samtools.sourceforge.net/), according to exons coordinates reported by 

different sources: 

 by DEXSeq differential analysis (for the dataset A1); 

 by literature (for the dataset A2); 

 by Ensembl (for the dataset N1). 

Only the top strand exon sequence (i. e. the transcribed strand sequence) was 

extracted. 

Every exon was studied by focusing on either the first or last 30 exonic 

nucleotides and the preceding or following 400 intronic nucleotides, respectively, 

as suggested from literature (Maatz et al., 2014), for a total of 430+430 

nucleotides analysed for each exon. The intronic nucleotide regions were reduced 

to the first and last 200 nucleotides when necessary (230+230 nucleotides 

analysed for each exon) (Figure 14). 

 

 
 

Figure 14. Exonic and intronic regions under investigation. For each exon the 430 or 230 

flanking nucleotides were extracted, 30 of which were in the exon and the remaining in 

the flanking introns. Coloured squared: exons, black horizontal lines between exons: 

introns, dashed lines: regions investigated. 
 

 

2.6 Searching for binding sites patterns 

An in house R algorithm was employed to search the genomic sequences of the 

exons of the datasets A1, A2 and N1 for specific RNA binding sites patterns. 
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By the R program, every single binding site pattern was searched along the target 

sequences using a nucleotide probability matrix (npm), in which the probability of 

each position to be “A”, “C”, “G” and “T” is fixed. For each sequence position, 

the overall probability to be the starting point of that binding site was estimated by 

a score based on the sum of the negative logarithm of the occurrence frequency of 

each nucleotide in the npm. Positions with the higher scores were likely to match 

the binding site. A threshold allowing up to 1 mismatch with the binding site 

pattern was chosen in order to tag the most likely binding sites. For each putative 

binding site, the number of single sites and cluster of sites (sites close to each 

other less than 10 nucleotides) in the 430 nucleotides flanking the selected exons 

and in sub-regions made of 100 nucleotides each (exons upstream and 

downstream regions studied separately) were calculated. A descriptive statistic 

about the counts, the size of the clusters of sites and the distribution of single sites 

and clusters in the flanking regions was then performed. 

 

2.7 Searching for additional genetic elements 

A further R program was written to investigate additional genetic elements in the 

flanking regions of the 3 datasets (exons upstream and downstream regions were 

studied separately). First of all, we searched for known genetic elements 

(substrings without “G” nucleotide containing RBM20 binding site patterns, 

regulatory and transcriptional known motifs, and transposable elements), then for 

new genetic elements (enrichment analysis), and finally for sequence 

characteristics (frequency of nucleotides and dinucleotides, exons length): 

 substrings without “G” nucleotide containing RBM20 binding site 

patterns. As RBM20 RNA binding site logo (Maatz et al., 2014) doesn't 

contain any “G” nucleotide, each target sequence was first searched for 

substrings without “Gs”, and then the presence of RBM20 binding site 

pattern/patterns was investigated on these substrings. This analysis was 

more accurate with respect to the simple search for RBM20 binding site. 

Only substrings longer than 15 nucleotides were selected for the following 
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analyses. Each exon was statistically described through 7 features, related 

to the number of substrings and the length of the longer substring of that 

exon, the highest score among all the scores of the putative binding sites of 

the longer substring, the number of putative binding sites with scores 

higher than a chosen threshold in the longer substring, and the maximum, 

mean and median scores among all scores of the putative binding sites 

found in all substrings of that exon. The analysis was performed on the 

430 nucleotides regions flanking the target exons, subsequently reducing 

the region of interest on the 230 flanking nucleotides; 

 regulatory and transcriptional known motifs. For each sequence, the 

algorithm sent automatically a query to RegRNA2.0 website (Chang et al., 

2013) to indicate the motifs to search for; all the 16 kinds of motifs 

available in the website were selected. Then, it extracted the result of the 

search, counting the number of all motifs found in that sequence. The 

analysis was performed on the 430 nucleotides regions flanking the target 

exons, subsequently reducing the region of interest on the 230 flanking 

nucleotides; 

 transposable elements. Each dataset of exons was loaded in RepeatMasker 

web server (Smit et al.,) and investigated for all the 20 types of 

transposable elements available; the result of the analysis was extracted 

and the number and type of transposable elements found in each sequence 

were counted. The analysis was performed on the 430 nucleotides regions 

flanking the target exons, subsequently reducing the region of interest on 

the 230 flanking nucleotides. A subset of transposable elements (SINEs, 

Simple repeats and LTRs) and the total number of interspersed repeats 

were studied deeply, and Fisher exact test was performed to evaluate a 

possible enrichment of each of these selected elements in cases or in 

control exons (p-value < 0.05); 

 additional sequence patterns more frequent in cases than in control exons 

(enrichment analysis). Software DREME of MEME package was used (E-

value < 0.05), searching for patterns in the top strand and in both strands 
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of the 430 nucleotides regions flanking the selected exons. Patterns with p-

value < 10
-7

 and E-value < 10
-3

 were selected; 

 frequency of each nucleotide and dinucleotide in the target sequences. The 

430 nucleotides regions flanking the selected exons and sub-regions made 

of 100 nucleotides each were analysed; 

 length of the exons analyzed. A descriptive statistic was applied, based on 

the length of the exons of each dataset. 

 

2.8 Features selection 

All information collected before (sections 2.6 and 2.7) were stored in a single R 

object, in which every count/size/characteristic/statistic/frequency was represented 

as numeric value (feature). Every exon flanking region was searched for the same 

genetic elements, so all exons were described by the same number of features. 

As when there are a lot of features many of them could be irrelevant or redundant, 

a single feature univariate association analysis was performed in order to select 

the subset of features able to distinguish between case and control exons. Every 

feature was analysed with one out of three possible tests based on the feature 

numerical type, comparing a group of case exons to a group of control exons. 

Features indicating the presence of a particular element (i. e. features about the 

presence of regulatory and transcriptional known motifs, or of transposable 

elements) were analysed with a Fisher exact test, features regarding counts (i. e. 

features about the search for binding site patterns and for substrings without “G” 

nucleotide) were analysed with General Linear Models with family Poisson, the 

remaining features were analysed with a Kruskal-Wallis test. 

