
Alberto Lovato

Concurrency and Static Analysis

Ph.D. Thesis

Università degli Studi di Verona

Dipartimento di Informatica

Advisor:
Prof. Fausto Spoto

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

Contents

1 Introduction . 1
1.1 BDD Concurrent Library . 5
1.2 Identi�cation of Injection Vulnerabilities . 6
1.3 Locking Discipline Inference . 6

2 Background . 11
2.1 Boolean Functions . 11

2.1.1 Shannon Expansion . 11
2.1.2 Representations of Boolean Functions 12

2.2 Concurrency in Java . 15
2.2.1 The Java Memory Model . 16

2.3 Abstract Interpretation . 17

3 State of the Art . 19
3.1 Binary Decision Diagrams . 19

3.1.1 Existing Implementations . 19
3.1.2 The Concurrent Library Sylvan . 19

3.2 Identi�cation of Injection Vulnerabilities . 20
3.3 Locking Discipline Inference . 21
3.4 Static and Dynamic Analysis . 22

Part I Binary Decision Diagrams

4 Boolean Function Manipulation with BDDs 27
4.1 Binary Decision Diagrams . 27

4.1.1 Ordered Binary Decision Diagrams 29
4.1.2 Reduced OBDDs . 29

4.2 General Implementation Features . 31
4.3 Our new Thread-Safe Package . 34
4.4 Library Structure . 35

VI Contents

4.4.1 Internal Garbage Collection . 36
4.4.2 Operation Caches . 36

4.5 Concurrency . 37
4.5.1 Synchronizing with Garbage Collection 37
4.5.2 Synchronizing with Resize . 38
4.5.3 Synchronizing Hash Table Updating 41
4.5.4 Synchronizing Caches . 42

5 Experiments and Comparisons . 43
5.1 Circuits . 43

5.1.1 Combinational Circuits . 43
5.1.2 Sequential Circuits . 44

5.2 N -queens . 44
5.3 Parallel Problems . 46

5.3.1 Knight's Tour . 47
5.3.2 Transition Relation Construction . 49

6 ER representation . 51
6.1 Operations . 52
6.2 Implementation . 55
6.3 Experiments . 55

6.3.1 N -queens . 55
6.3.2 Julia . 55

7 Integrity Check . 59
7.1 Usage . 59
7.2 Implementation . 60

7.2.1 Cyclic Redundancy Check . 61
7.3 Experiments . 62

Part II Program Analysis

8 Identi�cation of Injection Vulnerabilities 65
8.1 Example . 66
8.2 Denotational Semantics of Java Bytecode 68
8.3 Taintedness Analysis . 72

8.3.1 Making the Analysis Field-Sensitive 82
8.4 Experiments . 82
8.5 The OWASP Cybersecurity Benchmark . 84

8.5.1 Analysis of the OWASP Benchmark with Julia 85
8.5.2 Results . 87

8.6 Multithreaded Experiments . 94

Contents VII

9 Locking Discipline Inference . 103
9.1 Locking Discipline Semantics . 103

9.1.1 Dining Philosophers Example . 103
9.1.2 Design Space for Locking Discipline Semantics 106
9.1.3 Name Protection and Value Protection 107
9.1.4 De�nition of @GuardedBy . 110
9.1.5 De�nition of @Holding . 111

9.2 Locking Discipline Inference . 111
9.2.1 Creation Points Analysis . 111
9.2.2 De�nite Aliasing Analysis . 112
9.2.3 De�nite Locked Expressions Analysis 113
9.2.4 Implementation . 123
9.2.5 Inference of the Locking Discipline 125
9.2.6 Calls to Library Methods . 126

9.3 Experiments . 127
9.3.1 Subject Programs and Methodology 127

10 Implementation . 133
10.1 The Julia Analyzer . 133
10.2 Injection . 133
10.3 GuardedBy . 140

11 Conclusion . 143

References . 145

1

Introduction

Computers are complex machines, crafted to work reliably in today's busy
world. But computers need software to do something more than heating the
room they are housed in, and software has to be reliable as well. Building
reliable software ultimately reduces to good programming skills.

Programming can be a pleasant activity at times, but it is also undoubtedly
di�cult. Fortunately, the programmer is not alone in his work. This is a
great time to program, with plenty of development tools, methodologies, the
Internet and the like. Among these goodies, automatic software veri�cation is
emerging as a necessary step in the development life cycle.

The complexity of programming comes from multiple factors, but there is
one fundamental reason that drives all the research in software engineering
practices and automatic veri�cation: the human factor.

Where It All Begins

It all begins in the brain. Despite the mechanical nature of some tasks, pro-
gramming is still mainly a human activity. The brain works abstractly like a
CPU: it is equipped with a little, super fast short-term memory (a cache!),
and a relatively big and slow long-term memory.1 Brain's computations work
on the short-term memory, that unfortunately is quite small. If something is
not in this memory, it has to be recovered from the slow long-term memory.
When the brain is forced to focus on di�erent or complex tasks, the �cache� is
completely reloaded. Big context switches can last several minutes, and cause
performance degradation [66].

This preliminary discussion on how the brain works is related to pro-
gramming, as a programmer's brain can focus only on a portion of code or

1 this is a simpli�cation: modern theories about how the mind works attribute to
the working memory system the duty of assisting thought; for an overview of the
working memory, see [24]; for a general description of the mainstream theories
regarding memory, see [40]

2 1 Introduction

functionality at a time. This is why software engineering methodologies and
paradigms exist, that help programmers to tame software complexity. For in-
stance, applying object oriented programming principles increases modularity
(hence reducing coupling), and allows programmers to focus their attention on
small pieces of code (classes). With such countermeasures, programmers can
cope reasonably well with complex software. But there's another dimension
that puts reason at risk: concurrency.

Concurrency

When two entities act at the same time, we say that they are concurrent. In
particular, we will consider threads acting on shared memory, on multi-core
machines.

Concurrency is too important in computing systems to ignore it. Even
when the user is performing a single task, many threads execute transpar-
ently to maintain user interface responsiveness, or to avoid blocking waiting
for I/O. It became even more important in recent years, as the microprocessor
industry pushed multi- and many-core hardware as the only viable alterna-
tive to maintain the performance growth trend expected by customers. Soft-
ware developers are actively involved in this �multithreaded revolution�. They
can no more wait for the next-generation processor to multiply sequential
performance: they have to carefully design applications to exploit hardware
parallelism.

Consistency

As an example of problems arising in multithreading, a thread can start up-
dating a data structure, and then another thread can sneak in and see the
same structure in an inconsistent state. This inconsistency can be solved by
imposing that the second thread can act on the structure only when the �rst
�nishes. In other words, the set of updates performed by the �rst thread must
be atomic. This was a race condition: the outcome of the computation depends
on non-deterministic events, like thread scheduling. Bugs resulting from race
conditions are often di�cult, or impossible, to reproduce in a testing environ-
ment. Their inclination to disappear when a programmer tries to reproduce
them�by inserting logging, or statements changing the timing of events�led
to call them heisenbugs [63], in honor of the physicist Werner Heisenberg, who
asserted the principle that observing a system alters its state.

Somehow related to race conditions are data races, happening when more
threads access the same memory location concurrently, without synchroniza-
tion, and at least one of them writes to that location.

While data races are relatively easy to detect syntactically with automatic
procedures (accesses to shared locations must be protected by synchroniza-
tion), race conditions are dependent on the semantics of the program: the
programmer assumes that certain sequences of operations are not interrupted.

1 Introduction 3

A simple race condition that can go unnoticed is the increment: i++. This is a
single statement, but it is not atomic, and can be interrupted by a concurrent
thread. If the initial value of i is 0, two concurrent increments can result in
a �nal value of 1. This is a time of check to time of use, or TOCTOU, race
condition.

Race conditions and data races can both be solved with the use of
locks. But locking causes problems as well. Apart from performance issues�
excessive locking turns a parallel program into an almost sequential one�
deadlocks and livelocks can prevent a program to progress. Deadlocks can
occur when there is a circular dependency on locks, for example when two
threads acquire locks in reverse order. Each thread can thus be blocked, wait-
ing to acquire a lock held by the other. Livelocks are di�erent in that threads
are not blocked, but still cannot progress, as they execute the same circular
code.

Visibility

As if all this complexity were not enough, the reality of processor and compiler
technology poses other threats to programmers' sanity. Not only di�erent
threads need to consistently manipulate shared data structures, but they can
even see and work on di�erent copies of the same structure. And the execution
order of instructions can be di�erent from what the programmer expects.
Hence, there are also visibility problems.

These phenomena are explained by transformations performed by mod-
ern processors' architectures and optimizing compilers. In multi-core systems,
variables can be stored in registers, or in caches private to a core, and thus
become invisible to threads running on di�erent cores. Moreover, independent
instructions can be pro�tably reordered, if this does not invalidate the intra-
thread semantics. These optimizations are mandatory, in order to maintain an
acceptable performance, but can lead to incorrect semantics for multithreaded
programs, that is to say, they break sequential consistency [70]. Lamport de-
�ned this model of consistency using these words: �The result of any execution
is the same as if the operations of all processors were executed in some se-
quential order, and the operations of each individual processor appear in this
sequence in the order speci�ed by its program.�, i.e., according to the pro-
gram order. So, to restore program correctness, we need to ensure that shared
memory locations are accessed only with the protection of memory barrier
instructions.

A memory model is a set of rules describing the allowed interactions of
threads with the shared memory, and the rules of visibility. The original Java
speci�cation included a memory model, that was �awed and then �xed in
version 1.5. For C and C++, a memory model was not provided until the
2011 standards.

4 1 Introduction

Reasoning about Concurrency

Multithreaded programs are much more di�cult to reason with than simple,
sequential ones. When a programmer looks at a program's code, threads are
not explicit. He sees program statements or expressions, even those regarding
concurrency, but he can hardly tell which thread actually executes a section
of code, when it does, and which data structures are used by more threads.
All concurrency reasoning typically happens in the programmer's mind, and
in any non-trivial multithreaded program there are far too many possible
interactions to be manageable.

Practices and abstractions have been developed to reduce the impact of the
exploding complexity of concurrency. The already mentioned object oriented
principles come to rescue here too: encapsulation limits data visibility, and so
assists programmers in restricting the focus of reasoning. Another thing that
really can make a di�erence is to share only immutable data: a resource that
cannot change is safe to use by multiple threads. This even eliminates the
need to reason about thread interactions.2 This paradigm is implemented in
so called shared-nothing frameworks, such as those based on the actor model,
like Akka [1], in which concurrency is based on actors operating on immutable
messages, or MapReduce, like Hadoop [3], used for parallel processing of large
amounts of data. Also functional languages encourages immutability, with the
use of pure functions, i.e., functions without side e�ects. These exhibit the ref-
erential transparency property: they can be substituted with their evaluation
in every occurrence, without changing the program's behavior.

The Java Case

Java is widely used as a general purpose programming language. It is often
supported by an execution environment, in order to give developers an abstrac-
tion over the physical machine where the code runs. Concurrency in Java was
included since the �rst version, with thread creation and management, mu-
tual exclusion locks, atomic variables and other features. The multi-platform
nature of Java entails that the way Java programs behave should be the same
on all architectures. This is accomplished by providing high level instructions
that hide low level details, like memory barriers, or atomic instructions.

The Java Language Speci�cation [62] describes the memory model that
can be assumed by programmers. It trades sequential consistency�a luxury
we can't a�ord�with weaker rules, imposing visibility only in presence of
synchronization actions. The weakness of the model makes reasoning about
concurrency considerably harder, but there are good news: we don't need to
worry about visibility if our programs are free from data races!

2 on the other hand, enforcing immutability is not trivial, and often using only
immutable resources is not feasible

1.1 BDD Concurrent Library 5

Contributions

This thesis has three main contributions:

• the development of a fast multi-threaded Java library for the manipulation
of binary decision diagrams,

• a static analysis for the identi�cation of injection vulnerabilities, whose
implementation uses our multi-threaded library to perform several analysis
in parallel,

• a static analysis for the veri�cation and inference of the locking discipline
of concurrent programs.

Each of them has been published in conference proceedings.
The �rst one [75] (SEFM 2014) describes an early version of the multi-

threaded BDD library. It shows details of the implementation, as well as
comparisons with other Java and C libraries, in single- and multi-threaded
environments, concluding that our library is fast and consumes less memory.

The analysis of injections was published in [47] (LPAR-20 2015). It is an
example of denotational analysis. The results of the analysis, implemented in
the Julia program analyzer, are compared to those produced by three other
tools, for a set of well established security benchmarks. In all cases Julia
performed reasonably fast, and found all the vulnerabilities exhibited by the
benchmark programs, along with some false positives.

The locking inference is described in [48] (ICSE 2016). It uses a novel
de�nite locked expressions analysis, a constraint-based analysis, in which an
abstract constraint graph is constructed and then solved to �nd expressions
that are de�nitely locked at some program point. The paper shows how the
locking inference compares with the type checking performed by the Lock
Checker [7].

1.1 BDD Concurrent Library

Binary decision diagrams, or BDDs, are data structures for the representation
of Boolean functions. These functions are of great importance in many �elds.
Symbolic model checking [35] is a method for the veri�cation of �nite state
systems that uses Boolean functions. Software static analysis also may use
Boolean functions, to represent transition or relations of properties on pro-
gram variables. All these practical applications bene�t from a compact and
e�cient representation.

It turns out that BDDs are the state-of-the-art representation for Boolean
functions, and indeed all real world applications use a BDD library to repre-
sent and manipulate Boolean functions. As we will see in subsequent chapters,
it can be desirable to perform Boolean operations from di�erent threads at
the same time. In order to do this, the BDD library in use must allow threads
to access BDD data safely, avoiding race conditions. We developed a Java

6 1 Introduction

BDD library, that is fast in both single and multi-threaded applications, that
we use in the Julia static program analyzer.

1.2 Identi�cation of Injection Vulnerabilities

Dynamic web pages and web services react to user input coming from the
network, and this introduces the possibility of an attacker injecting special text
that induces unsafe, unexpected behaviors of the program. Injection attacks
are considered the most dangerous software error [79] and can cause free
database access and corruption, forging of web pages, loading of classes, denial-
of-service, and arbitrary execution of commands. Most analyses to spot such
attacks are dynamic and unsound (see Sec. 3.2).

We de�ned a sound static analysis that identi�es if and where a Java
bytecode program lets data �ow from tainted user input (including servlet
requests) into critical operations that might give rise to injections. Data �ow
is a prerequisite to injections, but the user of the analysis must later gage the
actual risk of the �ow. Namely, analysis approximations might lead to false
alarms and proper input validation might make actual �ows harmless.

Our analysis works by translating Java bytecode into Boolean formulas
that express all possible explicit �ows of tainted data. The choice of Java
bytecode simpli�es the semantics and its abstraction (many high-level con-
structs must not be explicitly considered) and lets us analyze programs whose
source code is not available, as is typically the case in industrial contexts that
use software developed by third parties, such as banks.

In this thesis we describe:

• an object-sensitive formalization of taintedness for reference types, based
on reachability of tainted information in memory;

• a �ow-, context- and �eld-sensitive static analysis for explicit �ows of
tainted information based on that notion of taintedness, which is able
to deal with data dynamically allocated in the heap (not just primitive
values);

• its implementation inside the Julia analyzer, through binary decision dia-
grams, and its experimental evaluation.

Sec. 8.4 shows that our analysis can analyze large real Java software. Com-
pared to other tools available on the market, ours is the only one that is
sound, yet precise and e�cient. Our analysis is limited to explicit �ows [93];
as is common in the literature, it does not yet consider implicit �ows (arising
from conditional tests) nor hidden �ows (such as timing channels).

1.3 Locking Discipline Inference

The standard approach to prevent data races is to follow a locking disci-
pline while accessing shared data: always hold a given lock when accessing a

1.3 Locking Discipline Inference 7

given shared datum. It is all too easy for a programmer to violate the locking
discipline. Therefore, tools are desirable for formally expressing the locking
discipline and for verifying adherence to it [38, 74].

The book Java Concurrency in Practice [59] (JCIP) proposed the @Guard-
edBy annotation to express a locking discipline. This annotation has been
widely adopted; for example, GitHub contains about 35,000 uses of the an-
notation in 7,000 �les (https://github.com/search?l=java&q=GuardedBy&
type=Code).

@GuardedBy takes an argument indicating which lock should be held, which
can be

• this, the object containing the �eld
• itself, the object referenced by the �eld
• the name of a �eld referencing the lock object (pre�xed by the class name

if static)
• the name of a nullary method returning the lock object
• the name of a class (like �String.class�) specifying the Class object to

use as the lock object.

A class name can be used as a pre�x to disambiguate this for inner classes.
The original @GuardedBy annotation was designed for simple intra-class

synchronization policy declaration. @GuardedBy �elds and methods are sup-
posed to be accessed only when holding the appropriate lock, referenced by
another �eld, in the body of the class (or this). In simple cases, a quick vi-
sual inspection of the class code performed by the programmer is su�cient to
verify the synchronization policy correctness. However, when we think deeper
about the meaning of this annotation, and when we try to check and infer it,
some ambiguities rise.

In Java, a �eld can be of a primitive type�like int, boolean, . . .�or of
a reference type. In the latter case, the �eld is a simple pointer to the real
object. This leads to aliasing phenomena: the same object can be accessed
from di�erent, unrelated places, such as through �elds or variables belonging
to di�erent objects. This can happen if the �eld was assigned an object from
the outside, or if the initialized �eld value escapes from the object.

So in Java we really have two kinds of accesses:

• accesses to the variable content, that can be a primitive value or a refer-
ence, in the form of variable reading and writing

• accesses to the referenced object, in the form of �eld dereferencing (�dot�
accesses)

This raises the question: when we say that a variable is @GuardedBy, which
accesses need to be guarded with synchronization? If we limit our reasoning
to private �eld reading and writing, synchronization is local to the object
(or class, for static �elds). This is the case of the AtomicCounter class in
Figure 1.1. Here, the value of the primitive �eld count can only be read or
written in the three synchronized methods�in other words, only when holding

https://github.com/search?l=java&q=GuardedBy&type=Code
https://github.com/search?l=java&q=GuardedBy&type=Code

8 1 Introduction

1 public class AtomicCounter {
2 @GuardedBy("this")
3 private int count;
4
5 public synchronized void increment() {
6 count++;
7 }
8
9 public synchronized void decrement() {
10 count−−;
11 }
12
13 public synchronized int getValue() {
14 return count;
15 }
16 }

Fig. 1.1: A thread-safe counter

the lock of the instance. Checking the annotation correctness is very simple in
this case: every occurrence of the �eld count needs to be in a critical section
with the �this� guard. The same simple reasoning applies to �dot� accesses
to private �elds�and we mean really private: no alias.

Things get complicated when we lose this synchronization locality. Let's
make the �eld count public. Now there is no access control on reading and
writing, and the synchronization policy can be circumvented. Synchronization
checking is no more intra-class: we need to check that every access to the �eld
in the whole program is guarded. These accesses can be performed through
multiple aliases of the container object. The other case in which we lose locality
is when we have external aliases of objects referenced by the �eld, and we
consider dot accesses, that cause dereferencing.

And there is an additional problem: @GuardedBy annotations tie the
guarded �eld to its lock object, and so, whenever an external synchroniza-
tion is needed, also the lock object must be accessible from the outside. This
sort of checking requires alias analysis, to �nd all aliases of the container
object, of objects referenced by guarded �elds, and objects used as guards.

@GuardedBy is applicable also to methods, meaning that when a method
is called, the lock speci�ed by the annotation should be held. The Julia Ana-
lyzer [13] also recognizes the @Holding annotation, which has the same mean-
ing of @GuardedBy, but clearly states its applicability to methods. It also al-
lows @GuardedBy to be applied to method parameters, local variables, return
values, and other types.

1.3 Locking Discipline Inference 9

The New De�nition

Given this ambiguity of the speci�cation for @GuardedBy, di�erent tools in-
terpret it in di�erent ways [82, 89]. Moreover, it does not prevent data races,
thus not satisfying its design goals. We provide a formal speci�cation that
satis�es its design goals and prevents data races. We have also implemented
our speci�cation in the Julia analyzer, that uses abstract interpretation to
infer valid @GuardedBy annotations for unannotated programs. Our technique
is not speci�c to Java and generalizes to other languages. It is not the goal
of this implementation to detect data races or give a guarantee that they
do not exist. Julia determines what locking discipline a program uses, with-
out judging whether the discipline is too strict or too lax for some particular
purpose.3

In an experimental evaluation, we compared this tool to programmer-
written annotations. Our evaluation shows that programmers who use the
@GuardedBy annotation do not necessarily do so consistently with JCIP's
rules, and even when they do, their programs still su�er data races.

The most important problem with JCIP's de�nition is that it provides
name protection rather than value protection [37]. Name protection is �ne for
primitive values, which cannot be aliased in Java. Value protection is needed
in order to prevent data races on reference values, due to aliasing and because
the Java Language Speci�cation de�nes locking in terms of values rather than
names [62]. Unfortunately, most tools that check @GuardedBy annotations use
JCIP's inadequate de�nition and therefore permit data races. Our de�nition
prevents data races by providing value protection: if a reference r is guarded
by E, then for any value v stored in r, v's �elds are only accessed while the
lock E is held. (At run time, a lock expression E is held by a given thread at
a given time if java.lang.Thread.holdsLock(E) evaluates to true on that
thread at that time.) Inference of this de�nition requires tracking values v as
they �ow through the program, because the value may be used through other
variables and �elds, not necessarily r. Since this is relevant for reference values
only, we consider value protection for reference variables and �elds only.

3 The desired locking discipline is unknowable: some data races are benign, a pro-
grammer may intend locking to be managed by a library or by clients, locking
may not be necessary for objects that do not escape their thread, etc.

2

Background

This chapter provides the theoretical background for the rest of the thesis.

2.1 Boolean Functions

A Boolean algebra [78] is composed by a set, two binary operations, a unary
operation and two neutral elements, B = (A,+, ·, , 0, 1), that satisfy the laws
of

• Commutativity a+ b = b+ a, a · b = b · a
• Distributivity a · (b+ c) = (a · b) + (a · c), a+ (b · c) = (a+ b) · (a+ c)
• Identity a+ 0 = a, a · 1 = a
• Complement a+ a = 0, a · a = 1

A Boolean function is a function that can be represented by a Boolean
formula, which is an expression over a Boolean algebra. Many Boolean for-
mulas can represent the same Boolean function. There are many examples of
Boolean algebras�such as the structure (2S ,∪,∩, , ∅, S), that represents the
set algebra for a set S. But the most interesting cases are Boolean algebras
whose set contains two elements. In these cases, the set is commonly written
as B = {0, 1}, and the algebra can be denoted by {B,+, ·, , 0, 1}. The + and
· operators represent the familiar �or� (disjunction) and �and� (conjunction)
Boolean operations, is the logical negation, and 0, 1 are the �false� and
�true� constant values. A switching function f is a Boolean function de�ned
as f : Bn → B. Hence, a switching function maps bit vectors to bits. There are
22

n

switching functions with n inputs. In the following, the terms switching
function and Boolean function will be used interchangeably.

2.1.1 Shannon Expansion

Shannon expansion, also known as Boole's expansion theorem, allows the
decomposition of a switching function f in terms of the two subfunctions

12 2 Background

g = f|xi=0 and h = f|xi=1�meaning that g is the function obtained from f
by �xing the value of xi to 0, and h is the function obtained from f by �xing
the value of xi to 1. The Shannon expansion of the function f is thus

f = xi · g + xi · h

g is called the negative cofactor of f , and h is the positive cofactor. Shannon
expansion will be used in Section 4.1 to de�ne binary decision diagrams.

2.1.2 Representations of Boolean Functions

The way we represent switching functions has a big impact on the memory
footprint and on the e�ciency of algorithms operating on such representa-
tions. In this section we describe various representation types, each with its
own strengths and weaknesses. Among all, binary decision diagrams o�er a
compact and e�cient representation, suitable for high performance computa-
tions.

Truth Tables

A truth table is an enumeration of the value of a function for every assignment
to the input variables. This representation can be e�ortlessly evaluated, and
two truth tables can be easily combined with Boolean operations. The problem
with this representation type is the always exponential size�in the arity of
the function. An example of a truth table for the conjunction of two variables
is shown in Figure 2.1.

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

Fig. 2.1: The truth table for the function x · y

Normal Forms

Normal forms represent switching functions in terms of expressions con-
structed from literals with Boolean operators. Normal forms are written in
levels, where a single operator is used in each level. Not all switching func-
tions can be represented by one-level normal forms. An example of a normal
form with one level is the parity function, x1 ⊕ . . . ⊕ xn, where ⊕ denotes
the exclusive or operation. Two-level normal forms can represent all of the

2.1 Boolean Functions 13

switching functions. A monomial is the combination of literals by means of a
single operator (it's a one-level normal form). So, for example, a · -monomial
can be x1x2, a + -monomial x3 + x5 + x6, and a ⊕ -monomial x0 ⊕ x1 ⊕ x2.
· -monomials are called simply monomials, whereas + -monomials are called
clauses.

Disjunctive normal forms, or DNF, are + -products of · -monomials. Sim-
ilarly, conjunctive normal forms, or CNF, can be de�ned as · -products of
+ -monomials, and parity normal forms, or PNF, as ⊕ -products of · -
monomials. Given an assignment a = (a1, . . . , an) ∈ Bn for the Boolean vari-
ables x = (x1, . . . , xn), the minterm of a is

ma(x) = xa1
1 · . . . · xan

n

and the maxterm of a is

sa(x) = xa1
1 + . . .+ xan

n

Here, x1 = x and x0 = x.
With all these de�nitions in place, we can then de�ne for every Boolean

function f the canonical disjunctive normal form, cDNF, as

f(x) =
∑

a∈on(f)

ma(x)

and the canonical conjunctive normal form, cCNF, as

f(x) =
∏

a∈o�(f)

sa(x)

where on(f) is the on-set of f�the set of all satisfying assignments of f�and
o�(f) is the o�-set of f�the set of all non-satisfying assignments of f .

Truth tables, cDNF and cCNF are examples of canonical representation
types. A representation type for switching functions is called canonical if ev-
ery function has exactly one representation of this type. This entails that
two equivalent functions are described by the same representation, and so
equivalence test can be performed easily: it su�ces to compare two repre-
sentations for equality. In the absence of canonicity�for instance for generic
DNF and CNF�equivalence testing is hard. In fact, given two representa-
tions in disjunctive (conjunctive) normal form, testing for their equivalence is
a co-NP -complete problem. In other terms, testing if two DNF (CNF) rep-
resent di�erent functions is NP -complete [78]. Another canonical form is the
ring sum expansion (RSE), a particular PNF where every literal is positive. A
drawback of RSE is the exponential size of the representation even for simple
functions like the disjunction of variables.

14 2 Background

Circuits and Formulas

Augmenting the number of levels of normal forms, the compactness of the
representation increases as well. Given a set Ω of basic operations (a basis),
an Ω-circuit S is an acyclic graph with its nodes categorized as

• input nodes, labeled with a variable or a constant, 0, 1,
• function nodes, labeled with a basic operation in Ω,
• output nodes, representing functions of interest.

Each node of the circuit represents a switching function. Figure 2.2 shows
the circuit representing a full adder, a switching function that computes the
sum of the bits x, y and c (the carry bit). The depth of a circuit, the number

f0f1

OR

AND XOR

AND XOR

xy c

Fig. 2.2: Circuit of a full adder

of levels, corresponds roughly to its execution time. A basis Ω is complete if
Ω-circuits are a universal representation type, i.e., every switching function
can be represented as an Ω-circuit. For example, the standard basis {+, ·, }
is complete, as it can be used to construct a three-level circuit corresponding
to a DNF. As another example, the basis {⊕, ·} is complete, as each switching
function can be represented by a RSE. Even if circuits are not a canonical
representation type, they are in most cases substantially more compact than
normal forms. This compactness is due to the ability of circuits to use a
function as the input to more than one node�that is to say, the outdegree
of a node can be greater than one. The fact that in circuits an intermediate
function can be used more than once complicates the algorithmic handling,
and so it may be undesirable. A circuit whose nodes have outdegree 1 is called
a formula. As such, a formula consists of a collection of trees, each rooted in
an output node. Figure 2.3 presents a formula for the full adder. Checking for

2.2 Concurrency in Java 15

f0 f1

OR

ANDXOR

ANDXORXOR

x yx y cx y c

Fig. 2.3: A full adder represented as a formula

equivalence is hard (co-NP -complete) for circuits and formulas, too.

2.2 Concurrency in Java

Since the beginning, the Java language included facilities for cross-platform
concurrency, in the form of abstractions modeling certain desired behaviours.

First of all, threads are taken into account at the language level and
supported as �rst-class entities. In other languages, C for example, multi-
threading is an additional feature, delivered by external, implementation-
speci�c libraries (e.g. POSIX Threads). Java threads can be created as in-
stances of the Thread class, or used indirectly via other library classes like
java.util.Timer, or by means of new abstractions introduced starting from
the version 5 of the language, like executors. Moreover, frameworks such as
Spring [16], or Android [2], create threads behind the scenes.

This makes it relatively easy to start new threads and take advantage
of today's ubiquitous multicore hardware. The main challenge is to manage
interactions between threads, as these can introduce bugs that are hard to
�nd. More precisely, what can cause problems is mutable state of objects, i.e.,
when the values of �elds can be modi�ed after object creation. On the other
way, immutable objects can be safely accessed by di�erent threads.

The Java language provides two main keywords for dealing with mutable
state: synchronized, to delimit blocks of code or entire methods as critical
sections, and volatile, to denote �elds that need to be shared among threads.

Synchronized blocks and methods de�ne mutual exclusion sections of code,
that can be accessed by only one thread at a time. Every Java object has an

16 2 Background

intrinsic lock, that can be used by synchronized blocks as a monitor to allow
execution by only one thread at a time.

Volatile �elds can be accessed by multiple threads safely, meaning that
their value is consistent from one thread to another.

