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Sweet child in time  
you'll see the line  

the line that's drawn between  
good and bad. 

 
Deep Purple, 1970 
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ABSTRACT 

Bronchopulmonary dysplasia (BPD) was first described in 1967 in a group of 

preterm infants as chronic inflammatory lung disease associated with arrested 

pulmonary development and supplemental oxygen needed. In humans is the 

earliest onset and probably the longest disease, and presents multifactorial origins. 

Nowadays, in preterm newborns the gold standard diagnostic methods for 

evaluating predisposition to develop BPD is airway lavage and tracheal aspirate, 

and less invasive for assessing immunological settings and biomarkers, is blood 

sample. Recently, non-invasive method based on cooling and condensing of 

exhaled breath condensate (EBC) containing several classes of compounds and 

biomarkers was proposed. Numerous researches demonstrate that in EBC high 

levels of leptin, a pro-inflammatory marker involved in lung injury, are associated 

with chronic lung disease such as asthma and COPD, but BPD was never 

evaluated. In the present study we assess EBC levels of leptin and its antagonist 

ghrelin, in preterm newborns mechanical ventilated, to identify the correlation 

with BPD development. Only few studies performed EBC on intubated preterm 

newborns to identify others markers of lung injury.  

EBC collection in first day of life showed no leptin and ghrelin concentration 

neither in BPD and nor in control group. Significant difference (p=0.002) in 

gestational age of controls compared to BPD was found, and significant difference 

(p=0.005) in the body weight of control group compared with BPD. An improved 

understanding of markers in BPD requires animal model, and the expression of 

leptin and ghrelin and their receptor were assessed in lung tissue of murine model 

of BPD obtained exposing newborns Wistar rats at high oxygen concentration for 

14 days (PN 14), and to achieve severe BPD, prolonging the exposition for 28 

days (PN28). PN14 and PN28 exposition showed a suffering look: shaggy hair, 

and general growth slowed if related with healthy controls. Architectural changes 

at PN14 confirms impaired alveolar lung development, and a reduction in the 

number and development of alveoli. Additionally, increased interstitial thickness, 

and epithelial cells with low cilia number, compared with control were found, and 

a continued exposure (PN28) showed an inflammatory and pulmonary edema 

increase. In pups statistically significant lowest values of body weight were found 
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in BPD group at PN14 (p=0.002) and at PN28 (p=0.012) compared with controls 

in air room. Different dimensions of trachea were found in two groups of 

treatment at PN14: BPD presented high trachea caliber (p=0.008) if related to 

control. In lung tissue no significant changes expression of leptin and ghrelin and 

their receptors in control group and BPD group were observed for both exposure 

periods. In conclusion, it’s possible that leptin and ghrelin may not be predictive 

markers of lung injury: probably we have collected EBC too prior with respect the 

possible BPD development, but is essential to standardize EBC collection, with 

specific attention in hardware. Another explanation is that these markers are not 

involved in BPD lung injury as well as chronic lung disease such as asthma and 

COPD. Specific role and tissue expression of leptin and ghrelin remain to be 

clarify, for this reason is necessary to further investigate and focus the attention on 

metabolic issue with other approaches like proteomic and metabolomics, to better 

understand and identify this disease that nowadays presents high incidence. 
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SOMMARIO 

La broncodisplasia (BPD) è una patologia cronica che colpisce i neonati 

pretermine e già dalla sua prima descrizione nel 1967, è stata associata ad un 

arresto dello sviluppo polmonare che necessita di ossigenoterapia. Il prelievo 

sanguigno risulta oggi giorno il metodo clinico meno invasivo per valutare il 

rischio di sviluppare BPD, tuttavia le metodiche di elezione prevedono il dosaggio 

di markers ottenuti attraverso procedure invasive quali l’aspirazione 

endotracheale ed il lavaggio bronchiale. Negli ultimi anni è stata posta particolare 

attenzione su una nuova metodica non invasiva che prevede la raccolta del 

condensato dell’aria esalata (EBC dall’acronimo Exhaled Breath Condensate). In 

un campione di EBC è possibile rilevare numerose molecole che permettono di 

valutare le condizioni respiratorie del soggetto. Tra i molteplici markers 

respiratori presenti, la leptina è un ormone recentemente associato a patologie 

croniche come l’asma e la BPCO, anche se tuttavia non è stata ancora indagata la 

possibile correlazione con la BPD. In questo studio sono stati raccolti, durante il 

primo giorno di vita, campioni di EBC in soggetti prematuri sottoposti a 

ventilazione meccanica per valutare i livelli di leptina e della sua antagonista 

metabolica, la grelina. Sono emerse differenze significative (p=0.002) nell’età 

gestazionale del gruppo di soggetti che hanno sviluppato BPD, rispetto ai soggetti 

controllo. Inoltre, è stato osservato come il peso corporeo alla nascita è nettamente 

superiore nei soggetti sani rispetto ai soggetti con BPD (p=0.005). Il dosaggio dei 

putativi markers nel campione di EBC non ha rivelato la presenza di leptina e di 

grelina, e questo esito potrebbe essere riconducibile al fatto che il campione sia 

stato raccolto troppo precocemente rispetto allo sviluppo della patologia. Un'altra 

supposizione prende in considerazione la mancanza di linee guida sulla corretta 

modalità di raccolta in pazienti intubati, causa di un probabile deterioramento del 

campione stesso. È stato quindi creato un modello animale di BPD esponendo 

ratti Wistar neonati ad alte concentrazioni di ossigeno per 14 e 28 giorni 

(rispettivamente PN14 e PN28). Al termine dell’esposizione sono stati prelevati i 

tessuti polmonari per una valutazione dell’espressione di leptina e grelina, ma 

anche in questo caso non sono emerse differenze significative nel gruppo BPD 

rispetto agli animali cresciuti in normossia, indipendentemente dalla durata 
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dell’esposizione. Tuttavia sono state riscontrate sostanziali differenze nel peso e 

nello sviluppo dell’architettura bronchiale, con particolare sofferenza nel gruppo 

con BPD comparato con gli animali controllo dove è emerso un calibro tracheale 

nettamente superiore come segno di danno respiratorio. Questi risultati 

suggeriscono come probabilmente leptina grelina non siano direttamente coinvolte 

nel danno polmonare presente nella broncodisplasia, e pertanto non possono 

essere considerati dei marcatori precoci di patologia. Tuttavia, questo studio ha 

gettato le basi per ulteriori approfondimenti nell’ambito della standardizzazione 

della raccolta del campione di EBC per evidenziare i più idonei timepoint di 

campionamento, e preservare il possibile deterioramento del campione raccolto. 

Sarà comunque necessario approfondire il putativo ruolo di leptina e grelina, 

indagando anche sugli aspetti di metabolomica e proteomica, con l’obiettivo di 

analizzare il rischio di sviluppo di una patologia cronica che tutt’oggi presenta 

ancora un’elevata incidenza. 
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INTRODUCTION 

Bronchopulmonary Dysplasia 

Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease 

associated with arrested pulmonary development and a need for supplemental 

oxygen. Todays the survival of preterm newborns is increasing, but infants 

frequently suffer chronic respiratory disorders, especially if had developed this 

disease. BPD was first described in 1967 by Northway and colleagues in a group 

of preterm newborns, defining developed chronic respiratory failure as sequelae of 

hyaline membrane disease/surfactant deficiency/respiratory distress syndrome 

(RDS). The results are based upon a large group of preterm infants with 

pulmonary changes resulting from mechanical ventilation and oxygen 

supplementation to treat hypoxemia (Northway et al. 1967). Few years later, it 

was highlighted how the treatment with oxygen increases production of cytotoxic 

oxygen free radicals in mice knock-out of antioxidant mechanisms, and the 

exposition to high levels of oxygen showed lung injury observable in 

morphometric analysis (Crapo et al. 1978) (Bonikos et al.1976). From the late 

1980s the National Heart Lung and Blood Institute (NLHBI) further describe the 

disease, and suggested to focus new clinical researches in this disease (Report of 

NIH, 1979). Other studies in 1985 described the pathophysiology of this disease 

and it was a lunch pad to apply the research in animal models (O’Brodovic et al. 

1985): extremely preterm newborn baboons with BPD, exposed at high 

concentration of oxygen in mechanical ventilation, showed a significant decrease 

in the number of alveoli and enlargement of airspaces that caused a reduction in 

the total lung internal surface (Coalson et al. 1995) (Coalson et al. 1999). Several 

studies explained the long-term consequences of BPD, concentrating the aim on 

the incidence of airway hyper-reactivity and then intense lung inflammation as 

disruption of normal pulmonary structures and lung fibrosis (Baraldi and 

Filippone, 2007), conditions that increase susceptibility to infection and altered 

respiratory function. Additionally, lung performance is decreased in infants with 

BPD (Bryan et al. 1973), because lung compliance is reduced and bronchial tree 

presents high airways resistance due at reduction of parenchymal elasticity 
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(Goldman et al. 1983). Although the morphologic process of lung development 

has been well described, it’s necessary to introduce the timing and ageing in lung 

growth, to better understand the onset of BPD in immature lung. It is well known 

the prenatal period consisting in embryonic stage (1-7 week) and a fetal period, 

divided in 3 stages: pseudo-ghiandolar stage (5-17 weeks), canalicular stage (16-

26 weeks) and saccular stage (24-38 weeks). The saccular period represents the 

timing for the formation of the alveoli and go on in postnatal time when the 

alveolar stage starts from 36 weeks and go on up to 2 years of age. This follows 

the micro vascular maturation and the late alveolarization (up to 5 years of age) 

(Burri, 2006). Term birth, corresponds with the alveolar phase when alveolar sacs 

evolve by alveolar ducts, conversely in preterm infants who develop BPD, are in 

the late canalicular or early saccular stage of lung development. This period is 

characterized by cells differentiation (pneumocytis type I and type II) and growth 

of the primitive alveoli and alveolar-capillary barrier (Balany and Bhandari, 

2015). In these conditions the normal lung advance programming is blocked, 

increasing the risk of occurrence of BPD. In human, in the 4th week of gestation 

the sketch of separation of trachea and esophagus is observed (Fig.1) (Herriges 

and Morrisey, 2014). 

 
Fig.1. Human lung development and BPD. (from Rivera et al. 2016) 
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Next phase is the formation of the trachea (Rawlins, 2011) that will generate the 

bronchial branch and forms all the ramifications that lead to the evolution of 

capillary network, the final large surface area and a thin capillary barrier dedicated 

to gas exchange. This lung evolution allows to transport air from external 

ambient, into the bloodstream, and exhaled out the carbon dioxide. Gas exchange 

process takes place in alveolar-capillary barrier, a thin line composed by alveolar-

vascular epithelial cells in close association, when the deoxygenated blood 

through the lung to be oxygenated (Nardiello et al. 2016). Preterm infants begin 

early pulmonary gas exchange with an inefficient alveolar and capillary network, 

and most severely affected patients remain symptomatic even in adult age. These 

infants, in the first years have a low quality of life because present recurrent 

infections with altered pulmonary function (McEvoy et al. 2014). The risk of 

infection increases if infants are affected by BPD, indeed is documented that 73% 

of these infants required at least one admission to hospital, and the 27% needed 

more than three hospitalizations (Greenough et al. 2001). In addition, they have a 

high risk of mortality after birth, and high risk to develop visual and ocular 

motility dysfunction (Chau et al. 2013) characterized by delayed visual 

maturation and subnormal visual acuity, but also visual field defects, and visual 

perceptual-cognitive problems. Infant with BPD have a high predisposition to 

develop pulmonary hypertension (Koroglu et al. 2013), and altered 

gastrointestinal motility (Broussard, 1995), although the most important disorder 

during the first two years of life of patients with BPD (Lamarche et al. 2004) is 

respiratory exacerbation caused by viral infections. Genetic factors added to 

environmental interactions (Fig.2) leading to the multifactorial origins of this 

disease that in humans is the earliest onset and probably lasts the longest, as 

showed in a recent study by Carraro and colleagues (Carraro et al. 2015) when are 

describe alteration of the lipid metabolomic profile in exhaled breath condensates 

(EBC) of adolescents with history of BPD, compared to controls.  
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Fig.2. Genetic and environmental factors and inflammation leading to the development of 

BPD. (from Balany and Bhandari, 2015) 

 

Medical advances in the care of premature infants such as use of prenatal 

corticosteroids and postnatal surfactant treatment, the avoid intubation but use of 

oxygen supplementation by continuous positive airway pressure (CPAP) (Van 

Marter et al. 2000), and use of heated high-flow nasal cannula (HHFNC) (Collins 

et al. 2013), permit relatively consistent survival of preterm infants born in the 

late canalicular, and early saccular stage of lung development. In preterm non-

human primates was observed that nasal CPAP improve the alveolar formation 

and alveolar capillary growth, if compared with mechanical ventilation (Thomson 

et al. 2004). Additionally, use of nasal low pressure high frequency ventilation 

(nasal LPHFV) shows the same improve in lung of preterm lambs and preserves 

alveolar architecture (Reyburn et al. 2008). Exposing to high tidal volumes 

increases risk factor for developing BPD in premature infants, indeed in 

mechanical ventilation, lungs present injury such as volutrauma, barotrauma, or 

atelectrauma (Hillman et al. 2011), and increase the release of pro-inflammatory 

cytokines like IL-6, IL-8, and TNFα, as well as reduced production of anti-

inflammatory cytokines like IL-10 (Carvalho et al. 2013). Also the aggressive 

treatment of symptomatic ductus arteriosus, and new insights of nutrition have 

showed a improve of outcomes. For example, nutrition both during hospitalization 

and at discharge is an important step for the correct management of health: in fact  
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rapid weight gain and crossing of centiles is not recommend, because increase the 

risk of developing hypertension, and risk to become insulin resistant (Lapillonne 

et al. 2013), especially in newborn with low weight for gestational age. According 

to nutrition, is necessary to considered that while a newborn with BPD receiving 

supplementary oxygen in delivery room, his antioxidant protection is low, then is 

more exposed to oxidative stress (Solberg et al. 2012), therefore the future 

perspectives suggest supplementation with dietary intake, or nutraceutical dietary 

supplement such as (curcuma, resveratrol and vitamin D) (Tenero et al. 2016), to 

reduce the risk to development inflammatory disorders, as has been observed in 

other lung disease such as asthma (Perrone et al. 2012). Since the classical 

characterization of BPD, defined as persistent oxygen requirement at 36 weeks’ 

gestational age, respiratory distress such as retractions, adventitious breath sound 

and tachypnea but also a changes in lung development confirmed by radiograph 

test, there have been many steps forward in neonatal medicine. The new 

knowledge on management of BPD lead to define this disease with a different 

grade of severity. In 1998 Husain and colleagues (Husain et al. 1998) described a 

“new version of BPD” highlighting the pathology found autopsy of newborn with 

BPD, and the term “new BPD” has been proposed a few years later by Jobe and 

Bancalari (Jobe and Bancalari, 2001). In the old BPD was present a large 

parenchymal fibrosis, inflammation and airway injury, instead in the new BPD is 

present a low level of fibrosis and a more uniform inflation. Moreover, in the new 