Features with an associated p-value < 0.2 were selected and underwent a pair-wise 

correlation test to discard highly correlated features (p-value < 0.0000005 and r 

coefficient > |0.9|). For each pair of highly correlated features, the feature with the 

lowest p-value in the single feature association analysis was retained and the other 

feature was wiped out from the following analyses. 
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2.9 Support Vector Machine 

Support Vector Machine (SVM) (Vapnik, 1995) was used to classify RBM20 

affected exons. The 75% of the exons (affected and not) was randomly chosen to 

train the SVM, based on the selected features. The model was built with a radial 

kernel function, and a 10-fold cross-validation with 5 repeats was carried out, in 

order to evaluate the best model to predict our data. The model with higher area 

under the curve (AUC) value of the receiver operating characteristics (ROC) 

curve was selected (0 ≤ AUC ≤ 1) and used to predict the class (RBM20 affected 

or RBM20 not affected) of the remaining 25% of the exons. To evaluate the 

performance of the prediction, the accuracy value was estimated (0 ≤ accuracy ≤ 

1). The accuracy is defined as the proportion of true results (both true positives 

and true negatives) among the total number of cases examined. 

An additional analysis was performed by permuting the features value before 

SVM analysis. Through the permutation process, the values of RBM20 affected 

and not affected exons were scrambled within the same feature, to disrupt any 

possible correlation between exon class and feature value. 

Analyses were performed on both balanced (i. e. an equal number of case and 

control exons) and unbalanced (i. e. a different number of case and control exons) 

training and testing sets, to evaluate SVM performances in these contexts. 
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3 Results 

 

3.1 The dataset A1 of RBM20 affected exons 

In order to study the different genomic characteristics of exons whose splicing is 

regulated by RBM20, a group of RBM20 affected exons was identified by 

performing a differential analysis on public RNA-Seq data (raw sequence data in 

FASTQ format) of RMB20 mutants. 

Existing human and rat sequencing data of RNA (Guo et al., 2012) were 

downloaded and the reads underwent a Quality Control analysis performed with 

FastQC tool before aligning them to the genome reference. Poor quality bases 

were trimmed using Scythe and Sickle tools and the resulting human and rat reads 

were aligned to the respective genome reference (GRCh37 for human reads, 

RGSC3.4 for rat reads) using Bowtie2 and TopHat2. Every exon was quantified 

based on the number of reads mapping on it, and differential analyses were 

performed between the 2 groups of human samples (2 RBM20
+/+

 and 1 RBM20
-/-

 

samples) and the 3 groups of rat samples (3 RBM20
+/+

, 3 RBM20
+/-

 and 3 

RBM20
-/-

 samples) in pairs, through DEXSeq. 

The number of significant exons and genes resulted from the differential analyses 

is shown in Table 3. 

 

Table 3 – DEXSeq differential analyses significant results for rat and human samples. 

Expression profiles were determined from RNA-Seq trimmed data. Exons were 

considered to be significantly differentially expressed when showing an adjusted p-value 

< 0.05; genes were considered to be significant having at least a significant exon. 

 

 Rat Human 

RBM20
+/+

 

vs. 

RBM20
-/-

 

RBM20
+/-

 

vs. 

RBM20
-/-

 

RBM20
+/+

 

vs. 

RBM20
+/-

 

RBM20
+/+

 

vs. 

RBM20
-/-

 

exons 232 88 41 1452 

genes 128 41 14 590 
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128 significant differentially expressed rat genes and 232 significant exons were 

observed when comparing RBM20
+/+

 vs. RBM20
-/-

 samples, while in the other 

two comparisons of rat samples the number of significant genes and exons 

decreased (41 and 14 significant genes, 88 and 41 significant exons, for RBM20
+/-

 

vs. RBM20
-/-

 and RBM20
+/+

 vs. RBM20
+/-

 comparisons, respectively). When 

comparing the human samples, an increased number of significant genes and 

exons (590 and 1452, respectively) was found; this is probably due to the higher 

number of human exons analysed with respect to rat exons (644,354 and 236,327, 

respectively), and to the smaller samples amount (3 human samples in total) 

which might have introduced a higher number of false positive results. 

Because of the small number of human samples, we decided to focus only on the 

slightly larger number of rat samples; in particular, the 232 significant exons 

resulted from the comparison RBM20
+/+

 vs. RBM20
-/-

 were used as dataset of 

RBM20 affected exons (dataset A1). 

 

3.2 The dataset A2 of RBM20 affected exons 

A second dataset of RBM20 affected exons and a dataset of control exons were 

also studied. 

A group of 97 differentially spliced rat exons and with RBM20 binding sites 

mapping in the flanking regions of the exons was retrieved by Maatz (Maatz et al., 

2014) analysing the same Guo data I analysed (Guo et al., 2012). The 80 out of 97 

exons with clusters of RBM20 binding sites in the exons flanking regions were 

selected and their genomic sequences were downloaded (dataset A2). 

As control dataset, 80 exons were randomly selected from rat genome, so far not 

known to be regulated by RBM20 (dataset N1). 

 

3.3 Searching for RBM20 RNA binding site in the target sequences 

RBM20 binding sites (Figure 15) were searched in the flanking regions of datasets 
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A1, A2 and N1 through the algorithm based on a nucleotide probability matrix 

(see section 2.6). 

 

Figure 15. Sequence logo for rat RBM20 RNA binding pattern, given at nucleotide 

resolution (Maatz et al., 2014). 

 

As RBM20 RNA binding site logo doesn't contain any “G” nucleotide, each target 

sequence was further searched for substrings without “Gs”, and then RBM20 

binding site pattern/patterns were investigated only in these substrings. This 

analysis was more accurate with respect to the simple search for RBM20 binding 

site. 

First of all, the flanking regions of the exons of the datasets A1, A2 and N1 were 

searched for all substrings which don't contain any “G” nucleotide, through an in 

house program (see section 2.7). Two analyses were performed by investigating 

exon flanking regions both of 430 and of 230 nucleotides, to evaluate a possible 

enrichment of substrings nearer the exons. 

As through a descriptive statistic about substrings length, about 2/3 of unique 

substrings resulted to be shorter than 15 nucleotides, we decided to discard them 

and to focus our attention only on substrings longer than 15 nucleotides. RBM20 

binding sites were so searched in these substrings, through the in house program 

(see section 2.6), analysing both 430 and 230 nucleotides exon flanking regions, 

to evaluate possible higher scores nearer the exons. 