Mutual exclusion is not su�cient to ensure thread-safety [59]. Modern mul-
ticore processors employ optimizations that can invalidate standard assump-
tions of correctness of sequential code. They can for example cache variables
in registers or in cache memory local to a core, making their value invisible
to other cores�and to threads running on them. Moreover, instructions can
be reordered, providing that single threaded semantics is still valid.

Hence, there is the additional problem of the visibility of shared data.
Volatile variables are not cached in registers or local core memory, they are
shared between threads, and so they always contain the most recently written
value. Synchronized blocks provide mutual exclusion and visibility, volatile
variables only visibility.

The programmer developing concurrent software on modern processors
needs to be aware of these hardware features to produce correct code. Java
cross-platform nature led to insert in the language speci�cation rules dictating
particular ordering in operations regarding shared memory. The so called Java
Memory Model (JMM) describes the interaction of threads with the main
memory.

2.2.1 The Java Memory Model

The Java Language Speci�cation [62] de�nes the relations synchronizes-with
and happens-before between actions:

• happens-before is an ordering between sections of code, imposing restric-
tions on when a section can start executing.

• synchronizes-with�that implies happens-before�refers to synchronization
with main memory; lock and unlock operations are ordered according to
this relation (an unlock on a monitor comes before a lock on the same
monitor).

For example a write to a volatile variable synchronizes-with all subsequent
reads. This means that accesses to a volatile variable act on its most recent
version.

So, exiting from a synchronized block (unlock) or writing to a volatile
variable have the additional e�ect of restoring visibility of all variables visible
up to that point. Entering in a synchronized block (lock) is like reading a
volatile variable�they come after unlock or write.

In addition to an intrinsic lock, every object has an associated wait set of
threads. When in a thread the method wait() is invoked, the thread blocks,
and may wake up when another thread calls notify() (wake up a thread) or
notifyAll() (wake up all threads in the set).

2.3 Abstract Interpretation 17

2.3 Abstract Interpretation

Abstract interpretation is a theory of sound approximation of the semantics
of programs based on monotonic functions over posets, in particular lattices.
This theory is mostly used in static analysis, o�ering compile-time techniques
for producing safe and computable approximations to the set of values or
behaviors arising dynamically at run-time when executing a program. Starting
from a concrete domain C (the domain used by the conventional semantics)
we can obtain, through an abstraction, an abstract domain A, capturing some
(but not all) properties of the concrete objects.

De�nition 2.1. A partial order ≤ on a set X is a binary relation ≤ on a set
X which is

• re�exive: ∀x ∈ X.x ≤ x
• antisymmetric: ∀x, y ∈ X. (x ≤ y ∧ y ≤ x)⇒ x = y
• transitive: ∀x, y, z ∈ X. (x ≤ y ∧ y ≤ z)⇒ x ≤ z

De�nition 2.2. A partially ordered set, or poset, ⟨X,≤⟩ is a set X with a
partial order ≤ on it.

De�nition 2.3. A chain of a poset ⟨X,≤⟩ is a totally ordered subset of X,
i.e., a set C ⊆ X, such that ∀x, y ∈ C. x ≤ y ∨ y ≤ x

De�nition 2.4. A poset ⟨X,≤⟩ satis�es the ascending chain condition, or
ACC, i� any in�nite sequence x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . is not strictly
increasing, i.e., ∃k ≥ 0.∀j ≥ k. xj = xk.

De�nition 2.5. A poset ⟨X,≤⟩ satis�es the descending chain condition, or
DCC, i� any in�nite sequence x0 ≥ x1 ≥ . . . ≥ xn ≥ . . . is not strictly
decreasing, i.e., ∃k ≥ 0.∀j ≥ k. xj = xk.

De�nition 2.6. A poset ⟨X,≤⟩ can have

• a top or maximum element ⊤ ∈ X such that ∀x ∈ X.x ≤ ⊤
• a bottom or minimum element ⊥ ∈ X such that ∀x ∈ X.⊥ ≤ x

De�nition 2.7. Let ⟨X,≤⟩ be a poset and S ⊆ X.

• M ∈ X is an upper bound of S i� ∀x ∈ S. x ≤M .
The least upper bound of ⟨X,≤⟩ is denoted by lubX, supX,

⋁
X,

⨆
X.

x ⊔ y ≜
⨆
{x, y}.

• m ∈ X is a lower bound of S i� ∀x ∈ S.m ≤ x.
The greatest lower bound of ⟨X,≤⟩ is denoted by glbX, infX,

⋀
X,

d
X.

x ⊓ y ≜
d
{x, y}.

De�nition 2.8. A join semi lattice ⟨X,≤,⊔⟩ is a poset such that for any
x, y ∈ X there exists x ⊔ y.

18 2 Background

De�nition 2.9. A meet semi lattice ⟨X,≤,⊓⟩ is a poset such that for any
x, y ∈ X there exists x ⊓ y.

De�nition 2.10. A lattice ⟨X,≤,⊔,⊓⟩ is both a join and meet semi lattice.

De�nition 2.11. A complete lattice is a poset ⟨X,⊑⟩ such that for every
S ⊆ X its lub

⨆
S ∈ X.

De�nition 2.12. Let f : X → X be an operator on a poset ⟨X,⊑⟩. x ∈ X is
a �xpoint of f if f(x) = x. The least �xpoint of f is denoted by lfp(f). The
greatest �xpoint of f is denoted by gfp(f).

With abstract interpretation it is called a theory by which a concrete se-
mantics of a program is abstracted into a simpler one, that doesn't exhibit the
original behavior, but represents instead only the property of interest. So a
concrete domain C, used by the conventional semantics, is transformed into
an abstract domain A through an abstraction function.

De�nition 2.13. Let C be the concrete domain and A the abstract one. A
function α : C → A is an abstraction function. A function γ : A → C is a
concretization function.

De�nition 2.14. Given two posets ⟨C,≤C⟩ and ⟨A,≤A⟩, and given two func-
tions α : C → A and γ : A→ C, ⟨C,α, γ,A⟩ is a Galois connection (GC), and

we denote it with C
γ
−→←−
α
A, if

• α and γ are monotone
• ∀c ∈ C. c ≤C γ(α(c))
• ∀a ∈ A.α(γ(a)) ≤A a

Alternatively, ⟨C,α, γ,A⟩ is a Galois connection if

• α and γ are monotone
• it is an adjunction: ∀a ∈ A.∀c ∈ C.α(c) ≤A a⇔ c ≤C γ(a)

De�nition 2.15. If α ◦ γ = ιA, we call the GC a Galois insertion, and we

denote it as C
γ
↠←−
α
A

3

State of the Art

3.1 Binary Decision Diagrams

3.1.1 Existing Implementations

There are many alternatives for BDD manipulation in the Java world. First
of all, native code libraries written in C�such as BuDDy [5], CUDD [8] and
CAL [6]�can be used by invoking their functions via the Java Native Inter-
face (JNI). This approach has a series of shortcomings: native libraries are
not cross platform, and so a version for every execution environment has to
be provided; they cannot be used concurrently, nor multiple factories can be
created; then it may be di�cult to adapt their C programming interface to a
friendly object oriented one�even if, as explained below, JavaBDD already
includes interfaces to these native libraries. Then there are pure Java libraries,
like JavaBDD [11], JDD [12] or SableJBDD [14]. JavaBDD seems to be the
library of choice for the Java world. It is heavily inspired by BuDDy, and in-
cludes a factory implementation that is a direct translation of BuDDy in Java.
It o�ers also other factories that are interfaces to BuDDy, CAL, CUDD and
JDD. JDD performs well with problems involving only simple Boolean oper-
ations, like in the n-queens problem, but its performance drops considerably
when it comes to other operations like variable replacement or quanti�ca-
tion. Moreover it exhibits weird behaviors, such as exiting the JVM instead
of throwing exceptions in some operations, like replace, exist and forall.
This makes it unsuitable for production environments. SableJBDD is in very
early stages of development and as such it exhibits poor performance and very
high memory consumption.

3.1.2 The Concurrent Library Sylvan

Sylvan [108] is a concurrent C++ library for the manipulation of decision
diagrams. It employs an unique table and an operation cache that can be
safely accessed by multiple threads of execution, like does our implementation.

20 3 State of the Art

Parallelism in BDD operations is exploited by spawning two concurrent task
when recursing down the low and high children of the BDD. Load balancing
between threads is done with their own implementation of work-stealing. In
work-stealing, there are a pool of workers to which tasks are submitted for
execution. Each worker has a queue of tasks assigned to it. When a worker's
queue is empty, it can steal a task from other queues, thus ensuring that no
worker sits idle, as long as there are tasks to execute. When a task submit a
new subtask, as is the case with recursive computations like those on BDDs,
the subtask is inserted in the same queue of the main task, and can then be
stolen by other workers.

3.2 Identi�cation of Injection Vulnerabilities

The identi�cation of possible injections and the inference of information �ows
are well-studied topics. Our injection identi�cation technique is scalable to real
world Java code, unlike many others. Most injection identi�cation techniques
are dynamic and/or unsound. Existing static information-�ow analyses are
not satisfactory for languages with reference types.

Identi�cation of Injections. Data injections are security risks, so there
is high industrial and academic interest in their automatic identi�cation. Al-
most all techniques aim at the dynamic identi�cation of the injection when it
occurs [69, 67, 77, 110, 99, 44, 100, 97] or at the generation of test cases of
attacks [22, 73] or at the speci�cation of good coding practices [98].

By contrast, static analysis has the advantage of �nding the vulnerabilities
before running the code, and a sound static analysis proves that injections only
occur where it issues a warning. A static analysis is sound or correct if it �nds
all places where an injection might occur (for instance, it must spot line 17 in
Fig. 8.1); it is precise if it minimizes the number of false alarms (for instance,
it should not issue a warning at line 22 in Fig. 8.1).

Beyond Julia, static analyzers that identify injections in Java are FindBugs
(http://findbugs.sourceforge.net), Google's CodePro Analytix (https:
//developers.google.com/java-dev-tools/codepro), and HP Fortify SCA
(on-demand web interface at https://trial.hpfod.com/Login). These tools
do not formalize the notion of taintedness (as we do in Def. 8.8). For the ex-
ample in Fig. 8.1, Julia is correct and precise: it warns at lines 15, 17, and 20
but not at 22; FindBugs incorrectly warns at line 17 only; Fortify SCA in-
correctly warns at lines 15 and 17 only; CodePro Analytix warns at lines 15,
17, 20, and also, imprecisely, at the harmless line 22. Sec. 8.4 compares those
tools with Julia in more detail.

We also cite FlowDroid [23], that however works for Android packages, not
on Java bytecode, and TAJ [107], that is part of a commercial product. Neither
comes with a soundness proof nor a de�nition of taintedness for variables of
reference type.

http://findbugs.sourceforge.net
https://developers.google.com/java-dev-tools/codepro
https://developers.google.com/java-dev-tools/codepro
https://trial.hpfod.com/Login

3.3 Locking Discipline Inference 21

Modelling of Information Flow. Many static analyses model explicit
and often also implicit information �ows [93] in Java-like or Java bytecode
programs. There are data/control-�ow analyses [36, 71, 94, 80]; type-based
analyses [101, 109, 26, 27, 68, 55] and analyses based on abstract interpre-
tation [56]. They are satisfactory for variables of primitive type but imprac-
tical for heap-allocated data of reference type, such as strings. Most analy-
ses [27, 36, 68, 55, 71, 80, 94, 109] assume that the language has only primitive
types; others [26, 56] are object-insensitive, i.e., for each �eld f , assume that
a.f and b.f are both tainted or both untainted, regardless of the container
objects a and b. Even if a user speci�es, by hand, which f is tainted (unre-
alistic for thousands of �elds, including those used in the libraries), object-
insensitivity leads to a very coarse abstraction that is industrially useless.
Consider the String class, which holds its contents inside a private final

char[] value �eld. If any string's value �eld is tainted, then every string's
value �eld must be tainted, and this leads to an alarm at every use of strings
in a sensitive context in the program, many of which may be false alarms. The
problem applies to any data structure that can carry tainted data, not just
strings. Our analysis uses an object-sensitive and deep notion of taintedness,
that �ts for heap-allocated data of reference type. It can be considered as
data-�ow, formalized through abstract interpretation. This has the advantage
of providing its correctness proof in a formal and standard way.

3.3 Locking Discipline Inference

Despite the need for a formal speci�cation for reasoning about Java's concur-
rency and for building veri�cation tools [38, 74, 28], we are not aware of any
previous tool built upon a formalization of the semantics of Java's concurrency
annotations [59]. The JML (Java Modeling Language) monitors_for state-
ment [91, 10] corresponds to the JCIP @GuardedBy annotation [59], together
with its limitations: name protection and semantic ambiguities. Currently,
[91] requires to write such annotation, manually, in source code, together with
other, non-obvious annotations about the e�ects of each method. Once that
hard manual task is done, the JML annotations can be model-checked, which
is only proved to work on small code.

Warlock [105] was an early tool that checked user-written speci�cations of
a locking discipline, including annotations for variable guards and locks held
on entry to functions. ESC/Java [52] provided similar syntax and checked
them via veri�cation conditions and automated theorem-proving, an approach
also applied to other concurrency problems [51]. All these tools are unsound
and do checking rather than inference. Similarly to our inference, [81] infers
locking speci�cations by generating the set of locks which must be held at a
given program location and then checking the lockset intersection of aliasing
accesses. It is based on possible rather than de�nite aliasing and hence is
unsound.

22 3 State of the Art

Most approaches, including ours, explicitly associate each variable with a
lock that guards access to it. An alternative is to use ownership types and
make each �eld protected by its owner, which is not necessarily the object
that contains it [31, 41]. This approach is somewhat less �exible, but it can
leverage existing object encapsulation speci�cations and can be extended to
prevent deadlocks [30].

These concepts can also be expressed using fractional permissions [111].
Grossman [64] extended type-checking for data races to Cyclone, a lower-level
language, but did not implement or experimentally evaluate it.

Previous inference techniques include unsound dynamic inference of lock
types [92] and sound inference via translation to propositional satis�ability,
for most of Java [50]. In [65], a trace of execution events is recorded at runtime,
then, o�ine, permutations of these events are generated under a certain causal
model of scheduling constraints. This leads to a fast, but unsound, bug-�nding
technique for concurrency problems. By contrast, our approach is sound, more
precise, and more scalable. Improving our aliasing analysis [18] would improve
the recall of our implementations.

JCIP [59] does not mention aliasing, but it does mention instance con�ne-
ment. JCIP notes that instance con�nement only works with an �appropriate
locking discipline�, but does not de�ne the latter term. Our use of aliasing
is less restrictive and more �exible, and our analysis is e�ective without a
separate instance con�nement analysis.

3.4 Static and Dynamic Analysis

Static analysis concerns the extraction of properties of a program by means
of examining its code. It builds a model of the program state, that reacts to
the program's behavior. A model considering every possible runtime behavior
of the program might be too complex to be manipulated e�ectively, and so
some information needs to be abstracted away, producing a simpler model
that represents only properties of interest. It is usually a requirement that
this abstraction must maintain soundness, i.e., the derived property must be
present also in the complete, original, model. This conservativeness might lead
to loss of precision, if a property valid in the complete model is not present
in the abstracted one.

Dynamic analysis operates by executing the program, collecting results,
and verifying that these match the desired behavior. Given the absence of
abstraction, dynamic analyses are always precise. On the other side, they
are typically unsound, as they do not cover every execution paths for every
possible input.

The analyses described in this thesis need to consider all execution paths,
in order to maintain soundness. For example, an untrusted value might �ow
into a trusted sink via a path that was not considered by a dynamic analysis.
Or, a �eld might be accessed in such a path. So, dynamic analyses are not

3.4 Static and Dynamic Analysis 23

suitable to catch all synchronization errors in a program, nor the injection of
untrusted data into trusted places.

Part I

Binary Decision Diagrams

4

Boolean Function Manipulation with BDDs

The representation type plays a fundamental role in the tractability of Boolean
functions: a function with an exponential size in one kind of representation
can be represented with few elements in another. BDDs are rather compact
representations, and so are used in many �elds, when e�cient manipulation
of Boolean functions is required.

In this chapter we will dive into the representation of choice for Boolean
functions, Binary Decision Diagrams. We will describe the main theoretical
concepts, along with implementation features exhibited by many BDD li-
braries or packages. Finally we will describe our own implementation, that is
thread-safe and has particular features.

4.1 Binary Decision Diagrams

In decision diagrams, a series of choices determines an evaluation of the repre-
sented function. A choice in the context of binary decision diagrams consists
of a test on a Boolean variable: if a variable is assigned a value, true or false,
the corresponding path is taken.

A switching function can be represented by a binary decision tree, in which

• internal nodes represent Boolean tests, are labeled by a Boolean variable
and have two outgoing edges, the 0-edge and the 1-edge

• leaves (or sinks) are labeled with the constants 0 or 1, meaning that the
described function evaluates to false or true, respectively.

Figure 4.1 shows an example of a binary decision tree. We can assume that
each variable is evaluated at most once on each path. A 1-edge, taken if the
node variable evaluates to true, is usually drawn as a solid line, whereas a
0-edge, taken if the node variable evaluates to false, is usually drawn as a
dashed line. Given a node n, the successor reached with its 1-edge is called
high(n), while the successor reached with its 0-edge is called low(n).

28 4 Boolean Function Manipulation with BDDs

x1

x2 x2

x3 x3 x3 x3

1 0 0 1 0 0 1 1

Fig. 4.1: Binary decision tree for the function x1x2x3 + x1x2 + x2x3

The binary decision trees described above can be generalized to structures
called branching programs or binary decision diagrams, directed acyclic graphs
with exactly one root and the same kind of nodes as binary decision trees.
Figure 4.2 shows one of all the possible branching programs for the parity
function x1⊕x2⊕x3. Di�erently from decision trees, for branching programs

x1

x2 x2

x3 x3

0 1

Fig. 4.2: A branching program for x1 ⊕ x2 ⊕ x3

a variable can be evaluated more than once on a path. A node can have more
than one predecessor, and so there may be several paths leading from the root
to the node, on which the variable may be tested in di�erent manners. Hence,

4.1 Binary Decision Diagrams 29

even if a variable has already been tested on a path from the root to a node
labeled by the same variable, this test cannot be eliminated in general.

This freedom of general branching programs can be a limitation when it
comes to the e�ciency of algorithms for the manipulation of these structures.
E�cient algorithms can only be employed if none of the variables is read
several times on a path. A branching program with this property is called a
read-once branching program. This implies that a binary decision tree is also
a read-once branching program. In a read-once branching program each path
is a computation path, that is, given an input a = (a1, . . . , an), at the node xi
the path follows the edge with label ai�a computation path cannot contain a
0-edge and a 1-edge for the same variable. For read-once branching programs
satis�ability can be solved in polynomial time, but computing conjunction,
disjunction and exclusive or of two read-once branching programs is NP -hard
[78].

4.1.1 Ordered Binary Decision Diagrams

Although branching programs were known since the 1950s, it was Randal E.
Bryant [33] who improved these structures by imposing ordering and reduc-
tion restrictions, achieving canonicity and compactness. An Ordered Binary
Decision Diagram (OBDD) is a read-once branching program in which vari-
ables on a path from the root to a sink are ordered according to a �xed total
order. More precisely, given a total order π de�ned on the set of variables
x1, . . . , xn, for each edge leading from a node labeled with xi to a node la-
beled with xj , it holds that xi <π xj . Every node in an OBDD de�nes a
Shannon expansion of the function represented by the diagram rooted in that
node. Let f be the function represented by the node n labeled with xi. Refer-
ring to Section 2.1.1, let's call the negative cofactor of f fxi

, and the positive
cofactor fxi

. The function f can then be written as

f = xifxi
+ xifxi

This means that high(n) represents the function fxi
and low(n) represents

the function fxi
.

4.1.2 Reduced OBDDs

There can be two types of redundancy in an OBDD:

• if low(n) = high(n), then the test in n is useless
• if certain subgraphs are isomorphic the same information is represented

more than once in the OBDD

Two OBDDs are isomorphic if there exists a bijection ϕ between the two sets
of nodes such that for each node n either

• var(n) = var(ϕ(n)), ϕ(high(n)) = high(ϕ(n)), ϕ(low(n)) = low(ϕ(n)), or

30 4 Boolean Function Manipulation with BDDs

• both n and ϕ(n) are sinks with the same label (0 or 1).

Figure 4.3 shows how redundant nodes in an OBDD look like. If an OBDD

x

y

(a) the test in x
is useless

x

y z

x

(b) the two x nodes are
isomorphic

Fig. 4.3: Types of redundancy in an OBDD

has no redundant nodes,it's called reduced (ROBDD). The above conditions
suggest two reduction rules:

Elimination rule if low(n) = high(n) = m then redirect all incoming edges in
n to m and eliminate n.

Merging rule if var(n) = var(m), low(n) = low(m) and high(n) = high(m)
(m and n are isomorphic) then redirect all incoming edges in n to m and
eliminate n.

An OBDD is reduced if and only if the reduction rules cannot be applied.
Figure 4.4 shows an example of a ROBDD. Compared to the binary decision
tree for the same function in Figure 4.1, this representation uses far fewer
nodes. An OBDD of a switching function f with respect to the variable order
π is reduced if and only if it is isomorphic to the minimal OBDD of f with
respect to π. So, for each variable order π, the ROBDD representation of a
switching function with respect to π is uniquely determined, i.e., ROBDDs
form a canonical representation type for switching functions. Canonicity of
ROBDDs implies that there is exactly one ROBDD for the constant true
and one for the constant false. Hence, tautology (i.e., being equivalent to
the constant true) and satis�ability (i.e., not being equivalent to the constant
false) can be tested in constant time, comparing the canonical representations
of the functions. In the general case of Boolean expressions these problems
are NP -complete. It turns out that ROBDDs, beside providing a canonical
representation of switching functions, can be manipulated e�ciently, and for
many practically important functions the ROBDD representations are quite
small.

To construct a ROBDD the above reduction rules can be applied to an
already existing OBDD. Another possibility consists on preventing the pro-

4.2 General Implementation Features 31

x1

x2 x2

x3 x3

0 1

Fig. 4.4: ROBDD for the function x1x2x3 + x1x2 + x2x3

duction of redundant nodes during the OBDD construction. The construction
starts at the root, in a top-down manner: the root is labeled with the �rst
variable in the order, xi, and recursively constructing the high and low nodes
as ROBDD for the subfunctions fxi

and fxi
, respectively. If for each node the

reduction rules are satis�ed, the �nal diagram is a ROBDD. The elimination
rule is implemented by checking if the two successors for the node are the
same, while the merging rule is implemented by taking care that only a copy
of a particular BDD is present in memory. Section 4.2 explains how this can
be implemented in software.

In practice, BDD is used as a synonym for ROBDD, and so it will be in
the following.

4.2 General Implementation Features

The advantages of BDDs outlined in Section 4.1.2, like the equivalence testing
in linear time and the compact representation, can be magni�ed by a clever im-
plementation. For example, equivalence testing can be performed in constant
time, just by comparing pointers or integer indexes pointing to uniquely rep-
resented structures. The �rst e�cient BDD package was developed by Brace,
Rudell and Bryant in 1990 [32]. The implementation ideas employed in this
early accomplishment served as inspiration for all successive packages.

The basic data element for storing a BDD is the node. A structure rep-
resenting a BDD node must store at least the variable index and pointers to
low and high children. Adding additional information can improve the perfor-
mance of algorithms, but it increases the memory consumption as well, and
possibly worsens data locality, so it becomes necessary to �nd a compromise
that maximizes performance. The general implementation choices presented

32 4 Boolean Function Manipulation with BDDs

below are implemented in existing BDD packages, although with modi�cations
and adaptations.

Shared BDD Di�erent BDDs can share the same subgraphs, and so several
functions can be represented as a single directed acyclic graph, a shared
BDD, in which each subgraph (and hence each node) is represented exactly
once. This memory representation achieves strong canonicity : not only
two equivalent functions are represented by identical graphs, but actually
by the same graph. Employing this optimization allows one to perform
equivalence testing in constant time, comparing the root nodes of the
graph (or pointers to them).

Unique table Strong canonicity is implemented by means of a unique table.
To ensure that each subfunction is represented exactly once in the shared
BDD, before adding a new node, a query is raised to the table. If a node
with the desired variable index and low and high pointers already exists,
a pointer to that node is returned instead. This operation is performed
quickly if the unique table is implemented as a hash table, using a suitable
hash function. The hash table can contain pointers to actual node data,
or the data themselves. The BDD is kept in reduced form by checking if
a node already exists (thus adhering to the merging rule of Section 4.1.2)
and by testing if the low and high pointers coincide (elimination rule),
This reduction is generally done through a function called MK:

Function MK(v,l,h)

if l = h then
return l

if a node with (v,l,h) can be found in the table then
return it.

add a node n to the table
return n.

The �rst if corresponds to the elimination rule, and the second to the
merging rule.

Computed table Executing BDD operations can be expensive, and so it is rea-
sonable to save the results in a data structure for later retrieval, should an
operation be performed again. For example, suppose we have a table C of
all Boolean operations computed so far. Boolean operations are typically

4.2 General Implementation Features 33

performed by an APPLY function, taking as arguments two BDDs (root
nodes) and a binary operator:

Function APPLY(op,n1,n2)

if C contains the result of (n1 op n2) then
return it.

if n1, n2 are constants then
return op applied to n1, n2.

if var(n1) = var(n2) then
result = MK(var(n1),

APPLY(op, low(n1), low(n2)), APPLY(op, high(n1),
high(n2)))

else if var(n1) < var(n2) then
result = MK(var(n1),

APPLY(op, low(n1), n2), APPLY(op, high(n1), n2))

else
result = MK(var(n2),

APPLY(op, n1, low(n2)), APPLY(op, n1, high(n2)))

save result in C
return result

The APPLY function produces the resulting BDD using Shannon expan-
sion: when the low and high children BDDs are constructed, they are
combined by the function MK. This ensures that the resulting BDD is re-
duced. To make the result ordered, sub-diagrams are composed such that
the lower variable is kept above in the partial BDD. The computed table
C of all previous results can be realized by a hash table with collision
resolution. We can therefore assume that insertion and lookup in C can
be performed in constant time. Not only an external invocation of APPLY
can bene�t from already computed results, but also recursive calls in the
same invocation. This �xes a bound to the number of recursive calls to
| n1 || n2 |, where | n | denotes the number of nodes in the BDD rooted
at node n. The expected time complexity of APPLY is thus O(| n1 || n2 |)
[33]. However, remembering all the results computed so far requires a lot
of memory. Additionally, algorithms take advantage of time locality in ref-
erencing previous results: the longer the time after the computation of a
speci�c result, the smaller becomes the probability that exactly this result
is needed again. For this reason, in practice a small hash-based cache per-
forms better and wastes much less memory. In such a structure, only the
most recent result is stored (or the few most recent results). Nevertheless,
the previous considerations on the time complexity of the APPLY algorithm
hold only if a full non-forgetting computed table is implemented; if this
is not the case, at worst the time behavior is exponential. In practice,
extreme cases exhibiting such a worst case behavior appear very seldom.

34 4 Boolean Function Manipulation with BDDs

Similar caches can be implemented for other algorithms as well, such as
those for quanti�cation, restriction, simpli�cation and replacement.

• existential or universal quanti�cation are the usual logical operations
• restriction computes the BDD obtained by �xing the value of some of

the input variables
• simpli�cation refers to node removal based on a domain of interest d:

the resulting BDD represents a function that is evaluated to 1 only for
those assignments that satisfy d

• replacement substitutes some variables of the input BDD with other
variables; this is not simply a node renaming operation, as the ordering
restriction can require a restructuring of the diagram

Garbage collection Boolean operations cause the creation of many temporary
BDD nodes. For example, in the construction of the BDD representing a
combinational circuit a BDD for each gate is created, that is necessary
only for the construction of successor gates' BDD. Which nodes should
be considered dead at a given point in an application? Those that do
not belong to �interesting� BDDs, from the user's standpoint�such as
the whole circuit BDD described above. Unused nodes can be deleted
from the table; however, dead nodes can be useful, should the application
need a result from the compute cache rooted at a dead node. Moreover,
deleting nodes and restructuring tables can be expensive. So, dead nodes
should not be removed immediately, but only when it is necessary to gain
memory. This garbage collection reduces the need to resize the node table.
In many packages�such as BuDDy, JavaBDD, JDD�a reference counter
is maintained for each node. This counter tracks how many incoming edges
there are for the node. Every client handle counts as 1 for the root node of
the BDD. The counter is incremented whenever a new predecessor node
is added and decremented when a predecessor's counter reaches 0 (this
means that the node is dead). Garbage collection can be triggered when
a su�cient number of nodes are dead. Typically only one or two bytes
are reserved for the reference counter: if the number of references for a
node exceeds the maximum representable value with the allocated bits,
the counter �over�ows�, and the node becomes immortal.
Instead of keeping a counter of the existing references to a node, another
choice could be to implement a two-stage garbage collection: a �rst stage
to mark active nodes, and a second (sweep) to erase dead nodes (those
not reached in the �rst stage). This leads to a somewhat simpler and less
error-prone code.

4.3 Our new Thread-Safe Package

Concurrency problems arise when mutable state is shared. In a BDD package,
state is represented essentially by the node table and the operation caches. To
safely use these structures from di�erent threads, access has to be carefully

4.4 Library Structure 35

synchronized. Our library, that we called BeeDeeDee, implements this syn-
chronization in accessing shared data, while maintaining a speed comparable
to other libraries. Before delving into the synchronization details, we start
with analyzing how the library is structured.

4.4 Library Structure

Information about BDD nodes are stored in a unique table, implemented with
a simple integer array ut. This choice was mandatory to achieve acceptable
performance and memory consumption. Indeed, storing node data in a Java
object occupies more memory and produces many dead objects during the life
of the application, leading to greater pressure on the Java garbage collector.
Additionally, it destroys memory locality, since data for a node can be any-
where in the heap, instead of in contiguous cells of an array. Good memory
locality is necessary to exploit high-speed processor caches, and therefore to
achieve good performance. These issues, together with indirection and object
creation overhead, would produce poor performance compared to state-of-the-
art BDD packages.