BPD smooth muscle not presents hypertrophy, no metaplasia in epithelial tissue, 

and minimal to moderate (but diffuse) alveolar septal fibrosis. In this tissue, 

alveolar development is arrested and this causing compromised lung elastic tissue 

maturation and perturbation; in new BPD we find an arrest of lung development 

instead that iatrogenic injury. Nevertheless, injuries occurring in the canalicular 

and saccular stage of bronchial development, compromise the vascularization and 

alveolarization and then make pulmonary gas exchange with an inefficient 

alveolar and capillary network. In spite of many improve in neonatal medicine 

since the first description of this disease, the incidence of BPD has nowadays not 

decline (Balany and Bhandari 2015), but to improve the management of this 

disease in 2000 a consensus categorized BPD in preterm newborn based on need 
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of oxygen supplemental: “none” (oxygen needed up to 28 days), “mild” (need 28 

days of oxygen therapy, but not at 36 weeks gestational age), “moderate” (need up 

to 30% oxygen at 36 weeks gestational age), “severe” (need for more 30% 

oxygen, with or without positive pressure ventilation or continuous positive 

pressure at 36 weeks gestational age) (Bancalari, 2001). During postnatal life the 

lung development is characterized by an increase of vascularization and develop 

of alveoli, important in the normal evolution of respiratory system (Baldwin, 

1996) (Gebb and Shannon, 2000). This growth is mediated in pathway regulated 

by the presence of specific signal peptides, cytokine and growth factors 

(Mustonen and Alitalo, 1995), and lung injury after the birth compromises the 

normal evolution, in fact in the lung of rats was observed that the inhibition of 

angiogenesis decreases alveolarization (Jakkula et al. 2000). BPD has been linked 

to the development of an inflammatory response that can occur in absence of 

clinical infection. Interactions occurs between proteins in the develop of lung, and 

with chronic lung disease of preterm birth, increase levels of pro-inflammatory 

cytokines express after alveolar injury, and characterize BPD pulmonary 

inflammation. In fact, common pro-inflammatory cytokines are the most 

extensively studied in this category of disease, because are important biomarkers 

for the prediction of adverse pulmonary outcomes in preterm infants. Several 

studies in infants showed that the bronchoalveolar lavage fluid obtained from 

newborn, presents pro-inflammatory cytokines (IL-1β, IL-6) (Kotecha et al. 1996) 

released in response to infection, but the same results was described also in 

conditions of specific inflammation. These proteins induce the release of 

inflammatory mediators and modify the adhesion molecules on endothelial cells 

by up regulation. For example, in tracheal aspirates of preterm newborn IL-1β 

induces airway epithelial cell IL-8 expression via an NF-kB dependent pathway 

(Shimotake et al. 2004) and IL-1β/Il-6 ratios are associated with risk of 

colonization with Ureaplasma urealyticum in respiratory tract (Patterson et al. 

1998). High leukotriene levels are present in lung of newborn with BPD (Cook et 

al. 1996), and also in early phases of an inflammatory response, high presence of 

TNF-α in tracheobronchial aspirate correlates with the presence of BPD compared 

with health infants (Jònsson et al. 1997). Adhesion molecules such as ICAM-1 
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(Kojima et al. 1996) (Kotecha et al. 1995) firm adhesion and migration of 

neutrophils, and L-selectin involved in the rolling of neutrophils increased 

concentrations on day 7 and on day 10 in infants with BPD (Kotecha et al. 1998). 

Moreover, the inducible PGHS-2 isoform of the enzyme involved in the 

production of prostaglandins, (autocrine and paracrine lipid mediators), are 

implicated in the lung’s response to inflammation given that pro-inflammatory 

cytokine, and other isoform constitutively expressed, PGHS-1, present in cells to 

regulate the homeostasis. PGE2 is the PGHS-2 metabolite give from fibroblasts 

and vascular endothelial cells, that are stimulated by IL-1β and TNFα and the 

presence of this substance suggests specific role in fetal inflammation (Westover 

et al. 2012). Moreover, few mature cellular elements such as granulocyte and 

macrophage are present in alveolar washes of preterm newborn, and the presence 

of this cells increase after oxygen supplementation. For example, in lamb 

underwent to mechanical oxygen ventilation, this cellular type can be considering 

as possible early markers of lung injury oxygen induced (Carlton et al. 1985), and 

if applied in preterm newborn by measurements of reduction in circulating 

granulocytes, can predicts the risk to develop BPD (Ferreira et al. 2000). In Tab.1 

are visible the expression of all markers nowadays known, and involve in this 

multifactorial disease. 
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Mediators of inflammation Role Expression 
in BPD 

Inflammatory cytokines   

Interleukins: anti-inflammatory   
IL-10 Suppresses inflammatory response by inhibiting NF-κB ↓/↔ 
IL-4, IL-13 Suppresses inflammation by inhibiting pro-inflammatory cytokine prod. ↔ 
   
Interleukins: pro-inflammatory   
IL-1, IL-6 Acute phase inflammatory response ↑ 
IL-8 (CXCL-8)  Main chemoattractant for neutrophils ↑ 
   
CC chemokines   
Monocyte chemoattractant protein (MCP)-1, 1α, 1β, 2, 
3 Recruit inflammatory cells to area of injury ↑ 

Macrophage migration inhibitory factor (MIF) Upstream regulator of innate immune response ↓ 
Tumor necrosis factor alpha (TNF-α) Enhances expression of other pro-inflammatory cytokines ↑ 
Transforming growth factor-beta 1 (TGF-β1) Pro-inflammatory ↑ 
   
Matrix proteins   
Matrix metalloproteinase-8 Disordered pulmonary remodeling after inflammation ↑ 
Matrix metalloproteinase-9 Pro-inflammatory, interferon-gamma (IFN-γ) signaling ↑ 
   
Growth factors   
Endothelin-1 Pro-inflammatory ↑ 
Vascular endothelial growth factor Pro-inflammatory ↑/↓ 
Connective tissue growth factor (CTGF) Pro-inflammatory ↑ 
Bombesin-like peptide (BLP) Increases mast cells in the lung ↑ 
Breast regression protein-39 (human analog is YKL-
40) Anti-inflammatory ↓ 

Pulmonary hepatocyte growth factor (HGF) Alveolar septation, repair ↓ 
Keratinocyte growth factor (KGF) Regulates proliferation of alveolar epithelial cells ↓ 
   
Miscellaneous   
Interferon-inducible protein 9 (IP-9 – also known as 
CXCL11) Pro-inflammatory, IFN-γ signaling ↑ 

Cyclooxygenase-2 (Cox-2) Pro-inflammatory, IFN-γ signaling ↑ 
CCAAT/enhancer-binding protein (C/EBP) Pro-inflammatory, IFN-γ signaling ↑ 
Endoglin Pro-inflammatory ↑ 
Periostin Pro-inflammatory ↑ 
Clara cell secretory protein Modulates acute pulmonary inflammation ↓ 
Parathyroid hormone-related protein (PTHrP) Alveolar growth ↓ 
Angiopoietin-2 Pro-inflammatory ↑ 
Lactoferrin Anti-inflammatory ↓ 

 

Tab.1. Markers of inflammation: function in health and level in BPD. Symbols ↑ indicates 

increase, ↓ indicates decrease and ↔ indicates no change. (from Balany and Bhandary 

2015).	

 

The effect of severity in BPD is also associated at gender and racial differences, in 

fact neonatal lung diseases may have a genetic background: for example, the 

production of hydrophilic surfactant proteins, also known as “collectins” that have 

the ability to bind and improve the control of a big group of pathogens and 

allergens, is influenced by polymorphism of intron 4 of SP-B (Surfactant Protein 

B), and specific alleles of the SP-A are associate with respiratory distress 

syndrome. Moreover, other alleles and genotypes of SP-A and SP-D (Silveyra and 

Floros, 2012) associate with severe respiratory infections in early infancy, and 

dominant mutations of SP-C are associate with different manifestations of chronic 

lung disease (Hallman and Haataja, 2003) (Marttila et al. 2003). In addition, 

growth factors, hormones, and other molecules that control lung homoeostasis 
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may influence recovery from inflammatory injury and for this reason is treated 

with nitric oxide (Truog et al. 2007), a lung protective inhaled therapy that reduce 

the pulmonary vascular resistance and improve oxygenation (Soll, 2012). Clinical 

intervention with corticosteroid therapy is applied for preventing respiratory 

disease syndrome (RDS) and in last years was the most effective therapy (Roberts 

and Dalziel, 2006) to prevent preterm delivery as shown by Liggins in a trial in 

fetal lumb in 1969: “It is suggested that this may be the result of accelerated 

appearance of surfactant activity” (Liggins, 1969). In a clinical trial was 

described as prenatal treatments with corticosteroids reduced the of 17% the 

incidence of develop RDS, improving neonatal health outcomes (Crowther et al. 

2015). Nevertheless, there are controversy in the antenatal use of corticosteroids 

(Wapner and Jobe, 2011), and in animal models (Jobe et al. 2003) is described as 

the result after treatment is not always detectable, and sometimes can presents 

adverse events. In addiction, recent guidelines recommend to treat, with antenatal 

corticosteroid therapy between 24 up to 34 weeks of gestational age, women at 

high risk to preterm delivery (Moss et al. 2002) (Practice Bulletin n.159, 2016) 

although the correct use of corticosteroids in pregnancy is unclear (Romeiko et al. 

2014) (Doyle et al. 2014). There are several animal experiments conducted on 

fetal sheep to investigate the frequency and timing of treatment, and the optimal 

dose (Jobe et al. 2007) (Jobe et al. 2009). However, the treatment is only a help 

for the infant, because the therapy with corticosteroids can prevents the develop of 

RDS in the 30% of preterm newborn, but have no effect if BPD has already been 

diagnosed (Roberts and Dalziel, 2006). BPD is frustrating for neonatologist 

affecting up 30% of very low birth weight infant. Nevertheless, all the 

mechanisms associated with the disease pathogenesis are nowadays unclear, 

because this chronic lung disease is multifactorial (Bhandari, 2014). Today BPD 

is diagnosed according to the criteria of the National Institute of Health when the 

infant required >21% oxygen for more than 28 days. (Ehrenkranz et al. 2005). 
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Use of animal models 

Over time the survival rate of patients with BPD is increased, and autopsy lung 

tissue, necessary to explore the pathogenesis, to study new treatments, or new 

intervention strategy, it’s difficult to find. For this reason, many studies are 

addressed on animal models of BPD, a field in constantly expansion because the 

characterization of pathogenic pathways to identify the disease mechanisms 

(Hilgendorff et al. 2014) in preterm newborn, and identify in-vivo pulmonary 

property are nowadays not completely clear. Several studies are needed with 

specifics animal models of BPD in rats (O’Reilly and Thèbaud, 2014) mice 

(Berger and Bhandari, 2014), in rabbits (Manzano et al. 2014) (D’Angio and 

Ryan, 2014), pre-term lambs (Albertine, 2014) and pigs (Caminita et al. 2015) 

(Arrindell et al. 2015), and finally in non-human primates (baboons) (Yoder and 

Coalson, 2014). In -vitro protocols, and microscopic imaging analysis are in 

progress, and this technology improvement, allows to better explore the lung 

development (Nardiello et al. 2016). 

 

 
 

Fig.3. Stages and gestational ages of lung development in humans and rats. C stands for 

canalicular, A stands for alveolar and P stands for postnatal day. (from O'Reilly and, 

Thébaud, 2014) 
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To better understand the develop of BPD it's Necessary to remember That there 

are some small differences between the lung development in animals and humans. 

In fact, while in sheep, baboons and humans, the saccular stage occurs in utero, in 

rodent models it begins at embryonic day 18 and the transition to the alveolar 

stage occurs at postnatal day 5, with total development at 30days after birth (Joshi 

and Kotecha, 2007). Therefore, study of the rat lung has provided to insight in the 

postnatal development stages (Kuffman et al. 1974) (Burri et al. 1974) (Kramer et 

al. 2007) (Fig.3). Another advantage on the using rats, is the duration of gestation 

(21-22 days), and the short estrus (4-5 days), but also post-partum estrus, consent 

to researcher to plan by date accurately by means of single mating. Moreover, a 

large litter size (11 in average, but depends on the strain) consents to have a 

consistent number of available pups (Burri, 1974). In animal models, is simple 

obtaining a relatively high quantity of blood sample, and after sacrifice is also 

simple collect the different organs. Also in human there are many advantages of 

using blood, first of all the presence of reference values normalization, although in 

preterm newborn sampling is a common problem, especially if are very low birth 

weight. To overcome this problem, the most promising biomarkers to be used in 

future studies, are probably non-protein molecules such as microRNAs (De Paepe 

et al. 2008) and end tidal carbon monoxide (Zhang et al. 2014), or biomarkers like 

cytokines and other molecules not only be derived from the bloodstream. 

 

 

EBC (exhaled breath condensate) 

Bronchoalveolar lavage technique (BAL) and direct aspiration of lung epithelial 

lining fluid	 in preterm newborns with BPD assess markers of lung disease, but 

this sampling is	 invasiveness and potential to cause transient inflammation. 

Additionally, BAL is difficult to repeat many times in near future, because 

increase risk of impairment of gas exchange and pneumonitis in previously 

compromised tissue (Effros et al. 2002). Non-invasive means of sampling the 

airway-lining fluid of the lungs have been purposed in last years and exhaled 

breath condensate (EBC) is a new technique by which pulmonary specimens are 

obtained to assess inflammatory markers of respiratory disease. The study of lung 
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inflammation with non-invasively procedures is better, and exhaled breath air 

contains aerosols that can be collected and analyzed for study characteristics 

capable to describe pathologic processes in the lung. This approach is based on 

previous studies carried out in the 70s afterwards summarized by Manolis in 1983 

(Manolis, 1983) when described the amount of substances present in the exhaled 

air of human breath. In the recents years several works described the correlation 

between exhaled breath condensate and disease such as asthma (Corradi et al. 

2007) (Baraldi and Carraro, 2006) and others lung disease, and for this reason 

sampling of exhaled breath condensate has been purposed as new approach for 

assessing biomarkers. As described by Hunt (Hunt, 2002), EBC contains different 

classes of aerosols and vapors, also non-volatile compounds such as lipids, ions, 

oxidation products, cytokines, adenosine, serotonin, histamine, acetylcholine, and 

surfactant. Volatile organic compounds such as ammonia, hydrogen peroxide and 

ethanol are also possible to find out. Aerosols are released during the normal 

inspiratory and expiratory phase in tidal breathing, and particular interest is due 

EBC gives a substrate by which inflammatory and biochemical components of 

lung disease can be noninvasively evaluated. EBC collection is obtained by 

cooling exhaled breath and condensing the sample into test tube kept under zero 

Celsius degrees (Hunt, 2002). Several studies on EBC biomarkers were conducted 

to assess the relationship between different classes of compounds and different 

respiratory disease such as asthma, COPD, gastroesophageal reflux disease 

(GERD), cystic fibrosis, lung cancer and many others respiratory syndrome 

(Kononikhin et al. 2106). Although in adults were described guidelines on EBC 

collection, but a standard protocol for sampling collection in mechanical 

ventilated patients is nowadays missing (Muller et al. 2006). Sample collection in 

mechanically ventilated patients is based on principles of condensation, but is 

influenced by several factors. A correct sampling requires low cooling 

temperatures and adequate sampling times (usually several minutes). Moreover, 

the sample can be contaminated and for this reason that storage and analysis 

should occur promptly at -80° C to prevent sample degradation.	Based on this 

protocol we can safely collect the sample also in intubated patients underwent to 
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mechanical ventilation without conditioning the clinical practice: procedure is 

possible by placing the EBC device in-line with the circuit of the ventilator.  