A descriptive statistic about the length of the selected substrings and the score 

related to the similarity or dissimilarity of a pattern to RBM20 binding site pattern 

is shown in Table 4. 
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Table 4 – Descriptive statistic about substrings length and score (max, mean and median). 

Exon flanking regions of 430 nucleotides and 230 nucleotides were analysed. “Exon 

side”: exon upstream (u) or downstream (d) region analysed. Three parameters were 

evaluated: mean, median and variance of each of the 4 measures calculated for each exon 

flanking region of that dataset. Score is related to the similarity (high value) or 

dissimilarity (low value) of a sequence pattern to RBM20 binding site pattern. 

 

Length of 

region of 

interest 

Dataset 

Exon 

side 

(u/d) 

Parameter 
Length of 

substrings 

Max 

score 

Mean 

score 

Median 

score 

430 nt 

A1 

u 

mean 21.03 -6.34 -15.57 -15.37 

median 19 -4.02 -15.36 -14.67 

variance 58.02 13.77 9.04 12.15 

d 

mean 20.6 -6.92 -15.9 -15.72 

median 18 -8.27 -15.77 -14.73 

variance 56.07 16.03 10.21 13.79 

A2 

u 

mean 20.63 -8.69 -17.68 -17.91 

median 18 -8.73 -17.55 -17.91 

variance 43.68 20.06 6.79 11.11 

d 

mean 20.24 -9.16 -18.08 -18.55 

median 18 -8.8 -17.87 -20.73 

variance 46.49 22.32 8.44 11.51 

N1 

u 

mean 21.41 -9.37 -17.79 -18.03 

median 19 -8.8 -17.91 -17.95 

variance 76.45 21.89 10.3 14.37 

d 

mean 20.62 -9.55 -18.08 -18.18 

median 18 -8.8 -18.04 -20.73 

variance 60.13 18.62 7.37 12.19 

230 nt 

A1 

u 

mean 20.74 -5.85 -15.09 -14.88 

median 18 -3.59 -14.63 -14.56 

variance 61.15 12.72 8.68 12.42 

d 

mean 21.05 -6.96 -15.91 -15.85 

median 18 -8.25 -15.72 -14.74 

variance 65.02 18.32 11.34 14.63 

A2 

u 

mean 21.3 -8.05 -17.44 -17.67 

median 19 -8.73 -17.44 -17.88 

variance 51.42 18.75 6.13 10.1 

d 

mean 20.17 -8.84 -17.96 -18.56 

median 18 -8.8 -17.87 -20.73 

variance 45.65 24.58 7.71 11.32 

N1 

u 

mean 22.08 -9.05 -17.58 -17.78 

median 19 -8.8 -17.33 -17.91 

variance 104.77 21.83 10.28 14.67 

d 

mean 20.03 -9.74 -17.87 -17.84 

median 17 -8.8 -17.93 -17.93 

variance 56.69 17.83 7.18 12.11 
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The mean length of substrings was about 21 nucleotides and the median length 

was about 18 nucleotides for all datasets, for both exons sides and for both regions 

investigated. The control dataset N1 had higher variance of substrings length than 

the cases datasets A1 and A2 when focusing on 430 nucleotides flanking regions, 

while the variance on 230 nucleotides flanking regions resulted more variable 

among datasets. 

Mean and median of max score are higher for dataset A1 than the other two 

datasets (especially in the exon upstream region), corresponding to an exact match 

with RBM20 binding pattern, while A2 and N1 best patterns allow 1 mismatch in 

the site sequence. Mean and median of mean and median scores are higher for A1 

too. The variance of the three scores resulted to be higher in the exon downstream 

than in the exon upstream region of cases exons (datasets A1 and A2), and in the 

exon upstream than in the exon downstream region of control exons (dataset N1). 

No significant difference was noticed between the scores observed analyzing 430 

or 230 nucleotides exon flanking regions. 

 

3.4 Searching for additional genetic elements in RBM20 affected exons 

Since the reported RBM20 RNA binding site is not sufficient to clearly 

distinguish between RBM20 affected and not affected exons, the presence of 

additional genetic elements which might be associated with RBM20 RNA binding 

site in the regulation of splicing events was investigated. First of all, target exons 

were searched for known genetic elements (substrings without “G” nucleotide 

containing RBM20 binding site patterns (see section 3.3), regulatory and 

transcriptional known motifs, and transposable elements), then for new genetic 

elements (enrichment analysis), and finally for sequence characteristics 

(frequency of nucleotides and dinucleotides, exons length). 

 

3.4.1 Searching for regulatory and transcriptional known motifs 

Many functionally important regions of the genome can be recognized by 
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searching for sequence patterns, or motifs, corresponding to binding sites for 

transcription factors. Differential expression of genes and exons depends on these 

regulatory proteins. So, identifying the motifs bound by other transcription factors 

than RBM20 can provide useful insights in the regulation. 

Datasets A1, A2 and N1 were analysed using the online resource RegRNA2.0, 

through an in house program (see section 2.7), which automatically submitted the 

input sequence and searched for all available known motifs for Rattus norvegicus. 

Results were parsed in order to discover different single regulatory and 

transcriptional motifs. Analyses were performed either on 430 or 230 nucleotides 

regions, to evaluate a possible overall or individual enrichment of motifs nearby 

the target exons. 

 

Table 5 – Overall number of regulatory and transcriptional known motifs observed in the 

430 or 230 nucleotides upstream and downstream regions of the target exons. 

 

Length of 

region of 

interest 

Dataset 

Num. of motifs in 

the upstream 

region 

Num. of motifs in 

the downstream 

region 

430 nt 

A1 5064 4796 

A2 1518 1525 

N1 1618 1811 

230 nt 

A1 2582 2684 

A2 806 842 

N1 840 1037 

 

 

Overall, 1105 different regulatory and transcriptional motifs were observed in the 

three dataset of exons, distributed as shown in Table 5. No indication was given 

so far about the kind of motifs recurring in the different regions, but only on their 

number. 