Currently in our implementation a node in the table spans over 5 cells, a
total of 20 bytes of memory. An auxiliary array H contains pointers (integer
indexes) to nodes having a speci�c hash value. Together, ut and H form an
hash table. Collision resolution is achieved through chaining in the unique
table itself, via an integer component pointing to the next node in the table.
The hash value is constructed using the variable number and the indexes of
the low and high branches. This increases the size to 24 bytes per node. The
�rst few lines of the ut table look like these:

Index variable number low high next hcAux
0: 2147483646 -1 -1 1 0
1: 2147483647 -1 -1 2 1
2: 0 0 1 3 2
3: 1 0 1 4 3
4: 2 0 1 5 4
5: 3 0 1 6 5
. . .

The variable numbers of the terminals need to be larger than any other vari-
able number, because some library algorithms rely on this for their correct-
ness. Low and high children are identi�ed by their index on the table; terminal
nodes have no children, and so the �elds are set to −1. The next �eld points
to the next node in the collision chain. The last �eld, hcAux, is a unique iden-
ti�er of the node, that acts as the hash code for a BDD object. It remains the
same during the life of the application, even after a garbage collection deletes
nodes and compacts the table (see 4.4.1). This is to ensure that operations on
hash based structures (e.g. a HashMap or HashSet) are consistent in time.

36 4 Boolean Function Manipulation with BDDs

As already said, uniqueness in the node table is implemented by accessing
a node in expected constant time via hashing. Due to the fact that BDDs are
canonical forms of Boolean formulas, a node represents a class of equivalent
formulas. So a BDD is univocally identi�ed by its index in the table. Clients of
the library do not see this internal representation, but rather obtain from the
factory a BDD java object pointing to the right starting node of the diagram
in the table.

The BDD interface and the Factory abstract class form the main public in-
terface of the package. Clients can create a factory of BDD objects by invoking
the static method Factory.mk(utSize, cacheSize), that takes as parame-
ters the initial size of the unique table, in number of nodes, and the size of
the operation caches, in number of entries�refer to Section 4.4.2. References
to basic BDD objects created by the Factory can be obtained by calling the
methods

• makeZero() and makeOne()�to get a reference to the terminal BDDs 0
and 1

• makeVar(int) and makeNotVar(int)�that, given the desired variable in-
dex, return a BDD representing a single variable, respectively in positive
and negative form, creating the corresponding single node if necessary.

4.4.1 Internal Garbage Collection

Having all of the BDD nodes stored in a single array prevents the Java Garbage
Collector to free memory no more used for a BDD object. So we implemented a
garbage collection procedure that compacts the node table, overwriting dead
nodes. To �nd live nodes, instead of counting references to every node, we
implemented a mark and sweep collection. Every user BDD object is consid-
ered live until its free() method gets called by the programmer. Every node
reachable recursively from these high level objects is then considered live as
well. Nodes excluded from this pass (mark) are thus dead, and so their mem-
ory can be reclaimed (sweep). Compacting the node table during the garbage
collection yields the additional bene�t of improving memory locality. Garbage
collection is started either when the occupation of the table exceeds 98%, or
on user's request.

4.4.2 Operation Caches

Operations such as Apply can be very expensive. The traditional approach
to get better performance is to maintain all operation results computed so far
in a hash table with collision resolution. A small hash-based cache, keeping
only the last result for each position in the table, has proven to be the fastest
solution, due to the cleaner implementation and the fact that it exploits the
temporal locality of operations, as well as the spatial locality of processor
caches. Currently our package implements caches for Apply, Quantifica-
tion, Replace and Restrict.

4.5 Concurrency 37

4.5 Concurrency

The unique table cannot be modi�ed nor queried when a garbage collection or
a resize are being performed, and so special care has been taken to avoid con-
currency issues without excessively degrading performance. Di�erent strate-
gies have been applied to isolate garbage collection and resizing of the node
table from operations on the table itself.

4.5.1 Synchronizing with Garbage Collection

In a concurrent setup, BDD operations may be initiated in the middle of a
garbage collection, and so a mean to synchronize their execution had to be im-
plemented. Using a single monitor for this purpose has the disadvantage that
two operations cannot start at the same time. So, a set of locks, implemented
by the array gcLocks, has been used instead. Every operation obtains a lock
from the table with the getGCLock() method, via the wrapper class GCLock,
that implements the interface Closeable, thus allowing code to release the
lock by using the automatic closing of resources of Java 7:

1 protected class GCLock implements Closeable {
2 private �nal ReentrantLock lock;
3
4 public GCLock() {
5 this.lock = ut.getGCLock();
6 this.lock. lock ();
7 }
8
9 @Override
10 public void close() {
11 lock.unlock();
12 }
13 }

This frees the programmer from the need to release the lock in a finally

clause, and leads to simpler code. For example, this is how the method imple-
menting an and acquires the lock before performing the operation:

1 try (GCLock lock = new GCLock()) {
2 return new BDDImpl(innerAnd(id, ((BDDImpl) other).id));
3 }

If an operation tries to acquire a lock whose reference is stored on a cell of
the array, the next operation uses the lock in the cell following the latter1, in
a circular way. In other words, at every call to the getGCLock() method, the
array index is incremented modulo the array length.

1 we assume that the array has a length of at least 2

38 4 Boolean Function Manipulation with BDDs

1 public ReentrantLock getGCLock() {
2 return gcLocks[nextGCLocks = (nextGCLocks + 1)
3 % gcLocks.length];
4 }

Hence, when the GC is not executing and no lock is held, a number of BDD
operations equal to the length of the gcLocks array can start without blocking.
When a garbage collection starts, it tries to acquire the lock on all the monitors
in the array, and then, when no operation is executing, performs the actual
collection.

1 private boolean getAllLocksAndGC() {
2 for (ReentrantLock lock: gcLocks)
3 lock. lock ();
4 ...

Figure 4.5 illustrates various states of the locks in gcLocks, in the case of an
array of length 5.

4.5.2 Synchronizing with Resize

Whenever it needs a particular BDD node, an operation calls the get method
of the unique table. Given the desired variable number and low and high
children, the get method searches in the table for a node with these �elds, by
calculating a hash code and going through the corresponding collision chain.
If it �nds the node it returns its index, otherwise a new table entry needs to
be created.

Resizing is done by a user thread competing for the table, when a particular
node is not present in the table and there is no space left for its creation. Here
too an array of monitors, getLocks, was used to reduce the probability of two
operations locking on the same monitor. Di�erently from the synchronization
for the garbage collection, locks are not accessed in a circular manner, but
instead the index of the lock in the array is the hash code just computed,
modulo the array length.

1 public �nal int get(int var, int low, int high) {
2 do {
3 int size = this.size ;
4 int pos = hash(var, low, high, size);
5 int result = getOptimistic(var, low, high, pos);
6 if (result >= 0)
7 return result;
8
9 Object myLock;
10 synchronized (myLock = getLocks[pos % getLocks.length]) {
11 if (size == this.size
12 pos == hash(var, low, high, this. size))

4.5 Concurrency 39

gcLocks

and
or

replace

exist

biimp

L

L

L

L

L

(a) Di�erent locks - no
operation blocks

gcLocks

and
or

replace

exist

biimp

satCount

L

L

L

L

L

(b) Two operations use
the same lock�the sec-
ond blocks

gcLocks

or

exist

satCount

L

L

L

(c) The second operation
acquires the lock

gcLocks

or

exist

satCount

L

L

L

L gc

(d) GC starts and blocks on the sec-
ond lock until all operations have
�nished

Fig. 4.5: Locking on the gcLocks monitors

13 return expandTable(var, low, high, myLock, pos);
14 }
15 }
16 while (true);
17 }

In the above code, �rst the current size of the table and the position in the
H array (that depends on it) is saved, then getOptimistic is called, to verify

40 4 Boolean Function Manipulation with BDDs

if the desired node is already present. The getOptimistic method is not
synchronized, since the only operation that can change the position of an
existing node in the table is the garbage collection�when it compacts the
table�and get runs only if there is no collection in progress. In this way get

invocations for already existing nodes can run in parallel. Conversely, if the
desired node is not present in the table, a new node must be created. This
time, synchronization is necessary to avoid data races. get �rst checks if the
size changed, meaning that a resize occurred while it was trying to access the
critical section: in that case it has to recompute the hashcode, since it might
have changed, so get restarts again. The expandTable method adds a node to
the table. If there is no room for the node, the table is resized, unless another
thread is already resizing it. In this case, the current thread waits on myLock.

A thread initiating a resizing orderly tries to acquire all of the locks in the
array, and then starts the actual resizing. When the resizing thread ends its
work, it noti�es all the waiting threads by calling notifyAll on all the locks
in the getLocks array. In Figure 4.6 are captured four instants in the life of
the monitor array, with a size of �ve.

getLocks

get(3, 4, 7) L

L

get(3, 4, 7)

get(5, 3, 11)

(a) Two get for the same node

getLocks

get(3, 4, 7) L

L

L

L resize

get(3, 4, 7)

get(5, 3, 11)

(b) Resize starts locking

getLocks

get(3, 4, 7) L

L

L

L resize

L

innerResize

(c) Locks acquired, actual resizing
starts

getLocks

get(3, 4, 7) L

L

L

L resize

L

innerResize

notifyAll

notifyAll

notifyAll

notifyAll

notifyAll

(d) End of resizing, notify waiting
threads

Fig. 4.6: The getLocks mechanism

4.5 Concurrency 41

4.5.3 Synchronizing Hash Table Updating

After garbage collection or resizing occurs, the hash table has to be updated,
as the hash value for a node and the collision chain may have changed. In
fact, garbage collection compacts the table, by overwriting dead nodes, and
resize, as the name suggests, changes the size of the table. In both cases, the
hash value might have to be recomputed. If the size of the table crosses a
certain threshold, updating is performed by several threads in parallel. The
method parallelUpdateHashTable rebuilds the hash table by using a num-
ber of threads equal to the number of processors. Each thread updates the
positions of the hash table congruent with its index, modulo the number of
threads. For example, in Figure 4.7, four threads updates the hash table po-
sitions modulo 4. For each node in the unique table, starting from the last,

H t1 t2 t3 t4

Fig. 4.7: Four threads updating the hash table

collision chain pointers are updated. The code fragment below shows the up-
dating for a node.

1 ...
2 int pos = hash(ut[index], ut[index + 1], ut[index + 2]);
3
4 synchronized (updateLocks[pos % updateLocks.length]) {
5 setNext(i , H[pos]);
6 H[pos] = i;
7 }
8 ...

The parallel updater uses an array of locks called updateLocks. After the new
position in the hash table has been computed (in pos), threads synchronize
on locks depending on pos to actually update the pointers.

42 4 Boolean Function Manipulation with BDDs

4.5.4 Synchronizing Caches

Our library implements caches for various BDD operations. Accesses to caches
need to be synchronized. All the caches use a similar locking scheme: an array
of lock objects, selected depending on hash values. We will consider as an
example the ComputationCache, that stores the results of Apply. The get

method takes as parameters a Boolean operation and two BDD indexes, and
returns the stored result, or -1 if no such result exists yet.

1 int get(Operator op, int bdd1, int bdd2) {
2 ...
3 if (cache[pos1] == bdd1 && cache[pos2] == bdd2
4 && cache[pos] == op)
5 synchronized (locks[pos % locks.length]) {
6 return (cache[pos1] == bdd1 && cache[pos2] == bdd2
7 && cache[pos] == op) ? cache[pos + 3] : −1;
8 }
9
10 return −1;
11 }

The put method stores the given result on the cache.

1 void put(Operator op, int bdd1, int bdd2, int result) {
2 ...
3 if (cache[pos1] != bdd1 cache[pos2] != bdd2 cache[pos] != op)
4 synchronized (locks[pos % locks.length]) {
5 cache[pos] = op;
6 cache[pos1] = bdd1;
7 cache[pos2] = bdd2;
8 cache[pos + 3] = result ;
9 }
10 }

In both methods, an object contained in the locks array is used to lock
the position being read or written. The if statements surrounding the
synchronized blocks avoid synchronization when it's not necessary.

5

Experiments and Comparisons

In this chapter we describe some experiments showing the performance of our
library in solving several problems. First of all with the construction of the
transition relation for sequential circuits. Then with the n-queens and knight's
tour problems. Section 8.6 describes how well our library performs when used
in �ow analysis.

5.1 Circuits

Binary Decision Diagrams are widely used in hardware veri�cation, both for
combinational and sequential circuits. An integral part of the veri�cation pro-
cess is the representation of the circuit by means of some data structure. The
memory consumption and the running time of algorithms depend strongly on
the chosen representation. The use of BDDs for the veri�cation of sequential
circuits allowed to represent orders of magnitude more reachable states than
before [35, 34].

5.1.1 Combinational Circuits

Combinational circuits consist simply of gates, with no memory, and can be
represented by simply combining the gates' functionality: every gate is rep-
resented by a Boolean function, which is then combined with the others to
produce a single function, describing the functional behavior of the circuit. In
logic synthesis, a circuit can be transformed from its original incarnation�for
example optimized by reducing the number of gates. Hence it is important to
check that the transformation process has not introduced errors in the design,
that is to say, that the transformed circuit is functionally equivalent to the
original. Using BDDs as data structures makes equivalence testing very cheap.

44 5 Experiments and Comparisons

X

Y

Z

Fig. 5.1: Scheme of the combinational circuit for the function xy + z

5.1.2 Sequential Circuits

Sequential circuits include combinational parts and memory elements, so that
outputs depend not only on inputs, but also on previous state of the circuit
(Figure 5.2). To model the enumeration of states reachable for a sequential

Combinational
Logic

Memory

Inputs Outputs

Internal
Inputs

Internal
Outputs

Fig. 5.2: Scheme of a sequential circuit

circuit, a transition relation has to be constructed. The transition relation
binds the current state Boolean variables, V , with the next state variables,
V ′. Every �new� variable v′i is produced from the current value of the state
variables by a given function fi, v

′
i = fi(V). We can then de�ne a set of rela-

tions Ni(V, V
′) = (v′i ⇔ fi(V)) binding old variables with each new variable

v′i. The whole transition relation is the conjunction of these relations:

N(V, V ′) = N0(V, V
′) ∧ . . . ∧Nn−1(V, V

′)

Building the transition relation for a circuit involves a big number of simple
Boolean operations. We exercised the relation construction for three circuits
taken from the ITC99 benchmark set [9], comparing our library with JavaBDD
and JDD. Results are shown in Figure 5.3. Also in this case, BeeDeeDee out-
performs the other Java libraries.

5.2 N -queens

The n-queens problem consists in placing n queens over an n× n chessboard
so that no one attacks another. Figure 5.4 shows one of the 92 solutions of
the 8-queens problem. It translates naturally into the construction of a logi-
cal function whose solutions are all possible placements of queens. Figure 5.5

5.2 N -queens 45

0 5 10 15 20 25 30 35 40

b20

b22

b22-1

1.9

26.71

3.59

2.04

32.24

3.89

4.04

31.12

5.59

BeeDeeDee JavaBDD JDD

Fig. 5.3: Time (in seconds) for the construction of the transition relation for
three circuits from ITC99

Fig. 5.4: A solution of the 8-queens problem

shows the execution time for constructing the function for the 12-queens prob-
lem with BeeDeeDee, compared to the time needed by using the Java libraries
JavaBDD and JDD, and the C libraries CUDD and BuDDy. BeeDeeDee is here
the fastest Java library and is comparable to BuDDy, the best C library.

Figure 5.6 shows the time for the construction from 1 to 4 BDDs represent-
ing the function associated to the same 12-queens problem. Such a construc-
tion was performed in parallel on a quad-core processor, by sharing unique
table and caches with BeeDeeDee. We see here that we manage to achieve
a high degree of real parallelism, since four BDDs are built in 33.6 seconds
while a single BDD is built in 22.4 seconds. Some degradation exists, due
to synchronization, but the parallel cost is much lower than the theoretical

46 5 Experiments and Comparisons

0 5 10 15 20 25 30 35 40

BuDDy

CUDD

BeeDeeDee

JavaBDD

JDD

30

34

31

39

33

Fig. 5.5: Time (in seconds) for the solution of the 12-queens problem

sequential cost of 4× 22.4 = 89.6 seconds. This example shows that the over-
head of synchronization is well acceptable for parallel computations through
BeeDeeDee.

1 2 3 4

22

24

26

28

30

32

34

Number of 12-queens instances

T
im
e
(s
)

Fig. 5.6: Parallel 12-queens BDDs construction

5.3 Parallel Problems

We developed parallel versions of two problems: knight's tour and transition
relation construction for sequential circuits.

5.3 Parallel Problems 47

Fig. 5.7: A solution of the Knight's tour problem of size 8

5.3.1 Knight's Tour

In this problem, we try to �nd if a knight can complete a tour in an n ×
n chessboard in which every square is visited once and only once. For our
purposes, we model the problem as reachability in a state transition system.
We �rst build Boolean functions over variables associated to squares in the
chessboard. These functions represent the initial state and transitions from

48 5 Experiments and Comparisons

a state to the next. Then the tour exists if and only if all the squares are
reachable. We use the following sequential algorithm:

Function KnightsTourExists(N)

/* initialize variables */

for i = 0 → N, j = 0 → N do
xij = v2∗(i∗N+j) // even index, current state vars

xnextij = v2∗(i∗N+j)+1 // odd index, next state vars

/* initial state function, true when no square is reached

*/

I = true
for i = 0 → N, j = 0 → N do

I = I ∧ ¬xij

/* transition function */

T =
⋁

0≤i,j<N,k=i−1,i+1,l=j−2,j+2,0≤k,l<N

S(i, j, k, l)

⋁
0≤i,j<N,k=i−2,i+2,l=j−1,j+1,0≤k,l<N

S(i, j, k, l)

/* build reachable states function */

R = false
do

R′ = R
exist = ∃x. T ∧R
replace = exist{x ↦→ xnext}
R = I ∨ replace

while R′ ̸= R;

/* if all squares are reachable, then the tour exists */

for i = 0 → N, j = 0 → N do
R = R ∧ xnextij

reachable = R.satCount
if reachable = N ·N then

return true
return false

Function S(i,j,k,l)

/* allowed moves for the knight at (i, j) */

/* k = i± 1, i± 2, l = j ± 1, j ± 2 */

return xij ∧ ¬xkl ∧ ¬xnextij ∧ xnextkl

⋀
0≤i′,j′<N,i′ ̸=i,k,i′ ̸=j,l xi′j′ ↔ xnexti′j′

The parallel version splits the computation of the T function among dif-
ferent threads. Figure 5.8 shows the execution time when dividing work in
di�erent number of threads.

5.3 Parallel Problems 49

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

2,000

4,000

6,000

8,000

Size of chessboard

T
im
e
(m

s)

1 thread
2 threads
4 threads
8 threads

Fig. 5.8: Parallel Knight's Tour computation

5.3.2 Transition Relation Construction

As we said above, the transition relation for a sequential circuit is the con-
junction of n di�erent functions v′i ⇔ fi(V):

N(V, V ′) = (v′0 ⇔ f0(V)) ∧ . . . ∧ (v′n−1 ⇔ fn−1(V))

The parallel version distributes evenly all of these functions among threads
performing partial conjunctions. These are then combined to form the �nal
function N(V, V ′). Figure 5.9 shows execution times for the parallel construc-
tion of the transition relation of our three test circuits.

b20 b22-1 b22

0

0.5

1

1.5

·104

Circuit

T
im
e
(m

s)

1 thread
2 threads
4 threads
8 threads

Fig. 5.9: Parallel construction of the transition relation for three circuits from
ITC99

6

ER representation

ERFactory is a particular factory that represents Boolean functions by keeping
information on equivalent variables in a separate data structure. Thus such
a representation, that we call ER, includes a BDD part, and an equivalence
relation part, a set of disjoint sets of equivalent variables (equivalence classes).
For each class, we choose a variable l as the leader of the class. An equivalence
relation can also be seen as a set of pairs of equivalent variables, i.e., ei = (x, y)
is a pair meaning that x and y are equivalent, and we can express this with the
formula fi = x ↔ y. For instance, the equivalence relation {{a, b}, {x, y, z}},
can be represented with the pairs (a, b), (x, y), (y, z), (x, z). Moreover, we write
f(b) to mean the formula for the function represented by the BDD b. So, given
an ER representation formed by the pairs of equivalent variables e1, . . . , en
and the BDD b, the resulting Boolean function is represented by the formula

f1 ∧ . . . ∧ fn ∧ f(b) (6.1)

Even this representation is kept in canonical form by using a normalization op-
eration, that moves variables found equivalent in the BDD part into the equiv-
alence relation part: norm(⟨E,R⟩) = ⟨E′, R′⟩. Only the variable leading each
class can appear in the BDD. It is implemented by the following algorithm:

Function normalize(er)

newE = er.E
newR = er.R
do

ev = pairs of equivalent variables in er.R
oldE = newE
Add pairs in ev to newE
Rename variables in er.R with their leaders according to er.E

while newR ̸= oldR ∨ newE ̸= oldE ;
return ⟨newE, newR⟩
Figure 6.1 shows an example of the ER representation, besides the original

BDD.

52 6 ER representation

x1

0

x2

x3

1

(a) BDD

{x1, x2, x3}

x1

0 1

(b) ER

Fig. 6.1: Two representations for the function x1 ∧ x2 ∧ x3

6.1 Operations

Operations on ERs can be performed on their equivalent BDDs, obtained
using the formula (6.1), and transforming the result back into ER form, by
normalizing it, but some operations can be carried out directly on ER repre-
sentations, which is very important for e�ciency.

AND Given two ER representations, ⟨E1, R1⟩ and ⟨E2, R2⟩, we compute their
conjunction as norm(⟨E1 ∪ E2, R1 ∧R2⟩)
Function AND(er1,er2)

resultE = er1.E ∪ er2.E
resultR = er1.R ∧ er2.R
er = ER(resultE, resultR)
return normalize(er)

OR Given two ER representations, ⟨E1, R1⟩ and ⟨E2, R2⟩, their disjunction
is ⟨E′, R′⟩, where
• E′ = E1 ∩ E2

• R′ = R′1 ∨R′2
R′i is obtained by removing equivalent, non-leader variables from Ri, and
then re-adding all the equivalences corresponding to pairs of Ei not having
non-leaders in common pairs in E(i+1) mod 2.

6.1 Operations 53

⟨E′, R′⟩ does not need to be normalized.

Function OR(er1,er2)

resultE = er1.E ∩ er2.E
pairs1 = er1.E.pairs
pairs2 = er2.E.pairs
foreach pair p in pairs1 do

if p is in pairs2 then
Add p.second in nonLeaders1

foreach pair p in pairs2 do
if p is in pairs1 then

Add p.second in nonLeaders2

squeezed1 = squeezeEquiv(er1.R)
foreach pair p in pairs1 do

v1 = p.�rst
v2 = p.second
if v1 is not in nonLeaders1 ∧ v2 is not in nonLeaders1 then

squeezed1 = squeezed1 ∧(v1↔ v2)

squeezed2 = squeezeEquiv(er2.R)
foreach pair p in pairs2 do

v1 = p.�rst
v2 = p.second
if v1 is not in nonLeaders2 ∧ v2 is not in nonLeaders2 then

squeezed2 = squeezed2 ∧(v1↔ v2)

return squeezed1 ∨ squeezed2

NOT The negation uses De Morgan's law, and so, given that an ER ⟨{e1, . . . ,
en}, b⟩ corresponds to the function f1 ∧ . . . ∧ fn ∧ f(b), its negation is
computed as ¬f1 ∨ . . . ∨ ¬fn ∨ ¬f(b). This result is then normalized.

Function NOT(er)

not = not(er.R)
foreach pair p in er.E.pairs do

v1 = p.�rst
v2 = p.second
not = not ∨¬(v1↔ v2)

return normalize(not)

XOR, IMP and BIIMP operations are derived from those above, and so the
result does not need to be normalized:

XOR The XOR of two ERs er1, er2 is computed as (er1 ∨ er2)∧¬(er1 ∧ er2).
IMP The IMP of two ERs er1, er2 is computed as ¬er1 ∨ er2.
BIIMP The BIIMP of two ERs er1, er2 is computed as (¬er1∨ er2)∧ (¬er2∨

er1).

54 6 ER representation

EXIST Existential quanti�cation happens over a set of variables V = {v1, . . . ,
vk}. If a variable in V is in E, it is not quanti�ed in the BDD part, but
instead replaced with its leader. If all the variables in a class are in V ,
there is no leader to be substituted, and the variable is quanti�ed. All
variables in V are removed from E.

Function EXIST(er,V)

// requires normalized representation
foreach v in V do

if v is in er.E then
l = the leader of the equivalence class obtained by removing all
the variables in V from the equivalence class of v
if l exists then

Put (v, l) in renaming

else
Add v in V ′

else
Add v in V ′

Remove all variables in V from er.E
er.R = replace(er.R, renaming)
er.R = exist(er.R, V')
return normalize(er)

REPLACE Replace performs variable substitution on the ER. Substitution
is carried separately on the BDD and on the equivalence relation part.
Care is required in case of simultaneous substitution: if some variable is
target of some mapping, and is to be substituted itself, then it has to be
substituted �rst. Then, variables in the BDD part are substituted with
their leaders according to the equivalence relation.

Function REPLACE(er,renaming)

er.R = replace(er.R, renaming)
foreach v in renaming.values do

if renaming contains v as the key of a value v′ then
Put (v, v′) in renameFirst Remove (v, v′) from renaming

er.E = replace(er.E, renameFirst)
er.E = replace(er.E, renaming)
Rename variables in er.R with their leaders according to er.E
return normalize(er)

The idea of keeping BDDs small by extracting information from them and
manipulating it separately was �rst introduced and formalized in [25]. They
managed to keep separate also ground variables, for the purpose of groundness
analysis of constraint logic programs. This analysis was implemented in the
China analyzer. It uses the CORAL BDD library [29], that employs all of the
operations described in this chapter, along with many others.

6.3 Experiments 55

6.2 Implementation

The equivalence relation part is implemented by the class
EquivalenceRelation. Equivalence classes, that are sets of variable indexes,
are represented by java.util.BitSets. When pairs of equivalent variables
are needed, they are derived from equivalence classes. EquivalenceRelation
is an immutable class: adding or removing classes or pairs doesn't a�ect the
current instance, but instead creates another EquivalenceRelation.

BDDER is the class that implements an ER representation. It is a subclass
of BDD, and have an additional �eld for the equivalence relation part.

BDDER, like their counterparts BDD, are kept in a factory, speci�cally in an
ERFactory, a subclass of a Factory. Basic BDDERs are produced with the
methods makeZero(), makeOne(), makeVar(int v) and makeNotVar(int v).
Complex BDDERs can be constructed from these basic blocks with methods
like and, or, etc.

6.3 Experiments

For experimenting in ER, we use the knight's tour problem, that can create
BDDs with a high number of equivalent variables. This algorithm creates
BDDs with many equivalent variables, and thus the ER representation uses
far less BDD nodes than the normal one.

Figure 6.2 compares the number of nodes created by instances of the
knight's tour problem by using the two di�erent representations.

It can be seen that for N = 14, roughly 7% of the nodes are created by
the ER factory, with respect to the standard representation.

Figure 6.3 shows execution times.

6.3.1 N-queens

In the n-queens problem, there are little or no equivalences, and so the over-
head of the ER representation is more pronounced. Figure 6.4 shows the time
comparison between the two representations.

6.3.2 Julia

Figure 6.5 shows times for the execution of the Nullness checker of Julia on
several programs. Here, too, there is no advantage in using the ER represen-
tation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

·107

Size of chessboard

N
u
m
b
er

of
n
od
es

Normal
ER

Fig. 6.2: BDD nodes created by instances of the knight's tour problem

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

2,000

4,000

6,000

8,000

Size of chessboard

T
im
e
(m

s)

Normal
ER

Fig. 6.3: Time to solve instances of the knight's tour problem

1 2 3 4 5 6 7 8 9 10 11 12

0

2

4

6

8
·104

Size of chessboard

T
im
e
(m

s)

Normal
ER

Fig. 6.4: Time to solve instances of the n-queens problem

100 200 300 400

beedeedee.jar

JFlex.jar

truezip.jar

velocity.jar

bitcoinj.jar

Time (s)

A
n
al
yz
ed

P
ro
gr
am

Normal
ER

Fig. 6.5: Execution time for the Nullness checker of Julia

7

Integrity Check

Due to the use of BDDs in safety critical applications, it is desirable that
the probability of error in data stored in memory is reduced to a minimum.
Bringing inspiration from [45], we implemented a version of the unique table
performing an integrity check on the data it stores at every access, or at the
user's request. The table can become corrupt because of defective memory
modules, or even because of cosmic rays changing bits in memory chips [15].
If the user requests an o�-line checksum of the table, it is his responsibility
to check it against an old sum saved in the past. If instead he chooses on-line
checking, at every read access the library takes care to compare the checksum
of the current node against that saved at the last write access. Of course,
these checks are not free, as they involve reading the table and computing
sums, but still some users might prefer to have greater con�dence in BDD
data stored in memory, at the cost of increased computation time. As far as
we know, our library is the only one providing this option.

7.1 Usage

The factory is created similarly to a normal one. There are parameters to
indicate initial sizes of the table and the caches, and an additional boolean
�ag indicating the option of on-line checking. This is an example of o�-line
checking:

1 IntegrityCheckFactory factory = new IntegrityCheckFactory(10, 10, false);
2 long checksum1 = factory.computeChecksum();
3 ... // some time passes...
4 long checksum2 = factory.computeChecksum();
5 // checksum1 == checksum2 if the table haven't changed

This instead is an example of on-line checking:

1 IntegrityCheckFactory factory = new IntegrityCheckFactory(10, 10, true);

60 7 Integrity Check

2 ...
3 factory .makeZero();
4 ...
5 // cosmic ray changes row for zero!
6 ...
7 factory .makeZero(); // checksum changed, exception!

When an exception is thrown in response to a checksum error, the user
needs to restart the computation with a fresh node table, as the old one cannot
be relied upon.

7.2 Implementation

To add checks, we need to add code to the factory and the unique table,
and so we have two new classes: IntegrityCheckFactory, that extends class
Factory, and IntegrityCheckUniqueTable, that extends class
ResizingAndGarbageCollectedUniqueTable.