In this study we collect EBC to assess a new putative marker of lung disease 

expressed in lung tissue of animal model of BPD. In ventilated infants the lack of 

collection methods, compared to others collaborative subjects (Baraldi et al. 2003) 

affected by asthma, is critical for early identification of preterm infants at greatest 

risk for BPD. In fact, in ventilated preterm newborns, due of this absence on the 

management of EBC collection, is difficult obtain a significant marker to relate 

with animal models. In the last few years a precious addition to clinical 

investigation, especially for metabolic changes that occur in different diseases, 

was performed. These studies are also useful for following the efficacy of therapy 

(Lal et al. 2015) and identification of specific biomarkers is also suitable for 

earlier diagnosis of BPD (Fig.4) and in the clinical management permits, to start 

specific treatments just after birth. 

 

 

Fig.4. Markers of BPD. 

 

Nowadays the prediction of BPD is evaluated with new method such as 

metabolomic (Baraldi et al. 2016), a new scientific approach that detects changing 

in metabolic profiles, leading to identify patients with more precision than clinical 
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tools available. Among models prediction of the risk to develop BPD there is a 

poor discriminative ability (Lal and Ambalavanan, 2015) and for this reason is 

necessary focus on new biomarkers development and at same time standardization 

of sample collection, for early correct finding and treatment of this disease. 

 

 

Leptin 

In 2011 was well described by Banfo and colleague that among 5-10% of 

pregnancy can present fetal growth restriction with trouble to achieve the 

genetically determined development (Bamfo and Odibo, 2011). Is well known 

how in preterm newborn exist a fetal immaturity gas exchange network, and a 

failure of the surfactant production, conditions to expose to developing respiratory 

distress syndrome, pneumonia, asphyxia and BPD (Bose et al. 2009). Despite in 

last year there are improve of medical knowledge and a more target use of 

prenatal corticosteroids and postnatal surfactant treatment, but also the avoid the 

mechanical ventilation, many countries have reported an increase of preterm birth 

rates over the past 20 years, and this general trend was recently confirmed by a 

WHO global survey (Zeitlin et al. 2013). The mechanism of lung development is 

regulated by several interactions mediated by a bi-directional signal that involve 

molecules and their receptors can have too a putative role for the treatment of fetal 

growth restriction. For example, in the group of non-traditional cytokines there 

are molecules with double role: show cytokine functions in modulating the 

immune response, but present also hormone characteristics, especially during 

metabolic processes (Ouchi et al. 2011). Among these molecules Leptin, a 16-kDa 

peptide product of the ob gene, is a cytokine-like hormone primarily secreted 

from mature adipose tissue and, in physiological conditions, its circulating levels 

correlate positively with white adipose tissue mass.	 This adipokine links 

nutritional status with neuroendocrine and immune functions and is expressed in 

fetal lung tissue, but high level expression of leptin receptors in lung and isolated 

fetal type II cells was found. In recent years, in in-vitro studies have been 

demonstrated how leptin is secreted by lipofibroblasts and its release stimulates 

type II cells to produce the surfactant. The same stimuli were highlighted in fetal 
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rat type II cells, and adult human airway epithelial cells (Torday et al. 2002). 

Leptin is also expressed (Cohen et al. 1996) from many other tissue, mammary 

epithelium (Handy et al. 2010), placenta (Leroy et al. 1996), gastric fundus, liver 

and muscle, and plays a specific role in the inflammation and immune response 

(Otero et al. 2005), because differentially increases production of TH1 cytokines 

such as IL-2, interferon-γ, TNF-α. It was also observed increasing of vascular 

endothelial growth factor (VEGF) release by airway smooth muscle, that 

promotes sub epithelial neovascularization and vascular permeability (Shin et al. 

2008). Leptin acts a pro-fibrogenic effect in primary human lung fibroblasts 

augmenting the transcriptional activity of TGF-β1 via suppression of the 

antifibrotic activity of PPARγ, and this observation is confirmed with animal 

model of leptin-deficient mice: these animals were resistant to the development of 

airways lung injury (Jain et al. 2011). Leptin is also involved in the regulation 

mechanisms of the T cell proliferation and activation, natural killer cell function 

(Matarese et al. 2005), angiogenesis promotion and monocytes and macrophages 

system recruitment, playing significant role in airway inflammation. The diseases 

involved in these processes are acute lung injury (Ubags et al. 2014), but also 

chronic disease COPD (Chronic Obstructive Pulmonary Disease) (Kim, 2014) and 

asthma (Vernooy et al. 2013) (Ali Assad and Sood, 2012). Leptin presents a 

pleitropic effect (Paraskevas et al. 2006) contributing to control of the body 

weight by influencing appetite and energy expenditure, and acting on the hunger 

centre of the hypothalamus and brown adipose tissue (Fig.5) (Mancuso et al. 

1985) (Campfield et al. 1995). Focusing the attention on other role of leptin is it’s 

possible describe its action as a lypostate: when the amount of fats stored in the 

adipocytes increases, leptin is released into the bloodstream, a negative feedback 

signal for the hypothalamus. With this message of metabolic information is 

highlights that energy reserves are sufficient, and hypothalamus releases 

anorexigenics peptide and suppressing orexigenic factors (de Luis et al. 2009). 

Studies in humans and in animal models have been demonstrated that low levels 

of leptin are associated with obesity (Fig.5) (Montague et al. 1997) (O’Donnell et 

al. 2000) (Wabitsch et al. 2015). For this reasons it has been hypothesized a 

possible leptin resistance condition in obese patients because high plasma leptin 
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concentrations in obese with normal weight subjects were found (Auwerx and 

Staels, 1998). Leptin exerts its biological actions by binding to its receptor (Ob-

R), a member of class I cytokine receptor superfamily, presents in six isoforms 

(Matarese et al. 2005): a soluble isoform, with short cytoplasmic domains. Other 

isoforms, the long isoforms, are found in almost tissues and which seems to be the 

only isoform capable of transducing the leptin signal in many tissues including 

brain, placenta, hematopoietic cells, liver, heart and lung (Bruno et al. 2005). 

Leptin binds to short and long forms of its receptors, which are generated by 

alternative splicing of leptin receptor gene (Lee et al. 1996). This link transmits 

extracellular signals through the janus kinase (JAK) and signal transducer, and 

activator of transcription (STAT) signaling pathway (Fruhbeck, 2006). Most 

immune cell types express Ob-R at their surface, which suggests a role for leptin 

in immune responses. In the last years, many studies have showed the potential 

role of leptin in lung development and remodeling (Vernooy et al. 2013), 

suggesting an evident role of this hormone in pulmonary homeostasis. For 

example, animal models show how leptin contributes to the regulation of 

respiratory lung function, acting as a stimulant factor of ventilation. In an obese 

mouse model (ob/ob mouse) respiratory abnormalities including tachypnea, 

decrease lung compliance and aberrant respiratory muscle are common and 

prolonged treatment with leptin attenuates respiratory abnormalities, suggesting a 

role for leptin also as a neuro-humoral modulator of central respiration 

(Tankersley et al. 1998). Several studies have been conducted regarding the leptin 

impact on inflammatory lung disease, and reported a relationship between serum 

leptin levels and the presence of chronic lung disease like asthma. Serum leptin 

levels in asthmatic children, especially males, were higher than healthy control, 

despite no difference in BMI (body mass index) (Guler et al. 2004). Based on the 

association between leptin and systemic inflammation, it has been hypothesized 

also a potential link between obesity and chronic lung disease such as asthma 

(Antonopoulou et al. 2008). In human, obese subjects showed high leptin levels in 

bronchoalveolar lavage (BAL) compared to lean subjects and these results are 

supported by a positive correlation with BMI, lung function, TNF-α in BAL, 

nitrates, 8-isoprostanes. Moreover, it’s possible observe values increasing if 
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subjects were affected by asthma (Lessard et al. 2011) (Holguin et al. 2011) 

(Lugogo et al. 2012). In a recent paper (submitted to reviewers) we demonstrate a 

statistically significant difference between serum levels of leptin in obese children 

with asthma compared with controls non-obese and not affected by asthma 

(healthy children). The same results were found in the leptin levels in exhaled 

breath condensate (EBC). These data suggest how leptin can be a new marker of 

lung inflammation to evaluate the outcome of chronic disease. Currently while 

many investigators reported a possible link between several diseases in the lung 

and systemic levels of leptin, describing leptin and its receptor, the relationship 

with infants affected by BPD has not yet been evaluated. A putative link between 

BPD and serum leptin remains nowadays unclear because no data are available on 

the potential presence of leptin in epithelial lung fluid. Further studies are needed 

to found the relationship in systemic inflammation of the lung and evaluate as 

specific target the BPD. 

 

 

Ghrelin 

Among non-traditional cytokine it’s possible citing ghrelin, a unique 28 amino 

acid peptide purified form the stomach of rat (Kojima et al. 1999) that acts as 

endogenous ligand for the growth hormone secretagogue receptor (GHS-R) and 

has a strong effect on GH (growth hormone) regulation (Sun et al. 2004). Ghrelin 

is mainly produced by a subset of stomach cells and by the hypothalamus, 

pituitary, and other tissues, and after transcription is necessary a post translational 

modification consisting in the acylation of the hydroxyl group of the serine 3 in 

the endoplasmic reticulum. This peptide is major express in digestive system, but 

low levels were found in nervous system, in the pituitary but also in other tissue 

(Gnanapavan et al. 2002), including lung (Ghelardoni et al. 2006). Subsequent 

studies have demonstrated the wide distribution of ghrelin and its receptor, and 

this proposes potentially exhibit of multiple biological activities such as 

myocardial injury, neurogenesis, bone metabolism, reproductive function, 

memory and sleep (Nerula and de Boisblanc, 2015). Moreover, has been found 

that ghrelin acts in modulation of glucose and lipid metabolism, appetite control, 
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and food intake (Mokrosiński and Holst, 2010) and has been hypothesized a 

promising therapeutic target for cognitive dysfunction, but also metabolic 

syndrome and such as obesity and type 2 diabetes mellitus (Cong et al. 2010). 

Most of the research focuses on the role of ghrelin in food intake and its related 

endocrine functions. However, given the wide distribution of GHS-R on several 

immune cell subsets, it was evaluated the effect on the immunological system 

(Dixit et al. 2004) (Dixit and Taub et al. 2005). There is a specific relation 

between immunological system and food intake: the cellular adaptive response is 

dependent from energy supply in the cells. For example, an event like the loss of 

appetite can be a predictive cause of illness or general injury (Kelley et al. 2003), 

and is well known how plasma ghrelin concentration increase before (Cummings 

et al. 2001)	and decrease after (Ghelardoni et al. 2006) every meal (Fig.5). The 

central nervous system controls food intake and energy homeostasis by releasing 

inflammatory cytokine (Hart,1988). Ghrelin inhibits the production of 

inflammatory cytokines in BALB/C mice after intraperitoneal injection of LPS 

endotoxin shock (Dixit et al. 2004). 

	

Fig. 5. Ghrelin and leptin exert mutually antagonist regulatory effects on metabolism and 

inflammation. (from Narula and de Boisblanc, 2005) 

 

Moreover, during inflammation ghrelin and its receptor are present in neutrophils, 

lymphocytes and macrophages and their expression is regulated during acute and 

chronic injury. The influence on the immune system it was recently demonstrated 

in vivo and in vitro (Li et al. 2015). Ghrelin can also antagonize leptin, a pro 
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inflammatory protein that promote the cytokine production, in direction of pro-

inflammatory pathway. These findings suggest a specific role in the homeostasis 

regulation as well as in the setting of immune system (Fig.5) (Narula and de 

Boisblanc, 2015). Several research conducted in animal models have 

demonstrated the protective effect of ghrelin on acute lung injury on improving 

pulmonary pathological damage, permeability, mechanics and gas exchange (Li et 

al. 2016). Over the last few years have been conducted clinical trials (Miki et al. 

2012) in witch was administered ghrelin in human to assessed the effect in 

chronic lung injury like COPD and bronchiectasis (Kodama et al. 2008) 

(Matsumoto et al. 2015). In infants, especially in the newborns, the role of ghrelin 

has been evaluated to study the nutritional status (Andreas et al. 2016), the 

oxidative stress (Luo et al. 2015), but no studies assessed the possible relation 

between ghrelin and the lung injury presents in preterm infants and in infants with 

BPD. 

 

 

Aim 

The aim of this research is the evaluation of level of two markers in the airways. 

In particular, to avoid further stress in the management of care, or going against 

the clinical practice and ethical principle, this research has focused on the 

evaluation of leptin in airways with non-invasive technique. Among the sampling 

techniques the aim of the present study is evaluate the levels of leptin and ghrelin 

in EBC of preterm newborn underwent to mechanical ventilation. The hyperoxia-

induced neonatal lung injury model is widely used as murine model of BPD to 

assess pathological hallmarks and tissue injury. In this study the tissue expression 

of leptin and ghrelin was not assessed in human, because is no ethical perform a 

biopsy in children without needed clinical, and so we have evaluated the 

expression of these markers in a lung tissue of animal model of BPD exposed to 

high oxygen concentration for 14 days and 28 days. 
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METHODS 

Study design 

Preterm newborn 

After birth, preterm newborns were underwent to mechanical ventilation and 

oxygen supplementation, according to medical vital parameters and only for the 

clinical stabilization. Exhaled breath condensate was collected, after parents had 

signed the informed consent, and however without interpose in any way with 

clinical practice and on child health.  

 

Animal model 

At the birth Wistar pups and mother were exposed to continuous 60% of oxygen 

concentration for 14 postnatal days (PN14), to induce BPD according to O’Reilly 

(O’Reilly and Thébaud, 2014). The other group was exposed for 28 days (PN28) 

to continuous 60% of oxygen concentration. The control group was maintained in 

room air concentration during all experiments (Fig. 6). 

 

 Birth PN14 PN28 

Control group room air  

BPD group 60% O2  

Control group room air 

BPD group 60% O2 

 

Fig. 6. Treatment schedule of controls and BPD. 
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Sampling of EBC in preterm newborn 

This clinical study was designed and shall be implemented and reported in 

accordance with the Guidelines for Good Clinical Practice, an international ethical 

and scientific quality standard for designing, conducting, recording, and reporting 

studies that involve the participation of human subjects. Were applied local 

regulations (including European Directive), and the ethical principles laid down in 

the Declaration of Helsinki. Participation of patients is based on the Italian 

regulations and local Ethic Committee requirements. This study is approved by 

local Independent Ethical Committee with number CESC37. We have enrolled 14 

mechanically ventilated patients (8 with BPD and 6 with acute respiratory distress 

syndrome) admitted to Neonatal Intensive Care Unit of Azienda Ospedaliera 

Universitaria Integrata, University of Verona, Italy. The diagnosis of BPD was 

defined as oxygen dependence for at least 28 postnatal days for infants 32 weeks 

or greater postmenstrual age or oxygen dependence at 36 weeks postmenstrual 

age for infants born before 32 weeks according to Jobe (Jobe and Bancalari, 

2001). Control group of healthy newborns was not included because, to collect 

EBC sample with the suggested method, is necessary mechanical ventilation. 