 

3.4.2 Searching for transposable elements 

Transposable elements are sequences of DNA which can move from a position to 

another in the genome, creating mutations often cause of genetic diseases. They 
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might play some kind of regulatory role, determining which genes are turned on 

and when this activation takes place (McClintock, 1965). Furthermore, specific 

proteins are specialised in masking cryptic splice sites created by transposable 

elements, in order to protect the human transcriptome from the aberrant 

exonization of these elements, through the binding to specific sequence patterns 

(Zarnack et al., 2013). Thus, target exons were searched for transposable elements 

to evaluate a possible enrichment of these elements in the exons whose alternative 

splicing is regulated by RBM20. 

The datasets A1, A2 and N1 were analysed with RepeatMasker web server. Each 

group of exons was analysed separately and searched for all transposable elements 

known by the program. Through a in house program (see section 2.7) the results 

were extracted, and the number and the kind of transposable elements present in 

the flanking regions of each exon were obtained. As for the search for regulatory 

and transcriptional motifs, two analyses were performed: one on regions of 430 

nucleotides and one on regions of 230 nucleotides, to evaluate a possible 

enrichment of transposable elements nearby the exons. 

 

Table 6 – Number of transposable elements (TEs) observed in the 430 nucleotides or 230 

nucleotides upstream and downstream regions of the target exons. 

 

Length of 

region of 

interest 

Dataset 
Num. of TEs in the 

upstream region 

Num. of TEs in the 

downstream region 

430 nt 

A1 96 116 

A2 12 24 

N1 46 41 

230 nt 

A1 38 56 

A2 3 10 

N1 19 16 

 

 

The number of transposable elements observed in the three datasets (A1, A2 and 

N1), when considering 430 and 230 nucleotides exon flanking regions, is 

displayed in Table 6. As shown, many exons don’t contain any transposable 

element. 
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After observing the occurrences of each element in the target sequences, we 

decided to focus on 3 kinds of transposable elements (SINEs, Simple repeats and 

LTRs) and on the total number of interspersed repeats, evaluating the number of 

sequences containing or not each element. 

 

Table 7 – Total number of nucleotides (nt) of interspersed repeats. The total number of 

interspersed repeats was investigated in exon upstream and downstream regions of both 

430 and 230 nucleotides. “+”: number of nucleotides with interspersed repeats; “-”: 

number of nucleotides without interspersed repeats. 

 

Transposable 

element 

Length of 

region of 

interest 

Dataset +/- 

Num. of nt in 

the upstream 

region 

Num. of nt in 

the downstream 

region 

Total 

interspersed 

repeats 

430 nt 

A1 
+ 6125 7797 

- 93635 91963 

A2 
+ 502 983 

- 33898 33417 

N1 
+ 3411 3503 

- 30989 30897 

230 nt 

A1 
+ 945 2271 

- 52415 51089 

A2 
+ 0 156 

- 18400 18244 

N1 
+ 1089 824 

- 17311 17576 

 

 

All the three datasets of exons presented more interspersed repeats (Table 7) in the 

exon downstream region than the exon upstream region, for both 430 and 230 

nucleotides regions, except for the dataset N1 in the 230 nucleotides exon 

flanking regions (1089 nucleotides of interspersed repeats in the exon upstream 

regions and 824 nucleotides of interspersed repeats in the exon downstream 

regions). 
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Table 8 – Number of transposable elements (TEs). The total number of SINEs, Simple 

repeats and LTRs was investigated in exon upstream and downstream regions of both 430 

and 230 nucleotides. “+”: number of exon flanking regions with at least a SINE, a Simple 

repeat or a LTR; “-”: number of exon flanking regions without SINEs, Simple repeats or 

LTRs. 

 

Transposable 

element 

Length of 

region of 

interest 

Dataset +/- 

Num. of TEs in 

the upstream 

region 

Num. of TEs in 

the downstream 

region 

SINEs 

430 nt 

A1 
+ 33 36 

- 199 196 

A2 
+ 3 7 

- 77 73 

N1 
+ 22 14 

- 58 66 

230 nt 

A1 
+ 8 14 

- 224 218 

A2 
+ 0 1 

- 80 79 

N1 
+ 9 6 

- 71 74 

Simple 

repeats 

430 nt 

A1 
+ 33 40 

- 199 192 

A2 
+ 6 10 

- 74 70 

N1 
+ 11 13 

- 69 67 

230 nt 

A1 
+ 19 27 

- 213 205 

A2 
+ 2 6 

- 78 74 

N1 
+ 6 6 

- 74 74 

LTRs 

430 nt 

A1 
+ 6 5 

- 226 227 

A2 
+ 1 0 

- 79 80 

N1 
+ 3 4 

- 77 76 

230 nt 

A1 
+ 1 3 

- 231 229 

A2 
+ 0 0 

- 80 80 

N1 
+ 1 2 

- 79 78 
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Concerning SINEs elements (Table 8), more SINEs in downstream than in 

upstream regions of cases exons were observed, and the opposite situation was 

found for control exons, for both 430 and 230 nucleotides regions. 

Simple repeats distribution (Table 8) reflected interspersed repeats distribution, 

showing more simple repeats in the exon downstream region than the exon 

upstream region, both for 430 and 230 nucleotides regions, except for the control 

dataset in the 230 nucleotides exon flanking regions (6 simple repeats in both 

exon upstream and downstream regions). 

LTRs elements (Table 8) showed a different behaviour: more LTRs in the 

upstream regions of cases exons and less LTRs in the upstream regions of control 

exons, than in the exon downstream regions, were observed when considering 

regions of 430 nucleotides; on the contrary, the opposite situation for cases exons, 

but the same situation for control exons, was observed when analysing regions of 

230 nucleotides. 

Fisher exact test was performed to evaluate a possible enrichment of each of these 

elements in cases or in control exons (comparisons A1-N1, A2-N1 and A1-A2). 

Only the statistically significant results are shown (Table 9). 

All the comparisons for the total interspersed repeats were highly significant (p-

value << 0.00001), except for the comparison A1-N in the 230 nucleotides exon 

downstream region (p-value = 0.2). As concerning SINEs elements, significant 

comparisons for the exon upstream regions of both 430 and 230 nucleotides (p-

value ranges from 0.000043 to 0.018, overall for both comparisons), but not for 

the correspondent exon downstream regions, were observed. 