IntegrityCheckFactory adds a method to the public interface of Factory,
long computeChecksum(), that computes a CRC32 checksum of the BDD
data, namely the ut and H arrays. Moreover, if on-line checking is requested,
it also substitutes an instance of IntegrityCheckUniqueTable as the unique
table to use. Computation of CRC32 is performed via standard Java methods:

1 public long computeChecksum() {
2 long crc32h = computeCRC32(ut.H);
3 long crc32ut = computeCRC32(ut.ut);
4 return crc32h + crc32ut;
5 }
6
7 private long computeCRC32(int[] a) {
8 // convert int [] to byte []
9 ByteBu�er byteBu�er = ByteBu�er.allocate(a.length ∗ 4);
10 IntBu�er intBu�er = byteBu�er.asIntBu�er ();
11 intBu�er .put(a);
12 byte[] byteArray = byteBu�er.array();
13
14 Checksum checksum = new CRC32();
15 checksum.update(byteArray, 0, byteArray.length);
16 return checksum.getValue();
17 }

IntegrityCheckUniqueTable extends
ResizingAndGarbageCollectedUniqueTable. It adds an integer slot to a row
in the table, to memorize a checksum for the node, bringing the occupation
per node to 28 bytes. At every write access, a checksum of the row being

7.2 Implementation 61

modi�ed is computed and saved in the dedicated slot. Then, before reading
data from a row of the table, a checksum is again computed, and compared
to the saved one. If the two values di�er, an unchecked runtime exception of
type CorruptedNodeException is thrown. The computation of the checksum
for a node is performed in a way similar to the o�-line checking:

1 private int nodeChecksum(int id) {
2 ByteBu�er byteBu�er = ByteBu�er.allocate((getNodeSize() − 1) ∗ 4);
3 byteBu�er.putInt(ut[id ∗ getNodeSize() + VAR_OFFSET]);
4 byteBu�er.putInt(ut[id ∗ getNodeSize() + LOW_OFFSET]);
5 byteBu�er.putInt(ut[id ∗ getNodeSize() + HIGH_OFFSET]);
6 byteBu�er.putInt(ut[id ∗ getNodeSize() + NEXT_OFFSET]);
7 byteBu�er.putInt(ut[id ∗ getNodeSize() +
8 HASHCODEAUX_OFFSET]);
9 byte[] byteArray = byteBu�er.array();
10 Checksum checksum = new CRC32();
11 checksum.update(byteArray, 0, byteArray.length);
12 return (int) checksum.getValue();
13 }

7.2.1 Cyclic Redundancy Check

Our integrity check uses CRC32, an instance of a Cyclic Redundancy Check
or CRC. CRCs were introduced as a means for error detection. It works by
�rst encoding binary strings as polynomials, using the bits of an n-bits string
as binary coe�cient of a polynomial of degree n− 1. For example, the string
110101 is encoded by the polynomial 1 + x + x3 + x5. Then, the generator
polynomial P (x), of degree k, is chosen to encode a message represented by
the polynomial G(x). The encoding works as follows.

xkG(x) is divided by P (x), in order to �nd the remainder R(x):

xkG(x) = Q(x)P (x) +R(x)

Then the polynomial representing the code is

F (x) = Q(x)P (x) = xkG(x) +R(x)

An encoded string may contain errors, and we can represent it with the
polynomial

H(x) = F (x) + E(x)

F (x) represents the correct string, while E(x) represents a string with ones
in place of the errors, so that summing them up reproduces the string with
errors. To check the string for errors, we can divide it by P (x). If we obtain
a remainder, the string contains errors, but if it doesn't we don't know if
the string has no errors, or instead the error E(x) is not detectable with the
chosen P (x).

62 7 Integrity Check

7.3 Experiments

Figure 7.1 shows the performance of the n-queens construction for board size
up to 12, with the normal factory as well as with that performing on-line
integrity check. The resulting overhead is acceptable, given the additional
security guarantees on the correctness of results.

1 2 3 4 5 6 7 8 9 10 11 12

0

0.2

0.4

0.6

0.8

1

·105

Size of chessboard

T
im
e
(m

s)

Normal
Integrity check

Fig. 7.1: Time to solve instances of the n-queens problem, with normal and
integrity check factories

Part II

Program Analysis

8

Identi�cation of Injection Vulnerabilities

BDDs were already used in the past for static analysis. The Nullness analy-
sis implemented in Julia [102] represents propagation of nullness of variables
using Boolean functions in the form of BDDs. Groundness analysis of logic
programs represents positive Boolean functions with BDDs [25]. In this work,
we use BDDs to represent Boolean functions in a novel analysis implemented
in Julia, our static program analyzer for Java, that �nds possible injections
of untrusted, or tainted data, into programs.

The most dangerous security-related software errors, according to CWE
2011, are those leading to injection attacks � user-provided data that result in
undesired database access and updates (SQL-injections), dynamic generation
of web pages (cross-site scripting-injections), redirection to user-speci�ed web
pages (redirect-injections), execution of OS commands (command-injections),
class loading of user-speci�ed classes (re�ection-injections), and many others.
This chapter describes a �ow- and context-sensitive static analysis that au-
tomatically identi�es if and where injections of tainted data can occur in a
program. The analysis models explicit �ows of tainted data. Its notion of taint-
edness applies also to reference (non-primitive) types dynamically allocated
in the heap, and is object-sensitive and �eld-sensitive. The analysis works by
translating the program into Boolean formulas that model all possible �ows.

This chapter is organized as follows. Sec. 8.1 gives an example of injec-
tion and clari�es the importance of a new notion of taintedness for values
of reference type. Sec. 8.2 de�nes a concrete semantics for Java bytecode.
Sec. 8.3 de�nes our new object-sensitive notion of taintedness for values of
reference type and its use to induce an object- and �eld-sensitive abstract
interpretation of the concrete semantics. Sec. 8.4 presents experiments with
the implementation of the analysis. Extended de�nitions and proofs are in the
appendices.

66 8 Identi�cation of Injection Vulnerabilities

8.1 Example

Fig. 8.1 is a Java servlet that su�ers from SQL-injection and cross-site
scripting-injection attacks. (For brevity, the �gure omits exception-handling
code.)

A servlet (lines 1 and 2) is code that listens to HTTP network connection
requests, retrieves its parameters, and runs some code in response to each
request. The response (line 2) may be presented as a web page, XML, or JSON.
This is a standard way of implementing dynamic web pages and web services.
The user of a servlet connects to the web site and provides the parameters
through the URL, as in http://my.site.com/myServlet?user=spoto. Code
retrieves these through the getParameter method (line 5). Lines 8 and 10
establish a connection to the database of the application, which is assumed to
de�ne a table User (line 27) of the users of the service. Line 27 builds an SQL
query from the user name provided as parameter. This query is reported to
the response (line 15) and executed (line 17). The result is a relational table of
all users matching the given criterion (the user parameter might be a speci�c
name or a wildcard that matches more users). This table is then printed to
the response (lines 17�20).

The interesting point here is that the user of this servlet is completely free
to specify the value of the user parameter. In particular, she can provide a
string that actually lets line 17 run any possible database command, including
malicious commands that erase its content or insert new rows. For instance, if
the user supplies the string �'; DROP TABLE User; --� as user, the result-
ing concatenation is an SQL command that erases the User table from the
database. In literature, this is known as an SQL-injection attack and follows
from the fact that user (tainted) input �ows from the request source into the
executeQuery sink method. There is no SQL-injection at line 22, although
it looks very much like line 17, since the query there is not computed from
user-provided input.

Another risk exists at lines 15 and 20. There, data is printed to the re-
sponse object, and is typically interpreted by the client as HTML contents.
A malicious user might have provided a user parameter that contains arbi-
trary HTML tags, including tags that will let the client execute scripts (such as
Javascript). This might result in evil. For instance, if the user injects a crafted
URL such as �http://my.site.com/myServlet?user=<script>malicious</script>�,
the parameter user holds �<script>malicious</script>�. At line 15 this
code is sent to the user's browser and interpreted as Javascript, running
any malicious Javascript. In literature, this is known as cross-site scripting-
injection and follows from the fact that user (tainted) input from the request
source �ows into the sink output writer of the response object. The same
might happen at line 20, where the �ow is more complex: in other parts of
the application, the user might save her address to the database and store
malicious code instead; line 20 will fetch this malicious code and send it to
the browser of the client to run it.

8.1 Example 67

1 protected void doGet(HttpServletRequest request,
2 HttpServletResponse response) {
3 String user = request.getParameter("user");
4 String url = "jdbc:mysql://192.168.2.128:3306/";
5 String dbName = "anvayaV2", driver = "com.mysql.jdbc.Driver";
6 String userName = "root", password = "";
7
8 Class.forName(driver).newInstance();
9 try (Connection conn = DriverManager.getConnection(url + dbName,
10 userName, password);
11 PrintWriter out = response.getWriter()) {
12
13 Statement st = conn.createStatement();
14 String query = wrapQuery(user);
15 out.println("Query : " + query);
16
17 ResultSet res = st.executeQuery(query);
18 out.println("Results:");
19 while (res.next())
20 out.println("\t\t" + res.getString("address"));
21
22 st .executeQuery(wrapQuery("dummy"));
23 }
24 }
25
26 private String wrapQuery(String s) {
27 return "SELECT ∗ FROM User WHERE userId='" + s + "'";
28 }
29 }

Fig. 8.1: A Java servlet that su�ers from SQL and cross-site scripting-
injections.

Many kinds of injections exist. They arise from information �ows from
what the user can specify (the parameter of the request, input from con-
sole, data on a database) to speci�c methods, such as executeQuery (SQL-
injection), print (cross-site scripting-injection), re�ection methods (that al-
low one to load any class or execute any method and lead to a re�ection-
injection), execute (that allows one to run any operating system command
and leads to a command-injection), etc. We focus on the identi�cation of �ows
of tainted information, not on the exact enumeration of sources and sinks. Our
approach can be instantiated from well-known lists of sources and sinks in the
literature.

68 8 Identi�cation of Injection Vulnerabilities

8.2 Denotational Semantics of Java Bytecode

This section presents a denotational semantics for Java bytecode, which we
will use to de�ne an abstraction for taintedness analysis (Sec. 8.3). The same
semantics has been used for nullness analysis [102] and has been proved equiva-
lent [88] to an operational semantics. The only di�erence is that here primitive
values are decorated with their taintedness.

We assume a Java bytecode program P given as a collection of graphs
of basic blocks of code, one for each method. Bytecodes that might throw
exceptions are linked to a handler starting with a catch, possibly followed
by bytecodes selecting the right kind of exception. For simplicity, we assume
that the only primitive type is int and the only reference types are classes;
we only allow instance �elds and methods; and method parameters cannot be
reassigned inside their body. Our implementation handles full Java bytecode.

De�nition 8.1 (Classes). The set of classes K is partially ordered w.r.t. the
subclass relation ≤. A type is an element of K∪{int}. A class κ ∈ K de�nes
instance �elds κ.f : t (�eld f of type t de�ned in κ) and instance methods
κ.m(t1, . . . , tn) : t (method m with arguments of type t1, . . . , tn, returning a
value of type t, possibly void). We consider constructors as methods returning
void. If it does not introduce confusion, we write f and m for �elds and
methods.

A state provides values to program variables. Tainted values are computed
from servlet/user input; others are untainted. Taintedness for reference types
(such as string request in Fig. 8.1) will be de�ned later as a reachability
property from the reference (Def. 8.8); primitive tainted values are explicitly
marked in the state.

De�nition 8.2 (State). A value is an element of Z∪ Z ∪L∪{null}, where
Z are untainted integers, Z are tainted integers, and L is a set of locations.
A state is a triple ⟨l || s ||µ⟩ where l are the values of the local variables, s the
values of the operand stack, which grows leftwards, and µ a memory that binds
locations to objects. The empty stack is written ε. Stack concatenation is ::
with s ::ε written as just s. An object o belongs to class o.κ ∈ K (is an instance
of o.κ) and maps identi�ers (the �elds f of o.κ and of its superclasses) into
values o.f . The set of states is Ξ. We write Ξi,j when we want to �x the
number i of local variables and j of stack elements. A value v has type t in a

state ⟨l || s ||µ⟩ if v ∈ Z ∪ Z and t = int, or v = null and t ∈ K, or v ∈ L,
t ∈ K and µ(v).κ ≤ t.

Example 8.3. Let state σ = ⟨[3, null, 4 , ℓ] || 3 :: ℓ′′ :: ℓ′′ ||µ⟩ ∈ Ξ4,3, with µ =

[ℓ ↦→ o, ℓ′ ↦→ o′, ℓ′′ ↦→ o′′], o.f = ℓ′, o.g = 13, o′.g = 17 and o′′.g = 10. Local 0
holds the integer 3 and local 2 holds the integer 4, marked as computed from
servlet/user input. The top of the stack holds 3, marked as computed from

8.2 Denotational Semantics of Java Bytecode 69

servlet/user input. The next two stack elements are aliased to ℓ′′. Location ℓ is
bound to object o, whose �eld f holds ℓ′ and whose �eld g holds the untainted
integer 13. Location ℓ′ is bound to o′ whose �eld g holds a tainted integer 17 .
Location ℓ′′ is bound to o′′ whose �eld g holds the untainted value 10.

The Java Virtual Machine (JVM) allows exceptions. Hence we distinguish
normal states σ ∈ Ξ, arising during the normal execution of a piece of code,
from exceptional states σ ∈ Ξ, arising just after a bytecode that throws
an exception. The latter have only one stack element, i.e., the location of the
thrown exception object, also in the presence of nested exception handlers [72].
The semantics of a bytecode is then a denotation from an initial to a �nal
state.

De�nition 8.4 (JVM State and Denotation). The set of JVM states
(from now just states) with i local variables and j stack elements is Σi,j =
Ξi,j ∪ Ξi,1. A denotation is a partial map from an input or initial state to
an output or �nal state; the set of denotations is ∆ or ∆i1,j1→i2,j2=Σi1,j1→
Σi2,j2 to �x the number of local variables and stack elements. The sequential
composition of δ1, δ2 ∈ ∆ is δ1; δ2 = λσ.δ2(δ1(σ)), which is unde�ned when
δ1(σ) or δ2(δ1(σ)) is unde�ned.

In δ1; δ2, the idea is that δ1 describes the behavior of an instruction ins1, δ2
that of an instruction ins2 and δ1; δ2 that of the execution of ins1 and then
ins2.

At each program point, the number i of local variables and j of stack el-
ements and their types are statically known [72], hence we can assume the
semantics of the bytecodes unde�ned for input states of wrong sizes or types.
Readers can �nd the denotations of bytecode instructions in appendices, to-
gether with the construction of the concrete �xpoint collecting semantics of
Java bytecode, explicitly targeted at abstract interpretation, since it only re-
quires to abstract three concrete operators ;, ∪, and extend on ℘(∆), i.e.,
on the subsets of ∆ and the denotation of each single bytecode distinct from
call. The operator extend plugs a method's denotation at its calling point
and implements call. The concrete �xpoint computation is in general in�nite,
but its abstractions converge in a �nite number of steps if, as in Sec. 8.3, the
abstract domain has no in�nite ascending chain.

Basic instructions. Bytecode const v pushes v ∈ Z ∪ {null} on the stack:
const v = λ⟨l || s ||µ⟩.⟨l || v :: s ||µ⟩ (s might be ε). The λ-notation de�nes a
partial map, unde�ned on exceptional states since ⟨l || s ||µ⟩ is not underlined.
That is, const v is executed when the JVM is in a normal state. This holds
for all bytecodes but catch, that starts the exceptional handlers from an
exceptional state. Bytecode dup t duplicates the top of the stack, of type t:
dup t = λ⟨l || top :: s ||µ⟩.⟨l || top :: top :: s ||µ⟩. Bytecode load k t pushes on
the stack the value of local variable number k, that must exist and have type
t: load k t = λ⟨l || s ||µ⟩.⟨l || l[k] :: s ||µ⟩. Conversely, bytecode store k t pops

70 8 Identi�cation of Injection Vulnerabilities

the top of the stack of type t and writes it in local variable k: store k t =
λ⟨l || top :: s ||µ⟩.⟨l[k := top] || s ||µ⟩. If l has less than k + 1 variables, the
resulting set of local variables gets expanded. Binary arithmetic bytecodes
such as add consume the operands, i.e., the topmost two elements of the
stack, and produce the arithmetic result: add = λ⟨l || v1 :: v2 :: s ||µ⟩.⟨l ||(v2 +
v1) :: s ||µ⟩. Here, + is the extended addition operator that yields a tainted
sum if and only if at least one of its operands is tainted. The semantics of
a conditional bytecode is unde�ned when its condition is false. For instance,
ifne t checks if the top of the stack, of type t, is not 0 nor 0 when t = int,
and is not null otherwise. Its semantics ifne t is

λ⟨l || top ::s ||µ⟩.

{
⟨l || s ||µ⟩ if top ̸∈ {0, 0 , null},
undefined otherwise.

Memory-manipulating instructions. Some bytecodes deal with objects in
memory: new κ pushes on the stack a reference to a new object n of class κ,
with reference �elds set to null. Its semantics new κ is

λ⟨l || s ||µ⟩.

{
⟨l || ℓ :: s ||µ[ℓ := n]⟩ if there is memory

⟨l || ℓ ||µ[ℓ := oome]⟩ otherwise

with ℓ ∈ L fresh and oome new instance of java.lang.OutOfMemoryError.
This is the �rst bytecode that throws an exception. Bytecode getfield κ.f: t
reads the �eld κ.f: t of the object pointed by the top rec (the receiver) of the
stack, of type κ. Its semantics getfield κ.f : t is

λ⟨l || rec ::s ||µ⟩.

{
⟨l ||µ(rec).f :: s ||µ⟩ if rec ̸= null,

⟨l || ℓ ||µ[ℓ ↦→ npe]⟩ otherwise

with ℓ ∈ L fresh and npe new instance of java.lang.NullPointerException.
Bytecode putfield κ.f : t moves the top of the stack, of type t, in the �eld
κ.f : t of the object pointed by a value rec of type κ below top. Its semantics
putfield κ.f : t is (ℓ and npe are as before)

λ⟨l||top ::rec ::s||µ⟩.

{
⟨l||s||µ[µ(rec).f := top]⟩ if rec ̸=null,

⟨l || ℓ ||µ[ℓ := npe]⟩ otherwise.

Exception handling instructions. Bytecode throw κ throws the object of
type κ ≤ java.lang.Throwable pointed by the top of the stack. Its semantics
throw κ is (ℓ and npe are as before)

λ⟨l || top ::s ||µ⟩.

{
⟨l || top ||µ⟩ if top ̸=null,

⟨l || ℓ ||µ[ℓ ↦→ npe]⟩ if top=null.

Bytecode catch starts an exception handler from an exceptional state: it
transforms it into a normal one, used by the implementation of the han-
dler: catch = λ⟨l || top ||µ⟩.⟨l || top ||µ⟩ where top ∈ L is an instance of

8.2 Denotational Semantics of Java Bytecode 71

java.lang.Throwable. The correct handler for a speci�c class of exception
is then selected on the basis of the runtime class of the exception object by
a bytecode exception_is K that �lters the states whose stack top points to
an instance of a class in K ⊆ K. Its semantics exception_is K is

λ⟨l || top ||µ⟩.

{
⟨l || top ||µ⟩ if top ∈ L, µ(top).κ ∈ K,

undefined otherwise.

Method call and return instructions. A method M = κ.m(t1, . . . , tn) : t
starts with a bytecode receiver_is K asserting that the runtime class of the
receiver (local variable 0) is in a set K statically computed from the look-up
rules of the language. The semantics of receiver_is K is

λ⟨l || ε ||µ⟩.

{
⟨l || ε ||µ⟩ if l[0]∈L, µ(l[0]).κ∈K,

undefined otherwise,

with ℓ and npe as before. At the beginning of M , the stack is ε and local
variables hold exactly its n+1 actual arguments (including this). At its end,
a return t bytecode leaves on the stack the return value of type t only, or
a return bytecode just returns, if t = void. Without loss of generality, we
assume that return is only executed when there is no other value on the stack.
Hence return t = λ⟨l || top ||µ⟩.⟨l || top ||µ⟩ and return = λ⟨l || ε ||µ⟩.⟨l || ε ||µ⟩.
Overall, the semantics of the code of M is hence a denotation δ from a state
⟨[v0, . . . , vn] || ε ||µ⟩ to a state σ = ⟨l′ || top ||µ′⟩, with top = ε when t = void,
if M returns normally, or to a state σ = ⟨l′ || top ||µ′⟩, with top pointing to an
exception e ifM throws e. From the point of view of the caller ofM , its i local
variables l are not a�ected by the call and the actual arguments v0, . . . , vn are
popped from its stack, of height j = b+n+1, and replaced with top (if any).
We model this through extend i,j

M ∈ ∆n+1,0→i′,r → ∆i,j→i,b+r, with r = 0 if
t = void and r = 1 otherwise, de�ned as (ℓ and npe are as before)

λ⟨l||vn :: · · · ::v0 ::s||µ⟩.

⎧⎪⎨⎪⎩
⟨l ||ℓ||µ[ℓ := npe]⟩ if v0 = null

⟨l ||top ::s||µ′⟩ if v0∈Loc, σ∈Ξ,
⟨l||top||µ′⟩ if v0∈Loc, σ∈Ξ.

The Denotational Semantics. A semantics ι of P is an interpretation that
speci�es the behavior of each block b in P by providing a set ι(b) of denota-
tions. They represent possible executions starting at b and continuing with b's
successor blocks until a block with no successor is reached. Sets are typical
of a collecting semantics [39], able to model properties of denotations. The
operators extend and ; over denotations are consequently extended to sets of
denotations.

De�nition 8.5 (Interpretation). An interpretation is a map from P 's
blocks into ℘(∆). The set of interpretations I is ordered by pointwise set-
inclusion. □

72 8 Identi�cation of Injection Vulnerabilities

Given ι ∈ I, we de�ne the set [[b]]ι ⊆ ∆ of all the executions, induced by ι, that
start at b and continue with b's successors until a block with no successors
is reached: we compose sequentially the denotations of the instructions inside
b and those of the successor blocks b1, . . . , bn, as given by ι. For calls, we
extend the denotations of the �rst block of the called method(s), as given by
ι.

De�nition 8.6 (Denotations of Instructions and Blocks). Let ι ∈ I.
The denotations in ι of an instruction are [[ins]]

ι
= {ins} if ins is not a

call, and [[call M1, . . . ,Mq]]
ι

= ∪1≤s≤qextend i,j
Ms

(ι(bMs
)) otherwise, where {M1, . . . ,Mq} is a superset of

the methods that might be called (computed by some class analysis), bMs
the

block where Ms starts, i the number of local variables and j the height of the
stack where the call occurs. Function [[_]]

ι
is extended to blocks:

[[
ins1· · ·
insn

→
→

b1· · ·
bm

]]ι
= [[ins1]]

ι
; · · · ; [[insn]]ι ; (ι(b1) ∪ · · · ∪ ι(bm))

Cont

where Cont is missing when m = 0. □

Note that Def. 8.6 uses an operator ∪ over ℘(∆).
Loops and recursion make the blocks of P interdependent and hence a

denotational semantics needs a �xpoint computation: it starts from the empty
interpretation ι0, such that ι0(b) = ∅ for all blocks b of P , computes ι1 =
TP (ι0) and iterates the application of TP until a �xpoint (for e�ciency, one
can perform local, smaller �xpoints on the strongly-connected components of
blocks).

De�nition 8.7 (Denotational Semantics). We de�ne TP : I → I as
TP (ι)(b) = [[b]]

ι
for every ι ∈ I and block b of P . Its least �xpoint exists

and can be computed with a (possibly in�nite) iterative application of TP from
ι0 [88]. It is the denotational semantics of P . □

Abstractions of TP over a domain with no in�nite ascending chains (such as
that in Sec. 8.3) reach the abstract �xpoint in a �nite number of iterations.

8.3 Taintedness Analysis

This section de�nes an abstract interpretation [39] of the concrete semantics
of Sec. 8.2, whose abstract domain is made of Boolean formulas whose models
are consistent with all possible ways of propagating taintedness in the con-
crete semantics. The concrete semantics works over ℘(∆) and is built from
singletons (sets made of a single δ ∈ ∆), one for each bytecode, with three
operators ;, ∪, and extend . Hence we de�ne here correct abstractions of those
sets and operators.

8.3 Taintedness Analysis 73

Our analysis assumes that three other analyses have been performed in
advance. (1) reach(v , v ′) is true if (the location held in) v′ is reachable from
(the location held in) v. (2) share(v, v′) is true if from v and v′ one can
reach a common location. (3) updatedM (lk) is true if some call in the program
to method M might ever modify an object reachable from local variable lk.
All three analyses are conservative overapproximations of the actual (unde-
cidable) relations. Our implementation computes these predicates as in [85],
[96], and [57], respectively.

Primitive values are explicitly marked as tainted (Def. 8.2), while taint-
edness for references is indirectly de�ned in terms of reachability of tainted
values. Hence, this notion allows a.f and b.f to have distinct taintedness,
depending of the taintedness of variables a and b (object-sensitivity).

De�nition 8.8 (Taintedness). Let v ∈ Z∪ Z ∪L∪{null} be a value and µ
a memory. The property of being tainted for v in µ is de�ned recursively as:

v ∈ Z or (v ∈ L and o = µ(v) and there is a �eld f such that o(f) is tainted
in µ).

A �rst abstraction step selects the variables that, in a state, hold tainted data.
It yields a logical model where a variable is true if it holds tainted data.

De�nition 8.9 (Tainted Variables). Let σ ∈ Σi,j. Its tainted variables are

tainted(σ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{lk | l[k] is tainted in µ, 0≤k<i}∪{sk | vk is tainted in µ, 0≤k<j}
if σ = ⟨l || vj−1 :: · · · ::v0 ||µ⟩

{lk | l[k] is tainted in µ, 0 ≤ k < i} ∪ {e, s0}
if σ = ⟨l || v0 ||µ⟩ and v0 is tainted in µ

{lk | l[k] is tainted in µ, 0 ≤ k < i} ∪ {e}
if σ = ⟨l || v0 ||µ⟩ and v0 is not tainted in µ.

Example 8.10. Consider σ from Ex. 8.3. We have tainted(σ) = {l2, l3, s2},
since tainted data is reachable from both locations ℓ and ℓ′, but not from ℓ′′.

To make the analysis �ow-sensitive, distinct variables abstract the input
(marked with)̌ and output (marked with)̂ of a denotation. If S is a set of
identi�ers, then Š = {v̌ | v ∈ S} and Ŝ = {v̂ | v ∈ S}. The abstract domain
contains Boolean formulas that constraint the relative taintedness of local
variables and stack elements. For instance, ľ1 → ŝ2 states that if local variable
l1 is tainted in the input of a denotation, then the stack element s2 is tainted
in its output.

De�nition 8.11 (Taintedness Abstract Domain T). Let i1, j1, i2, j2 ∈ N.
The taintedness abstract domain Ti1,j1→i2,j2 is the set of Boolean formulas

over {ě, ê} ∪ {ľk | 0 ≤ k < i1} ∪ {šk | 0 ≤ k < j1} ∪ {l̂k | 0 ≤ k < i2} ∪ {ŝk |
0 ≤ k < j2} (modulo logical equivalence).

Example 8.12. ϕ=(ľ1 ↔ l̂1)∧(ľ2 ↔ l̂2)∧(ľ3 ↔ l̂3)∧¬ě∧¬ê∧(š0 ↔ l̂0)∈T4,1→4,0.

74 8 Identi�cation of Injection Vulnerabilities

The concretization map γ states that a ϕ ∈ T abstracts those denotations
whose behavior, w.r.t. the propagation of taintedness, is a model of ϕ.

Proposition 8.13 (Abstract Interpretation). Ti1,j1→i2,j2 is an abstract
interpretation of ℘(∆i1,j1→i2,j2) with γ : Ti1,j1→i2,j2 → ℘(∆i1,j1→i2,j2) given
by

γ(ϕ) =

{
δ ∈ ∆i1,j1→i2,j2

⏐⏐⏐⏐ for all σ ∈ Σi1,j1 s.t. δ(σ) is de�ned
ˇtainted(σ) ∪ ˆtainted(δ(σ)) |= ϕ

}
.

Lemma 8.14. The map γ of Prop. 8.13 is co-additive.

Proof. Let i1, i1, j2, j2 ∈ N, I ⊆ N and {ϕi}i∈I ⊆ Ti1,j1→i2,j2 . We prove that
γ(∧i∈Iϕi) = ∩i∈Iγ(ϕi):

γ(∧i∈Iϕi) =
{
δ ∈ ∆i1,j1→i2,j2

⏐⏐⏐⏐ for all σ ∈ Σi1,j1 s.t. δ(σ) is de�ned
ˇtainted(σ) ∪ ˆtainted(δ(σ)) |= ∧i∈Iϕi

}
=

{
δ ∈ ∆i1,j1→i2,j2

⏐⏐⏐⏐ for all σ ∈ Σi1,j1 s.t. δ(σ) is de�ned
ˇtainted(σ) ∪ ˆtainted(δ(σ)) |= ϕi for all i ∈ I

}
=

⋂
i∈I

{
δ ∈ ∆i1,j1→i2,j2

⏐⏐⏐⏐ for all σ ∈ Σi1,j1 s.t. δ(σ) is def.
ˇtainted(σ) ∪ ˆtainted(δ(σ)) |= ϕi

}
= ∩i∈Iγ(ϕi).

Given the previous lemma, we can prove Prop. 8.13:

Proof. The domain Ti1,j1→i2,j2 is a complete lattice w.r.t. logical entailment
with ∧ as greatest lower bound operator. The domain ℘(∆i1,j1→i2,j2) is a
complete lattice w.r.t. set inclusion with ∩ as greatest lower bound operator.
The map γ is co-additive (Lemma 8.14), hence the thesis follows by a general
result of abstract interpretation [39].