 

Inclusion criteria 

• Gestational age <33 weeks, or weight at birth ≤1500g need for mechanical 

ventilation. 

• Signed the informed consent from parents. 

 

Exclusion criteria 

• Subjects with major surgery just after the birth. 

• Subjects with major congenital anomalies (e.g. arteriovenous shunt), 

congenital heart disease or known cytogenetic disorders (e.g. Down’s 

syndrome). Open ductus arteriosus and open foramen ovale are not 

exclusionary anomalies. 

• Subject has known or suspected immunodeficiency, such as known human 

immunodeficiency virus (HIV) infection. 

• Subject has suspected hepatitis B or C infection. 
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• The subject’s legally acceptable representative, i.e., parents or legal 

guardian/caregiver, is not able to communicate reliably with the clinicians 

involved in this study. 

• Withdrawal of informed consent by parents. 

 

Newborns group were comparable for gender, body weight at birth and ethnicity. 

Patient’s characteristics are shown in Tab.2. 

 

Exhaled breath condensate was collected in the supplemental oxygen ventilator 

circuit after clinical stabilization. To assess the reproducibility of the EBC the 

sample was collected for 3 hours just after positioning the ventilation circuit. The 

volume collected is depending by the flow stream, and after collection all samples 

were stored in polypropylene (Eppendorf) tubes at -80°C.In this time were 

collected 3 different samples of EBC to assess the reproducibility. All neonates 

were mechanically ventilated with Babylog 8000Plus Ventilator (Drager 

Williamson Ct. Louisville, Kentucky 40223 USA) and were monitored in 

continuous oxygen saturation, respiratory rate, tidal volume, heart rate, and 

electrocardiography (data not cited). The circuit used was RT225 (Fisher & Paikel 

Healthcare Ltd, New Zeland). Sample integrity was guaranteed by maintaining of 

EBC cooling trap in ice bath, applied to the container dedicated to EBC collection 

as illustrated by Hunt (Hunt, 2002).  

 

 

Leptin measurement 

The Enzyme Linked Immuno Sorbent Assay (ELISA) kit (BioVendor Human 

Leptin ELISA) was used to measure leptin concentrations in EBC sample. The 

lower detection limit of the assay was 1 ng/ml and the sensitivity was 0.2 ng/ml. 

This technique involves the use of an indicator molecule coupled covalently with 

an enzyme, which converts the colorless substrate into a colored product, so that it 

can be detected by a spectrophotometer. The scheme is the following: use of a 

polystyrene plate with 96 wells coated with the primary antibody monoclonal anti 

human leptin; construction of a standard curve using serial dilutions of a known 
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concentration of the antigen and the specimens were added of condensate and 

serum concentration in unknown; addition of secondary antibody conjugated to 

peroxidase, and finally addition of the TMB detector substrate (3,3', 5,5'-

tetramethylbenzidine). The substrate in the presence of HRP complex (horseradish 

peroxidase complex) develops a blue color. The reaction was quenched adding 

acid solution. The intensity of staining is proportional to the amount of specific 

antibody present in the sample. The plate is then read in a spectrophotometer at 

λ=450nm. 

 

 

Ghrelin measurements 

A commercial ELISA kit (EZGRT-89K; Millipore) was used to measure ghrelin 

concentrations in EBC sample. The lower detection limit of the assay was 165.62 

pg/ml and the scheme work is the same as previously described for leptin 

detection. The absorbance was read in a spectrophotometer at wavelength 450 and 

590 nm. 

 

 

Animal model  

The study was approved from Technical Ethical Committee of the University of 

Verona for experimental animal. Female rats were purchased from Charles River 

Laboratories Italia s.r.l, Calco, Lecco, Italy. Animals were acclimatized to the 

departmental animal facilities for at least 1 week before to program the mating. 

They were kept in individual cages with sawdust and free access to food and 

water; a temperature-controlled environment (21–23 °C) and humidity of 50% on 

a 12 hours’ light–dark cycle with light ON at 8:00AM. All animals were handled 

in accordance with the Helsinki Declaration and recommendation for animal 

experimentation established of the Italian Public Health Authorities. The study 

was conducted on Wistar female rats weighing 250 g and pregnancies were dated 

accurately by means of single mating. At the term of gestation Wistar females and 

pups were divided in 2 groups: control group placed in acrylic chambers 

(Tecniplast mod 1290D, Buguggiate, VA, Italy) in room air, and BPD group 
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according with O’Reilly (O’Reilly and Thébaud, 2014). The BPD group 

(exposed) was placed in acrylic chambers (Tecniplast mod 1290D, Buguggiate, 

VA, Italy) contained in the hyperoxic setup (BioSpherix, Animal Chamber A-

30274-P, Redfield NY). Except for the concentration of oxygen created by 

introducing a continuous 60% oxygen flow constantly monitored (BioSperix, 

OxiCycler model A84XOV, Redfield, NY), in the BPD group the ambient 

conditions are the same than control as previously described. To reduce the 

possible confounders in both groups, confinement was briefly stopped every 6 

days just the necessary time for changing of cage with partial new sawdust, and 

restored food and water. The “gentle handling” procedure is based on a direct 

interaction with the experimenter, who keeps the animal under control and 

provided to change the cages. All efforts were made to minimize animal suffering 

and to keep the lowest number of animals used. The study was conducted on 

Wistar rats in hyperoxic chamber (n=14) and in room air (n=10). In the end of 

experiment all Wistar pups were anesthetized with an overdose of isoflurane. 

Body weight was recorded at the time of the death. Thorax was opened and lungs 

were removed in toto, then fixed in buffered formalin and embedded in paraffin, 

then sectioned using a microtome at 5µm and stained, for histological evaluation 

with hematoxylin and eosin (H&E). 

 

 

Histological examination 

The chest of the rats was opened and trachea, bronchial tree and lungs were 

carefully removed in toto and fixed in 4% paraformaldehyde, then dehydrated in 

rising gradient ethanol, vitrified in xylene and embedded in paraffin. The paraffin-

embedded sections (5µm-thick) were stained with H&E. Morphological changes 

were evaluated (×40 magnification) using an optical microscope Olympus BX51 

integrated with digital camera (JVC CCDKY-F58) equipped with the image 

analysis digital system Image-Pro Plus 7.0 (Media Cybernetics, Silver Spring, 

MD, USA).  
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Immunohistochemistry (Merigo et al. 2016) 

In this study were selected the following primary antibodies: rabbit anti-ghrelin 

(Phoenix Pharmaceuticals Inc., Burlingame, CA, USA, cat #H-031-31); rabbit 

anti-ghrelin receptor (-GRLN-R Abcam, Cambridge, UK, cat #ab85104); rabbit 

anti-leptin (Abcam, Cambridge UK, ab3583); rabbit anti-leptin receptor (Abcam, 

Cambridge, UK, ab5593). Peroxidase-immunohistochemistry was performed as 

described by Merigo et al 2011. Sections were treated with blocking solution 

(0.3% Triton X-100, 1% bovine serum albumin (BSA), and 1% swine serum 0.1M 

phosphate buffered saline (PBS) for 1 hour. Previously the endogenous 

peroxidase was quenched for 20 min in a peroxidase blocking solution (DAKO, 

Milan, Italy), then washing in PBS buffer pH 7.5. Sections were incubated 

overnight with primary antibodies diluted in blocking solution, then washed and 

reacted for 1h with diluted 1:400 biotinylated swine anti-rabbit immunoglobulins 

(DAKO). The immunoreaction was detected using a Vectastain ELITE ABC kit 

(Vector, Burlingame, CA, USA) and then visualized with 3.3-diaminobenzidine 

tetrahydrochloride (DAKO) for 5-10 min. Moreover, control sections were 

prepared by pre-absorbing the primary antibodies with the corresponding peptide 

(5 µg/1 mL of antibody; Ghrelin peptide, Phoenix Pharmaceuticals Inc.; Ghrelin 

Receptor peptide, Abcam) or by omitting the primary antibody. Sections were 

observed using an optical microscope Olympus BX51 integrated with digital 

camera (JVC CCDKY-F58) equipped with the image analysis digital system 

Image-Pro Plus 7.0 (Media Cybernetics, Silver Spring, MD, USA). 
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RESULTS 

Statistical analysis 

All data were expressed as median and IQR (interquartile range). Comparisons 

between 2 groups analysis were made using Mann-Whitney U test for non-

parametric test. Statistical analysis was carried out GraphPad Prism v5.00 for 

Windows (GraphPad Software, San Diego, CA, USA). In all cases was considered 

significant a value of p<0.05. 

 

 

Preterm newborn 

Characteristics of patients 

The characteristics of patients are showed in Tab.2. All 14 patients had been 

underwent to mechanical ventilation after birth and all had received the treatment 

with surfactant. All moms were nonsmokers, and passive tobacco smoke non-

exposed. The difference in mode of delivery was no significant as well as other 

birth characteristics reported in Tab.2. 

 

 Non-BPD BPD p-value 
Number of patients 6 8 / 
Gender   / 
    male 2 4 / 
    female 4 4 / 
Mode of delivery   / 
    cesarean section  2 4 / 
    vaginal 4 4 / 
Maternal pren. corticosteroids 3 2 / 
Maternal antibiotic exposure 1 1 / 
Surfactant treatment 6 8 / 
*Apgar at 1 min. 5.5 (3.5-6) 4 (3-6) n.s. 
*Apgar at 5 min. 7.5 (6.3-8) 8 (6-8) n.s. 
*Gestational age, weeks 29.4 (28.3-30.9) 24.8 (24.6-26.6) 0.002 
*Body weight at birth, g 1275 (1000-1646) 755.0 (700-840) 0.005 
    
Tab.2. Demographical and clinical data on newborns. *Data are expressed as median and 
(range).  
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As can be seen in Tab.2 a significant difference (p=0.002) was found in 

gestational age. In particular, in the control group the median of weeks was 29.4 

(IQR 28.3-30.9) if compared with BPD group that shows a median of 24.8 (IQR 

24.6-26.6) weeks of gestational age. At birth a significant difference (p=0.005) in 

body weight in control group 1275g (IQR 1000-1646g) compared with BPD 

group 755.0g (IQR 700-840g) was found. BPD group is classified according to 

Jobe (Jobe and Bancalari, 2001): after 28 days of oxygen dependence for at least 

28 postnatal days for infants 32 weeks or greater postmenstrual age, or oxygen 

dependence at 36 weeks postmenstrual age for infants born before 32 weeks. For 

this study, body weights were not registered longitudinally at the same time point 

for all patients during the admission to intensive care, and for this reason we 

prefer to don’t cite this data at discharge and when oxygen treatment was stopped. 

 

 

EBC leptin and ghrelin 

Pulmonary levels of leptin in EBC of mechanical ventilated patients were not 

found with ELISA commercial kit previously described. Three test were repeated 

in three different back-up samples stored at -80°C. In EBC was assessed the levels 

of ghrelin with ELISA kit previously described. After three repeated test on back-

up (stored at -80°C) were found no ghrelin concentration EBC sample. Levels of 

leptin and ghrelin were not found neither BPD group and nor in controls group. 

 

 

Animal model of BPD 

Mortality index 

The study was conducted on Wistar rats in hyperoxic chamber (n=14) and in room 

air (n=10). 71.4% of neonatal rats exposed to hyperoxia survive, with the majority 

of deaths occurring between 2 and 8 days after birth. These finding have been that 

group continuously expose to 60% of oxygen presents a high rate of mortality at 

time PN14 compared with control keep in room air, from 14 pups (100%) to 10 

pups (71.4%). Prolonged neonatal exposure to high oxygen concentration presents 

equal index of mortality at PN28 (Fig.7). 
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Fig.7. Mortality index in animal model of BPD. 

 

Body weight 

Maternal body weight was assessed at the time of the mating and at spontaneous 

delivery. Moreover, the weight was assessed after 14 and 28 days of exposition at 

high concentration of oxygen and was observed a body weight loss, suggesting a 

massive exposition at oxidative stress. No difference in body weight was observed 

in maternal body of control group. In the litter, statistically significant lowest 

values of body weight were found in BPD group (19.53g; IQR 18.63-21.89) after 

14 days of exposure of 60% oxygen concentration if compare with controls in air 

room (28.02g; IQR 25.75-29.45) p=0.002 (Fig.8a). 
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Fig.8a. Body weight in animal model of BPD compared with controls at PN14. 

 

A statistically significant difference was found in BPD group exposed at 60% 

oxygen for 28 days compared with control group. In particular, BPD group shows 

a body weight 61.53g (40.95-80.26) compared with group kept in air room 128.6g 

(123.1-131.9) p=0.012 (Fig.8b). 
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Fig.8b. Body weight in animal model of BPD compared with controls at PN28. 

 

Body characteristics 

At PN14 hyperoxic rats showed a suffering look, with shaggy hair, and general 

growth slowed if compared with healthy controls kept in air room (Fig.9). Critical 

differences in motor activity and neurological status were not found in two 

groups. 
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Fig.9a. General growth in healthy control and BPD model at PN14. 

 

Same results in body development were found at PN28. In particular, control 

group presents a normal shiny hair, without sign of suffering. Conversely, the 

hyperoxic group presented a hispid and rugged hair (Fig.9b). 

 

 
Fig.9b. General growth in healthy control and BPD model at PN28. 

 

All animals presented a normal development of whiskers and no other 

morphological abnormalities were found. 
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Histology and immunohistochemistry  

Different dimensions of trachea were found in two group of treatment during 

tissue collection. H&E stained tissue section were used to evaluate the dimensions 

of trachea in two groups. In particular, the caliber in the control group presents 

normal cavity with a thin trachea wall compared with BPD model, where is 

showed a large lumen and a thick wall. As can be seen, tracheal mucosa presents 

normal tract but also an increased thickness of lamina propria (Fig.10).  
	

	 	 	

Fig.10. Section of trachea stained with H&E in Wistar control group (room air) and 
Wistar BPD group at PN14; (40X).		

	

In control group at PN14 we found a significant difference in median values of 

trachea caliber. For each rat in the experiment we performed 5 measures on 

trachea caliber. Control group presented value of 0.75mm (IQR.0.70-0.76), 

instead in the BPD group presented a median value of 1.67mm (IQR 1.52-1.74) 

with significant difference (p=0.008) (Fig.11). 
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Fig.11. Caliber of trachea Wistar control group (room air) and Wistar BPD group at 
PN14;  

 

Architectural changes at PN14 shows impaired alveolar lung development. In 

particular, a reduction in the number of alveoli and a simplification of structure in 

acinar development were found. Specimens stained with H&E show an increased 

interstitial thickness, and epithelial cells reported a low number of cilia if 

compared with control (data no showed). A continued exposure to high oxygen 

concentration (PN28) shows increasing in inflammatory and pulmonary edema 

response. 

 

 

Leptin and ghrelin expression 

Leptin expression was observed in control and exposed groups to compare the 

results. The experiment was conducted as described by Merigo (Merigo et al. 