All the odds-ratio belonging to significant comparisons were found to be OR < 1, 

both for total interspersed repeats and for SINEs, for both 430 and 230 nucleotides 

exon flanking regions, indicating an impoverishment of these transposable 

elements in the exons whose alternative splicing is regulated by RBM20. 

Furthermore, a higher significance, but a lower strength of association, in the 430 

nucleotides regions with respect to 230 nucleotides regions, were observed. 
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None of the comparisons related to the presence or absence of Simple repeats or 

LTRs, in the flanking regions of cases and control exons, resulted to be 

significant; similarly, the comparison A1-A2 resulted not significant for all 

transposable elements analysed. 

 

Table 9 – Fisher exact test results on the number of nucleotides (for Total interspersed 

repeats) or exon flanking sequences (for SINEs) containing the selected elements, given 

as p-value and odds-ratio (OR) for the comparisons A1-N1 and A2-N1. Regions of 430 

nucleotides and 230 nucleotides were analysed. “Exon side”: exon upstream (u) or 

downstream (d) region analysed. Only statistically significant results (p-value < 0.05) are 

shown. “n.s.”: not significant result. 

 

Transposable 

element 

Length of 

region of 

interest 

Exon 

side 

(u/d) 

Parameter A1-N1 A2-N1 

Total 

interspersed 

repeats 

430 nt 

u 
p-value <<0.00001 <<0.00001 

OR 0.59 0.13 

d 
p-value <<0.00001 <<0.00001 

OR 0.75 0.26 

230 nt 

u 
p-value <<0.00001 <<0.00001 

OR 0.29 0 

d 
p-value n.s. <<0.00001 

OR n.s. 0.18 

SINEs 

430 nt 

u 
p-value 0.01 0.000043 

OR 0.44 0.1 

d 
p-value n.s. n.s. 

OR n.s. n.s. 

230 nt 

u 
p-value 0.018 0.0031 

OR 0.28 0 

d 
p-value n.s. n.s. 

OR n.s. n.s. 
 

 

3.4.3 Searching for sequence patterns more frequent in cases than in control 

exons 

Investigating for additional possible genetic elements associated with RBM20 

regulation, an enrichment analysis to search for RNA binding site patterns more 

frequent in RBM20 regulated than not regulated exons was performed. 
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Two enrichment analyses were performed, through the software DREME, 

between datasets A1 and A2 versus themselves with their sequences scrambled 

(Table 10). 

 

Table 10 – Patterns from the enrichment analyses (DREME software). “Shuffled”: dataset 

containing exons flanking sequences with scrambled nucleotides. Enrichment analysis 

was performed in the top strand or in both strands of the exons. Patterns were selected 

with DREME p-value < 10
-7

 and DREME E-value < 10
-3

. 

 

Case dataset Control dataset Strand analysed Num. of patterns 

A1 A1 shuffled top strand 7 

A1 A1 shuffled both strands 14 

A2 A2 shuffled top strand 3 

A2 A2 shuffled both strands 8 

 

 

Overall, 32 new binding site patterns were found from the enrichment analyses. 

The number of patterns observed for each analysis was proportional to the number 

of sequences analysed; indeed, the dataset A1 (232 exons) was enriched of more 

patterns than the dataset A2 (80 exons). In the same way, more patterns were 

observed analysing both strands of each exon flanking region, than analysing only 

the top strand. 

Through the algorithm based on a nucleotide probability matrix (see section 2.6), 

these 32 new patterns were searched in the flanking regions of the exons of 

datasets A1, A2 and N1 (data not shown), and then used in the following analyses. 

 

3.4.4 Estimating the frequency of nucleotides and dinucleotides 

Also nucleotides and dinucleotides frequencies of target exons were calculated as 

additional genetic elements to be used in the following analyses (data not shown). 

The datasets A1, A2 and N1 were analysed through an in house program (see 

section 2.7), focusing on the 430 nucleotides exon flanking regions. 
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3.4.5 Getting of exons length 

The length of exons belonging to different datasets could be another important 

characteristic useful to distinguish them. 

Exons length of the datasets A1, A2 and N1 was therefore calculated through an 

in house program (see section 2.7), and a descriptive statistic was performed for 

each dataset (Table 11). 

 

Table 11 – Descriptive statistics about exons length. The 1 quartile, median, mean and 3 

quartile of the length of exons of each dataset were calculated. 

 

Dataset 
Exon length 

1 quartile Median Mean 3 quartile 

A1 128.80 270.00 676.20 896.20 

A2   87.75 168.50 317.55 279.00 

N1 102.80 149.00 212.40 186.50 

 

 

As displayed, the two datasets of RBM20 regulated exons (A1 and A2) contain 

longer exons than control exons (dataset N1), on average. Between regulated 

exons, dataset A1 contains averagely longer exons then dataset A2. 

So, exon length could be worthy to be evaluated. 

 

3.5 Features selection 

We collected and merged all the information obtained from the previous analyses 

(sections 3.3 and 3.4) in a single R object for each dataset analysed (A1, A2 and 

N1): the results about the search for RBM20 binding site patterns and for 

substrings without “G” nucleotide containing RBM20 binding site patterns, the 

search for regulatory and transcriptional known motifs, the search for transposable 

elements, the search for the additional binding site patterns from enrichment 

analysis, the estimation of nucleotides and dinucleotides frequencies, and the 

getting of exons length. In particular, after the search for regulatory and 
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transcriptional known motifs the target regions were analysed for each different 

motif, while after the search for transposable elements the target regions were 

analysed for each kind of transposable element. 

Overall, from the analyses, 9836 features (numeric characteristics) representing 

each exon were obtained. 

Features selection was performed comparing dataset A1 with N1, and dataset A2 

with N1, in order to select the subset of features able to distinguish case and 

control exons (see section 2.8). 

The results of the features selection are shown in Table 12. 

 

Table 12 – Number of features found at each step of the features selection. “Total 

features”: number of features before the features selection, “Significant features”: number 

of features after the single feature univariate association analysis, “Not redundant 

significant features”: number of features after the correlation test, “Not redundant 

significant features (A1 and A2)”: number of not redundant significant features found to 

be shared between datasets A1 and A2. 

 

Feature kind A1 A2 

Total features 9836 9836 

Significant features 478 622 

Not redundant significant features 409 512 

Not redundant significant features (A1 and A2) 215 

 

 

Dataset A1 showed 478 significant features and 409 not redundant significant 

features, while dataset A2 showed 622 significant features and 512 not redundant 

significant features. 215 features were observed to be shared between both sets of 

selected features. 