Example 8.15. Consider ϕ from Ex. 8.12 and bytecode store 0 at a program
point with i = 4 locals and j = 1 stack elements. Its denotation store 0 ∈ γ(ϕ)
since that bytecode does not modify locals 1, 2 and 3, hence their taintedness
is unchanged ((ľ1 ↔ l̂1) ∧ (ľ2 ↔ l̂2) ∧ (ľ3 ↔ l̂3)); it only runs if no exception
is thrown just before it (¬ě); it does not throw any exception (¬ê); and the
output local 0 is an alias of the topmost and only element of the input stack
(š0 ↔ l̂0).

Fig. 8.2 de�nes correct abstractions for the bytecodes from Sec. 8.2, but
call. A formula U (for unchanged) is a frame condition for input local vari-
ables and stack elements, that are also in the output and with unchanged
value: their taintedness is unchanged. For the stack, this is only required
when no exception is thrown, since otherwise the only output stack element
is the exception.

8.3 Taintedness Analysis 75

(const v)T = U ∧ ¬ě ∧ ¬ê ∧ ¬ŝj
(load k t)T = U ∧ ¬ě ∧ ¬ê ∧ (ľk ↔ ŝj)

(store k t)T = U ∧ ¬ě ∧ ¬ê ∧ (šj−1 ↔ l̂k)

(add)T = U ∧ ¬ě ∧ ¬ê ∧ (ŝj−2 ↔ (šj−2 ∨ šj−1))

(throw κ)T = U ∧ ¬ě ∧ ê ∧ (ŝ0 → šj−1)

(new κ)T = U ∧ ¬ě ∧ (¬ê → ¬ŝj) ∧ (ê → ¬ŝ0)

(catch)T = U ∧ ě ∧ ¬ê

(getfield κ.f : t)T = U ∧ ¬ě ∧ (¬ê → (ŝj−1 → šj−1)) ∧ (ê → ¬ŝ0)

(putfield κ.f : t)T = ∧v∈LRj(v) ∧ (¬ê → ∧v∈SRj(v)) ∧ (ê → ¬ŝ0) ∧ ¬ě.

Fig. 8.2: Bytecode abstraction for taintedness, in a program point with j stack
elements. Bytecodes not reported in this �gure are abstracted into the default
U ∧ ¬ě ∧ ¬ê.

De�nition 8.16. Let sets S (of stack elements) and L (of local variables)
be the input variables that after all executions of a given bytecode in a given
program point (only after the normal executions for S) survive with unchanged
value. Then U = ∧v∈L(v̌ ↔ v̂) ∧ (¬ê→ ∧v∈S(v̌ ↔ v̂)).

Consider Fig. 8.2. Bytecodes run only if the preceding one does not throw any
exception (¬ě) but catch requires an exception to be thrown (ě). Bytecode
const v pushes an untainted value on the stack: its abstraction says that no
variable changes its taintedness (U), the new stack top is untainted (¬ŝj) and
const v never throws an exception (¬ê). Most abstractions in Fig. 8.2 can
be explained similarly. The result of add is tainted if and only if at least one
operand is tainted (ŝj−2 ↔ (šj−2 ∨ šj−1)). For new κ, no variable changes
its taintedness (U), if its execution does not throw any exception then the
new top of the stack is an untainted new object (¬ê → ¬ŝj); otherwise the
only stack element is an untainted exception (ê → ¬ŝ0). Bytecode throw κ
always throws an exception (ê); if this is tainted, then the top of the initial
stack was tainted as well (ŝ0 → šj−1). The abstraction of getfield says
that if it throws no exception and the value of the �eld is tainted, then the
container of the �eld was tainted as well (¬ê→ (ŝj−1 → šj−1)). This follows
from the object-sensitivity of our notion of taintedness (Def. 8.8). Otherwise,
the exception is untainted (ê → ¬ŝ0). For putfield, we cannot use U and
must consider each variable v to see if it might reach the object whose �eld is
modi�ed (šj−2). If that is not the case, v's taintedness is not a�ected (v̌ ↔ v̂);
otherwise, if its value is tainted then either it was already tainted before the
bytecode or the value written in the �eld was tainted ((v̌ ∨ šj−1) ← v̂). In
this last case, we must use ← instead of ↔ since our reachability analysis is a
possible approximation of actual (undecidable) reachability. This is expressed

76 8 Identi�cation of Injection Vulnerabilities

by formula Rj(v), used in Fig. 8.2, where Rj(v) = v̌ ↔ v̂ if ¬reach(v, sj−2),
and Rj(v) = (v̌ ∨ šj−1)← v̂, if reach(v, sj−2).

Example 8.17. According to Fig. 8.2, the abstraction of store 0 at a program
point with i = 4 local variables and j = 1 stack elements is the formula ϕ of
Ex. 8.12.

Example 8.18. Consider a putfield f at a program point p where there are
i = 4 local variables, j = 3 stack elements and the only variable that reaches
the receiver s1 is the underlying stack element s0. A possible state at p in
Ex. 8.3. According to Fig. 8.2, the abstraction of that bytecode at p is ϕ′ =
(ľ0 ↔ l̂0) ∧ (ľ1 ↔ l̂1) ∧ (ľ2 ↔ l̂2) ∧ (ľ3 ↔ l̂3) ∧ (¬ê→ ((š0 ∨ š2)← ŝ0)) ∧ (ê→
¬ŝ0) ∧ ¬ě ∈ T4,3→4,1.

Proposition 8.19. The approximations in Fig. 8.2 are correct w.r.t. the de-
notations of Sec. 8.2, i.e., for all bytecode ins distinct from call we have
ins ∈ γ(insT).

Lemma 8.20. Let ins be a bytecode distinct from putfield and call and
let U be the formula constructed for ins according to Def. 8.16. Then U is
correct w.r.t. ins, i.e., ins ∈ γ(U).

Proof. Let S and L be as in Def. 8.16 and σ ∈ Σ be such that σ′ = ins(σ) is
de�ned.

Let v ∈ L. Since v survives to all executions of ins, it is a local variable
of both σ and σ′ where it has the same value. For the hypothesis on ins,
no object reachable from that value is modi�ed by ins. Hence either {v̌, v̂} ⊆

ˇtainted(σ)∪ ˆtainted(σ′) or {v̌, v̂}∩(ˇtainted(σ)∪ ˆtainted(σ′)) = ∅. In both cases

we conclude that ˇtainted(σ) ∪ ˆtainted(σ′) |= v̌ ↔ v̂, i.e., ins ∈ γ(v̌ ↔ v̂).
Let now v ∈ S. If σ′ ∈ Ξ, since v survives to all normal executions of

ins, it is a stack element of both σ and σ′ where it has the same value.
For the hypothesis on ins, no object reachable from that value is modi�ed
by ins. Hence ê ̸∈ ˆtainted(σ′) and either {v̌, v̂} ⊆ ˇtainted(σ) ∪ ˆtainted(σ′)

or {v̌, v̂} ∩ (ˇtainted(σ) ∪ ˆtainted(σ′)) = ∅, so that ˇtainted(σ) ∪ ˆtainted(σ′) |=
¬ê → (v̌ ↔ v̂). If σ′ ∈ Ξ we have ê ∈ ˆtainted(σ′) and also in this case

ˇtainted(σ) ∪ ˆtainted(σ′) |= ¬ê → (v̌ ↔ v̂). We conclude that ins ∈ γ(¬ê →
(v̌ ↔ v̂)).

The result follows by Lemma 8.14.

We can now prove Prop. 8.19.

Proof. We consider each bytecode instruction. We start from putfield, which
modi�es the memory and requires a speci�c proof.

putfield κ.f : t

8.3 Taintedness Analysis 77

Let σ be such that σ′ = (putfield κ.f : t)(σ) is de�ned. Let ϕ be the formula for
this instruction in Fig. 8.2. The execution of this instruction can only modify
�eld κ.f : t of the object bound to sj−2 (the receiver) in σ. For a given variable
v in σ, that still exists in σ′, if ¬reach(v, sj−2) before the instruction then the
memory reachable from v in σ is not a�ected by the execution of this bytecode
and the taintedness of v is not a�ected either (Def. 8.8). It follows that, in this

case, ˇtainted(σ)∪ ˆtainted(σ′) |= v̌ ↔ v̂. If, instead, reach(v, sj−2), then from v
one reaches tainted data in σ′ if that was already possible in σ or if that data
was made reachable by this instruction through the updated �eld, that has
been updated to sj−1, from which it must have been possible to reach tainted

data then. Hence, in this case we have ˇtainted(σ)∪ ˆtainted(σ′) |= (v̌∨ šj−1)←
v̂. That is, in both cases, we have ˇtainted(σ) ∪ ˆtainted(σ′) |= Rj(v). The
variables in σ that still exist in σ′ are those in L and, if σ′ ∈ Ξ, also those in
S. It follows that ˇtainted(σ)∪ ˆtainted(σ′) |= ∧v∈LRj(v)∧ (¬ê→ ∧v∈SRj(v)).
If σ′ ∈ Ξ then the top of the stack of σ′ is a reference to an untainted
exception object and we have ŝ0 /∈ ˆtainted(σ′). Moreover, this instruction is
only executed from a normal state, hence σ ∈ Ξ. We conclude that ˇtainted(σ)∪

ˆtainted(σ′) |= (ê → ¬ŝ0) ∧ ¬ě. We conclude that ˇtainted(σ) ∪ ˆtainted(σ′) |=
∧v∈LRj(v)∧ (¬ê→ ∧v∈SRj(v))∧ (ê→ ¬ŝ0)∧¬ě, and hence putfield κ.f : t ∈
γ(ϕ).

For the other bytecodes, by Lemma 8.20 we know that ins ∈ γ(U). Let σ
be such that σ′ = ins(σ) is de�ned. If ins is not catch then σ ∈ Ξ (Sec. 8.2).
Hence ě ̸∈ ˇtainted(σ) and ins ∈ γ(¬ě). If instead ins is catch, we must have
σ ∈ Ξ and hence ě ∈ ˇtainted(σ). Then ins ∈ γ(ě). By Lemma 8.14, it remains
to prove that ins ∈ γ(ϕ), where ϕ is the portion of the formulas in Figure 8.2
that follows the pre�x U ∧¬ě (U ∧ ě for catch). We prove it for each kind of
bytecode instruction.

const v

We have ϕ = ¬ê ∧ ¬ŝj . We have σ′ ∈ Ξ so ê ̸∈ ˆtainted(σ′). Moreover, the

top sj of the stack of σ′ holds v. If v ∈ Z or v = null then ŝj ̸∈ ˆtainted(σ′).
v is a constant value, so it cannot be tainted. We conclude that ˇtainted(σ) ∪

ˆtainted(σ′) |= ϕ and hence const v ∈ γ(ϕ).

load k t

We have ϕ = ¬ê∧ (ľk ↔ ŝj). Since σ
′ ∈ Ξ we have ê ̸∈ ˆtainted(σ′). Moreover,

the ith local variable of σ is a copy of the top of the stack of σ′. Hence they
are both tainted, in which case {ľk, ŝj} ⊆ ˇtainted(σ)∪ ˆtainted(σ′), or they are

both untainted, in which case {ľk, ŝj}∩ (ˇtainted(σ)∪ ˆtainted(σ′)) = ∅. In both
cases we have ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ and hence load k t ∈ γ(ϕ).

store k t

78 8 Identi�cation of Injection Vulnerabilities

We have ϕ = ¬ê∧(šj−1 ↔ l̂k). Since σ
′ ∈ Ξ we have ê ̸∈ ˆtainted(σ′). Moreover,

the top of the stack of σ is a copy of the kth local variable of σ′. Hence they
are both tainted, in which case {šj−1, l̂k} ⊆ ˇtainted(σ) ∪ ˆtainted(σ′), or they

are both untainted, in which case {šj−1, l̂k} ∩ (ˇtainted(σ) ∪ ˆtainted(σ′)) = ∅.
In both cases we have ˇtainted(σ)∪ ˆtainted(σ′) |= ϕ and hence store k t ∈ γ(ϕ).

add

We have ϕ = ¬ê∧(ŝj−2 ↔ (šj−2∨šj−1)). Since σ′ ∈ Ξ we have ê ̸∈ ˆtainted(σ′).
Moreover, the top of the stack in σ′ (the result) is tainted only if at least one

of the operands is tainted in σ. So {ŝj−2, šj−2} ⊆ ˇtainted(σ) ∪ ˆtainted(σ′) or

{ŝj−2, šj−1} ⊆ ˇtainted(σ) ∪ ˆtainted(σ′) or {ŝj−2, šj−2, šj−1} ∩ (ˇtainted(σ) ∪
ˆtainted(σ′)) = ∅. In all cases we have ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ and hence

add ∈ γ(ϕ).

ifne t

We have ϕ = ¬ê. Since σ′ ∈ Ξ we have ê ̸∈ ˆtainted(σ′). We conclude that
ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ and hence ifne t ∈ γ(ϕ).

new κ

We have ϕ = (¬ê → ¬ŝj) ∧ (ê → ¬ŝ0). If σ′ ∈ Ξ then the top of the stack is

a reference to an untainted exception object, and we have ŝ0 /∈ ˆtainted(σ′). If
σ′ ∈ Ξ then the top of the stack of σ′ is a reference to a new object of class
t, hence untainted. We conclude that ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ and hence
new κ ∈ γ(ϕ).

throw κ

We have ϕ = ê∧(ŝ0 → šj−1). We have σ′ ∈ Ξ and hence ê ∈ ˆtainted(σ′). More-

over if ŝ0 ∈ ˆtainted(σ′) then šj−1 ∈ ˇtainted(σ). Hence we have ˇtainted(σ) ∪
ˆtainted(σ′) |= ϕ. In conclusion, throw κ ∈ γ(ϕ).

catch

We have ϕ = ¬ê. We have σ′ ∈ Ξ and hence ê ̸∈ ˆtainted(σ′). Then we have
ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ. In conclusion, catch ∈ γ(ϕ).

exception_is K

We have ϕ = ¬ê. We have σ′ ∈ Ξ and hence ê ̸∈ ˆtainted(σ′). Then we have
ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ. In conclusion, exception_is K ∈ γ(ϕ).

receiver_is K

We have ϕ = ¬ê. We have σ′ ∈ Ξ and hence ê ̸∈ ˆtainted(σ′). Then we have
ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ. In conclusion, receiver_is K ∈ γ(ϕ).

return t

8.3 Taintedness Analysis 79

We have ϕ = ¬ê. Since σ′ ∈ Ξ, we have ê ̸∈ ˆtainted(σ′). Hence we have
ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ. In conclusion, return t ∈ γ(ϕ).

return

We have ϕ = ¬ê. Since σ′ ∈ Ξ, we have ê ̸∈ ˆtainted(σ′). Hence we have
ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ. In conclusion, return ∈ γ(ϕ).

getfield κ.f : t

We have ϕ = (¬ê → (ŝj−1 → šj−1)) ∧ (ê → ¬ŝ0). If σ′ ∈ Ξ then the top
of the stack is a reference to an untainted exception object, and we have
ŝ0 /∈ ˆtainted(σ′). If σ′ ∈ Ξ then, by the de�nition of taintedness (Def. 8.8),

if ŝj−1 ∈ ˆtainted(σ′) then šj−1 ∈ ˇtainted(σ). We conclude that ˇtainted(σ) ∪
ˆtainted(σ′) |= ϕ and hence getfield κ.f : t ∈ γ(ϕ).

Denotations are composed by ; and their abstractions by ;T. The de�nition
of ϕ1;

T ϕ2 matches the output variables of ϕ1 with the corresponding input
variables of ϕ2. To avoid name clashes, they are renamed apart and then
projected away.

De�nition 8.21. Let ϕ1, ϕ2 ∈ T. Their abstract sequential composition
ϕ1;

T ϕ2 is ∃V (ϕ1[V /V̂] ∧ ϕ2[V /V̌]), where V are fresh overlined variables.

Example 8.22. Consider the execution of putfield f at program point p
and then store 0, as in Ex. 8.18. The former is abstracted by ϕ′ from
Ex. 8.18; the latter by ϕ from Ex. 8.17. Their sequential composition is
ϕ′;T ϕ = ∃V (ϕ′[V /V̂] ∧ ϕ[V /V̌]) = ∃V ([(ľ0 ↔ l0) ∧ (ľ1 ↔ l1) ∧ (ľ2 ↔
l2) ∧ (ľ3 ↔ l3) ∧ (¬e → ((š0 ∨ š2) ← s0)) ∧ (e → ¬s0) ∧ ¬ě] ∧ [(l1 ↔
l̂1) ∧ (l2 ↔ l̂2) ∧ (l3 ↔ l̂3) ∧ ¬e ∧ ¬ê ∧ (s0 ↔ l̂0)]) which simpli�es into

(ľ1 ↔ l̂1)∧(ľ2 ↔ l̂2)∧(ľ3 ↔ l̂3) ∧ ((š0 ∨ š2)← l̂0) ∧ ¬ě ∧ ¬ê.

The second semantical operator is ∪ of two sets, approximated as ∪T = ∨.
The third is extend , that makes the analysis context-sensitive by plugging
the behavior of a method at each distinct calling context. Let ϕ approximate
the taintedness behavior of method M = κ.m(t1, . . . , tn) : t; ϕ's variables
are among ľ0, . . . , ľn (the actual arguments including this), ŝ0 (if M does

not return void), l̂0, l̂1 . . . (the �nal values of M 's local variables), ě and ê.
Consider a call M at a program point where the n + 1 actual arguments
are stacked over other b stack elements. The operator plugs ϕ at the calling
context: the return value ŝ0 (if any) is renamed into ŝb; each formal argument
ľk of the callee is renamed into the actual argument šk+b of the caller; local
variable l̂k at the end of the callee is temporarily renamed into lk. Then a
frame condition is built: the set SAb,M,v contains the formal arguments of the
caller that might share with variable v of the callee at call-time and might
be updated during the call. If this set is empty, then nothing reachable from
v is modi�ed during the call and v keeps its taintedness unchanged. This is
expressed by the �rst case of formula Ab,M (v). Otherwise, if v is tainted at

80 8 Identi�cation of Injection Vulnerabilities

the end of the call then either it was already tainted at the beginning or at
least one of the variables in SAb,M,v has become tainted during the call. The
second case of formula Ab,M (v) uses the temporary variables to express that
condition, to avoid name clashes with the output local variables of the caller.
The frame condition for the b lowest stack elements of the caller is valid only if
no exception is thrown, since otherwise the stack contains the exception object
only. At the end, all temporary variables {l0, . . . , li′} are projected away.

De�nition 8.23. Let i, j ∈ N and M = κ.m(t1, . . . , tn) : t with j = b+ n+ 1
and b ≥ 0. We de�ne (extend i,j

M)T :Tn+1,0→i′,r → Ti,j→i,b+r with r = 0 if
t = void and r = 1 otherwise, as
(extend i,j

M)T(ϕ) = ¬ě∧∃{l0,...,li′}
(
ϕ[ŝb/ŝ0][lk/l̂k | 0 ≤ k < i′][šk+b/ľk | 0 ≤ k ≤

n] ∧
⋀

0≤k<iAb,M (lk) ∧
(
¬ê→

⋀
0≤k<bAb,M (sk)

))
, with

SAb,M,v = {lk | 0 ≤ k ≤ n, share(v, sb+k) and updatedM (lk)},

Ab,M (v) =

{
v̌ ↔ v̂ if SAb,M,v = ∅
((v̌ ∨ (

⋁
w∈SAb,M,v

w))← v̂) otherwise

Proposition 8.24. The operators ;T, extendT and ∪T are correct.

Proof. Let ϕ1, ϕ2 ∈ T, d1 ⊆ γ(ϕ1) and d2 ⊆ γ(ϕ2). We must prove that
d1; d2 ∈ γ(ϕ1;

T ϕ2). Let δ1 ∈ d1 and δ2 ∈ d2. It is enough to prove that
δ1; δ2 ∈ γ(ϕ1;T ϕ2). Let hence σ be such that (δ1; δ2)(σ) is de�ned, i.e., both
σ′ = δ1(σ) and σ′′ = δ2(σ

′) are de�ned (Def. 8.4). From δ1 ∈ γ(ϕ1) we

conclude that ˇtainted(σ) ∪ ˆtainted(σ′) |= ϕ1. From δ2 ∈ γ(ϕ2) we conclude

that ˇtainted(σ′) ∪ ˆtainted(σ′′) |= ϕ2. Hence

ˇtainted(σ) ∪ {v | v̂ ∈ ˆtainted(σ′)} |= ϕ1[V /V̂]

{v | v̌ ∈ ˇtainted(σ′)} ∪ ˆtainted(σ′′) |= ϕ2[V /V̌]

so that ˇtainted(σ)∪{v | v ∈ tainted(σ′)}∪ ˆtainted(σ′′) |= ϕ1[V /V̂]∧ϕ2[V /V̌].

We conclude that ˇtainted(σ) ∪ ˆtainted(σ′′) |= ∃V (ϕ1[V /V̂] ∧ ϕ2[V /V̌]) =
ϕ1;

T ϕ2. Hence δ1; δ2 ∈ γ(ϕ1;T ϕ2).
Let ϕ ∈ Tn+1,0→i′,r as in Def. 8.23. Let d ⊆ γ(ϕ). We must prove that for all

i, j ∈ N with j = b+n+1 and b ≥ 0 we have extend i,j
M (d) ⊆ γ((extend i,j

M)T(ϕ)),

where extend i,j
M has been de�ned in Sec. 8.2. Let hence δ ∈ d. It is enough to

prove that extend i,j
M (δ) ∈ γ((extend i,j

M)T(ϕ)). Let σ = ⟨l || vn :: · · · ::v0 ::s ||µ⟩ be
such that σ′ = extend i,j

M (δ)(σ) is de�ned. This corresponds to an execution of
M from σ′′ = ⟨[v0, . . . , vn] || ϵ ||µ⟩ to some σ′′′ = ⟨l′ || top ||µ′⟩. By the de�ni-
tion of extend i,j

M we know that σ and σ′ have the same set of local variables
with unchanged values; and that when σ′ ∈ Ξ, the b lowest stack elements
are in both σ and σ′ and with unchanged value. Let hence v be one of such
unchanged variables. The taintedness of v might well change during the exe-
cution ofM , but only ifM can access a location reachable from v and updates
one of the �elds of the object at that location, i.e., only if v shares with a
parameter ofM that gets updated. Hence, if SAb,M,v = ∅ then the taintedness

8.3 Taintedness Analysis 81

of v cannot be changed by the call toM and ˇtainted(σ)∪ ˆtainted(σ′) |= v̌ ↔ v̂.
If, instead, SAb,M,v ̸= ∅ then v might be tainted at the end of the call if it
was already tainted before or if a formal parameter of M in SAb,M,v, sharing
with v at call-time and updated during the call, is tainted at the end of the
call, that is, in σ′′′ (we have assumed that method parameters cannot be reas-

signed inside its body, see Sec. 8.2). Hence ˇtainted(σ) ∪ ˆtainted(σ′) ∪ {x | x ∈
tainted(σ′′′)} |= (v̌∨(

⋁
w∈SAb,M,v

w))← v̂. Since the stack elements remain un-
changed only if the call does not throw any exception, by Lemma 8.14 we have

ˇtainted(σ) ∪ ˆtainted(σ′) ∪ {x | x ∈ tainted(σ′′′)} |=
⋀

0≤k<iAb,M (lk) ∧ (¬ê →⋀
0≤k<bAb,M (sk)). By the de�nition of σ, σ′, σ′′ and σ′′′ and from δ ∈ γ(ϕ)

we have ˇtainted(σ) ∪ ˆtainted(σ′) ∪ {x | x ∈ tainted(σ′′′)} |= ϕ[ŝb/ŝ0][lk/l̂k |
0 ≤ k < i′][šk+b/ľk | 0 ≤ k ≤ n]. By Lemma 8.14, we conclude that

ˇtainted(σ) ∪ ˆtainted(σ′) |= ∃{l0,...,li′}
(
ϕ[ŝb/ŝ0][lk/l̂k | 0 ≤ k < i′][šk+b/ľk |

0 ≤ k ≤ n] ∧
⋀

0≤k<iAb,M (lk) ∧ (¬ê →
⋀

0≤k<bAb,M (sk))
)
. By the def-

inition of extend i,j
M , we know that σ ∈ Ξ, so that ě /∈ ˇtainted(σ) and

ˇtainted(σ) ∪ ˆtainted(σ′) |= ¬ě. By Lemma 8.14 and Def. 8.23 we conclude

that ˇtainted(σ) ∪ ˆtainted(σ′) |= (extend i,j
M)T(ϕ). Since σ and σ′ are arbitrary,

we conclude that extend i,j
M (δ) ∈ γ((extend i,j

M)T(ϕ)).
Let ϕ1, ϕ2 ∈ T, d1 ⊆ γ(ϕ1) and d2 ⊆ γ(ϕ2). We must prove that d1 ∪ d2 ⊆

γ(ϕ1 ∪T ϕ2) = ϕ1 ∨ ϕ2. Let hence δ ∈ d1 ∪ d2. It is enough to prove that
δ ∈ γ(ϕ1 ∨ ϕ2). If δ ∈ d1 then δ ∈ γ(ϕ1) ⊆ γ(ϕ1 ∨ ϕ2). If δ ∈ d2 then
δ ∈ γ(ϕ2) ⊆ γ(ϕ1 ∨ ϕ2).

Since the number of Boolean formulas over a given �nite set of variables is
�nite (modulo equivalence), the abstract �xpoint is reached in a �nite num-
ber of iterations. Hence this abstract semantics is a static analysis tool if one
speci�es the sources of tainted information and the sinks where it should not
�ow.

Sources. Some formal parameters or return values must be considered as
sources of tainted data, that can be freely provided by the external world.
Our implementation uses a database of library methods for that, such as
the request argument of doGet and doPost methods of servlets and the
return value of console and database methods. Moreover, it lets users specify
their own sources through annotations. The abstract denotation in Fig. 8.2 is
modi�ed at receiver_is (a special bytecode at the beginning of each method)
and return to force to true those formal arguments and return values that are
injected tainted data, respectively.

Sinks. Our implementation has a database of library methods that need un-
tainted parameters (users can add their own through annotations). Hence it
knows which calls in P need an untainted parameter v (such as executeQuery
in Fig. 8.1). But a denotational semantics is an input/output description of
the behavior of P 's methods and does not say what is passed at a call. For
that, a magic-sets transformation [88] of P adds new blocks of code whose
denotation gives information at internal program points, as traditional in de-

82 8 Identi�cation of Injection Vulnerabilities

notational static analysis. It computes a formula ψ that holds at the call.
If ψ entails ¬v̂ then the call receives untainted data for v. Otherwise, the
analysis issues a warning.

8.3.1 Making the Analysis Field-Sensitive

The approximation of getfield f in Fig. 8.2 speci�es that if the value of �eld
f (pushed on the stack) is tainted then the container of f must be tainted as
well (ŝj−1 → šj−1). Read the other way round, if the container is untainted
then f 's value is untainted, otherwise it is conservatively assumed as tainted.
This choice is sound and object-sensitive, but �eld-insensitive: when šj−1 is
tainted, both its �elds f and g are conservatively assumed as tainted. But
if the program never assigns tainted data to f , then f 's value can only be
untainted, regardless of the taintedness of šj−1. If the analyzer could spot
such situations, the resulting analysis would be �eld-sensitive and hence more
precise (fewer false positives).

We apply here a technique pioneered in [102]: it uses a set of �elds O
(the oracle) that might contain tainted data. For getfield f , it uses a better
approximation than in Fig. 8.2: it assumes that f 's value is tainted if its
container is tainted and f ∈ O. The problem is now the computation of O.
As in [102], this is done iteratively. The analyzer starts with O = ∅ and
runs the analysis in Sec. 8.3, but with the new abstraction for getfield f
seen in this paragraph. Then it adds to O those �elds g such that there
is at least one putfield g that stores tainted data. The analysis is repeated
with this larger O. At its end, O is further enlarged with other �elds g such
that there is at least one putfield g that stores tainted data. The process is
iterated until no more �elds are added to O. As proved in [102], this process
converges to a sound overapproximation of O and the last analysis of the
iteration is sound. In practice, repeated analyses with larger and larger O
are made e�cient by caching abstract computations. On average, this process
converges in around 5 iterations, also for large programs. By using caching,
this only doubles the time of the analysis. Since preliminary analyses are
more expensive than information �ow analysis, this technique increases the
total time by around 25% on average. (Sec. 8.4 shows e�ects on cost and
precision.) This technique is not identical to statically, manually classifying
�elds as tainted and untainted, as [26, 56] do. The classi�cation of the �elds
is here dynamic, depending on the program under analysis, and completely
automatic. Moreover, a �eld might be in O (and hence be potentially tainted)
but the analyzer might still consider its value untainted, because its container
is untainted.

8.4 Experiments

We have implemented our analysis inside Julia (http://www.juliasoft.com/
julia). Julia represents Boolean formulas via BDDs (binary decision dia-

http://www.juliasoft.com/julia
http://www.juliasoft.com/julia

8.4 Experiments 83

Test Tool TP FP FN Analysis Time

C
W
E
89

CodePro Analytix 1332 0 888 20 minutes
FindBugs 1776 2400 444 2 minutes
Fortify SCA 700 0 1520 2.5 days
Julia fs/� 2220/2220 0/0 0/0 79/65 minutes

W
eb
G
oa
t CodePro Analytix 26 7 1 1 minute

FindBugs 22 12 5 20 seconds
Fortify SCA 23 0 4 164 minutes
Julia fs/� 27/27 14/15 0/0 3/2 minutes

Fig. 8.3: Experiments with the identi�cation of SQL injections.

grams). We have compared Julia with other tools that identify injections
(Sec. 3.2). For Julia we have compared a �eld-sensitive analysis with an oracle
(Sec. 8.3.1, Julia fs) with a �eld-insensitive analysis without oracle (Julia �).

Our experiments analyze third-party tests developed to assess the power
of a static analyzer to identify injection attacks: WebGoat 6.0.1 (https://
www.owasp.org/index.php/Category:OWASP_WebGoat_Project) and 4 tests
from the Samate suite (http://samate.nist.gov/SARD/testsuite.php).
The following table reports their number of non-blank, non-comment lines
of application source code (LoC), without supporting libraries.