2016). In this case we don’t apply a co-localization technique using 

immunofluorescence. In BPD rats’ leptin immunoreactivity was similar than 

control rats (Fig.12a). Leptin receptor expression were observed mainly in in 

apical surface of cell but a minimal expression was found also in the cytoplasmic 

vesicles (Fig.12b) but there are no significant differences between control group 

and BPD group. Moreover, with the continuous exposition to high oxygen 

concentration in the BPD group at PN28 can be seen the worsening in the tissue 

architecture, but difference in leptin expression, in comparison two groups, were 

the same those observed at PN14 (Fig.12c). 
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Fig.12a. Leptin expression in free floating sections at PN28 (20x).  

 

 

  
Fig.12c. Leptin receptor expression at PN28 in control group and in BPD group (100x). 
There are no different expressions in two group. Apical expression and minimal 
cytoplasmic expression in lung tissue was found.  
 

  
Fig.12b. Leptin receptor expression at PN28 in control group and in BPD group (10x). 
 

 

Ghrelin expression was observed in control and exposed groups to compare the 

results. The experiment was conducted as described by Merigo (Merigo et al. 

2016). Also in this case we don’t apply the immunofluorescence technique to 

Control BPD 

Control BPD 

Control BPD 
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assess the co-localization. Lung section of BPD rats show ghrelin 

immunoreactivity similar than control rats (Fig.13a and b) in time point PN14 but 

also in PN28. Ghrelin receptor shows the same expression comparing control 

group and BPD group (data no showed). 

 

 

  

Fig.13a. Ghrelin expression in lung of control group and BPD group (Free floating 10X 
 

  

Fig.13b. Ghrelin expression in lung of control group and BPD group (Free floating 60X). 
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DISCUSSION 

Bronchopulmonary dysplasia is the most common chronic lung disease in infants 

associated with arrested pulmonary development. Nowadays BPD remains the 

most common complication of preterm newborn with important impact on 

mortality and morbidity. These infants are the principal division of intensive care 

units, and an important target is the early diagnosis and precise clinical 

management strategies to improve outcome of disease. BPD was first described in 

1967 by Northway and colleagues in a group of preterm infants resulting from 

high oxygen concentration and mechanical ventilation (Northway et al. 1967). In 

particular, postmortem acute lung injury, edema, extensive airway epithelial 

metaplasia, pulmonary fibrosis, and airway and vascular smooth muscle 

hyperplasia were found. Oxygen therapy plays an important role in modern 

neonatal intensive care, improving survival of preterm newborn with respiratory 

disorders. Although mechanical ventilation and oxygen supplementation found 

large use, they induce lung injury with a worsening of outcome, increasing the 

risk to develop a neonatal lung disease, like BPD. Improve medical care of 

premature infants with new management, such as the use of prenatal 

corticosteroids and postnatal surfactant replacement, the gentle ventilation 

modalities by CPAP and HHFNC, but also improved nutrition, now permit 

significant transition from “old BPD” described in 1967 to “new BPD” (Jobe and 

Bancalari, 2001) (Husain et al. 1998). New BPD was described in 2001 and 

compared to the old BPD presents less prominent inflammation, no hypertrophy 

in smooth muscle, no metaplasia in epithelial tissue, and minimal to moderate (but 

diffuse) alveolar septal fibrosis occurs mostly in extremely and/or in very low 

birth weight. Despite of many improve in neonatal medicine since the first 

description, incidence of BPD not decline showing high impact on 28 weeks of 

gestational age newborns (Balany and Bancalari, 2015). Infants with BPD present 

a high risk to develop respiratory infection with repercussion on pulmonary 

function that requires prolonged and recurrent hospitalization in the first years of 

life (McEvoy et al. 2014). In the lung development, the saccular period represents 

the timing for the formation of alveoli and go on in postnatal time from 36weeks 

of gestational age to 2 years of age, characterized by an increase of micro vascular 
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maturation and late develop of alveoli (up to 5 years of age) important for the 

ultimate the evolution of respiratory system (Burri, 2006). In term birth children 

the alveolar stage is normally developed, but in preterm infants, in the late 

canalicular or early saccular stage, the degree of lung immaturity increasing the 

risk of occurrence of BPD. Diagnostic biomarkers for predicting early BPD risk 

and standardized clinical research is needed, to better characterize the long term 

outcomes, and risk to develop other chronic lung disease such as asthma and 

COPD. Is well known the quantification of airway inflammation, including 

assessment of biomarkers with BAL and tracheal lavage, but these procedures are 

invasive, not suitable for routine use in clinical research, and potential cause of 

transient inflammation. Non-invasive technique based on evaluation of markers of 

lung inflammation or predictive of lung injury are significant for neonatologists 

during management of preterm infant in intensive care. In recent years EBC 

technique, based on cooling and condensing of exhaled breath air into test tube, 

was well described and has found a large use because non-invasive and safe. 

Moreover, the sample collection is very easy to perform even in children, offering 

various biomarkers to evaluate the lung inflammation. Accordingly, several 

studies have assessed respiratory lung disease looking for EBC biomarker such as, 

isprostane, leukotrienes, MMP, GSH, ADMA and others. Nevertheless, only few 

studies assessed EBC to evaluate the risk to develop BPD, especially from 

mechanical ventilated preterm newborn. For example, it has been used EBC to 

test levels of hydrogen peroxide and the levels of GSH, suggesting as these 

molecules may be potential parameters to define chronic lung disease 

(Kononikhin et al. 2016). Among markers of inflammation in EBC the leptin, a 

hormone expressed in a variety of tissues (Cohen et al. 1996) such as 

hypothalamus, placenta, and lung, and is implicated in energy homeostasis with 

neuroendocrine and immune functions, was found. In our experience (submitted 

to reviewers) asthmatic children present high level of EBC leptin compared with 

healthy controls, and this data confirm how leptin is a marker of lung 

inflammation. Also several studies have been conducted on leptin existence in 

inflammatory lung disease, and reported a relationship between serum leptin 

levels and the presence of chronic lung disease like asthma (Antonopoulou et al. 
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2008) (Ubags et al. 2014). BPD has been linked to the development of an 

inflammatory response that can occur in absence of clinical infection: an increase 

of pro-inflammatory cytokines values was found in tracheobronchial aspirates 

from premature infants TNFα, IL-8, IL-1β and IL-6, have been shown to correlate 

with increased risk of BPD (Kotecha et al. 1996) (Jònsson et al. 1997). Various 

studies mentioned the role of leptin in the inflammation, for example acute lung 

injury like pneumonia (Ubags et al. 2014) or chronic lung inflammation such as 

COPD (Kim, 2014) and asthma (Vernooy et al. 2013) but there is no studies to 

evaluate the levels of leptin in BPD, in particular the expression in epithelial lung 

fluid. Among non-traditional cytokine it’s possible cite ghrelin, a leptin antagonist 

involved in energy homeostasis, mainly produced by stomach cells, and secondly 

by hypothalamus, pituitary, and other tissues. This peptide is major express in 

digestive system, but low levels were found in nervous system, pituitary but also 

in lung (Ghelardoni et al. 2006). Studies about ghrelin tested the role on 

metabolism and food intake (Mokrosiński and Holst, 2010)	 and role in 

inflammation (Dixit et al. 2004) but there are no studies about the putative link 

with BPD. The finest non-invasive and first-step-method to test the presence of a 

molecule in lung is the EBC collection. To the best of knowledge, the main 

limitation in the analysis of EBC is the missing of standardized protocols to 

support validation studies (Hovàrt et al. 2005). EBC is obtaining by cooling 

exhaled air into a system of sample tube maintained at low temperature, below 

water freezing point. In our study, just after mechanical ventilation the sample 

collection was kept with the procedure described by Hunt in 2002 (Hunt, 2002), 

and the sample condensing into test tube. Correct preservation of sample integrity 

depends on the maintaining of constant temperature, avoiding thermal excursion. 

In our ventilated circuit, the tube begins from medical ventilator, but its length 

was too much extensive if compared with a exhaled kit for sample collection, 

recommend in guidelines for collaborative patients (Hovàrt et al. 2005). Tubes of 

ventilates newborns can be considered as high death space where the condensates 

compounds can partially destroy, leading to lack of sample quality. Probably for 

this reason in this procedure applied to children underwent to mechanical 

ventilation, we not found levels of leptin and ghrelin in EBC sample. Moreover, to 
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avoid a possible sample bias the EBC collection started just after clinical 

stabilization and the sample was collected only in the first day of intubation. The 

collection after several days of intubation can’t be scheduled, because clinical 

conditions lead to extubate infants in different time point, with results difficult to 

compare. In literature is well described how these infants show a premature lung 

development, but according to our time point, the lung injury is probably not 

enough markedly expressed to be evaluated with presence of leptin and ghrelin in 

condensate of epithelial lung fluid. On other hand, it is possible that leptin and 

ghrelin may not be predictive markers of lung injury. This supposition is 

supported by fact that we have collected the sample too prior with respect the 

possible development of BPD. This finding suggest how improve sample 

collection, avoiding every possible confounder involved in physical, but also 

molecular integrity of each sample. Moreover, it's necessary to better define the 

time point setting and research best period, during the mechanical ventilation, 

where is better collect the sample. Nevertheless, a non-invasive approach well 

integrated in clinical practice was showed efficacy to collect sample of EBC in 

ventilated infants, because clinical parameters were unchanged during the sample 

collection, and not influenced negatively the prognosis of clinical stabilization 

after preterm birth. As described before, EBC should be considered bio-fluid of 

great interest for research in clinical analysis, but there is a need in the 

standardization of EBC collection used for evaluating mechanical ventilated 

infants, because this field is still relatively limited for practical applications. 

Moreover, the present approach has demonstrated how collect EBC from 

ventilated infants and children is possible and safe, but also is needed 

commercially available hardware to collect the sample and preserve it from 

degradation. Self-made collectors can’t afford to establish standards procedures 

and doesn't allow data comparison from different sampling, because doesn't give 

setting up the correct temperature and duration of collection. Failure presence of 

leptin and ghrelin in EBC, as previously described, suggests they probably aren’t 

early markers of BPD and for this reason we assessed the expression of leptin and 

ghrelin in the lung of animal model of BPD. In literature are showed several 

studies on BPD, first with neonatal mice (Bonikos et al. 1976) and studies that use 
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rat BPD employed high oxygen concentration (60%) (O'Reilly and Thébaud 

2014). Hyperoxia induced neonatal lung injury model has found a large use in 

animal model of BPD because it is easy program the birth, they have a large pups 

size in only 21 days of gestation. Regarding the lung, most rapid rate of alveolar 

development occurs between 3 to 8, and is almost ended by the day 14. Although 

rats born in this particular stage of lung development, their lungs are functionally 

fully developed and no requires, as in human, specific intervention to stabilize 

clinical conditions. After birth and exposure at high levels of oxygen in this period 

produces anatomical and functional changes in the lung (Thurlbeck, 1975) 

(Meyrick and Reid, 1982). The induced lung injury is similar to those seen in 

preterm newborn that has developed BPD. Moreover, we have extended the 

period of hyperoxia demonstrating that the morphological changes in 

alveolarization occur in the first days of life and the outcome is designed in this 

period. Although it has been extended period of hyperoxia, the minimal 

expression of ghrelin and leptin in lung tissue level does not changed. Conversely 

to the sample collected in the first day of life in infants ventilated, in this 

experiment the BPD was induced, and according to several studies with hyperoxia 

treatment it's possible obtaining an animal with lung development very similar at 

human BPD. Nevertheless, a minimal expression of leptin and ghrelin was found 

in lung tissue of BPD and this data is no significantly different if compared with 

control group. The finding probably confirm also the negative answers obtained 

with ELISA assay. In fact, also in this measures, no levels of leptin and ghrelin in 

EBC were discovered. In our study the most impressive results of treatment with 

60% of oxygen concentration was the body development, and this is partially in 

concordance with other studies reported by O'Reilly in a recent review (O'Reilly 

and Thébaud 2014). In fact, important differences on body weight in control and 

BPD group were found, but also an evident hair suffering. Hyperoxia group 

presented body characteristics worse than control group kept room air, and 

significant differences were found in trachea caliber of two groups. In particular, 

hyperoxia group presented a high caliber than control group suggesting how, for 

these animals, the treatment was weighty in respiratory conditions. In the current 

study we demonstrated that prolonged exposure to high oxygen concentration 
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(PN14) lead to lung injury very similar to those presents in infants with BPD, and 

moreover a continued exposure to high oxygen concentration (PN28) shows an 

increase in inflammatory and pulmonary edema response. In next future we will 

test our sample with a screening of proteomic and metabolomics features, and 

identify putative markers of early develop od BPD during the ventilation and 

oxygen support. Additionally, is necessary to focus and standardize the sample 

collection, with particular attention on the hardware, because methodology at the 

end of ventilated circuit is not able to reduce the risk of sample contamination or 

sample degradation. This is an important point and suggests that the temperature 

of sample tube and in the collect circuit are probably a key points where is 

required to refine the methods. Even if in the current study a specific role of leptin 

and ghrelin remain to be clearly established, and the expression of these two 

hormones in lung of animal model of BPD was not strongly expressed, is 

necessary to further investigate these two markers and probably focus the 

attention on metabolic part, that remains the main role of these two hormones. In a 

recent work Merigo and colleagues (Merigo et al. 2016) described how molecules 

implicated in glucose homeostasis are differently express in airways of rats. Next 

future could provide new details in airways of animal model of BPD, to better 

understand the complex functions and putative implication of energy homeostasis. 

  



50 
	

REFERENCES  

Adamson IY, Young L, King GM. Reciprocal epithelial: fibroblast interactions in the 

control of fetal and adult rat lung cells in culture. Exp Lung Res. 1991 Jul-

Aug;17(4):821-35. PubMed PMID: 1935838. 

Albertine KH. Utility of large-animal models of BPD: chronically ventilated preterm 

lambs. Am J Physiol Lung Cell Mol Physiol. 2015 May 15;308(10):L983-L1001. doi: 

10.1152/ajplung.00178.2014. Review. PubMed PMID: 25770179; PubMed Central 

PMCID: PMC4437012. 

Ali Assad N, Sood A. Leptin, adiponectin and pulmonary diseases. Biochimie. 2012 

Oct;94(10):2180-9. doi: 10.1016/j.biochi.2012.03.006. Review. PubMed PMID: 

22445899; PubMed Central PMCID: PMC3399062. 

Andreas NJ, Hyde MJ, Herbert BR, Jeffries S, Santhakumaran S, Mandalia S, Holmes E, 

Modi N. Impact of maternal BMI and sampling strategy on the concentration of leptin, 

insulin, ghrelin and resistin in breast milk across a single feed: a longitudinal cohort 

study. BMJ Open. 2016 Jul 7;6(7):e010778. doi: 10.1136/bmjopen-2015-010778. 

PubMed PMID: 27388351; PubMed Central PMCID: PMC4947729. 

Antonopoulou S, Loukides S, Papatheodorou G, Roussos C, Alchanatis M. Airway 

inflammation in obstructive sleep apnea: is leptin the missing link? Respir Med. 2008 

Oct;102(10):1399-405. doi: 10.1016/j.rmed.2008.04.021. PubMed PMID: 18606530. 

Arrindell EL Jr, Krishnan R, van der Merwe M, Caminita F, Howard SC, Zhang J,  

Buddington RK. Lung volume recruitment in a preterm pig model of lung immaturity. 