In Table 13 is displayed how the 215 shared features were distributed between the 

genetic elements investigated. 
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Table 13 – Distribution of the 215 shared features among the different genetic elements 

analysed. The number indicates how many features related to each element were 

observed. 

 

Genetic element 
Number of 

features 

RBM20 binding site patterns 11 

Substrings without “G” 

nucleotide containing RBM20 

binding site patterns 

0 

Regulatory and transcriptional 

known motifs 
8 

Transposable elements 1 

32 binding site patterns from 

enrichment analysis 
143 

Nucleotides and dinucleotides 

frequencies 
51 

Exons length 1 

 

 

As shown, the features which seemed to distinguish between case and control 

exons were related to RBM20 binding site patterns (11 features), to regulatory and 

transcriptional known motifs (8 features), to transposable elements (1 feature), to 

some of the 32 additional patterns (143 features overall), to nucleotides and 

dinucleotides frequencies (51 features), and to exons length (1 feature). 

None of the features related to the presence of substrings without “G” containing 

RBM20 binding site was found among the shared features; this didn't imply that 

none of this kind of features was significant, but some features could have been 

not significant, some could have been significant but redundant, and others could 

have been significant and not redundant, but not shared. 

 

3.6 Support Vector Machine analysis 

Support Vector Machine method was used to discriminate RBM20 affected from 

RBM20 not affected exons. 
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The 215 shared features were used to predict the exons class (RBM20 affected or 

not affected). The 75% of the case exons of the datasets A1 and A2, one dataset at 

a time (RBM20 affected exons), combined together with the 75% of the control 

exons of the dataset N1 (RBM20 not affected exons), was used to train the SVM. 

The remaining 25% of the exons in A1+N1 and A2+N1 datasets was used as 

testing set. The performances of the models were evaluated through the AUC 

value, whereas the performances of the predictions were evaluated through the 

accuracy value (see section 2.9 for more details). 

The results of SVM analyses are shown in Table 14. 

 

Table 14 – AUC value of the model and accuracy of the prediction for the SVM 

classification. For each analysis, case and control datasets are indicated. The 215 shared 

features were used to train the SVM. 0 ≤ AUC ≤ 1, 0 ≤ accuracy ≤ 1. 

 

Case 

dataset 

Control 

dataset 

AUC 

value 
Accuracy 

A1 N1 0.71 0.77 

A2 N1 0.81 0.83 

 

 

The analysis on the combined datasets A2+N1 (AUC = 0.81 and accuracy = 0.83) 

performed better than the analysis on the combined datasets A1+N1 (AUC = 0.71 

and accuracy = 0.77). 

The more probable cause of these results is the different ratio of case and control 

exons in the two combined datasets on which the SVM was trained. Whereas in 

A2+N1 the case-control ratio is 1:1 (80 affected and 80 not affected exons), the 

ratio for A1+N1 was about 3:1 (232 affected and 80 not affected exons). We 

noticed that this introduced a bias in the prediction of affected exons, classifying 

more than the 90% of the exons of A1+N1 as affected (result not shown), hence 

resulting in a lower accuracy than A2+N1. 

A new SVM analysis was thus performed selecting 80 random exons out of the 

232 exons of the dataset A1, in order to restore a case-control ratio of 1:1 when 

analyzing datasets A1+N1 (Table 15). 
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Table 15 – AUC value of the model and accuracy of the prediction for the SVM 

classification on 80 random exons of the dataset A1 and on the dataset A2. For each 

analysis, case and control datasets are indicated. The 215 shared features were used to 

train the SVM. 0 ≤ AUC ≤ 1, 0 ≤ accuracy ≤ 1. 

 

Case 

dataset 

Control 

dataset 

AUC 

value 
Accuracy 

A1 N1 0.68 0.85 

A2 N1 0.81 0.83 

 

 

Despite the AUC value for the datasets A1+N1 in Table 15 was slightly lower 

than the respective AUC value in Table 14 (0.68 and 0.71, respectively), the 

accuracy value increased from 0.77 to 0.85. 

In order to evaluate the predictive strength of the 215 shared features, a further 

analysis was performed by training and testing SVM through the permutated 215 

shared features (Table 16). 

 

Table 16 – Accuracy of the prediction for the SVM classification on 80 random exons of 

the dataset A1 and on the dataset A2. Case and control datasets, and the AUC value of 

each training set are shown. For each analysis, the different composition and the number 

of affected (A) and not affected (N) exons of the testing set are indicated. The 

composition “½ A + ½ N” is the default testing set. The 215 permutated shared features 

were used to train the SVM. 0 ≤ AUC ≤ 1, 0 ≤ accuracy ≤ 1. 

 

Case 

dataset 

Control 

dataset 

AUC 

value 

Testing set 

Accuracy 
Composition 

Number of 

A exons 

Number of 

N exons 

A1 N1 0.65 

 
   A +      N 20 20 0.55 

 
   A +      N 20 10 0.67 

 
    A +     N 10 20 0.57 

 
   A 20 0 0.6 

 
   N 0 20 0.5 

A2 N1 0.62 

 
   A +      N 20 20 0.53 

 
   A +      N 20 10 0.47 

 
    A +     N 10 20 0.63 

 
   A 20 0 0.4 

 
   N 0 20 0.65 
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The accuracy value ranged from 0.5 to 0.67 for datasets A1+N1, and from 0.4 to 

0.65 for datasets A2+N1. So low values implied a small predictive capability of 

the 215 permutated shared features, enhancing nevertheless the original features 

as good predictors. 

In the default setting of SVM the ratio of cases and controls is the same in the 

training and testing sets. As suggested by literature, the 75% of exons (60 affected 

and 60 not affected exons - training set) was used to train the SVM, and then the 

trained model was tested on the remaining 25% of exons (20 affected and 20 not 

affected exons - testing set). In order to evaluate how the accuracy could change 

according to the ratio of case and control exons in the testing set, we performed 

several runs changing this ratio (Table 17). 