Test LoC

WebGoat 25070
CWE80 68967
CWE81 34317
CWE83 34317
CWE89 748962

Section 8.5 describes a more general and standardized benchmark.
Fig. 8.3 reports the evaluation for SQL injections using CWE89 and We-

bGoat. It shows that only Julia is sound (no false negatives: if there is an
injection, Julia �nds it). Julia issued no false positives to CWE89: possibly
these tests just propagate information, without side-e�ects that degrade the
precision of Julia (Def. 8.23; we do not know if and how other tools deal with
side-e�ects). Julia issued 14 false alarms for WebGoat, often where actual in-
formation �ows from source to sink exist, but constrained in such a way to be
unusable to build an SQL-injection attack. Only here the �eld-insensitive ver-
sion of Julia is slightly less precise (one false positive more). In general, its cost
is around 25% higher than the �eld-sensitive version. The conclusion is that
�eld sensitivity is not relevant when object sensitivity is used to distinguish
di�erent objects. Analysis time indicates the e�ciency, roughly: CodePro An-
alytix and FindBugs work on the client machine in Eclipse, Fortify SCA on
its cloud like Julia, that is controlled from an Eclipse client. Times include all
supporting analyses.

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://samate.nist.gov/SARD/testsuite.php

84 8 Identi�cation of Injection Vulnerabilities

We evaluated the same tools for the identi�cation of cross-site scripting
injections in CWE80/81/83, and WebGoat. As shown in Fig. 8.4, Julia is per-
fectly precise. It missed 11 cross-site scripting attacks in JSP (not in the main
Java code of the application), found only by Fortify SCA. If we translate JSP's
into Java through Jasper (as a servlet container would do, automatically) and
include its bytecode in the analysis, Julia �nds the missing 11 attacks. Never-
theless, this process is currently manual and we think fairer to count 11 false
negatives.

Test Tool TP FP FN Analysis Time

C
W
E
80

CodePro Analytix 180 0 486 9 minutes
FindBugs 19 0 647 18 seconds
Fortify SCA 282 0 384 590 minutes
Julia fs/� 666/666 0/0 0/0 5/4 minutes

C
W
E
81

CodePro Analytix 0 0 333 10 seconds
FindBugs 19 0 314 4 seconds
Fortify SCA 141 0 192 303 minutes
Julia fs/� 333/333 0/0 0/0 3/2 minutes

C
W
E
83

CodePro Analytix 90 0 243 5 minutes
FindBugs 19 0 314 4 seconds
Fortify SCA 141 0 192 296 minutes
Julia fs/� 333/333 0/0 0/0 3/2 minutes

W
eb
G
oa
t CodePro Analytix 5 0 11 1 minute

FindBugs 0 0 16 20 seconds
Fortify SCA 15 21 1 164 minutes
Julia fs/� 5/5 0/0 11/11 3/2 minutes

Fig. 8.4: Experiments with the identi�cation of XSS injections.

We have run Julia on real code from our customers. Julia found 6 real
SQL-injections in the Internet banking services (575995 LoC) of a large Italian
bank, and found 5 more in its customer relation management system (346170
LoC). The analysis never took more than one hour. This shows that Julia
is already able to scale to real software and automatically �nd evidence of
security attacks.

8.5 The OWASP Cybersecurity Benchmark

As far as we know, the OWASP Benchmark Project represents the most rel-
evant attempt to establish a universal security benchmark, i.e., a suite of
thousands of small Java programs containing security threats. According to
their web page [86]:

8.5 The OWASP Cybersecurity Benchmark 85

The OWASP Benchmark for Security Automation is a free and
open test suite designed to evaluate the speed, coverage, and ac-
curacy of automated software vulnerability detection tools and
services. Without the ability to measure these tools, it is dif-
�cult to understand their strengths and weaknesses, and com-
pare them to each other.

The benchmark has bene�ted from the critical contribution of many organi-
zations, so that it has also served as a way of clarifying the actual nature of
the threats. During the years, it has emerged as the reference for the com-
parison of security analysis tools, and it is nowadays a must-do for any tool
that asserts to �nd software security vulnerabilities in Java code. Most tests
of the OWASP benchmark are servlets that might allow unconstrained in-
formation �ow from their inputs to dangerous routines. A few tests are not
related to injections, but rather to unsafe cookie exchange or to the use of
inadequate cryptographic algorithms, hash functions or random number gen-
erators. Injection attacks are however the most complex to spot and have
larger scienti�c interest. The benchmark sets traps for tools, i.e., contains
also harmless servlets that seem to feature security threats, at least at a su-
per�cial analysis. In this way, the benchmark measures the number of true
positives (that is, real vulnerabilities reported by the tool), and false positives
(that is, vulnerabilities reported by the tool that are not real issues). They
represent a deep and wide stress test for the tools: a perfect analyzer should
not be caught in a trap while still reporting all the real vulnerabilities. In
an ideal world, a tool would get 100% true positive and 0% false positives.
However, to achieve such a result one should be able to explore all possible
executions of a program; therefore, existing tools make a compromise between
soundness, precision, and e�ciency of the analysis.

An important feature of this benchmark is the automatic generation of
reports to compare di�erent tools: there are several scripts to plot coverage
and accuracy of the tools, inside comparative scorecards. This gives an imme-
diate graphical picture of the relative positioning of the tools. Free tools are
plotted in the scorecards. Commercial tools are anonymized into their overall
average [86].

8.5.1 Analysis of the OWASP Benchmark with Julia

A (simpli�ed) example of OWASP benchmark test is shown in Fig. 8.5. Julia
warns about a possible XSS attack at the last line, since the bar parameter
to format() (at line 14) is tainted. In fact, this parameter is built from the
content of local variable param (line 9), that received (line 5) an input that the
user can control (the header of the connection). Note that Julia correctly spots
the information �ow through the constructor of StringBuilder and the call
to replace(). Consider the test in Fig. 8.6 now. Julia does not issue any warn-
ing here. Actually, no possible XSS attack is possible this time, since variable

86 8 Identi�cation of Injection Vulnerabilities

1 public void doPost(HttpServletRequest request,
2 HttpServletResponse response) throws ... {
3 response.setContentType("text/html;charset=UTF−8");
4 String param = "";
5 if (request.getHeader("Referer") != null)
6 param = request.getHeader("Referer");
7 param = java.net.URLDecoder.decode(param, "UTF−8");
8 String bar = param;
9 if (param != null && param.length() > 1) {
10 StringBuilder sbxyz67327 = new StringBuilder(param);
11 bar = sbxyz67327.replace(param.length()−"Z".length(), param.length(),
12 "Z").toString ();
13 }
14 response.setHeader("X−XSS−Protection", "0");
15 Object[] obj = { "a", "b" };
16 response.getWriter().format(java. util .Locale.US,bar,obj);
17 }

Fig. 8.5: Benchmark 146: This test su�ers from a real XSS attack and Julia
spots it.

param (tainted at line 6) is sanitized into bar by Spring method htmlEscape()

(line 8). Julia uses a dictionary of sanitizing methods and others can be spec-
i�ed by the user. Consider the test in Fig. 8.7 now. This time Julia falls in the

1 public void doPost(HttpServletRequest request,
2 HttpServletResponse response) throws ... {
3 response.setContentType("text/html;charset=UTF−8");
4 String param = "";
5 java. util .Enumeration<String> headers = request.getHeaders("Referer");
6 if (headers != null && headers.hasMoreElements())
7 param = headers.nextElement();
8 param = java.net.URLDecoder.decode(param, "UTF−8");
9 String bar = org.springframework.web.util.HtmlUtils.htmlEscape(param);
10 response.setHeader("X−XSS−Protection", "0");
11 response.getWriter(). print(bar);
12 }

Fig. 8.6: Benchmark 278: This is a trap, since no XSS attack is possible here,
and Julia does not fall in it.

trap and issues a spurious warning about a potential XSS attack at the call

8.5 The OWASP Cybersecurity Benchmark 87

to format(), since it thinks that bar (and hence obj) is tainted. But this is
not actually the case, since this test manipulates a valueList in such a way
that the value �nally stored into bar is untainted. This list manipulation is
too complex for the taint analysis of Julia, that cannot distinguish each single
element of the list and conservatively assumes all elements of the list to be
tainted.

1 public void doPost(HttpServletRequest request,
2 HttpServletResponse response) throws ... {
3 response.setContentType("text/html;charset=UTF−8");
4 String param = "";
5 if (request.getHeader("Referer") != null)
6 param = request.getHeader("Referer");
7 param = java.net.URLDecoder.decode(param, "UTF−8");
8 String bar = "alsosafe";
9 if (param != null) {
10 java. util . List<String> valuesList =
11 new java.util.ArrayList<String>();
12 valuesList .add("safe");
13 valuesList .add(param);
14 valuesList .add("moresafe");
15 valuesList .remove(0); // remove the 1st safe value
16 bar = valuesList.get (1); // get the last ' safe ' value
17 }
18 response.setHeader("X−XSS−Protection", "0");
19 Object[] obj = { "a", bar };
20 response.getWriter().format("Formatted like: %1$s and %2$s.",obj);
21 }

Fig. 8.7: Benchmark 147: This is a trap, since no XSS attack is possible here,
and Julia is caught in it.

8.5.2 Results

Fig. 8.8 shows, on the left, a summarizing scorecard generated by the OWASP
benchmark, Julia to other free (explicitly) and commercial (anonymously)
static analyzers. Scorecards report soundness on the left and precision hori-
zontally. Hence, a perfect (i.e., sound and precise) tool should stay on the top
left corner of the scorecard. Fig. 8.8 shows that Julia is very close to that cor-
ner, much more than all free analyzers and of the anonymous average of the
commercial analyzers. Fig. 8.8 also reports the results of Julia for the eleven
categories of threats considered by the OWASP benchmark. Julia is always
close to the top left corner of the scorecard and always �nds all threats, since

88 8 Identi�cation of Injection Vulnerabilities

it is the only sound analyzer in this comparison. Hence its results lie on the
100% line for soundness (true positive rate).

Category FN TP FP

Command Injection 0 126 20
Cross-Site Scripting 0 246 19
Insecure Cookie 0 36 0
LDAP Injection 0 27 4
Path Traversal 0 133 22
SQL Injection 0 272 36
Trust Boundary Violation 0 83 12
Weak Encryption Algorithm 0 130 0
Weak Hash Algorithm 0 129 0
Weak Random Number 0 218 0
XPath Injection 0 15 3

Fig. 8.8: The scorecard comparing Julia with free and commercial tools and
Julia's detailed results.

Fig. 8.8 reports also the number of false negatives (FN), true positives
(TP), and false positives (FP) obtained by Julia on the OWASP benchmark.
For all categories Julia obtained zero false negatives: this proves the (practical)
soundness of the analysis, meaning that Julia is always able to spot security
vulnerabilities if the programs contain them. In addition, the number of false

8.5 The OWASP Cybersecurity Benchmark 89

positives is always a small percentage (below 20%) of the number of warnings
produced: this proves the (practical) precision of the analysis, meaning that a
developer using Julia to identify vulnerabilities will need to discard (at least
on the OWASP benchmark) only a warning out of six.

Below, all categories are presented in detail.

Command Injection

This vulnerability makes possible to execute arbitrary system commands by
injecting a command line string in an application through unvalidated user
input. The command is then executed in the host system with the privileges
of the vulnerable application. The exploit works by appending the desired
command after a command chaining character sequence, such as `;', `|',
`&&', etc. For example, the following C program is meant to list the �le
named by the �rst argument passed to it:

1 int main(char∗ argc, char∗∗ argv) {
2 char cmd[CMD_MAX] = "/usr/bin/cat ";
3 strcat (cmd, argv[1]);
4 system(cmd);
5 }

By using a �lename like �file.txt ; rm -rf /�, the command �rm -rf /�
is executed with the privileges of the executing program.

The Java function Runtime.exec behaves di�erently from the C function
system. It considers the �rst word of input as the name of the program,
and the remaining words as arguments to this program, whereas the system
function passes the input to the shell to be interpreted, thus allowing all the
concatenation sequences listed before to inject a command in the input and
execute it.

Figure 8.9 shows the comparison with other tools for command injection.

Cross-Site Scripting

Using this vulnerability, an attacker can inject a script in a webpage presented
to the user. This script is executed by the victim's browser, as it comes from a
seemingly trusted source. In a stored Cross Site Scripting (XSS), the malicious
script is saved in the server, and presented to the user at a later time. The
script can be injected in a forum entry, a comment, or similar structure. In
a re�ected XSS, the script is delivered by the server directly to the browser
which sent it, for example in an error message or search result page.

Figure 8.10 shows the comparison with other tools for XSS.

90 8 Identi�cation of Injection Vulnerabilities

Fig. 8.9: The scorecard comparing Julia with free and commercial tools in
detecting Command Injection

Insecure Cookie

This refers to the fact that the application uses insecure cookies, , i.e., sent
in plaintext. This vulnerability can be �xed simply by setting the secure at-
tribute. Figure 8.11 shows the comparison with other tools for insecure cookie.

LDAP Injection

LDAP is a standard protocol for accessing directory services over a network.
Similarly to other injections, strings containing LDAP statements can be ma-
nipulated so to modify their intended meaning. In the following code

1 String query = "(cn=" + userName + ")";

If userName is provided by the user and not sanitized, it can contain LDAP
code that whenever injected in the executed statement may compromise the
security of the LDAP database. For example, if userName is *, all usernames
in the database will be included in the query.

Figure 8.12 shows the comparison with other tools for LDAP injection.

8.5 The OWASP Cybersecurity Benchmark 91

Fig. 8.10: The scorecard comparing Julia with free and commercial tools in
detecting Cross-Site Scripting

Path Traversal

A path traversal attack is the injection of special sequences of characters in
an URL, such that the attacker can access private �les in the server. A typi-
cal sequence is ../, that refers to the enclosing directory and, under certain
conditions, allows the attacker to build an URL that traverses the directory
of the whole application, or of the whole system.

Figure 8.13 shows the comparison with other tools for path traversal.

SQL Injection

SQL injections are the most widespread vulnerabilities for web applications.
They consist in inserting SQL code in an already existing SQL statement, such
that unintended operations may be performed on the underlying database.

Figure 8.14 shows the comparison with other tools for SQL injection.

Trust Boundary Violation

This vulnerability refers to mixing trusted and untrusted data in the same data
structure. This is mainly an architectural issue, as it becomes more di�cult

92 8 Identi�cation of Injection Vulnerabilities

Fig. 8.11: The scorecard comparing Julia with free and commercial tools in
detecting Insecure Cookies attacks

for programmers to track what has been validated as trusted and what has
not, and mistakenly trust unvalidated data.

For example, in the following code an unvalidated username is inserted
into the session object, that should instead remain trusted:

1 user = request.getParameter("user");
2 if (session .getAttribute(ATTR_USR) == null) {
3 session .setAttribute(ATTR_USR, user);
4 }

Figure 8.15 shows the comparison with other tools for trust boundary
violation.

Weak Encryption Algorithm

This refers to the use of obsolete or non-standard algorithms for cryptography.
Figure 8.16 shows the comparison with other tools for weak encryption

algorithm.

8.5 The OWASP Cybersecurity Benchmark 93

Fig. 8.12: The scorecard comparing Julia with free and commercial tools in
detecting LDAP Injection

Weak Hash Algorithm

This problem happens when the application uses a hashing function that is
easy to invert, or for which it is easy to �nd a collision. This consideration is
important when security is involved, such as with password hashes.

Figure 8.17 shows the comparison with other tools for weak hash algo-
rithm.

Weak Random Number

This refers to the use of a non cryptographically secure random number gen-
erator (RNG). In a security context a predictable generator may allow an
attacker to guess values that should be kept secret, and impersonate another
user or access sensitive information. Java provides a secure RNG in the class
java.security.SecureRandom, as opposed to java.util.Random.

Figure 8.18 shows the comparison with other tools for weak random num-
ber.

94 8 Identi�cation of Injection Vulnerabilities

Fig. 8.13: The scorecard comparing Julia with free and commercial tools in
detecting Path Traversal attacks

XPath Injection

XPath is a standard query language for XML documents. As it happens with
SQL injections, fragments of XPath code can be injected in an XPath query,
to perform tasks not intended in the original formulation.

For example, the following XPath query returns the employee having the
supplied username and password:

1 String query = "//Employee[UserName/text()='" + username
2 + "' And Password/text()='" + password + "']"

By injecting a string like �john' or 1=1 or 'a'='a� as the username, an
attacker could access to all of the records in the XML �le.

8.6 Multithreaded Experiments

The implementation in Julia is able to perform multiple analyses at the same
time, for di�erent kinds of injection.

Figure 8.20 shows the time needed to perform from 1 to 4 injection analyses
with the Julia Static Analyzer, in parallel on a quad-core processor, with the
three libraries BeeDeeDee, JavaBDD and JDD. When we use BeeDeeDee, the

8.6 Multithreaded Experiments 95

Fig. 8.14: The scorecard comparing Julia with free and commercial tools in
detecting SQL Injection

BDD unique table and caches are shared, while this is not possible for the
other, non-thread-safe libraries. JDD's poor performance is due to the fact that
the injection analysis heavily uses quanti�cation and replacement operations,
for which JDD is not optimized. JavaBDD is slightly faster in this case (it pays
no synchronization overhead), but it consumes more memory, as we show next
with Figure 8.21. There, a parallel information �ow analysis with 4 kinds of
injection is performed by using the two libraries; with BeeDeeDee it never
requires more than 9 gigabytes of RAM, whereas with JavaBDD around 11
gigabytes are required, 2 more than with BeeDeeDee. The information �ow
analysis is only the tip of the iceberg, resting on previous processing and
analyses, that amount to many gigabytes of RAM, independently from the
BDD library. For a fairer comparison, we hence have to consider only the
memory occupied by the BDD library, that is, the BDD table size. For that,
BeeDeeDee uses single shared unique table and caches, that in this example
reach a size of 2,200,000 nodes; whereas JavaBDD needs four di�erent unique
table and caches, for a cumulative size of 5,500,000 nodes. This shows that
BeeDeeDee is an e�ective choice when it is sensible to share unique node table
and caches among di�erent threads to reduce the memory footprint of the
overall computation. We stress the fact that the precision of the information
�ow analyses is always the same, independently from the BDD library that we

96 8 Identi�cation of Injection Vulnerabilities

Fig. 8.15: The scorecard comparing Julia with free and commercial tools in
detecting Trust Boundary Violation

use, since it depends on the de�nition of the abstraction and of the abstract
operations, not on the BDD library used for their implementation.

Fig. 8.16: The scorecard comparing Julia with free and commercial tools in
detecting Weak Encryption Algorithms

Fig. 8.17: The scorecard comparing Julia with free and commercial tools in
detecting Weak Hash Algorithms

Fig. 8.18: The scorecard comparing Julia with free and commercial tools in
detecting Weak Random Number Generation

Fig. 8.19: The scorecard comparing Julia with free and commercial tools in
detecting XPath Injection

1 2 3 4

20

40

60

80

100

Number of analyses

T
im
e
(s
)

BeeDeeDee
JavaBDD
JDD

Fig. 8.20: Parallel information �ow analysis for di�erent kinds of injection

100 200 300

0

2

4

6

8

10

12

Time (s)

M
em

or
y
(G

ig
ab

y
te
s)

(a) BeeDeeDee

100 200 300

Time (s)

(b) JavaBDD

Fig. 8.21: Memory consumption for a �ow analysis with 4 kinds of injection

9

Locking Discipline Inference

Concurrency is a requirement for much modern software, but the implemen-
tation of multi-threaded algorithms comes at the risk of errors such as data
races. Programmers can prevent data races by documenting and obeying a
locking discipline, which indicates which locks must be held in order to access
which data.

This chapter introduces a formal semantics for locking speci�cations that
gives a guarantee of data race freedom. A notable di�erence from most other
semantics is that it is in terms of values (which is what the runtime system
locks) rather than variables.

Experiments compare the annotations inferred by our analysis with those
written by programmers, showing that the ambiguities and unsoundness of
previous formulations are a problem in practice.

9.1 Locking Discipline Semantics

This section shows how a locking discipline can enforce mutual exclusion and
the absence of data races; lays out the design space for a locking discipline
semantics; and discusses why such a semantics should provide value protection
rather than name protection.

9.1.1 Dining Philosophers Example

To illustrate how to specify a locking discipline, consider the traditional
dining-philosophers example. More examples are given later.

A group of philosophers sit around a table; there is a fork between each
pair of philosophers; and each philosopher needs its left and right forks to eat.
The locking discipline provides each fork with a lock, and a philosopher must
hold the lock in order to use the fork; this guarantees mutual exclusion and
the absence of race conditions.

104 9 Locking Discipline Inference

1 public class Fork implements Comparable<Fork> {
2 private static int nextId = 0;
3 private �nal int id = nextId++;
4 // who is holding the fork , or null if on the table
5 private Philosopher usedBy = null;
6
7 void pickUp(Philosopher philosopher) {
8 this.usedBy = philosopher;
9 }
10
11 void drop() {
12 this.usedBy = null;
13 }
14
15 public int compareTo(@GuardedBy("itself") Fork other) {
16 return id − other.id;
17 }
18
19 public synchronized String toString() {
20 if (usedBy != null)
21 return "fork " + id + " used by " + usedBy.getName();
22 else

23 return "fork " + id + " on the table";
24 }
25 }

Fig. 9.1: A fork, possibly held by a philosopher.

Figure 9.1 shows Java code for the fork. The fork contains mutable infor-
mation (which philosopher holds it) in order to demonstrate how a locking
discipline can protect access to a mutable �eld. A philosopher (Figure 9.2)
is modeled as a thread whose run method repeatedly thinks, locks its two
forks, eats, and unlocks the forks. The code illustrates a situation in which
classes cooperate to implement a synchronization policy, rather than the less
challenging case of all code being in the same class.

In Java, each object is associated with a monitor [62, S 17.1] or intrinsic
lock. A synchronized statement or method locks the monitor, and exiting the
statement or method unlocks the monitor. Java also provides explicit locks,
which our theory and implementation handles.

The @GuardedBy type quali�ers express the locking discipline. In the se-
mantics that we will introduce, the type quali�er @GuardedBy("itself") on
a variable's type states that the variable holds a value v whose non-final
�elds are only accessed at moments when v's monitor is locked by the current
thread.

9.1 Locking Discipline Semantics 105

26 public class Philosopher extends Thread {
27 private �nal @GuardedBy("itself") Fork left;
28 private �nal @GuardedBy("itself") Fork right;
29
30 Philosopher(String name, @GuardedBy("itself") Fork left,
31 @GuardedBy("itself") Fork right) {
32 super(name);
33 // a �xed ordering avoids deadlock
34 if (left .compareTo(right) < 0) {
35 this. left = left ; this. right = right;
36 } else {
37 this. left = right; this. right = left ;
38 }
39 }
40
41 public void run() {
42 while (true) {
43 think();
44 synchronized (left) {
45 left .pickUp(this);
46 synchronized (right) {
47 right .pickUp(this);
48 eat ();
49 right .drop();
50 }
51 left .drop();
52 }
53 }
54 }
55
56 private void think() { ... }
57
58 @Holding({ "left", "right" })
59 private void eat() { ... }
60 }

Fig. 9.2: A philosopher.

Our tool infers and veri�es the @GuardedBy annotations in these �gures.
The @GuardedBy("itself") type quali�ers on �elds left and right guar-
antee that philosophers use their forks only after properly locking them. The
unlocked access to the final �eld id on line 16 of �g. 9.1 does not violate the
@GuardedBy("itself") speci�cation.

106 9 Locking Discipline Inference

9.1.2 Design Space for Locking Discipline Semantics

Recall the informal de�nition of @GuardedBy: when a programmer writes
@GuardedBy(E) on a program element, then a thread may use the program
element only while holding the lock E. This de�nition su�ers the following
ambiguities related to the guard expression E.

1. May a de�nite alias of E be locked? Given a declaration @GuardedBy

("lock") Object shared;, is the following permitted?

Object lockAlias = lock;

synchronized (lockAlias) {

... use shared ...

}

2. Is E allowed to be reassigned while locked? Given a declaration
@GuardedBy("lock") Object shared;, is the following permitted?

synchronized (lock) {

lock = new Object();

... use shared ...

}

What about other side e�ects to E? Given a declaration @GuardedBy

("anObject.field") Object shared;, are the following permitted?

synchronized (anObject.field) {

foo(); // might side-effect anObject and reassign field

... use shared ...

}

synchronized (anObject.field) {

foo(); // might side-effect but not reassign field

... use shared ...

}

3. Should E be interpreted at the location where it is de�ned or at the
location where it is used? Given a declaration

class C {

@GuardedBy("this") Object field;

...

}

are the following permitted?

C c;

synchronized (this) {

... use c.field ...

}

synchronized (c) {

... use c.field ...

}

9.1 Locking Discipline Semantics 107

The latter use assumes some kind of contextualization, such as viewpoint
adaptation [43].

The informal de�nition su�ers further ambiguities in the interpretation
of the program element being guarded. These can be summarized by asking,
what is a �use� of the shared program element? Is it any occurrence of the
variable name or only certain operations; do uses of aliases count, and are re-
assignment and side e�ects permitted? More relevantly, does the @GuardedBy
annotation specify restrictions on uses of a variable name (�name protection�),
or restrictions on uses of values (�value protection�)?

Current de�nitions of @GuardedBy do not provide guidance about any of
the ambiguities regarding the lock expression. Thus, there is a danger that
di�erent tools interpret them di�erently, including unsound interpretations
that do not prevent data races. There is also a danger that programmers will
assume a di�erent de�nition than a tool provides, and thus do not obtain the
guarantee they expect.

Current de�nitions of @GuardedBy are clearer about what constitutes a use
of the program element � any access to (that is, lexical occurrence of) the
name. This de�nition provides name protection, but unfortunately it does not
prevent data races. A program that obeys this locking discipline might not
be thread-safe and may still su�er data races, as illustrated below. Therefore,
any de�nition that provides name protection is in general incorrect, because
it does not satisfy the stated goals of the @GuardedBy annotation.

9.1.3 Name Protection and Value Protection

Name protection and value protection are distinct and incomparable. Neither
one implies the other. To illustrate the di�erences, consider an implementation
of the observer design pattern [54], which is a key part of model-view-controller
and other software architectures. Figures 9.3 and 9.4 are patterned after the
implementation found in the Java JDK. An Observable object allows clients
to concurrently register listeners. When an event of interest occurs, a callback
method is invoked on each listener.

Synchronization is required to avoid data races. Synchronization in the
register method and copy constructor prevents simultaneous modi�cations
of the listeners list, which might result in a corrupted list or lost regis-
trations. Synchronization is needed in the getListeners() method as well,
or otherwise the Java memory model would not guarantee the inter-thread
visibility of the registrations. In �g. 9.3, synchronization is performed on the
container object, and in �g. 9.4, synchronization is performed on a �eld.

Figure 9.3 satis�es all interpretations of the name protection semantics:
every use of listeners occurs at a program point where the current thread
locks its container.1 Nevertheless, a data race is possible, since two threads

1 It also satis�es an interpretation of @GuardedBy that does not do contextualization
or viewpoint adaptation, since the constructor is implicitly synchronized on this.

108 9 Locking Discipline Inference

1 public class Observable {
2 private @GuardedBy("this") List<Listener> listeners
3 = new ArrayList<>();
4 public Observable() {}
5 public Observable(Observable original) { // copy constructor
6 synchronized (original) {
7 listeners .addAll(original . listeners);
8 }
9 }
10 public void register(Listener listener) {
11 synchronized (this) {
12 listeners .add(listener);
13 }
14 }
15 public List<Listener> getListeners() {
16 synchronized (this) {
17 return listeners ;
18 }
19 }
20 }

Fig. 9.3: An implementation of the observer design pattern in which locking is
performed on the container Observable object. This implementation su�ers
data races. The implementation satis�es the name-protection semantics for
@GuardedBy, but not the value-protection semantics.

could call getListeners() and later access the returned value concurrently.
This demonstrates that the name protection semantics does not prevent data
races. Figure 9.3 does not satisfy the value-protection semantics (which pre-
vent data races), because the return type of getListeners() is not com-
patible with the return statement. Figure 9.3 could be made to satisfy the
value-protection semantics by annotating the return type of getListeners()
as @GuardedBy("this"), which would force the client program to do its own
locking and would prevent data race.

Figure 9.4 speci�es a di�erent locking discipline. First consider the value-
protection semantics. @GuardedBy("itself") means that all dereferences (�eld
accesses) of the value of listeners occur while the current thread locks
that value. The annotation on the return type of getListeners() imposes
the same requirement on clients of Observable. The �eld listeners could
have been annotated @GuardedBy("listeners"), but the syntax for the re-
turn type of getListeners() would have been more complex, thus the
@GuardedBy("itself") syntax. Figure 9.4 also satis�es the name-protection
semantics. Depending on how the semantics handles aliasing and side e�ects,
the semantics may prevent clients of this program from su�ering data races.

9.1 Locking Discipline Semantics 109

1 public class Observable {
2 private @GuardedBy("itself") List<Listener> listeners
3 = new ArrayList<>();
4 public Observable() {}
5 public Observable(Observable original) { // copy constructor
6 synchronized (original.listeners) {
7 listeners .addAll(original . listeners);
8 }
9 }
10 public void register(Listener listener) {
11 synchronized (listeners) {
12 listeners .add(listener);
13 }
14 }
15 public @GuardedBy("itself") List<Listener> getListeners() {
16 synchronized (listeners) {
17 return listeners ;
18 }
19 }
20 }

Fig. 9.4: An implementation of the observer design pattern in which locking
is performed on the listeners �eld.

Figure 9.4's choice of locking the �eld rather than the container permits
additional �exibility. Consider the following client code:

List<Listener> l = new Observable(original).getListeners();
... use l ...

At the use of l, there is no syntactic handle for the container, and it might even
have been garbage-collected. Instead, the annotation @GuardedBy("itself") is
perfectly meaningful for l.