Am J Physiol Lung Cell Mol Physiol. 2015 Nov 15;309(10):L1088-92. doi: 

10.1152/ajplung.00292.2015. PubMed PMID: 26408557. 

Auwerx J, Staels B. Leptin. Lancet. 1998 Mar 7;351(9104):737-42. Review. PubMed 

PMID: 9504534. 

Balany J, Bhandari V. Understanding the Impact of Infection, Inflammation, and Their 

Persistence in the Pathogenesis of Bronchopulmonary Dysplasia. Front Med(Lausanne). 

2015 Dec 21;2:90. doi: 10.3389/fmed.2015.00090. Review. PubMed PMID:  26734611; 

PubMed Central PMCID: PMC4685088. 

Baldwin HS. Early embryonic vascular development. Cardiovasc Res. 1996 Feb;31 Spec 

No:E34-45. Review. PubMed PMID: 8681344. 



51 
	

Bamfo JE, Odibo AO. Diagnosis and management of fetal growth restriction. J 

Pregnancy. 2011;2011:640715. doi: 10.1155/2011/640715. Review. PubMed 

PMID:21547092; PubMed Central PMCID: PMC3087156. 

Baraldi E, Carraro S, Alinovi R, Pesci A, Ghiro L, Bodini A, Piacentini G, Zacchello F, 

Zanconato S. Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of 

children with asthma exacerbations. Thorax. 2003 Jun;58(6):505-9. PubMed PMID: 

12775861; PubMed Central PMCID: PMC1746712. 

Baraldi E, Carraro S. Exhaled NO and breath condensate. Paediatr Respir Rev. 2006;7 

Suppl 1:S20-2. Review. PubMed PMID: 16798565. 

Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007 

Nov 8;357(19):1946-55. Review. PubMed PMID: 17989387. 

Baraldi E, Giordano G, Stocchero M, Moschino L, Zaramella P, Tran MR, Carraro S, 

Romero R, Gervasi MT. Untargeted Metabolomic Analysis of Amniotic Fluid in the 

Prediction of Preterm Delivery and Bronchopulmonary Dysplasia. PLoS One. 2016 Oct 

18;11(10):e0164211. doi: 10.1371/journal.pone.0164211. PubMed PMID: 27755564; 

PubMed Central PMCID: PMC5068788. 

Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term mouse 

models. Am J Physiol Lung Cell Mol Physiol. 2014 Dec 15;307(12):L936-47. doi: 

10.1152/ajplung.00159.2014. Review. PubMed PMID: 25305249; PubMed Central 

PMCID: PMC4269689. 

Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. 

Birth Defects Res A Clin Mol Teratol. 2014 Mar;100(3):189-201. doi: 

10.1002/bdra.23220. Review. PubMed PMID: 24578018; PubMed Central PMCID: 

PMC4023567. 

Bonikos DS, Bensch KG, Northway WH Jr. Oxygen toxicity in the newborn. The effect 

of chronic continuous 100 percent oxygen exposure on the lungs of newborn mice. Am J 

Pathol. 1976 Dec;85(3):623-50. PubMed PMID: 998734; PubMed Central PMCID: 

PMC2032655. 

Bose C, Van Marter LJ, Laughon M, O'Shea TM, Allred EN, Karna P, Ehrenkranz RA, 

Boggess K, Leviton A; Extremely Low Gestational Age Newborn Study Investigators. 

Fetal growth restriction and chronic lung disease among infants born before the 28th 

week of gestation. Pediatrics. 2009 Sep;124(3):e450-8. doi: 10.1542/peds.2008-3249. 

PubMed PMID: 19706590; PubMed Central PMCID: PMC2891899. 



52 
	

Broussard DL. Gastrointestinal motility in the neonate. Clin Perinatol. 1995 

Mar;22(1):37-59. Review. PubMed PMID: 7781255. 

Bruno A, Chanez P, Chiappara G, Siena L, Giammanco S, Gjomarkaj M, Bonsignore G, 

Bousquet J, Vignola AM. Does leptin play a cytokine-like role within the airways of 

COPD patients? Eur Respir J. 2005 Sep;26(3):398-405. PubMed PMID: 16135719. 

Bryan MH, Hardie MJ, Reilly BJ, Swyer PR. Pulmonary function studies during the fi rst 

year of life in infants recovering from respiratory distress syndrome. Pediatrics 1973; 52: 

169–78. 

Burri PH, Dbaly J, Weibel ER. The postnatal growth of the rat lung. I. Morphometry. 

Anat Rec. 1974 Apr;178(4):711-30. PubMed PMID: 4592625. 

Burri PH. Structural aspects of postnatal lung development – alveolar formation and 

growth. Biol Neonate. 2006;89(4):313-22. Review. PubMed PMID: 16770071. 

Burri PH. The postnatal growth of the rat lung. 3. Morphology. Anat Rec. 1974 

Sep;180(1):77-98. PubMed PMID: 4416419. 

Caminita F, van der Merwe M, Hance B, Krishnan R, Miller S, Buddington K, 

Buddington RK. A preterm pig model of lung immaturity and spontaneous infant 

respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2015 Jan 

15;308(2):L118-29. doi: 10.1152/ajplung.00173.2014. PubMed PMID: 25398985. 

Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: 

evidence for a peripheral signal linking adiposity and central neural networks. Science. 

1995 Jul 28;269(5223):546-9. PubMed PMID: 7624778. 

Carlton DP, Albertine KH, Cho SC, Lont M, Bland RD. Role of neutrophils in lung 

vascular injury and edema after premature birth in lambs. J Appl Physiol (1985). 1997 

Oct;83(4):1307-17. PubMed PMID: 9338441. 

Carraro S, Giordano G, Pirillo P, Maretti M, Reniero F, Cogo PE, Perilongo G, Stocchero 

M, Baraldi E. Airway metabolic anomalies in adolescents with bronchopulmonary 

dysplasia: new insights from the metabolomic approach. J Pediatr. 2015 Feb;166(2):234-

9.e1. doi: 10.1016/j.jpeds.2014.08.049. PubMed PMID: 25294602. 

Carvalho CG, Silveira RC, Procianoy RS. Ventilator-induced lung injury in preterm 

infants. Rev Bras Ter Intensiva (2013) 25(4):319–26. doi:10.5935/0103-507X.20130054 



53 
	

Chau V, Taylor MJ, Miller SP. Visual function in preterm infants: visualizing the brain to 

improve prognosis. Doc Ophthalmol. 2013 Aug;127(1):41-55. doi: 10.1007/s10633-013-

9397-7. Review.  

Coalson JJ, Winter V, deLemos RA. Decreased alveolarization in baboon survivors with 

bronchopulmonary dysplasia. Am J Respir Crit Care Med 1995;152:640–646. 

Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in 

extremely immature baboons.  Am J Respir Crit CareMed 1999;160:1333–1346 

Cohen SL, Halaas JL, Friedman JM, Chait BT, Bennett L, Chang D, Hecht R, Collins F. 

Human leptin characterization. Nature. 1996 Aug 15;382(6592):589. PubMed PMID: 

8757126. 

Collins CL, Holberton JR, König K. Comparison of the pharyngeal pressure provided by 

two heated, humidified high-flow nasal cannulae devices in premature infants. J Paediatr 

Child Health. 2013 Jul;49(7):554-6. doi: 10.1111/jpc.12277. PubMed PMID: 23782410. 

Cong WN, Golden E, Pantaleo N, White CM, Maudsley S, Martin B. Ghrelin receptor 

signaling: a promising therapeutic target for metabolic syndrome and cognitive 

dysfunction. CNS Neurol Disord Drug Targets. 2010 Nov;9(5):557-63. Review. PubMed 

PMID: 20632971; PubMed Central PMCID: PMC2967656. 

Cook AJ, Yuksel B, Sampson AP, Greenough A, Price JF. Cysteinyl leukotriene 

involvement in chronic lung disease in premature infants. Eur Respir J. 1996 

Sep;9(9):1907-12. PubMed PMID: 8880111. 

Corradi M, Zinelli C, Caffarelli C. Exhaled breath biomarkers in asthmatic children. 

Inflamm Allergy Drug Targets. 2007 Sep;6(3):150-9. Review. PubMed PMID: 

17897051. 

Crapo JD, Peters-Golden M, Marsh-Salin J, Shelburne JS. Pathologic changes in the 

lungs of oxygen-adapted rats: a morphometric analysis. Lab Invest. 1978 Dec;39(6):640-

53. PubMed PMID: 739764. 

Crowther CA, McKinlay CJ, Middleton P, Harding JE. Repeat doses of prenatal 

corticosteroids for women at risk of preterm birth for improving neonatal health 

outcomes. Cochrane Database Syst Rev. 2015 Jul 5;(7):CD003935. doi: 

10.1002/14651858.CD003935.pub4. Review. PubMed PMID: 26142898 



54 
	

Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A 

preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. 

Diabetes. 2001 Aug;50(8):1714-9. PubMed PMID: 11473029. 

D'Angio CT, Ryan RM. Animal models of bronchopulmonary dysplasia. The preterm and 

term rabbit models. Am J Physiol Lung Cell Mol Physiol. 2014 Dec 15;307(12):L959-69. 

doi: 10.1152/ajplung.00228.2014. Review. PubMed PMID: 25326582. 

de Luis DA, Perez Castrillón JL, Dueñas A. Leptin and obesity. Minerva Med. 2009 

Jun;100(3):229-36. Review. PubMed PMID: 19182739. 

De Paepe ME, Patel C, Tsai A, Gundavarapu S, Mao Q. Endoglin (CD105) up-regulation 

in pulmonary microvasculature of ventilated preterm infants. Am J Respir Crit Care Med. 

2008 Jul 15;178(2):180-7. doi:10.1164/rccm.200608-1240OC. PubMed PMID: 

18420967; PubMed Central PMCID: PMC2453512. 

Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW 

Jr, Taub DD. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine 

expression by human monocytes and T cells. J Clin Invest. 2004 Jul;114(1):57-66. 

PubMed PMID: 15232612; PubMed Central PMCID: PMC437970. 

Dixit VD, Taub DD. Ghrelin and immunity: a young player in an old field. Exp Gerontol. 

2005 Nov;40(11):900-10. Review. PubMed PMID: 16233968. 

Doyle LW, Ehrenkranz RA, Halliday HL. Early (< 8 days) postnatal corticosteroids for 

preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014 

May 13;(5):CD001146. doi: 10.1002/14651858.CD001146.pub4. Review. PubMed 

PMID: 24825456. 

Effros RM, Hoagland KW, Bosbous M, Castillo D, Foss B, Dunning M, Gare M, Lin W, 

Sun F. Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care 

Med. 2002 Mar 1;165(5):663-9. PubMed PMID: 11874811. 

Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, Wrage LA, 

Poole K; National Institutes of Child Health and Human Development Neonatal Research 

Network. Validation of the National Institutes of Health consensus definition of 

bronchopulmonary dysplasia. Pediatrics. 2005 Dec;116(6):1353-60. PubMed PMID: 

16322158. 



55 
	

Ferreira PJ, Bunch TJ, Albertine KH, Carlton DP. Circulating neutrophil concentration 

and respiratory distress in premature infants. J Pediatr. 2000 Apr;136(4):466-72. PubMed 

PMID: 10753244. 

Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 

1998 Oct 22;395(6704):763-70. Review. PubMed PMID: 9796811. 

Frühbeck G. Intracellular signalling pathways activated by leptin. Biochem J. 2006 Jan 

1;393(Pt 1):7-20. Review. PubMed PMID: 16336196; PubMed Central PMCID: 

PMC1383660. 

Gebb SA, Shannon JM. Tissue interactions mediate early events in pulmonary 

vasculogenesis. Dev Dyn. 2000 Feb;217(2):159-69. PubMed PMID: 10706140. 

Ghelardoni S, Carnicelli V, Frascarelli S, Ronca-Testoni S, Zucchi R. Ghrelin tissue 

distribution: comparison between gene and protein expression. J Endocrinol Invest. 2006 

Feb;29(2):115-21. PubMed PMID: 16610236. 

Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, Bhattacharya S, 

Carpenter R, Grossman AB, Korbonits M. The tissue distribution of the mRNA of ghrelin 

and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002 

Jun;87(6):2988. PubMed PMID: 12050285. 

Goldman SL, Gerhardt T, Sonni R, Feller R, Hehre D, Tapia JL, Bancalari E. Early 

prediction of chronic lung disease by pulmonary function testing. J Pediatr. 1983 

Apr;102(4):613-7. PubMed PMID: 6834201. 

Greenough A, Cox S, Alexander J, Lenney W, Turnbull F, Burgess S, Chetcuti PA, Shaw 

NJ, Woods A, Boorman J, Coles S, Turner J. Health care utilisation of infants with 

chronic lung disease, related to hospitalisation for RSV infection.  Arch Dis Child. 2001 

Dec;85(6):463-8. PubMed PMID: 11719328; PubMed Central PMCID: PMC1719001. 

Guler N, Kirerleri E, Ones U, Tamay Z, Salmayenli N, Darendeliler F. Leptin: does it 

have any role in childhood asthma? J Allergy Clin Immunol. 2004 Aug;114(2):254-9. 

PubMed PMID: 15316499. 

Hallman M, Haataja R. Genetic influences and neonatal lung disease. Semin Neonatol. 

2003 Feb;8(1):19-27. Review. PubMed PMID: 12667827. 

Handy JA, Saxena NK, Fu P, Lin S, Mells JE, Gupta NA, Anania FA. Adiponectin 

activation of AMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine 

signaling (SOCS-3). J Cell Biochem. 2010 Aug 1;110(5):1195-207. doi: 



56 
	

10.1002/jcb.22634. Erratum in: J Cell Biochem. 2011 Feb;112(2):734. PubMed PMID: 

20564215; PubMed Central PMCID: PMC2907429. 

Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988 

Summer;12(2):123-37. Review. PubMed PMID: 3050629. 

Herriges M, Morrisey EE. Lung development: orchestrating the generation and 

regeneration of a complex organ. Development. 2014 Feb;141(3):502-13. doi: 

10.1242/dev.098186. Review. PubMed PMID: 24449833; PubMed Central PMCID: 

PMC3899811. 

Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the 

preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol. 2014 

Feb;50(2):233-45. doi: 10.1165/rcmb.2013-0014TR. Review. PubMed PMID: 24024524. 

Hillman NH, Polglase GR, Pillow JJ, Saito M, Kallapur SG, Jobe AH. Inflammation and 

lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol 

Physiol (2011) 300(2):L232–41. doi:10.1152/ ajplung.00294.2010 

Holguin F, Rojas M, Brown LA, Fitzpatrick AM. Airway and plasma leptin and 

adiponectin in lean and obese asthmatics and controls. J Asthma. 2011 Apr;48(3):217-23. 

doi: 10.3109/02770903.2011.555033. PubMed PMID: 21332421; PubMed Central 

PMCID: PMC3085138. 

Horváth I, Hunt J, Barnes PJ, Alving K, Antczak A, Baraldi E, Becher G, van Beurden 

WJ, Corradi M, Dekhuijzen R, Dweik RA, Dwyer T, Effros R, Erzurum S, Gaston B, 

Gessner C, Greening A, Ho LP, Hohlfeld J, Jöbsis Q, Laskowski D, Loukides S, Marlin 

D, Montuschi P, Olin AC, Redington AE, Reinhold P, van Rensen  EL, Rubinstein I, 

Silkoff P, Toren K, Vass G, Vogelberg C, Wirtz H; ATS/ERS Task  Force on Exhaled 

Breath Condensate.. Exhaled breath condensate: methodological recommendations and 

unresolved questions. Eur Respir J. 2005 Sep;26(3):523-48. PubMed PMID: 16135737. 