 

Table 17 – Accuracy of the prediction for the SVM classification on 80 random exons of 

the dataset A1 and on the dataset A2. Case and control datasets, and the AUC value of 

each training set are shown. For each analysis, the different composition and the number 

of affected (A) and not affected (N) exons of the testing set are indicated. The 

composition “½ A + ½ N” is the default testing set. The 215 shared features were used to 

train the SVM. 0 ≤ AUC ≤ 1, 0 ≤ accuracy ≤ 1. 

 

Case 

dataset 

Control 

dataset 

AUC 

value 

Testing set 

Accuracy 
Composition 

Number of 

A exons 

Number of 

N exons 

A1 N1 0.68 

 
   A +      N 20 20 0.85 

 
   A +      N 20 10 0.83 

 
    A +     N 10 20 0.83 

 
   A 20 0 0.9 

 
   N 0 20 0.8 

A2 N1 0.81 

 
   A +      N 20 20 0.83 

 
   A +      N 20 10 0.8 

 
    A +     N 10 20 0.8 

 
   A 20 0 0.85 

 
   N 0 20 0.8 

 

 

The accuracy values for the predictions on the testing sets analysed were all high 

values (accuracy ≥ 0.8 for all analyses). This underlines that although an 

unbalanced composition of case and control exons in the training set could affect 
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the prediction of the testing set in favour of either case or control exons (as shown 

in Table 14 for datasets A1+N1), a balanced training set can predict with high 

accuracy also unbalanced testing sets, even when testing exons are all affected or 

all not affected (i. e. composition of the testing set of “    A” or “    N” exons). 

Therefore, for all findings observed so far, these 215 shared features seemed to be 

sufficient to well discriminate RBM20 affected from not affected exons. 
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4 Discussion 

 

Mutations of RNA binding motif protein 20 (RBM20) have been recently reported 

to cause Human dilated cardiomyopathy (DCM) (Brauch et al., 2009; Li et al., 

2010). DCM is the major cause of heart failure and mortality around the world 

(Jefferies and Towbin, 2010). It is characterized by cardiac dilatation and systolic 

dysfunction, which is the leading cause of heart transplantation. Overall, 25–50% 

of DCM cases are familiar and causative mutations which have been described in 

more than 50 genes encoding mostly for structural components of 

cardiomyocytes. 

RBM20 belongs to the family of the SR and SR-related RNA binding proteins 

which assemble in the spliceosome taking part in the splicing of pre-mRNA. 

RBM20 is mainly expressed in striated muscle, with the highest levels in the heart 

(Guo et al., 2012). Due to its involvement in DCM, RBM20 was studied to unveil 

its mechanism of action and its RNA targets (Guo et al., 2012; Li et al., 2013). 

Guo and colleagues reported a set of 31 genes showing a RBM20 dependent 

splicing from a whole transcriptome analysis in rats and humans (Guo et al., 

2012). More recently, Maatz and colleagues reported an additional set of 18 rat 

genes and observed that RNA sequences recognized by RBM20 are likely to be 

located in the 400 nucleotides flanking the exons whose alternative splicing is 

regulated by RBM20 (Maatz et al., 2014). However, both the suggested RNA 

sequence which is recognized by RBM20 and its over-representation over the 

flanking regions of affected exons remain poor predictors to target genes 

presenting splicing events regulated by RBM20. 

The aim of this work was, thus, to characterize, through a bioinformatic approach, 

the sequence motifs of the exons whose alternative splicing was affected by 

RBM20, in order to ameliorate the prediction of the genes (exons) affected by 

RBM20. 

Public RNA-Seq data were downloaded, reads underwent a quality control and 
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then were aligned to a genome reference, every exon was quantified and the total 

expression profile was reconstructed. Through a sophisticated statistical analysis 

the splicing for each rat and human gene of the transcriptome was investigated, in 

order to obtain a dataset of RBM20 affected exons (all differentially expressed rat 

exons). 

Our first analysis on 232 exons resulted from the differential analysis of the rat 

transcriptome (RBM20
+/+

 versus RBM20
-/- 

rats) and 80 exons retrieved from 

literature (Maatz at al., 2014) suggested that the consensus sequence for RBM20 

RNA binding site is an important factor, but not a sufficient hallmark to 

specifically target RBM20 affected exons. Thus we hypothesized that other 

factors are needed to help RBM20 in recognizing its targets. Exons were thus 

queried to extract a long list of features. The feature setup involved the 

investigation of the nucleotide composition of the target region, the identification 

and counting of recurrent string patterns, and the counting of known motifs and 

repetitive elements reported in the databases. All this was done by writing scripts 

to compute the analyses and summarize the results for each exon. The more 

relevant features were then given as input to a Support Vector Machine (SVM). 

SVMs employ supervised learning algorithm which could help us to discriminate 

RBM20 affected from not affected exons. 

The number, size and position of single patterns and clusters of patterns of 

RBM20 RNA binding site were, first of all, integrated as features in the SVM, 

altogether with the ones of the 32 new binding site patterns found to be more 

frequent in RBM20 regulated than not regulated exons from the enrichment 

analysis. Subsequently, nucleotides and dinucleotides frequencies of each flanking 

region, and exons length were added, having revealed on average longer RBM20 

affected and shorter RBM20 not affected exons. 

As RBM20 rat RNA binding site logo doesn't contain any “G” nucleotide, the 

flanking regions of target exons were explored to search for sequence substrings 

without “G” nucleotide too, as better candidates for the binding of RBM20. 

Focusing on the unique substrings, as the most of the unique substrings found 

were long less than 15 nucleotides, all substrings longer than 15 nucleotides were 
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selected and RBM20 binding sites were searched only in these substrings. The 

mean length of substrings was observed to be about 21 nucleotides and the 

median length about 18 nucleotides for all datasets investigated. Mean and median 

of max score were higher for dataset A1 than the other two datasets, 

corresponding to an exact match with RBM20 binding pattern, while A2 and N1 

best patterns allowed 1 mismatch in the site sequence. Mean and median of mean 

and median scores were higher for A1 too. The variance of the three scores 

resulted to be higher in the downstream region than in the upstream region of 

cases exons, and in the upstream region than in the downstream region of control 

exons. 

Many functionally important regions of the genome can be recognized by 

searching for sequence patterns, or motifs, corresponding to binding sites for 

transcription factors. Differential expression of genes and exons depends on these 

regulatory proteins. So, identifying the motifs bound by other transcription factors 

than RBM20 can provide useful insights in the regulation of some elements that 

might be associated with RBM20. From our analysis, 1105 different regulatory 

and transcriptional motifs were observed. 