Regardless of other choices for the semantics of @GuardedBy, the name-
protection and value-protection variants are not comparable: neither entails
the other. In �g. 9.5, �eld x is declared as @GuardedBy("itself"). This anno-
tation holds in the value-protection semantics, since its value is only accessed
at line 11 inside a synchronization on itself, but not in name-protection seman-
tics: x is used at line 8. Field y is @GuardedBy("this.x") for name protection
but not for value protection: its value is accessed at line 14 via w. In some
cases the semantics do coincide. Field z is @GuardedBy("itself") according
to both semantics: its name and value are only accessed at line 11, where they
are locked. Field w is not @GuardedBy according to any semantics: its name
and value are accessed at line 14.

110 9 Locking Discipline Inference

1 public class K {
2 private K1 x = new K1();
3 private K2 y = new K2();
4 private K1 z;
5 private K2 w;
6
7 public void m() {
8 z = x;
9 w = new K2();
10 synchronized (z) {
11 y = z.f ;
12 w = y;
13 }
14 w.g = new Object();
15 }
16 }

17 class K1 {
18 K2 f = new K2();
19 }
20
21 class K2 {
22 Object g = new Object();
23 }

name value
var protection protection
x � @GB("itself")

y @GB("this.x") �
z @GB("itself")@GB("itself")

w � �

Fig. 9.5: Comparison of name-protection and value-protection semantics for
@GuardedBy (abbreviated as @GB).

9.1.4 De�nition of @GuardedBy

We can now state our semantics for the @GuardedBy annotation. By derefer-
ence of a value v we mean the access of a non-final �eld of v. The key idea
is that values are protected rather than names, and that dereferences of v are
considered uses of v.

Suppose that the type of expression x contains the quali�er @Guarded-

By(E). A program satis�es the locking discipline if, at program point p where
the program dereferences a value that has ever been bound to x, the current
thread holds the lock on the value of expression E. Furthermore, the value of
E must not change (in any thread) during the time that the thread holds the
lock. The protection is shallow, since it applies to the value that x evaluates to,
not to all values reachable from it. There is no restriction on copying values,
including passing values as arguments (including as the receiver) or returning
values.

This de�nition resolves the ambiguities noted in section 9.1.2. A de�nite
alias of the guard expression E is permitted to be locked. The guard expression
is not allowed to be reassigned to a di�erent value while locked. Side e�ects
to the guard value are permitted, since they do not a�ect the monitor. The
lock expression undergoes viewpoint adaptation so that it makes sense in the
context of use. A use of the program element is a dereference of any value it
may hold, regardless of aliasing, reassignment, and side e�ects.

A set of @GuardedBy annotations expresses a locking discipline. Julia in-
fers a maximal locking discipline that the program satis�es. Every program
trivially satis�es the empty locking discipline.

9.2 Locking Discipline Inference 111

9.1.5 De�nition of @Holding

The @GuardedBy annotation is su�cient for expressing a locking discipline.
Inferring or checking a locking discipline requires reasoning about which locks
are held at any given point in the program. Our implementation provides a
@Holding(E) annotation to express these facts explicitly to aid in program
comprehension or modular checking.2 It annotates a method declaration to
indicate that when the method is called, the current value of E (possibly
viewpoint-adapted) is locked. An example appears on line 58 of �g. 9.2.

9.2 Locking Discipline Inference

Our abstract-interpretation-based, whole-program inference has been imple-
mented inside the Julia static analyzer [13]. It uses four static analyses to
infer @GuardedBy annotations (�g. 9.6), as described in this section. Inference
of @Holding is based on similar techniques but is simpler. Creation points
and de�nite aliasing analysis have been previously published [104, 83], in-
cluding technical details of their abstract domains, and hence sections 9.2.1
and 9.2.2 only describe their use for the inference of a locking discipline. De�-
nite locked expression analysis and locking discipline inference are described in
sections 9.2.3 and 9.2.5. These four static analyses are sound, up to the use of
re�ection and native methods, where the analysis conservatively assumes the
method may return any value of any known type, but optimistically assumes
that the call has no side e�ects. Soundness and the use of a de�nite aliasing
analysis entail that our analysis never mistakenly infers a �eld/variable as
@GuardedBy(E). However, it might fail to infer some @GuardedBy(E) annota-
tions that actually hold in the program, since the aliasing analysis might be
approximated or since E might be too complex or the creation points analy-
sis might be too coarse. Also note that an inference tool infers not what the
programmer intended, but what the programmer implemented.

Julia only infers E made up of �nal �elds and the special variable itself,
which refers to the same value being protected. This is a common, safe pro-
gramming practice and caused no problems in our case studies.

9.2.1 Creation Points Analysis

Creation points analysis is an instance of class analysis [106] and its �rst use in
Julia is to build the call-graph of the program under analysis. Julia implements
a concretization of Parlsberg and Schwarzbach's class analysis [87, 104]. For
each variable and �eld of reference type, creation points analysis infers an

2 JCIP overloads the name @GuardedBy for two distinct purposes as a �eld anno-
tation and a method precondition. For clarity, we always refers to the latter as
@Holding.

112 9 Locking Discipline Inference

Fig. 9.6: The structure of the abstract interpretation inference.

overapproximation of the set of program points where the value bound to
that variable or �eld might have been created. This is a concretization since
it does not track types of values, but rather their creation point, from which
the type can be derived. The approximation of local variables in this analysis
is �ow-sensitive, while the approximation of object �elds is �attened, context-
insensitive [104]. Hence this analysis is sound for concurrent programs. For
e�ciency, allocation sites and function call sites are not context-sensitive (it
is a 0-CFA analysis [104]).

The use of creation point analysis in the inference of @GuardedBy is for
computing an overapproximation of run-time values, since two variables that
hold the same object (value) must have the same creation point, while the
converse does not hold in general. Figure 9.7 shows the result of Julia's creation
points analysis at some selected points of the program of �gs. 9.1 and 9.2 and a
client program that creates forks and philosophers and starts the philosopher
processes. It reports where the values of the variables at those program points
and of the �elds of the objects have been created by a new statement. For
instance, the �gure shows that variable other at line 16 contains a value of
type Fork that can only be created in the driver program. The same holds
for the values held in �elds left and right of all Philosopher objects in
memory. Figure 9.7 also reports the creation points of the objects passed
to the Java library, including the implicit argument (receiver) of getName,
which will be needed later. Note that, in Java bytecode, those arguments
are held in stack variables, hence the creation points analysis computes that
information. In this simple example, the approximation is always a singleton,
but in general it could be a set of creation points. If the line numbers are
dropped from column creation points, one gets a class analysis. That extra
information makes it into a creation points analysis.

9.2.2 De�nite Aliasing Analysis

This analysis infers, at each program point and for each local variable, expres-
sions that are de�nitely aliased with that variable [83]. De�nite means that
aliasing must hold at the program point, however it is reached. This analysis
is limited to alias expressions built from variables and �nal �elds (or �elds

9.2 Locking Discipline Inference 113

lines variable/�eld creation points
8,12,16 this {Fork@80}
20,21,23 this {Fork@80}

16 other {Fork@80}
35,37 this {Philosopher@84}
- Philosopher.left {Fork@80}
- Philosopher.right {Fork@80}

21,21,23 arg. to String.concat {κ, π}
21 arg. to Thread.getName {Philosopher@84}

Fig. 9.7: Creation points analysis of our example. Creation point π stands for
a generic creation point inside the Java library code; κ stands for an object
held in the constant pool.

that are never modi�ed after being initialized). Hence this analysis is sound
for concurrent programs.

In particular, we are interested in de�nite aliases of values used in the
synchronized statements in our example. Those values are held in a stack
variable in bytecode, whose de�nite aliases are shown in �g. 9.8, as computed
by the analysis. Note that the approximation is semantic. For instance, the
analysis would not change if one modi�ed the code at line 44 into Fork f =

left; synchronized (f) ... Later, it will be useful to know the de�nite
aliases of the container E in each �eld access expression E.f where f is a
non-final �eld. Figure 9.8 provides that information for our example as well.

lines de�nite aliases of locked value
19 {this}
44 {this.left}
46 {this.right}

lines de�nite aliases of the container of the �eld
8,12,20 {this}

Fig. 9.8: Expression aliasing analysis of our example.

9.2.3 De�nite Locked Expressions Analysis

At each program point p, the de�nite locked expressions analysis builds an
under-approximation Ap of the set of de�nitely locked expressions at p. This is
a solution of a constraint built from the statements of the program. Normally,
these constraints just propagate the approximation from the statement at p
to the next at p+ 1:

Ap ⊇ Ap+1

114 9 Locking Discipline Inference

For instance, a constraint for a method call does not modify the set since,
according to the semantics of Java, locks cannot be released by callees, and
locks acquired in a method must be released before returning to the caller.3

We assume that this property is also valid in bytecode, and indeed JVM
implementations can enforce it, by throwing an exception on its violation.

Some statements instead a�ect the set of de�nitely locked expressions. At
synchronization points, the de�nite aliases of the locked value are inserted,
such as at line 44:

A44 ∪ {this.left} ⊇ A45

Conversely, at the end of a synchronization block, the constraint conservatively
kills all de�nitely locked expressions whose type is compatible with that of the
unlocked expression, such as at line 50:

A50 \ {E ∈ A50 | E has type compatible with Fork} ⊇ A51

The analysis is interprocedural. Namely, de�nitely locked expressions are
renamed at method call, such as at line 45, to implement parameter passing:⎧⎪⎪⎨⎪⎪⎩E

[
a1 ↦→ this

a2 ↦→ philosopher

] ⏐⏐⏐⏐⏐⏐⏐⏐
E ∈ A45, the receiver of pickUp
is de�nitely aliased to a1,
the parameter of pickUp
is de�nitely aliased to a2

⎫⎪⎪⎬⎪⎪⎭⊇ A7

Expressions being propagated should only contain variables forming the
actual parameters of the method, since they are available in the callee, after
the renaming.

In order to de�ne a sound analysis for concurrent programs, aliases must
be unmodi�able expressions, as in our example, where left and right are
final �elds.

These inclusion constraints are built for each pair of consecutive statements
and from callers to callees, eventually composing a set constraint. The result of
the analysis is computed as a maximal �xpoint of the set constraint, since the
analysis is de�nite. Fig. 9.9 shows the resulting sets for our example program.

lines de�nitely locked expressions
8,12,20,21,23 {this}
16,35,37 {}

Fig. 9.9: De�nite locked expressions analysis of our example.

3 For simplicity, we do not consider explicit locks, that can be acquired and released
freely, across procedure calls. Our implementation deals with explicit locks as well.

9.2 Locking Discipline Inference 115

Operational Semantics

Our analysis operates on a language similar to Java bytecode. It is used also
in [103] and inspired by the standard informal semantics [72]. Bytecode is
simpler than Java source code, since it has a narrower choice of instructions,
and exposes fewer constructs (for example, inner classes are only expressible
in Java code).

This section introduces a formal operational semantics of this target lan-
guage, containing the instructions const v, dup, load, store, inc, ifeq, ifne, new,
get�eld, put�eld, throw, call, monitorenter and monitorexit, each abstracting
a set of Java bytecode instructions such as iconst_v, ldc, bipush, dup, iload,
aload, istore, astore, iinc, ifeq, ifne, if_null, if_nonnull, new, get�eld, put�eld,
athrow, invokevirtual, invokespecial, monitorenter and monitorexit. An instruc-
tion op abstracts arithmetic bytecode instructions such as iadd, isub, imul, idiv,
irem, and an instruction catch starts the exception handlers. These instruc-
tions operate on variables, which encompass both stack elements and local
variables. A standard algorithm [72] infers their static types.

The Java Virtual Machine supports exception handling. We therefore dis-
tinguish between normal and exceptional states. Exceptional states arise im-
mediately after a bytecode throwing an exception and in that case there is
only one element on the stack: a location bound to the thrown exception.
catch starts the exception handlers from an exceptional state and is, there-
fore, unde�ned on a normal state. Any other instruction is de�ned only when
the JVM is in a normal state.

Variables can be of primitive or reference types. We assume that the only
primitive type is int and for reference types (classes) we consider only instance
�elds and instance methods. This is a simpli�cation, in our implementation
we handle all Java types and bytecodes, and static �elds and methods.

The analysis takes as input a control �ow graph (CFG), i.e., a directed
graph of basic blocks. Basic blocks contain a list of bytecode instructions, in
which only the last can be a branch. The block containing the list {ins, rest},
connected to m subsequent blocks b1, . . . , bm, is denoted with the diagram

ins
rest

→
→

b1· · ·
bm

.

Example 9.1. Fig. 9.10 shows a Java method increment next to the corre-
sponding CFG. There are branches at instructions monitorenter, get�eld, put-
�eld and monitorexit, since they might throw a NullPointerException which
would be temporarily caught and then re-thrown to the caller of the method.
Otherwise, the execution continues with the normal �ow. Every bytecode in-
struction except return and throw always has one or more immediate succes-
sors. The latter are placed at the end of a method or constructor and typically
have no successors.

An object-oriented program consists of a hierarchy of classes, each de�ning
�elds and methods.

116 9 Locking Discipline Inference

1 public class Counter {
2 private int c;
3
4 public void increment() {
5 synchronized (this) {
6 c++;
7 }
8 }
9 ...
10 }

load 0 of type Counter
dup Counter

store 1 of type Counter
monitorenter Counter

load 0 of type Counter
dup Counter

getfield Counter.c:int [private Counter.c:int]

catch
throw java.lang.Throwable

const 1
add int

putfield Counter.c:int [private Counter.c:int]

load 1 of type Counter
monitorexit Counter

return void

Fig. 9.10: Our running example, in Java and bytecode forms

De�nition 9.2 (Classes). We let K denote the set of classes and we de�ne
T = {int} ∪ K the set of all possible types. Every class κ ∈ K might have
instance �elds κ.f : t (�eld f of type t ∈ T de�ned in class κ) and instance
methods κ.m(⃗t) : t (method m de�ned in class κ, with arguments of type t⃗
taken from T, returning a value of type t ∈ T ∪ {void}), where κ, t⃗ and t are
often omitted. We let F(κ) denote the set of all �elds contained in κ. We de�ne
a partial order ⪯, that represents the subclass relation between classes. Two
types are compatible if variables of a type can be assigned values of the other.
Two primitive types t1, t2 are always compatible, since they are both int. Two
classes κ1 and κ2 are compatible if either κ1 ⪯ κ2 or κ2 ⪯ κ1.

Java bytecode is statically typed, hence a type environment provides static
types for local and stack variables at a given program point.

De�nition 9.3 (Type Environment). Let V be the set of variables from
L = {l0, . . . , li−1} (i local variables) and S = {s0, . . . , sj−1} (j stack ele-
ments). A type environment is a function τ : V → T, and its domain is
written as dom(τ). The set of all type environments is T . For simplicity, we
write dom(τ) = L ∪ S. Moreover, we let |τ | denote |dom(τ)|= i+ j.

The state of the computation is represented as an environment mapping
variables to locations and a memory binding those locations to objects.

De�nition 9.4 (State). A value is an element of V = Z∪L∪{null}, where
L is an in�nite set of memory locations. A state over a type environment τ
is ⟨ρ, µ⟩, where ρ ∈ dom(τ)→ V is called environment and assigns a value to
each variable from dom(τ), while µ ∈M is called memory and binds locations
to objects. Every object o has class o.κ and an internal state o.ϕ mapping each
�eld f of o into its value (o.ϕ)(f). It also has a lock counter o.locks, and an

9.2 Locking Discipline Inference 117

owner thread o.owner. The set of all states over τ is Στ . We assume that
states are well-typed, i.e., variables hold values consistent with their static
types as expressed by τ and objects have exactly the �elds required by their
class and are well-typed themselves.

Example 9.5. Let τ = [l0 ↦→ Counter, l1 ↦→ Counter, s0 ↦→ Counter, s1 ↦→
int] ∈ T . Fig. 9.11 shows the (normal) state σ = ⟨ρ, µ⟩ ∈ Στ that might be
current just after the execution of the get�eld instruction in our example code
in Fig. 9.10, when the c �eld of the object o0 has value 3. There are two local
variables l0, l1, and two stack variables s0, s1. The environment ρ maps these
variables to their values: l0, l1, s0 map to the same location ℓ0, whereas s1
maps to the integer value 3. The memory µ maps the location l0 to the object
o0. The lock counter of the object o0 has value 1, since it was incremented by
the previous monitorenter instruction. The lock owner is the thread executing
the method.

Fig. 9.11: A JVM state σ = ⟨ρ, µ⟩

Bytecode instructions can be categorized as follows:

Basic Instructions. const v pushes an integer v on the stack. dup t duplicates
the top of the stack, of type t. load k t pushes on the stack the value of
local variable number k, lk, which must exist and have type t. Conversely,
store k t pops the top of the stack of type t and writes it in local variable lk;
it might potentially enlarge the set of local variables. In our formalization,
conditional bytecodes are used in complementary pairs (such as ifne t and
ifeq t), at the two branches of a conditional. For instance, ifeq t checks
whether the top of the stack, of type t, is 0 when t = int or null when
t ∈ K. Otherwise, its semantics is unde�ned. Bytecode inc kx increments
the integer held in local variable lk by a constant x. Bytecode op pops
two integers from the operand stack, performs a suitable binary algebraic
operation on them, and pushes the integer result back onto the stack.
op may be add, sub, mul, div and rem, and the corresponding algebraic
operations are +, ,×,÷ and %.

Object-Manipulating Instructions. These create or access objects in memory.
new κ pushes on the stack a reference to a new object o of class κ, whose
�elds are initialized to a default value: null for reference �elds, and 0 for

118 9 Locking Discipline Inference

integer �elds [72]. get�eld f reads �eld f of a receiver object r popped
from the stack. put�eld f writes the top of the stack inside �eld f of the
object pointed to by the underlying value r.

Exception-Handling Instructions. throw κ throws the top of the stack,
whose type κ is a subclass of Throwable. catch starts an exception handler:
it takes an exceptional state and transforms it into a normal state at the
beginning of the handler. After catch, an appropriate handler dependent
on the run-time class of the exception is selected.

Method Call and Return. We use an activation stack of states. Methods can
be rede�ned in object-oriented code, so a call instruction has the form call
m1, . . . ,mk, enumerating an over-approximation of the set of its possible
run-time targets. See [103] for details.

Synchronization Instructions. These control the execution of threads. mon-
itorenter tries to acquire the lock on the object o referenced by the top
stack variable. If o.locks = 0, the object has no owner. The thread execut-
ing monitorenter becomes then the owner of the object, and sets the lock
counter to 1. If o.locks > 0 and the executing thread is the owner of o, the
thread executing monitorenter increments o.locks. If o.locks > 0 and the
executing thread is not the owner of o, the thread executing monitorenter
blocks waiting for o.locks to become 0, and then tries again to acquire the
lock. monitorexit decrements the lock counter of the object o referenced
by the top stack variable.

The semantics of an instruction ins of our target language is a partial
map ins : Στ → Στ ′ from initial to �nal states. Number of local variables
and stack elements at its start, as well as their static types, are speci�ed by
τ ∈ T . In the following we assume that dom(τ) contains i local variables
and j stack elements. Moreover, we suppose that the semantics is unde�ned
for input states of wrong sizes or types, as is required in [72]. The formal
semantics is given in [103].

Locked Expressions

In this section, we de�ne the expressions that our analysis is able to identify
as de�nitely locked (De�nition 9.6), their evaluation (De�nition 9.7), that
might modify the content of some memory locations, and the notion of locked
expression (De�nition 9.9).

De�nition 9.6 (Expressions). Let F andM be the sets of the names of all
possible �elds and methods, respectively. Let τ be a type environment. The set
of expressions over τ is Eτ ∋ E ::= n | v | E ⊕ E | E.f | E.m(E, . . .), where
n ∈ Z, v ∈ dom(τ),⊕ ∈ {+,−,×,÷,%}, f ∈ F and m ∈M. We assume that
expressions are well-typed, that is, variables and �elds are used in accordance
to their declared type. The function vars : Eτ → P(dom(τ)) returns the set of
variables contained in an expression.

9.2 Locking Discipline Inference 119

Some of the expressions de�ned above represent the result of a method
invocation. Their evaluation, in general, might modify the memory, so we must
be aware of the side-e�ects of the methods appearing in these expressions. We
de�ne the evaluation of an expression E in a state ⟨ρ, µ⟩ as a pair ⟨w, µ′⟩, where
w is the computed value of E, while µ′ is the updated memory obtained from
µ after the evaluation of E.

De�nition 9.7 (Evaluation of expressions). The evaluation of an expres-
sion E ∈ Eτ in a state σ = ⟨ρ, µ⟩ ∈ Στ is a partial map JEK∗ : Στ → V×M
de�ned as:
E JEK∗σ de�ned only if

n ∈ Z ⟨n, µ⟩
v ∈ dom(τ) ⟨ρ(v), µ⟩

JE1 ⊕ E2K∗σ ⟨w1 ⊕ w2, µ2⟩
JE1K∗σ = ⟨w1, µ1⟩,
JE2K∗⟨ρ, µ1⟩ = ⟨w2, µ2⟩,
w1, w2 ∈ Z

JE.fK∗σ ⟨(µ1(ℓ).ϕ)(f), µ1⟩
JEK∗σ = ⟨ℓ, µ1⟩,
ℓ ∈ L,
f ∈ F(µ1(ℓ).κ)

JE0.m(E1, . . . , Eπ)K∗σ ⟨w, µ′⟩

JE0K∗σ = ⟨w0, µ0⟩,
JEi+1K⟨ρ, µi⟩ = ⟨wi+1, µi+1⟩,
w0 ∈ L,
(µπ(w0)).m(w1, . . . , wπ) terminates
with no exception, result w and �nal
memory µ′

We write JEKσ for the value of E, without the updated memory.

De�nition 9.8 (Locked Object). An object o is locked if o.locks > 0.

De�nition 9.9 (Locked Expression). We say that E ∈ Eτ is locked in
σ = ⟨ρ, µ⟩ ∈ Στ if and only if µ(JEKσ) is locked.

De�nite Locked Expressions Analysis

The concrete semantics works over concrete states, and our abstract interpre-
tation abstracts them into sets of expressions.

De�nition 9.10 (Concrete and Abstract Domain). The concrete do-
main over τ ∈ T is Cτ = ⟨P(Στ),⊆⟩ and the abstract domain over τ is
Aτ = ⟨P(Eτ),⊇⟩.

An abstract element A ∈ Aτ represents those concrete states σ = ⟨ρ, µ⟩ where
the expressions in A evaluate to locked objects.

De�nition 9.11 (Concretization Map). Let τ ∈ T and A ∈ Aτ . We de�ne
the concretization map γτ : Aτ → Cτ as γτ (A) = {σ = ⟨ρ, µ⟩ ∈ Στ | ∀E ∈
A.(µ(JEKσ) is locked)}.

120 9 Locking Discipline Inference

Cτ and Aτ are both complete lattices. For every subset c ⊆ P(Στ) the
in�mum is given by the intersection and the supremum by the union of the
elements in c. For every a ⊆ P(Eτ) the in�mum is the union and the supremum
is the intersection of the elements in a.

Furthermore, γτ is coadditive:

γτ (
⋂
i≥0

Ai)
def
= {σ = ⟨ρ, µ⟩ ∈ Στ | ∀E ∈

⋂
i≥0

Ai.(µ(JEKσ) is locked)}

= {σ = ⟨ρ, µ⟩ ∈ Στ | ∀E.(E ∈
⋂
i≥0

Ai)⇒ (µ(JEKσ) is locked)}

= {σ = ⟨ρ, µ⟩ ∈ Στ | ∀E.(
⋀
i≥0

E ∈ Ai)⇒ (µ(JEKσ) is locked)}

= {σ = ⟨ρ, µ⟩ ∈ Στ | ∀E.
⋀
i≥0

(E ∈ Ai ⇒ (µ(JEKσ) is locked))}

= {σ = ⟨ρ, µ⟩ ∈ Στ |
⋀
i≥0

∀E.(E ∈ Ai ⇒ (µ(JEKσ) is locked))}

= {σ = ⟨ρ, µ⟩ ∈ Στ |
⋀
i≥0

(∀E ∈ Ai.(µ(JEKσ) is locked))}

=
⋂
i≥0

{σ = ⟨ρ, µ⟩ ∈ Στ | ∀E ∈ Ai.(µ(JEKσ) is locked)}

=
⋂
i≥0

γτ (Ai)

Therefore, γτ is the concretization map of a Galois connection [39], and
Aτ is actually an abstract domain, in the sense of abstract interpretation.

The Abstract Constraint Graph

Our analysis is constraint-based: we construct an abstract constraint graph
from the program under analysis and then solve it. For each bytecode of the
program there is a node containing the locked expressions at that point. Arcs
of the graph propagate these approximations, re�ecting, in abstract terms,
the e�ects of the concrete semantics on the locking information. That is, the
arc between the node for bytecode ins and that for a subsequent bytecode ins′

propagates the locking information at ins into that at ins′. The exact meaning
of propagates depends here on ins, since each bytecode has a di�erent abstract
e�ect.

De�nition 9.12 (ACG). Let P be the program under analysis, already in the
form of a CFG of basic blocks for each method or constructor (Section 9.2.3).
The abstract constraint graph (ACG) for P is a directed graph where:

• there is a node ins for each bytecode ins in P , containing an approximation
A ∈ Aτ , where τ is the type environment at the beginning of ins. This

9.2 Locking Discipline Inference 121

ins A′

#1 const v, dup t, load

k t, ifeq t, ifne t, op,
new κ, get�eld f , call
m1 . . .mk, store k t,
inc k t, new κ, throw
κ, catch

{E ∈ A | vars(E) do not contain modi�ed locals
or stack elements}

#2 put�eld f {E ∈ A | stop, stop−1 ̸∈
vars(E) and f does not occur in E}

#3 monitorenter {E ∈ A | stop ̸∈ vars(E)} ∪ {E |
E is a de�nite alias of stop}

#4 monitorexit {E ∈ A | the static type of E is not compatible
with τ(stop)}

#5 call m1 . . .mk {E[sj−π ↦→ l0, . . . , sj−1 ↦→ lπ−1] | E ∈
A and vars(E) ⊆ {sj−π, . . . , sj−1}}

Fig. 9.12: Propagation rules

abstract element represents a de�nite approximation of the actual locking
information at ins;

• each arc has a propagation rule, i.e., a function over A, from the locking
information at its source to the locking information at its sink.

Arcs are built as follows. We assume that τ is the static type information at
the execution of a bytecode ins. Moreover, we assume that τ contains j stack
elements and consequently top = j − 1 is the height of the topmost stack
element there.

Sequential Arcs. If ins is immediately followed by ins′, there is an arc from ins

to ins′ , with propagation rule λA.A′, where A′ is de�ned by rules #1 -
#4 in Fig. 9.12.

Parameter Passing Arcs. For each call m1 . . .mk to a method with π pa-
rameters (including this) and each 1 ≤ w ≤ k, there is an arc from

call m1 . . .mk to the node for the �rst bytecode of mw, with propaga-

tion rule λA.A′, where A′ is de�ned by rule #5 in Fig. 9.12.

Example 9.13. In Fig. 9.13 it is shown the ACG of the method increment

from Fig. 9.10. Node a belongs to the caller of this method and shows the
arc related to the call. Arcs are decorated with the number of their associated
propagation rules, with the exception of rule #1, which is the frequent default.

The sequential arcs link an instruction ins to its immediate successor
ins′ propagating the set of locks held by the current thread. Only expressions
una�ected by the instruction are propagated, i.e., those not containing the
modi�ed variables, since we are not sure if they are de�nitely locked any-
more. For put�eld, only expressions not containing the target �eld or the two

122 9 Locking Discipline Inference

Fig. 9.13: The ACG of the method increment in Fig. 9.10

variables at the top of the stack are propagated. The rule for monitorenter
adds all expressions aliased to the locked object, and propagates expressions
not containing stop. Conversely, that for monitorexit removes all expressions
with a type compatible with that of the locked value. This is a conservative
assumption, necessary for a sound de�nite approximation.

The parameter passing arcs link call m1 . . .mk nodes to the node rep-
resenting the �rst bytecode of each callee method implementation mi. They

9.2 Locking Discipline Inference 123

propagate the locked expressions that only refer to stack elements used as ac-
tual parameters, thus implementing an inter-procedural static analysis. These
stack elements become formal arguments l0, . . . , lπ−1 in the callee.

De�nition 9.14 (Locked Expressions Analysis). A solution of an ACG
is an assignment of an abstract element An to each node n of the ACG such
that Afirst(main) = ∅ and the propagation rules of the arcs are satis�ed, i.e.,
for every arc from node n to n′ with propagation rule λA.Π(A), the condition
An′ ⊇ Π(An) holds. The locked expression analysis of the program is the
maximal solution of its ACG w.r.t. ⊇.

According to this de�nition, the abstract information assigned to the �rst
statement of the program, first(main), is the empty set, as at the beginning
no expression is locked. Moreover, the set of de�nitely locked expressions at a
generic node n is the intersection of all the sets resulting from the propagation
rules of the incoming arcs in n. The maximal solution of the ACG is thus the
greatest set satisfying the constraints, and its existence is guaranteed by the
fact that the abstract domain Aτ is �nite, since we �x upper bounds on the
height of the locked expressions (e.g., a maximal number of �eld accesses and
method invocations). The solution of the constraint can hence be computed
by starting with the bottom approximation for every node: the set of all
possible locked expressions; and then applying the propagation of the arcs
and computing the intersection at each node entry, until stabilization.

Example 9.15. Fig. 9.14 shows the solution of the ACG from Fig. 9.13. The
rule for the monitorenter node (4) adds aliases of this to the set of de�nitely
locked expressions, while the rule for the monitorexit node (12) removes them.

n An

a, 1, 2, 3 ∅
4, . . . , 11 {l0, l1}
12, 13, 14 ∅

15, . . . , 23, b ∅

Fig. 9.14: The solution of the ACG from Fig. 9.13

Theorem 9.16 (Soundness). Let an execution of a program lead to a state
σ ∈ Στ and Ains ∈ Aτ be the approximation at the node ins corresponding to
ins, computed by our static analysis. Then, σ ∈ γτ (Ains).