Hunt J. Exhaled breath condensate: an evolving tool for noninvasive evaluation of lung 

disease. J Allergy Clin Immunol. 2002 Jul;110(1):28-34. Review. PubMed PMID: 

12110814. 

Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in 

postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998 Jul;29(7):710-7. PubMed 

PMID: 9670828. 



57 
	

Jain M, Budinger GR, Lo A, Urich D, Rivera SE, Ghosh AK, Gonzalez A, Chiarella SE, 

Marks K, Donnelly HK, Soberanes S, Varga J, Radigan KA, Chandel NS, Mutlu GM. 

Leptin promotes fibroproliferative acute respiratory distress syndrome by inhibiting 

peroxisome proliferator-activated receptor-γ. Am J Respir Crit Care Med. 2011 Jun 

1;183(11):1490-8. doi: 10.1164/rccm.201009-1409OC. PubMed PMID: 21317313; 

PubMed Central PMCID: PMC3266063. 

Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH. 

Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J 

Physiol Lung Cell Mol Physiol. 2000 Sep;279(3):L600-7. PubMed PMID: 10956636. 

Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001 

Jun;163(7):1723-9. PubMed PMID: 11401896. 

Jobe AH, Moss TJ, Nitsos I, Ikegami M, Kallapur SG, Newnham JP. Betamethasone for 

lung maturation: testing dose and formulation in fetal sheep. Am J Obstet Gynecol. 2007 

Nov;197(5):523.e1-6. PubMed PMID: 17980195; PubMed Central 

PMCID:PMC2096413. 

Jobe AH, Newnham JP, Moss TJ, Ikegami M. Differential effects of maternal 

betamethasone and cortisol on lung maturation and growth in fetal sheep. Am J Obstet 

Gynecol. 2003 Jan;188(1):22-8. PubMed PMID: 12548191. 

Jobe AH, Nitsos I, Pillow JJ, Polglase GR, Kallapur SG, Newnham JP. Betamethasone 

dose and formulation for induced lung maturation in fetal sheep. Am J Obstet Gynecol. 

2009 Dec;201(6):611.e1-7. doi: 10.1016/j.ajog.2009.07.014. PubMed PMID: 19800603; 

PubMed Central PMCID: PMC2789907. 

Jónsson B, Tullus K, Brauner A, Lu Y, Noack G. Early increase of TNF alpha and IL-6 in 

tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm 

infants. Arch Dis Child Fetal Neonatal Ed. 1997 Nov;77(3):F198-201. PubMed PMID: 

9462189; PubMed Central PMCID: PMC1720706. 

Joshi S, Kotecha S. Lung growth and development. Early Hum Dev. 2007 

Dec;83(12):789-94. PubMed PMID: 17905543. 

Kauffman SL, Burri PH, Weibel ER. The postnatal growth of the rat lung. 

II.Autoradiography. Anat Rec. 1974 Sep;180(1):63-76. PubMed PMID: 4416418. 



58 
	

Kelley KW, Bluthé RM, Dantzer R, Zhou JH, Shen WH, Johnson RW, Broussard SR. 

Cytokine-induced sickness behavior. Brain Behav Immun. 2003 Feb;17 Suppl 1:S112-8. 

Review. PubMed PMID: 12615196. 

Kim V. Leptin and adiponectin in chronic obstructive pulmonary disease. Has the fat lady 

sung? Ann Am Thorac Soc. 2014 Dec;11(10):1602-3. doi:10.1513/AnnalsATS.201411-

496ED. PubMed PMID: 25549023. 

Kodama T, Ashitani J, Matsumoto N, Kangawa K, Nakazato M. Ghrelin treatment 

suppresses neutrophil-dominant inflammation in airways of patients with chronic 

respiratory infection. Pulm Pharmacol Ther. 2008 Oct;21(5):774-9. doi: 

10.1016/j.pupt.2008.05.001. PubMed PMID: 18571961. 

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-

hormone-releasing acylated peptide from stomach. Nature. 1999 Dec 9;402(6762):656-

60. PubMed PMID: 10604470. 

Kojima T, Sasai M, Kobayashi Y. Increased soluble ICAM-1 in tracheal aspirates of 

infants with bronchopulmonary dysplasia. Lancet. 1993 Oct 23;342(8878):1023-4. 

PubMed PMID: 8105265. 

Kononikhin AS, Starodubtseva NL, Chagovets VV, Ryndin AY, Burov AA, Popov IA,  

Bugrova AE, Dautov RA, Tokareva AO, Podurovskaya YL, Ionov OV, Frankevich VE, 

Nikolaev EN, Sukhikh GT. Exhaled breath condensate analysis from intubated newborns 

by nano-HPLC coupled to high resolution MS. J Chromatogr B Analyt Technol Biomed 

Life Sci. 2016 Dec 23. pii: S1570-0232(16)31469-6. doi: 10.1016/j.jchromb.2016.12.036. 

[Epub ahead of print] PubMed PMID: 28040456. 

Kotecha S, Chan B, Azam N, Silverman M, Shaw RJ. Increase in interleukin-8 and 

soluble intercellular adhesion molecule-1 in bronchoalveolar lavage fluid from premature 

infants who develop chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 1995 

Mar;72(2):F90-6. PubMed PMID: 7712280; PubMed Central PMCID: PMC2528395. 

Kotecha S, Silverman M, Shaw RJ, Klein N. Soluble L-selectin concentration in 

bronchoalveolar lavage fluid obtained from infants who develop chronic lung disease of 

prematurity. Arch Dis Child Fetal Neonatal Ed. 1998 Mar;78(2):F143-7. PubMed PMID: 

9577287; PubMed Central PMCID: PMC1720769. 

Kotecha S, Wilson L, Wangoo A, Silverman M, Shaw RJ. Increase in interleukin (IL)-1 

beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung 

disease of prematurity. Pediatr Res. 1996 Aug;40(2):250-6. PubMed PMID: 8827773. 



59 
	

Kramer EL, Deutsch GH, Sartor MA, Hardie WD, Ikegami M, Korfhagen TR, Le Cras 

TD. Perinatal increases in TGF-{alpha} disrupt the saccular phase of lung morphogenesis 

and cause remodeling: microarray analysis. Am J Physiol Lung Cell Mol Physiol. 2007 

Aug;293(2): L314-27. PubMed PMID: 17468132. 

Lal CV, Ambalavanan N. Biomarkers, Early Diagnosis, and Clinical Predictors of 

Bronchopulmonary Dysplasia. Clin Perinatol. 2015 Dec;42(4):739-54. doi: 

10.1016/j.clp.2015.08.004. Review. PubMed PMID: 26593076;  

Lamarche-Vadel A, Blondel B, Truffer P, Burguet A, Cambonie G, Selton D, Arnaud C, 

Lardennois C, du Mazaubrun C, N'Guyen S, Mathis J, Bréart G, Kaminski M; EPIPAGE 

Study Group. Re-hospitalization in infants younger than 29 weeks'gestation in the 

EPIPAGE cohort. Acta Paediatr. 2004 Oct;93(10):1340-5. PubMed PMID: 15499955. 

Lapillonne A, Griffin IJ. Feeding preterm infants today for later metabolic and 

cardiovascular outcomes. J Pediatr. 2013 Mar;162(3Suppl):S7-16. doi: 

10.1016/j.jpeds.2012.11.048. PubMed PMID: 23445851. 

Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. 

Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996 Feb 

15;379(6566):632-5. PubMed PMID: 8628397. 

Leroy P, Dessolin S, Villageois P, Moon BC, Friedman JM, Ailhaud G, Dani C. 

Expression of ob gene in adipose cells. Regulation by insulin. J Biol Chem. 1996 Feb 

2;271(5):2365-8. PubMed PMID: 8576190. 

Lessard A, St-Laurent J, Turcotte H, Boulet LP. Leptin and adiponectin in obese and non-

obese subjects with asthma. Biomarkers. 2011 May;16(3):271-3. doi: 

10.3109/1354750X.2010.550013. PubMed PMID: 21247368. 

Li B, Zeng M, He W, Huang X, Luo L, Zhang H, Deng DY. Ghrelin protects alveolar 

macrophages against lipopolysaccharide-induced apoptosis through growth hormone 

secretagogue receptor 1a-dependent c-Jun N-terminal kinase and Wnt/β-catenin signaling 

and suppresses lung inflammation. Endocrinology. 2015 Jan;156(1):203-17. doi: 

10.1210/en.2014-1539. PubMed PMID: 25337654. 

Liggins GC. Premature delivery of foetal lambs infused with glucocorticoids. 

JEndocrinol. 1969 Dec;45(4):515-23. PubMed PMID: 5366112. 

Liu Z, Yu T, Yang H, Tian X, Feng L. Decreased level of endogenous ghrelin is involved 

in the progression of lung injury induced by oleic acid. Life Sci. 2016 Nov 25. pii: 



60 
	

S0024-3205(16)30675-0. doi: 10.1016/j.lfs.2016.11.023. [Epub ahead of print] PubMed 

PMID: 27894854. 

Lugogo NL, Hollingsworth JW, Howell DL, Que LG, Francisco D, Church TD, Potts-

Kant EN, Ingram JL, Wang Y, Jung SH, Kraft M. Alveolar macrophages from 

overweight/obese subjects with asthma demonstrate a proinflammatory phenotype. Am J 

Respir Crit Care Med. 2012 Sep 1;186(5):404-11. doi: 10.1164/rccm.201109-1671OC. 

Retraction in: Am J Respir Crit Care Med. 2015 Jul 15;192(2):264. PubMed PMID: 

22773729; PubMed Central PMCID: PMC3443798. 

Luo ZC, Bilodeau JF, Nuyt AM, Fraser WD, Julien P, Audibert F, Xiao L, Garofalo C, 

Levy E. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans. Sci Rep. 

2015 Dec 8;5:17881. doi: 10.1038/srep17881. PubMed PMID:26643495; PubMed 

Central PMCID: PMC4672324. 

Mancuso P. Obesity and lung inflammation. J Appl Physiol (1985). 2010 

Mar;108(3):722-8. doi: 10.1152/japplphysiol.00781.2009. Review. PubMed PMID: 

19875709; PubMed Central PMCID: PMC2838639. 

Manolis A. The diagnostic potential of breath analysis. Clin Chem. 1983 Jan;29(1):5-15. 

Review. PubMed PMID: 6336681 

Manzano RM, Mascaretti RS, Carrer V, Haddad LB, Fernandes AR, Reyes AM, Rebello 

CM. A hyperoxic lung injury model in premature rabbits: the influence of different 

gestational ages and oxygen concentrations. PLoS One. 2014 Apr 22;9(4):e95844. doi: 

10.1371/journal.pone.0095844. PubMed PMID: 24755658; PubMed Central PMCID: 

PMC3995887. 

Marttila R, Haataja R, Guttentag S, Hallman M. Surfactant protein A and B genetic 

variants in respiratory distress syndrome in singletons and twins. Am J Respir Crit Care 

Med. 2003 Nov 15;168(10):1216-22. PubMed PMID: 12947025. 

Matarese G, Moschos S, Mantzoros CS. Leptin in immunology. J Immunol. 2005 Mar 

15;174(6):3137-42. Review. PubMed PMID: 15749839. 

Matsumoto N, Miki K, Tsubouchi H, Sakamoto A, Arimura Y, Yanagi S, Iiboshi H,  

Yoshida M, Souma R, Ishimoto H, Yamamoto Y, Yatera K, Yoshikawa M, Sagara H, 

Iwanaga T, Mukae H, Maekura R, Kimura H, Nakazato M, Kangawa K. Ghrelin 

administration for chronic respiratory failure: a randomized dose-comparison trial. Lung. 

2015 Apr;193(2):239-47. doi: 10.1007/s00408-015-9685-y. PubMed PMID: 25634352. 



61 
	

McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary 

dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann 

Am Thorac Soc. 2014 Apr;11 Suppl 3:S146-53. doi: 10.1513/AnnalsATS.201312-

424LD. Review. PubMed PMID: 24754823; PubMed Central PMCID: PMC4112507. 

Merigo F, Boschi F, Lasconi C, Benati D, Sbarbati A. Molecules implicated in glucose 

homeostasis are differentially expressed in the trachea of lean and obese Zucker rats. Eur 

J Histochem. 2016 Feb 1;60(1):2557. doi: 10.4081/ejh.2016.2557. PubMed PMID: 

26972710; PubMed Central PMCID: PMC4800246. 

Meyrick B, Reid L. Pulmonary arterial and alveolar development in normal postnatal rat 

lung. Am Rev Respir Dis. 1982 Apr;125(4):468-73. PubMed PMID: 7073117. 

Miki K, Maekura R, Nagaya N, Nakazato M, Kimura H, Murakami S, Ohnishi S, Hiraga 

T, Miki M, Kitada S, Yoshimura K, Tateishi Y, Arimura Y, Matsumoto N, Yoshikawa M, 

Yamahara K, Kangawa K. Ghrelin treatment of cachectic patients with chronic 

obstructive pulmonary disease: a multicenter, randomized, double-blind, placebo-

controlled trial. PLoS One. 2012;7(5):e35708. doi: 10.1371/journal.pone.0035708. 

PubMed PMID: 22563468; PubMed Central PMCID: PMC3341383. 

Mokrosiński J, Holst B. Modulation of the constitutive activity of the ghrelin receptor by 

use of pharmacological tools and mutagenesis. Methods Enzymol. 2010;484:53-73. doi: 

10.1016/B978-0-12-381298-8.00003-4. PubMed PMID: 21036226. 

Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, 

Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, 

O'Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in 

humans. Nature. 1997 Jun 26;387(6636):903-8. PubMed PMID: 9202122. 

Moss TJ, Newnham JP, Willett KE, Kramer BW, Jobe AH, Ikegami M. Early gestational 

intra-amniotic endotoxin: lung function, surfactant, and morphometry. Am J Respir Crit 

Care Med. 2002 Mar 15;165(6):805-11. PubMed PMID: 11897648. 

Muller WG, Morini F, Eaton S, Peters M, Jaffe A. Safety and feasibility of exhaled breath 

condensate collection in ventilated infants and children. Eur Respir J. 2006 

Sep;28(3):479-85. PubMed PMID: 16641124. 

Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J 

Cell Biol. 1995 May;129(4):895-8. Review. PubMed PMID: 7538139;PubMed Central 

PMCID: PMC2120485. 



62 
	

Nardiello C, Mižíková I, Morty RE. Looking ahead: where to next for animal models of 

bronchopulmonary dysplasia? Cell Tissue Res. 2016 Dec 5. [Epub ahead of print] 

Review. PubMed PMID: 27917436.Rawlins EL. The building blocks of mammalian lung 

development. Dev Dyn. 2011 Mar;240(3):463-76. doi: 10.1002/dvdy.22482. Review. 

PubMed PMID: 21337459. 