Transposable elements might play some kind of regulatory role too. Furthermore, 

specific proteins are specialised in masking cryptic splice sites created by 

transposable elements, through the binding to specific sequence patterns (Zarnack 

et al., 2013). Thus, target exons were searched for transposable elements, in order 

to evaluate a possible enrichment of these elements in the exons whose alternative 

splicing is regulated by RBM20. 

When some of the transposable elements (SINEs, Simple repeats and LTRs) were 

studied in a greater detail, both cases and control exons were observed to present 

more interspersed repeats and simple repeats in the downstream region than the 

exon upstream region (both for 430 and 230 nucleotides regions). As concerning 

SINEs elements, more SINEs were observed in the downstream regions than in 

upstream regions of cases exons, and the opposite situation was discovered for 

control exons, both for 430 and 230 nucleotides regions. LTRs elements showed a 

different behaviour: when considering regions of 430 nucleotides, more LTRs in 
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the upstream regions of cases exons and less LTRs in the upstream regions of 

control exons, than in the downstream regions, were noticed; with regions of 230 

nucleotides the opposite situation for cases exons, but the same situation for 

control exons was observed. 

Total interspersed repeats were observed to be significantly less present in cases 

than in control exons, and SINEs elements were found to be significantly less 

present in the upstream region of cases exons than in the upstream region of 

control exons, confirming an impoverishment of these transposable elements in 

the exons whose alternative splicing is regulated by RBM20. Because all OR were 

observed to be less than 1, we hypothesized an interference made by transposable 

elements in the recognition of RBM20 RNA binding site and/or in the binding of 

RBM20 to the RNA of target exons. Comparing the two flanking regions, 430 

nucleotides regions were observed to have a higher significance, but a lower 

strength of association, than 230 nucleotides regions. 

In order to have a global view of the genetic elements binding in the flanking 

regions of our target exons, all the information obtained from the previous 

analyses were collected and merged in the form of numeric characteristics, to be 

used as features to train our SVM model. Overall, 9836 features representing each 

exon were obtained. Since many of them could be either clearly not useful or 

redundant features, a features analysis to select the subset of features associated 

with the case exons was performed. The aims of a features selection analysis are 

three: 1) improving the overall prediction performance, 2) providing faster and 

more cost-effective analysis, and 3) providing a better understanding of the 

underlying process that generated the observations (Guyon and Elisseeff, 2003). 

We decided first to assess features individually through a single feature univariate 

association analysis, to understand their influence on the system, and then in pairs 

through a correlation test, to find high correlated features. 

After the features selection analysis, 409 best features comparing dataset A1 with 

dataset N1, and 512 best features comparing dataset A2 with dataset N1 were 

obtained. 215 features were found to be shared between both groups of best 

features. Among the shared features, features describing the RBM20 binding site 
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patterns, regulatory and transcriptional known motifs, transposable elements, 

patterns from enrichment analysis, nucleotides and dinucleotides frequencies, and 

exons length were observed. Any feature related to the presence of substrings 

without “Gs” containing RBM20 binding site patterns was found; this doesn't 

imply that none of this kind of features was significant or not redundant, but only 

that none of them was shared between the two groups of selected features. 

Another consideration to make is that the features of the genetic elements which 

are represented by more features aren’t more important than the ones of the 

genetic elements represented by a very few features, but every feature has the 

same importance in the SVM. 

Once obtained the subsets of best features, they have been used to train the SVM. 

We chose SVM method to classify RBM20 affected and not affected exons, but 

other machine learning algorithms could have been used: i. e. Decision Trees 

(DT), Random Forest (RF), k-Nearest Neighbors (k-NN), Artificial Neural 

Networks (ANN), naïve Bayes (NB). However, SVM is among the most 

commonly used ones, not only in motif discovery, but also in neuroimaging and in 

diabetes research (Kavakiotis et al., 2017). 

From the SVM analyses, the predictions performed with the 215 shared features 

resulted in high values for both the AUC of the model and the accuracy of the 

prediction (0.68 ≤ AUC ≤ 0.81, accuracy > 0.8). The SVM trained and tested with 

permutated features resulted in low values for both AUC and accuracy, thus 

enhancing the original features as good predictors. 

Further analyses showed that although an unbalanced composition of case and 

control exons in the training set could affect the prediction of the testing set in 

favour of either case or control exons, a balanced training set can predict with 

good accuracy also unbalanced testing sets, even when testing exons are all 

affected or all not affected. 

Starting from 9836 features we detected a subset of 215 features (about a half of 

the best features selected from each combined case-control dataset, and about 1/5 

on the initial overall number of features), which represent reliable markers helping 
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to well discriminate RBM20 affected from not affected exons. 

From a biological and functional point of view, this approach helps us to target 

novel candidate genes associated to diseases depending on a deregulation of 

RBM20. 

This study, anyway, presents some limitations: our analyses were based on public 

RNA-Seq data, but the number of available samples was very tiny (3 human 

samples and 9 rat samples were analysed). Furthermore, we focused our attention 

mainly on rat samples (because of the greater numerosity), and thus the detection 

of the affected exons in the human samples remains blurred. It is also important to 

underline that the SVM is sensitive to the relative number of case and control 

samples given during the training procedure, and this may impact on the 

classification performance. 

In the next future, we aim to reduce the number of features used to train the SVM, 

and to apply other machine learning algorithms for the classification of RBM20 

affected exons. Additionally, we will test our SVM model on a new dataset of 

exons and we will investigate the human genome to find out all possible RBM20 

affected exons, in order to verify the SVM model reliability. 
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5 Conclusions 

 

Recently, the role of RBM20 in the cardiac function (Ma et al., 2016; Hinze et al., 

2016) and its regulation of Titin (Beqqali et al., 2016; Khan et al., 2016; Jaé et al., 

2016) were deepened, and other genes related to DCM were studied (Kayvanpour 

et al., 2017). This study provided additional information about RBM20 regulation 

of target exons, based not only on the RNA binding site, but also on other genetic 

elements associated to the binding site. Furthermore, we proposed the first model 

based on a SVM algorithm for the classification of RBM20 affected and not 

affected exons. 
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