Nardiello C, Mižíková I, Morty RE. Looking ahead: where to next for animal models of 

bronchopulmonary dysplasia? Cell Tissue Res. 2016 Dec 5. [Epub ahead of print] 

Review. PubMed PMID: 27917436. 

Narula T, deBoisblanc BP. Ghrelin in Critical Illness. Am J Respir Cell Mol Biol. 2015 

Oct;53(4):437-42. doi: 10.1165/rcmb.2014-0226TR. Review. PubMed PMID: 26068568. 

Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy 

of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967 Feb 

16;276(7):357-68. PubMed PMID: 5334613. 

O'Brodovich HM, Mellins RB. Bronchopulmonary dysplasia. Unresolved neonatal acute 

lung injury. Am Rev Respir Dis. 1985 Sep;132(3):694-709. Review. PubMed PMID: 

3898946. 

O'Donnell CP, Tankersley CG, Polotsky VP, Schwartz AR, Smith PL. Leptin, obesity, 

and respiratory function. Respir Physiol. 2000 Feb;119(2-3):163-70. Review. PubMed 

PMID: 10722859. 

O'Reilly M, Thébaud B. Animal models of bronchopulmonary dysplasia. The term rat 

models. Am J Physiol Lung Cell Mol Physiol. 2014 Dec 15;307(12):L948-58. doi: 

10.1152/ajplung.00160.2014. Review. PubMed PMID: 25305248. 

Otero M, Lago R, Lago F, Casanueva FF, Dieguez C, Gómez-Reino JJ, Gualillo O. 

Leptin, from fat to inflammation: old questions and new insights. FEBS Lett. 2005 Jan 

17;579(2):295-301. Review. PubMed PMID: 15642335. 

Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic 

disease. Nat Rev Immunol. 2011 Feb;11(2):85-97. doi: 10.1038/nri2921. Review. 

PubMed PMID: 21252989; PubMed Central PMCID: PMC3518031. 

Paraskevas KI, Liapis CD, Mikhailidis DP. Leptin: a promising therapeutic target with 

pleiotropic action besides body weight regulation. Curr Drug Targets. 2006 Jun;7(6):761-

71. Review. PubMed PMID: 16787178. 



63 
	

Patterson AM, Taciak V, Lovchik J, Fox RE, Campbell AB, Viscardi RM. Ureaplasma 

urealyticum respiratory tract colonization is associated with an increase in interleukin 1-

beta and tumor necrosis factor alpha relative to interleukin 6 in tracheal aspirates of 

preterm infants. Pediatr Infect Dis J. 1998 Apr;17(4):321-8. PubMed PMID: 9576388. 

Perrone S, Tataranno ML, Buonocore G. Oxidative stress and bronchopulmonary 

dysplasia. J Clin Neonatol. 2012 Jul;1(3):109-14. doi: 10.4103/2249-4847.101683. 

Review. PubMed PMID: 24027702; PubMed Central PMCID: PMC3762019. 

Practice Bulletin No. 159: Management of Preterm Labor. Obstet Gynecol. 2016 

Jan;127(1):e29-38. doi: 10.1097/AOG.0000000000001265. Review. PubMed PMID: 

26695585. 

Pu	 Koroglu OA, Yalaz M, Levent E, Akisu M, Kültürsay N. Cardiovascular 

consequences of bronchopulmonary dysplasia in prematurely born preschool children. 

Neonatology. 2013;104(4):283-9. doi: 10.1159/000354542. PubMed PMID: 

24107436.bMed PMID: 23761036. 

Report of Workshop on Bronchopulmonary Dysplasia; NIH Publication No. 80-1660. 

Wasthington, DC: National Institutes of Health; 1979 

Reyburn B, Li M, Metcalfe DB, Kroll NJ, Alvord J, Wint A, Dahl MJ, Sun J, Dong L, 

Wang ZM, Callaway C, McKnight RA, Moyer-Mileur L, Yoder BA, Null DM, Lane RH, 

Albertine KH. Nasal ventilation alters mesenchymal cell turnover and improves 

alveolarization in preterm lambs. Am J Respir Crit Care Med. 2008 Aug 15;178(4):407-

18. doi: 10.1164/rccm.200802-359OC. PubMed PMID: 18556628; PubMed Central 

PMCID: PMC2542442. 

Rivera L, Siddaiah R, Oji-Mmuo C, Silveyra GR, Silveyra P. Biomarkers for 

Bronchopulmonary Dysplasia in the Preterm Infant. Front Pediatr. 2016 Mar 31;4:33. doi: 

10.3389/fped.2016.00033. Review. PubMed PMID: 27065351; PubMed Central PMCID: 

PMC4814627. 

Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for 

women at risk of preterm birth. Cochrane Database Syst Rev. 2006 Jul 19;(3):CD004454. 

Review. PubMed PMID: 16856047. 

Romejko-Wolniewicz E, Teliga-Czajkowska J, Czajkowski K. Antenatal steroids: can we 

optimize the dose? Curr Opin Obstet Gynecol. 2014 Apr;26(2):77-82. doi: 

10.1097/GCO.0000000000000047. Review. PubMed PMID: 24463225; PubMed Central 

PMCID: PMC3966924. 



64 
	

Rutter WJ, Pictet RL, Harding JD, Chirgwin JM, MacDonald RJ, Przybyla AE. An 

analysis of pancreatic development: role of mesenchymal factor and other extracellular 

factors. Symp Soc Dev Biol. 1978;(35):205-27. Review. PubMed PMID: 347621. 

Shimotake TK, Izhar FM, Rumilla K, Li J, Tan A, Page K, Brasier AR, Schreiber  MD, 

Hershenson MB. Interleukin (IL)-1 beta in tracheal aspirates from premature infants 

induces airway epithelial cell IL-8 expression via an NF-kappa B dependent pathway. 

Pediatr Res. 2004 Dec;56(6):907-13. PubMed PMID: 15496610. 

Shin JH, Kim JH, Lee WY, Shim JY. The expression of adiponectin receptors and the 

effects of adiponectin and leptin on airway smooth muscle cells. Yonsei MedJ. 2008 Oct 

31;49(5):804-10. doi: 10.3349/ymj.2008.49.5.804. PubMed PMID:18972601; PubMed 

Central PMCID: PMC2615381. 

Sideleva O, Suratt BT, Black KE, Tharp WG, Pratley RE, Forgione P, Dienz O, Irvin CG, 

Dixon AE. Obesity and asthma: an inflammatory disease of adipose tissue not the airway. 

Am J Respir Crit Care Med. 2012 Oct 1;186(7):598-605. doi:10.1164/rccm.201203-

0573OC. PubMed PMID: 22837379; PubMed Central PMCID: PMC3480522. 

Silveyra P, Floros J. Genetic variant associations of human SP-A and SP-D with acute 

and chronic lung injury. Front Biosci (Landmark Ed). 2012 Jan 1;17:407-29. Review. 

PubMed PMID: 22201752; PubMed Central PMCID: PMC3635489. 

Solberg R, Perrone S, Saugstad OD, Buonocore G. Risks and benefits of oxygen in the 

delivery room. J Matern Fetal Neonatal Med. 2012 Apr;25 Suppl 1:41-4. doi: 

10.3109/14767058.2012.665236. Review. PubMed PMID: 22356586. 

Soll RF. Inhaled nitric oxide for respiratory failure in preterm infants. Neonatology. 

2012;102(4):251-3. doi: 10.1159/000338552. Review. PubMed PMID: 22907671. 

Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and 

appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad 

Sci U S A. 2004 Mar 30;101(13):4679-84. PubMed PMID: 15070777; PubMed Central 

PMCID: PMC384806. 

Taderera JV. Control of lung differentiation in vitro. Dev Biol. 1967 Nov;16(5):489-512. 

PubMed PMID: 6053290. 

Tankersley CG, O'Donnell C, Daood MJ, Watchko JF, Mitzner W, Schwartz A, Smith P. 

Leptin attenuates respiratory complications associated with the obese phenotype. J Appl 

Physiol (1985). 1998 Dec;85(6):2261-9. PubMed PMID: 9843551. 



65 
	

Tenero L, Piazza M, Zanoni L, Bodini A, Peroni D, Piacentini GL. Antioxidant 

supplementation and exhaled nitric oxide in children with asthma. Allergy Asthma Proc. 

2016 Jan-Feb;37(1):e8-13. doi: 10.2500/aap.2016.37.3920. PubMed PMID: 26831840. 

Thomson MA, Yoder BA, Winter VT, Martin H, Catland D, Siler-Khodr TM, Coalson JJ. 

Treatment of immature baboons for 28 days with early nasal continuous positive airway 

pressure. Am J Respir Crit Care Med. 2004 May 1;169(9):1054-62. PubMed PMID: 

14962819. 

Thurlbeck WM. Postnatal growth and development of the lung. Am Rev Respir Dis.1975 

Jun;111(6):803-44. Review. PubMed PMID: 1094872. 

Torday JS, Sun H, Wang L, Torres E, Sunday ME, Rubin LP. Leptin mediates the 

parathyroid hormone-related protein paracrine stimulation of fetal lung maturation. Am J 

Physiol Lung Cell Mol Physiol. 2002 Mar;282(3):L405-10. Erratum in: Am J Physiol 

Lung Cell Mol Physiol 2002 Apr;282(4):section L following table of contents. PubMed 

PMID: 11839533; PubMed Central PMCID: PMC2942763. 

Truog WE, Ballard PL, Norberg M, Golombek S, Savani RC, Merrill JD, Parton LA, 

Cnaan A, Luan X, Ballard RA; Nitric Oxide (to Prevent) Chronic Lung Disease Study 

Investigators. Inflammatory markers and mediators in tracheal fluid of premature infants 

treated with inhaled nitric oxide. Pediatrics. 2007 Apr;119(4):670-8. PubMed PMID: 

17403837. 

Ubags ND, Vernooy JH, Burg E, Hayes C, Bement J, Dilli E, Zabeau L, Abraham E, 

Poch KR, Nick JA, Dienz O, Zuñiga J, Wargo MJ, Mizgerd JP, Tavernier J, Rincón M, 

Poynter ME, Wouters EF, Suratt BT. The role of leptin in the development of pulmonary 

neutrophilia in infection and acute lung injury. Crit Care Med. 2014 Feb;42(2):e143-51. 

doi: 10.1097/CCM.0000000000000048. PubMed PMID: 24231757; PubMed Central 

PMCID: PMC3947045. 

Van Marter LJ, Allred EN, Pagano M, Sanocka U, Parad R, Moore M, Susser M, Paneth 

N, Leviton A. Do clinical markers of barotrauma and oxygen toxicity explain 

interhospital variation in rates of chronic lung disease? The Neonatology Committee for 

the Developmental Network. Pediatrics. 2000 Jun;105(6):1194-201. PubMed PMID: 

10835057. 

Vernooy JH, Ubags ND, Brusselle GG, Tavernier J, Suratt BT, Joos GF, Wouters EF, 

Bracke KR. Leptin as regulator of pulmonary immune responses: involvement in 

respiratory diseases. Pulm Pharmacol Ther. 2013 Aug;26(4):464-72. 



66 
	

doi:10.1016/j.pupt.2013.03.016. Review. PubMed PMID: 23542720; PubMed Central 

PMCID: PMC4122282. 

Wabitsch M, Funcke JB, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin KM, Vatter P, 

Gierschik P, Moepps B, Fischer-Posovszky P. Biologically inactive leptin and early-onset 

extreme obesity. N Engl J Med. 2015 Jan 1;372(1):48-54. doi: 10.1056/NEJMoa1406653. 

PubMed PMID: 25551525. 

Wapner R, Jobe AH. Controversy: antenatal steroids. Clin Perinatol. 2011 Sep;38(3):529-

45. doi: 10.1016/j.clp.2011.06.013. Review. PubMed PMID: 21890023; PubMed Central 

PMCID: PMC3711408. 

Westover AJ, Hooper SB, Wallace MJ, Moss TJ. Prostaglandins mediate the fetal 

pulmonary response to intrauterine inflammation. Am J Physiol Lung Cell Mol Physiol. 

2012 Apr 1;302(7):L664-78. doi: 10.1152/ajplung.00297.2011. PubMed 

PMID:22287609. 

Yoder BA, Coalson JJ. Animal models of bronchopulmonary dysplasia. The preterm 

baboon models. Am J Physiol Lung Cell Mol Physiol. 2014 Dec 15;307(12):L970-7. doi: 

10.1152/ajplung.00171.2014. Review. PubMed PMID: 25281639; PubMed Central 

PMCID: PMC4269686. 

Zeitlin J, Szamotulska K, Drewniak N, Mohangoo AD, Chalmers J, Sakkeus L, Irgens L, 

Gatt M, Gissler M, Blondel B; Euro-Peristat Preterm Study Group.Preterm birth time 

trends in Europe: a study of 19 countries. BJOG. 2013 Oct;120(11):1356-65. doi: 

10.1111/1471-0528.12281. PubMed PMID: 23700966; PubMed Central PMCID: 

PMC4285908. 

Zhang ZQ, Huang XM, Lu H. Early biomarkers as predictors for bronchopulmonary 

dysplasia in preterm infants: a systematic review. Eur J Pediatr. 2014 Jan;173(1):15-23. 

doi: 10.1007/s00431-013-2148-7. Review. PubMed PMID: 23996017. 

 

  



67 
	

LIST OF ABBREVIATIONS 

ADMA  Asymmetric Dimetilarginine 

BAL  Broncho Alveolar Lavage 

BMI  Body Mass Index 
BPD  Bronchopulmonary Dysplasia 

BSA  Bovine Serum Albumin 

COPD  Chronic Obstructive Pulmonary Disease 

EBC  Exhaled Breath Condensate 

ELISA  Enzime Linked Immuno Sorbent Assay 

GERD  Gastro Esophageal Reflux Disease 

GH  Growth Hormone 

GHS-R  Growth Hormone Secretagogue Receptor 

GSH  Glutathione 

H&E  Hematoxylin and Eosin 

HHFNC  Heated High-Flow Nasal Cannula  

HIV  Human Immunodeficiency Virus 

HRP  Horseradish Peroxidase 

ICAM-1 Intercellular Adhesion Molecule 1 

IL-1  Interleukin 1 

IL-10  Interleukin 10  

IL-1β  Interleukin 1 β 

IL-6  Interleukin 6 

IL-8  Interleukin 8 

Interferon- γ Interferon gamma 

JAK  Janus Kinase 

MMP  Matrix Metallo Proteinase 

NF-kB  Nuclear Factor Kappa B 

PBS  Phosphate Buffered Saline 

PGE  Prostaglandin 

PGHS-1 Prostaglandin-endoperoxide synthase 1 

PGHS-2 Prostaglandin-endoperoxide synthase 2 

PN  Postnatal days  

PPARγ  Peroxisome Proliferator-Activated Receptor gamma 

RDS  Respiratory Disease Syndrome 

SP-A  Surfactant Protein A 
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SP-B  Surfactant Protein B 

SP-C  Surfactant Protein C 

STAT  Signal Transducer and Activator of Transcription 

TGF1β  Tissue Growing Factor beta 

TH1  T Helper 1 cells 

TH2  T Helper 2 cells 

TMB  Tetramethylbenzidine  

TNFα  Tumor Necrosis Factor alpha 

VEGF  Vascular Endothelial Growing Factor 

 
 