9.2.4 Implementation

The de�nite locked expressions analysis uses the result of other analyses to
�nd locked expressions (Fig. 9.15):

124 9 Locking Discipline Inference

Fig. 9.15: Analyses supporting the de�nite locked expressions analysis

• a de�nite aliasing analysis, which �nds variables that are aliases at a pro-
gram point;

• a de�nite expression aliasing analysis, which �nds expressions aliased to
variables;

• a possible reachability analysis, which �nds for each variable those variables
that can be reached from it;

• a side-e�ects analysis, which �nds for every alias if it can be a�ected by a
given bytecode.

The alias analyses are used when building the propagation formonitorenter,
in determining all expressions that are aliases of the object being locked,
and parameter passing, in determining aliases of call parameters. They are
described in [84]. Side-e�ects and reachability analyses are used when building
propagation arcs for bytecodes writing to a �eld, or calling a method, to
determine if members of the incoming set of expressions can be a�ected by
the bytecode. Reachability is also used to re�ne the analysis when building
arcs for monitorexit, to keep in the set of the de�nitely locked expressions only
those aliases that are not reachable from, or do not reach, the object being
unlocked. The possible reachability analysis is described in [85].

The de�nite locked expressions analysis is used by the Julia static analyzer
in its GuardedBy checker, which checks and infers @GuardedBy and @Holding

annotations. @GuardedBy is applied to variables, and documents that the an-
notated object is accessed only when the given expression is locked. @Holding
has the same meaning, but is applied to methods. For example, in the code
in Fig. 9.10, the �eld c is @GuardedBy(this), since it is accessed only in a
synchronized(this) block.

Experiments

We ran the de�nite locked expressions analysis on real-world programs.
Fig. 9.16 lists our benchmark programs, along with some statistics. BitcoinJ [4]

9.2 Locking Discipline Inference 125

is a java library for working with bitcoins, used in many Bitcoin projects.
Eclipse ECJ is the compiler for Java used in the Eclipse IDE. Guava [60] is
a library providing various utilities to Java developers. Jetty Server is a web
server, part of the Jetty project [46]. Velocity [20] is a template engine library.
Apache Zookeeper [21] is a server providing services to distributed applica-
tions. The other programs are part of the Apache Tomcat project [19]. All
experiments were executed on a Linux machine with an Intel Core i7 4770
CPU and 8 gigabytes of RAM.

Project Precision LoC Time JAR �le name
BitcoinJ 19% (19550/102775) 103598 2633 bitcoinj-core-0.12.2.jar

Eclipse ECJ 0.5% (1514/316609) 162423 10376 ecj-4.4.jar

Guava 18.0 7% (8362/116501) 119299 3187 guava-18.0.jar

Jetty Server 19% (7173/37533) 60160 1369 jetty-server-9.2.6.v20141205.jar

Velocity 5% (2526/43377) 55355 1380 velocity-1.7.jar

Zookeeper 15% (10607/69165) 73982 1810 zookeeper-3.4.6.jar

Catalina 18% (26875/144641) 123450 5924 tomcat-catalina-8.0.15.jar

Coyote 11% (7264/63134) 72194 2184 tomcat-coyote-8.0.15.jar

Dbcp 18% (4816/26386) 53811 1354 tomcat-dbcp-8.0.15.jar

Jasper 3% (2080/58772) 68166 2343 tomcat-jasper-8.0.15.jar

Jni 35% (1777/4996) 33804 640 tomcat-jni-8.0.15.jar

Util 8% (962/10814) 43086 1329 tomcat-util-8.0.15.jar

Websocket 7% (1041/13776) 39244 715 tomcat-websocket-8.0.15.jar

Fig. 9.16: Benchmark programs for our analysis. Precision is the ratio of
the total number of de�nitely locked expressions over the total number of
watchpoints, i.e., interesting bytecodes. LoC is the approximate number of
lines of code reached by during the analysis. It is the count of the entries
in the line number table of each class included in the analysis, plus 3 for
each method or constructor. Time is the execution time of the analysis, in
milliseconds.

9.2.5 Inference of the Locking Discipline

Once the three previous supporting analyses have been performed, Julia infers
@GuardedBy(E) annotations for �elds and method parameters (�g. 9.6). This
amounts to �nding expressions E such that the non-final �elds of all possible
values ever held in those �elds or parameters are only accessed at a program
point where E is locked by the current thread. Julia uses creation points as a
conservative approximation of the identity of run-time values. Objects created
at distinct creation points must be distinct, while the converse might not hold.
Namely, it uses the following algorithm to infer the @GuardedBy annotations
for a �eld or parameter x:

126 9 Locking Discipline Inference

1. it uses the creation points analysis to determine an overapproximation C
of the creation points of the values ever held in x;

2. it computes the set of program points where a �eld of an object created
at C might be accessed, that is, A = {p | a non-final �eld f is accessed
at p as Ep.f and the set Cp

Ep
of all possible creation points of Ep at p is

such that Cp
Ep
∩ C ̸= ∅};

3. for each p ∈ A, it computes a set of expressions that are de�nitely locked
there, using itself as a shorthand for the expression itself:
Lp = {E[Ep ↦→ itself] | E is a de�nite alias of Ep at p

and E is de�nitely locked at p};
4. it computes L =

⋂
p∈A Lp;

5. it infers the annotations @GuardedBy("E") for each E ∈ L where no vari-
able occurs, but for itself.

Consider for instance �eld left in �g. 9.2. According to the creation point
analysis (�g. 9.7), we have C = {Fork@80}. Access to non-final �elds oc-
cur as this.usedBy at lines 8, 12, 20 and we have C8

this = C12
this = C20

this =
{Fork@80} (�g. 9.7). Hence A = {8, 12, 20}. At those program points, this is
obviously a de�nite alias of itself (�g. 9.8). According to �g. 9.9, the expression
this is always locked at 8, 12 and 20. Then Lp = {this[this ↦→ itself]} =
{itself} for each p ∈ A, and hence L = {itself}. Therefore, Julia infers
the annotation @GuardedBy("itself") for �eld left.

9.2.6 Calls to Library Methods

The algorithm sketched in section 9.2.5, at its step 2, requires to check all
program points A where a non-final �eld in accessed. This includes the
program points inside the libraries as well. Hence the inference of @Guard-
edBy("itself") for �eld left above should be corrected by considering in
A also the program points outside the application shown in �gs. 9.1 and 9.2
and the driver program. However, a simplifying and computationally e�ective
alternative solution is to consider only program points A inside the application
under analysis, as long as we also include in A the program points where
a value is passed to the libraries. That is, point 2 of the algorithm from
section 9.2.5 can be modi�ed to

2. it computes the set of program points A = {p in the application | a non-
final �eld f is accessed at p as Ep.f or an expression Ep is passed as
an argument to libraries and the set Cp

Ep
of all possible creation points of

Ep at p is such that Cp
Ep
∩ C ̸= ∅};

By applying this inference algorithm, to �gs. 9.1 and 9.2 and the driver
program, Julia infers the @GuardedBy annotations in �gs. 9.1 and 9.2.

9.3 Experiments 127

9.3 Experiments

We performed experiments to understand how programmers currently use
@GuardedBy and to evaluate the utility of our semantics.

9.3.1 Subject Programs and Methodology

We chose 15 open-source subject programs that use locking (�g. 9.17). The
programmers had partially documented the locking discipline in 5 of them. We
counted not only @GuardedBy and @Holding annotations but also commented
annotations and English comments containing the string �guard�. The pro-
grammers sometimes used comments to document a locking discipline without
adding a compile-time and run-time dependency on the @GuardedBy annota-
tion. However, the documented locking discipline may be incorrect because it
was not checked by any tool.

We determined a goal set of correct annotations, i.e., those whose locking
discipline the program obeys. To determine this set, we manually analyzed
every annotation written by the programmer or inferred by Julia.4 We re-
tained every annotation from either set such that the program is guaranteed
not to su�er a data race on the annotated program element. (We did not
observe any data races that appeared to be intentional.) Then, we compared
the goal annotations to both the programmer-written and the inferred ones.
This comparison was not syntactical: annotations that are conceptually the
same or are expressing the same thing are considered equal.

As is standard for an information retrieval problem [95], we report results
in terms of precision (number of correct reported annotations divided by total
number of reported annotations) and recall (number of correct reported an-
notations divided by total number of goal annotations). Precision and recall
are measurements between 0% and 100% inclusive, and larger numbers are
better.

We used Julia to infer the locking discipline in terms of @GuardedBy and
@Holding with value-protection semantics.5 Experimental results for @Guard-
edBy annotations appear in �g. 9.18, and results for @Holding appear in
�g. 9.19. Programmers made signi�cant numbers of mistakes (as shown by
low precision) and omitted signi�cant numbers of annotations (as shown by
low recall).

Programmer mistakes. In every program where programmers documented
a locking discipline, they wrote incorrect annotations that express a locking
discipline that the code does not satisfy. For example, Guava's LocalCache
and MapMakerInternalMap classes incorrectly use Segment.this as a guard

4 There might exist other correct annotations that neither Julia, the original pro-
grammer, nor we are aware of.

5 Julia has two modes and can also infer annotations for name protection, but here
we focus on value protection.

128 9 Locking Discipline Inference

Programmer-written Inference
Project Version LoC @GuardedBy @Holding time
BitcoinJ 0.12.2 102458 46 14 238
Daikon 5.2.24 169710 0 0 1596
Derby Engine 10.11.1.1 119594 12 9 4077
Eclipse ECJ 4.4 161701 0 0 924
Guava 18.0 118190 64 72 621
Jetty Server 9.2.6.v20141205 59611 0 0 109
Velocity 1.7 54549 0 0 94
Zookeeper 3.4.6 75475 0 0 118
Catalina 8.0.15 121959 0 0 472
Coyote 8.0.15 71527 1 0 110
Dbcp 8.0.15 53181 16 0 84
Jasper 8.0.15 67380 0 0 105
Jni 8.0.15 32682 0 0 49
Util 8.0.15 42115 0 0 58
Websocket 8.0.15 39928 0 0 75

Fig. 9.17: Subject programs. The last 7 are part of Tomcat. LoC is the ap-
proximate number of lines of code reached by Julia during the analysis. It is
the count of the entries in the line number table of each class analyzed, plus
3 for each method or constructor. Inference time is measured in seconds.

Goal Programmer-written Inference
name value value

Project # # P%R%P% R% # P%R%
BitcoinJ 47 46 87 85 30 30 7 100 15
Daikon 5 0 - 0 - 0 1 100 20
Derby Engine 16 12 83 63 58 44 6 100 38
Eclipse ECJ 6 0 - 0 - 0 6 100 100
Guava 22 64 19 55 14 41 5 100 23
Jetty Server 1 0 - 0 - 0 1 100 100
Velocity 4 0 - 0 - 0 4 100 100
Zookeeper 5 0 - 0 - 0 5 100 100
Catalina 2 0 - 0 - 0 2 100 100
Coyote 24 1 100 4 0 0 23 100 100
Dbcp 20 16 88 70 56 45 6 100 30
Jasper 7 0 - 0 - 0 7 100 100
Jni 1 0 - 0 - 0 1 100 100
Util 4 0 - 0 - 0 4 100 100
Websocket 9 0 - 0 - 0 9 100 100

Fig. 9.18: Experimental results for @GuardedBy annotations. The table lists
the number of annotations written by the programmer and inferred by Julia.
Goal is the number of goal annotations. The precision (R%) and recall (R%)
are given separately when annotations are interpreted according to the name-
protection or value-protection semantics. Computations whose denominator
is zero are reported as �-�.

9.3 Experiments 129

Programmer-writtenAbstract interp.
Project GoalOGoal #CorrP%R%OR% # CorrP%R%
BitcoinJ 113 45 14 14 100 12 31 113 113 100 100
Daikon 3 0 0 0 - 0 - 3 3 100 100
Derby Engine 121 13 9 7 78 6 54 120 120 100 99
Eclipse ECJ 1 0 0 0 - 0 - 1 1 100 100
Guava 126 45 72 38 53 30 84 110 110 100 87
Jetty Server 4 0 0 0 - 0 - 4 4 100 100
Velocity 20 0 0 0 - 0 - 20 20 100 100
Zookeeper 16 0 0 0 - 0 - 16 16 100 100
Catalina 98 0 0 0 - 0 - 98 98 100 100
Coyote 13 0 0 0 - 0 - 13 13 100 100
Dbcp 18 0 0 0 - 0 - 18 18 100 100
Jasper 2 0 0 0 - 0 - 2 2 100 100
Jni 1 0 0 0 - 0 - 1 1 100 100
Util 4 0 0 0 - 0 - 4 4 100 100
Websocket 4 0 0 0 - 0 - 4 4 100 100

Fig. 9.19: Experimental results for @Holding annotations. Numbers are as in
�g. 9.18, but @Holding means the same thing in both the name- and value-
protection semantics. The number of correct annotations (Corr) is given to-
gether with the precision and recall. OGoal (for �omission-tolerant goal�) is
the number of goal annotations whose guard expression the programmer used
elsewhere, and OR% is the programmer recall based on the omission-tolerant
goal set.

expression. Julia infers the correct guard this. In other cases, a lock is ac-
quired only at write accesses but not at read accesses to a variable. This can
lead to corrupted data reads for data larger than 32 bits (i.e., long and double
values, that on some machines are accessed in two steps). For 32-bit data, it
can lead to inconsistent multiple reads of a variable because the Java mem-
ory model permits delayed publication. An example is in the Guava class
SerializingExecutor: the �eld private boolean isThreadScheduled is
annotated as @GuardedBy("internalLock"), but it is read without protec-
tion at line 135, despite being always written after acquiring the lock.

The most common programmer mistake, however, was creating external
aliases to a value. If a reference to a variable's value leaks, then a data race can
occur even if a lock is held whenever the variable is read or written. In other
words, in the presence of aliasing the value-protection semantics provides no
guarantee. This is a natural problem, given the lack of automated checking
and even the lack of a mention of the danger of aliasing in references such
as JCIP [59], where only instance con�nement is mentioned. An example is
BitcoinJ �eld PaymentChannelClient.conn. It is always accessed holding a
lock inside the class, but the �eld is initialized with a parameter of a public

constructor. So there exists an external alias to the object that can potentially
be used to access the object without protection.

130 9 Locking Discipline Inference

Programmer omissions. The private BitcoinJ method PaymentChannel-

Server.truncateTimeWindow(long) is inferred to be @Holding("lock"),
and is indeed called always with lock held. Nevertheless, the programmer
didn't write the annotation.

In Apache Velocity, a template engine, Julia �nds four objects that are
@GuardedBy("itself"): the �eld XPATH_CACHE, in XPathCache, is accessed
in a synchronized(XPATH_CACHE) block; the �eld SimplePool pool, in
ParserPoolImpl, uses methods put and get of SimplePool, that modify the
object's state inside a synchronized(this) block; the receivers of the same
two methods are thus guarded as well.

Julia mistakes. Julia's output was correct: its precision is 100%, just as for
any sound tool that infers de�nite information.

Julia omissions. There are two reasons that Julia fails to infer a correct
programmer-written locking discipline: either (1) the program's correctness is
too subtle for Julia to reason about, or (2) the locking discipline is inexpress-
ible in the value-protection semantics.

(1) Julia incompleteness: Julia missed 1 @Holding in Derby Engine and
16 in Guava because methods in the Monitor, AbstractService, and
ServiceManager classes use complex reasoning, ensuring for instance that a
call to a method happens only in �ows of execution where the lock is held by
the executing thread. At the moment Julia does not understand these tricks.

Julia only allows itself and �nal �elds in a guard expression. This is
su�cient but not necessary to ensure that the guard expression evaluates to
the same value throughout the scope of the guard (section 9.1.4). Programmers
usually use variables in guard expressions (sometimes correctly, sometimes
incorrectly). As future work, we plan to support the container this in guard
expressions, which still protects against data races if it is never aliased.

(2) Value-protection semantics in�exibility: Only one example seems a
genuine value-protection programmer-written annotation that is not inferred
by Julia. The static �eld in Dbcp
private static Timer _timer; //@GuardedBy("EvictionTimer.class")

is always accessed in synchronized static methods, it never escapes, and is as-
signed with _timer = AccessController.doPrivileged(new Privileged-

NewEvictionTimer()). The doPrivileged method is native, and executes
the run method of the PrivilegedNewEvictionTimer class, that simply re-
turns a new Timer object. The guard refers to the class object and is permitted
under the value-protection semantics.

Omission-tolerant Results

We computed two sets of recall numbers for programmer-written @Holding

annotations (�g. 9.19). First, we determined the overall recall, based on the
full set of goal annotations. Second, we determined the recall based on a re-
duced set of goal annotations. The reduced, or omission-tolerant, set contains

9.3 Experiments 131

only @Holding annotations whose guard expressions appear in @GuardedBy

annotations that the programmer wrote. This latter metric considers only
locks that the programmer deemed signi�cant enough to document.

The rationale for reporting two di�erent measurements is that there are
two di�erent reasons that a @Holding annotation might be missing from the
programmer-written set:

• The programmer wrote @GuardedBy on some variable v but omitted
@Holding(v). This incomplete speci�cation of the locking discipline for
v is a programmer error. For example, the programmer correctly anno-
tated the unary method Wallet.maybeUpgradeToHD as @Holding("key-
chainLock") in BitcoinJ, but didn't annotate the no-argument overloaded
version.

• The programmer omitted @GuardedBy on some variable v and also omit-
ted @Holding(v). It is conceivable that the programmer only intended to
write speci�cations for some guarded variables and intentionally omitted
the @GuardedBy annotation on other variables. The OR% measurement
assumes every such omission was intentional, even though the practice is
undesirable because someone calling or modifying the code could misuse it.
For example, Julia infers @Holding("enumConstantCache") for Guava's
private method Enums.populateCache, which needs it for a call to put. In-
deed, the only invocation of populateCache is in a synchronized (enum-

ConstantCache) block. Nevertheless, the programmer did not annotate it
as @GuardedBy("enumConstantCache").

10

Implementation

In this chapter we brie�y present the implementation of the taintedness anal-
ysis and the locking discipline inference in the Julia program analyzer. The
taintedness analysis was implemented in the Injection checker, and the locking
discipline inference in the GuardedBy checker.

10.1 The Julia Analyzer

Julia is a static analyzer of Java bytecode programs. It uses abstract interpre-
tation to derive analyses on properties de�ned from a denotational semantics
of Java bytecode, as described in Section 8.2. It also performs constraint-based
analyses. These analyses are implemented in pluggable checkers, so that the
analyzer can be easily extended.

10.2 Injection

The taintedness analysis is implemented by the InjectionChecker class.
In its entry method it con�gures and starts a FlowsChecker, a more gen-
eral checker that tracks �ows of information from arbitrary sources to arbi-
trary sinks. The �ow checker is con�gured for sources of information of type
UNTRUSTED. This in turn execute the FlowAnalyser, that performs the anal-
ysis for each bytecode, before combining the results. Depending on the type
of bytecode, the analysis proceeds as follows:

CALL For CALL, the environment of the called method must be plugged in
that of the caller, as described by the extend operator (De�nition 8.23). At
line 11, a method (listed later) is called that renames variables and removes
temporary ones. The for loop at line 23 implements

⋀
0≤k<bAb,M (sk); the

then branch of the if statement, taken when SAb,M,v is empty, creates
v̌ ↔ v̂, while the else creates ((v̌∨ (

⋁
w∈SAb,M,v

w))← v̂). The same does
the for loop at line 58, for local variables.

134 10 Implementation

1 protected �nal FlowDomainElement analyse(CALL call,
FlowDomainElement denotation) {

2 return (call.getNumberOfDynamicTargets() == 0) ?
3 worstCase(call) :
4 domain.mk(analyseCALLAux(call, denotation));
5 }
6
7 protected BDD analyseCALLAux(CALL call,

FlowDomainElement denotation) {
8
9 // ...
10
11 bdd = domain.plugIntoTheCallingContext(call,

denotation.getBDD());

12 CodeImplementation target =
call.getDynamicTargets().iterator().next();

13 BDD stack = domain.inputIsNotExceptional();
14 boolean modi�esOnlyFieldsOfParameters =

call.modi�esOnlyFieldsOfParameters();
15 boolean sideE�ectsFree = call. isSideE�ectsFree () ;
16 boolean isConstructorCall = call.getStaticTarget()

instanceof ConstructorReference;
17 boolean doesNotIncreaseSecrecy =

doesNotIncreaseSecrecy(call);
18
19 De�niteAliasingInformation alias = aliasing .get() .at(call) ;
20 int rec = call .getReceiverStackPosition();
21
22 // we consider all variables that survive the call
23 for (TypeCursor cursor: call .getStack().upToSlot(rec))
24 if ((sideE�ectsFree && (!isConstructorCall ||

! alias .stackStack(cursor. getSlotPosition () , rec)))
25 || reachability .get() .stackIsImmutableWrt(
26 cursor, call) || doesNotIncreaseSecrecy ||

(! isConstructorCall &&
secrecyDoesIncreaseBySideE�ect(

27 cursor.getType())))
28 stack.andWith(domain.i�(
29 domain.codeStackAtTheEndOf(cursor, call),

domain.codeStackAtTheBeginningOf(
30 cursor, call))) ;
31 else {
32 TypeListIterable pars =

modi�esOnlyFieldsOfParameters ?

10.2 Injection 135

33 reachability .get()
34 .sideE�ectedParametersReachedFromStack(
35 cursor, call) :
36 sharing.get()
37 .sideE�ectedParametersSharingWithStack(
38 cursor, call) ;
39
40 List<Integer> or = new ArrayList<Integer>();
41 or.add(domain.codeStackAtTheBeginningOf(cursor,

call));
42
43 for (TypeCursor parsCursor: pars)
44 if ((isConstructorCall &&

parsCursor.getSlotPosition() == 0) ||
reachability .get() . sideE�ected(call)

45 [parsCursor.getSlotPosition()])
46 or.add(domain
47 .codeTempLocalAtTheEndOfMethodOrConstructor(
48 parsCursor, target)) ;
49
50 stack.andWith(domain.onlyIf(
51 domain.codeStackAtTheEndOf(cursor, call),

intoArray(or)));
52 }
53
54 bdd.andWith(stack);
55
56 BDD locals = domain.getFactory().one();
57
58 for (TypeCursor cursor: call .getLocals())
59 if ((sideE�ectsFree && (!isConstructorCall ||

! alias . localStack(cursor. getSlotPosition () , rec))) ||
reachability .get() .localIsImmutableWrt(cursor, call)
|| doesNotIncreaseSecrecy || (! isConstructorCall &&
secrecyDoesIncreaseBySideE�ect(cursor.getType())))

60 locals .andWith(domain.i�(
61 domain.codeLocalAtTheEndOf(cursor, call),

domain.codeLocalAtTheBeginningOf(cursor,
call)));

62 else {
63 TypeListIterable pars =

modi�esOnlyFieldsOfParameters ?
64 reachability .get()
65 .sideE�ectedParametersReachedFromLocal(
66 cursor, call) :

136 10 Implementation

67 sharing.get()
68 .sideE�ectedParametersSharingWithLocal(
69 cursor, call) ;
70
71 List<Integer> or = new ArrayList<Integer>();
72 or.add(domain.codeLocalAtTheBeginningOf(cursor,

call));
73
74 for (TypeCursor parsCursor: pars)
75 if ((isConstructorCall &&

parsCursor.getSlotPosition() == 0) ||
reachability .get()

76 . sideE�ected(call) [parsCursor.getSlotPosition()])
77 or.add(domain.codeTempLocalAtTheEndOfMethodOrConstructor(
78 parsCursor, target)) ;
79
80 locals .andWith(domain.onlyIf(domain.codeLocalAtTheEndOf(
81 cursor, call) , intoArray(or))) ;
82 }
83
84 // if it becomes too complex, we give up
85 if (bdd.nodeCount() ∗ locals.nodeCount() > 100000)
86 return worstCase(call).getBDD().id();
87
88 bdd.andWith(locals);
89
90 // we remove the temporary variables
91 BDD temp = bdd;
92 bdd = temp.exist(domain.getTemps());
93 temp.free() ;
94
95
96 // we assume that library methods never throw tainted

exceptions
97 if (call .getStaticTarget() .getReferencedClass()
98 .isSystemAPI()) {
99 BDD temp = bdd;
100 bdd = temp.exist(domain.outputException());
101 bdd.andWith(domain.outputIsExceptional().impWith(
102 domain.nOutputException()));
103 temp.free() ;
104 }
105
106 return bdd;
107 }

10.2 Injection 137

The method analyseCALLAux calls plugIntoTheCallingContext of the
class VarBDDAbstractDomain to rename variables ŝ0 into ŝb, ľk into šk+b,
l̂k into lk, and quantify over temporary variables lk:

1 public �nal BDD plugIntoTheCallingContext(CALL call, BDD
bdd) {

2 BDDPairing renaming = getFactory().makePair();
3 int rec = call .getReceiverStackPosition();
4
5 BDD remove = null;
6
7 if (rec > 0 &&

!call.getStaticTarget() .getReturnType().isVOID())
8 if (isTrackedAndRepresentable(codeStackAtTheEndOf(rec,

call))) {
9 int into = codeStackAtTheEndOf(rec, call);
10 if (into != codeReturnValue())
11 renaming.set(codeReturnValue(), into);
12 }
13 else
14 remove = returnValue();
15
16 if (call .getNumberOfDynamicTargets() > 0) {
17 CodeImplementation target =

call.getDynamicTargets().iterator().next();
18 TypeListIterable formals = call .requiredStackTypes();
19 Bytecode start = call .getDynamicTargets().iterator().next()

. getInitialBytecode() ;
20 BDDFactory factory = getFactory();
21
22 for (TypeCursor cursor: formals) {
23 int inputLocal = codeLocalAtTheBeginningOf(cursor,

start);
24
25 if (isTrackedAndRepresentable(inputLocal)) {
26 int inputStack = codeStackAtTheBeginningOf(rec +

cursor.getSlotPosition(), call);
27
28 if (isTrackedAndRepresentable(inputStack))
29 renaming.set(inputLocal, inputStack);
30 else
31 if (remove == null)
32 remove = factory.ithVar(inputLocal);
33 else
34 remove.andWith(factory.ithVar(inputLocal));

138 10 Implementation

35 }
36
37 int fromCode =

codeLocalAtTheEndOfMethodOrConstructor(cursor,
target);

38 if (isTrackedAndRepresentable(fromCode))
39 renaming.set(fromCode, outputToTemp(fromCode));
40 }
41 }
42
43 if (remove != null) {
44 // we remove the renamed variables that we could not

represent
45 bdd = bdd.exist(remove).replaceWith(renaming);
46 remove.free() ;
47
48 return bdd;
49 }
50 else
51 return bdd.replace(renaming);
52 }

Other bytecodes For other bytecodes the abstraction is a boolean function
as described in Figure 8.2. For example the function for the LOAD byte-
code is (load k t)T = U ∧ ¬ě ∧ ¬ê ∧ (ľk ↔ ŝj) and the corresponding
implementation is:

1 protected FlowDomainElement analyseLOAD(LOAD load) {
2 // no local variable and no stack element is modi�ed − U

function
3 BDD bdd = localsAndStackDoNotChange(load, 0);
4
5 // the new top of the stack behaves exactly as local

variable varNum
6 return domain.mk(bdd.andWith(domain.i�
7 (domain.codeStackAtTheEndOf(load.stackHeight(), load),
8 domain.codeLocalAtTheBeginningOf(load.getVarNum(),

load))));
9 }

In PUTFIELD we must consider reachability:
(putfield κ.f : t)T = ∧v∈LRj(v) ∧ (¬ê→ ∧v∈SRj(v)) ∧ (ê→ ¬ŝ0) ∧ ¬ě
and indeed the implementation uses previously computed reachability in-
formation:

1 protected FlowDomainElement analysePUTFIELD(PUTFIELD
put�eld) {

10.2 Injection 139

2 int rec = put�eld .getDereferenced();
3 BDD bdd = domain.inputIsNotExceptional();
4 if (! source.mightHoldForInternalExceptions())
5 bdd.andWith(domain.nOutputException());
6
7 int codeValue = domain.codeStackAtTheBeginningOf(rec +

1, put�eld);
8 PossibleReachabilityInformation reach =

reachability .get() .at(put�eld) ;
9
10 // if we write a possibly secret value, everything that

might reach the receiver
11 // becomes possibly secret
12 for (TypeCursor cursor: put�eld.getStack().upToSlot(rec))
13 if (reach.stackStack(cursor. getSlotPosition () , rec) &&
14 ! reachability .get() .stackIsImmutableWrt(cursor, put�eld))
15 bdd.andWith(domain.onlyIf(
16 domain.codeStackAtTheEndOf(cursor, put�eld),
17 domain.codeStackAtTheBeginningOf(cursor,

put�eld), codeValue));
18 else
19 bdd.andWith(domain.i�(
20 domain.codeStackAtTheEndOf(cursor, put�eld),
21 domain.codeStackAtTheBeginningOf(
22 cursor, put�eld))) ;
23
24 for (TypeCursor cursor: put�eld.getLocals())
25 if (reach.localStack(cursor. getSlotPosition () , rec) &&
26 ! reachability .get() .localIsImmutableWrt(cursor, put�eld))
27 bdd.andWith(domain.onlyIf(
28 domain.codeLocalAtTheEndOf(cursor, put�eld),
29 domain.codeLocalAtTheBeginningOf(cursor,

put�eld), codeValue));
30 else
31 bdd.andWith(domain.i�(
32 domain.codeLocalAtTheEndOf(cursor, put�eld),
33 domain.codeLocalAtTheBeginningOf(cursor,

put�eld)));
34
35 return domain.mk(bdd);
36 }

140 10 Implementation

10.3 GuardedBy

The GuardedByChecker uses the result of the DefiniteLockedExpAnalyser,
that is a ConstraintAnalyser. As explained in Section 9.2.3, it builds a con-
straint graph and then solves it. As examples, we consider below the arc con-
struction for the MONITORENTER and MONITOREXIT bytecodes, the interesting
ones.

When entering a synchronized block, all de�nite aliases of the object being
locked are inserted in the set of de�nitely locked expressions:

1 private boolean buildArcsForMONITORENTER(Bytecode �rst,
Bytecode second) {

2 if (�rst instanceof MONITORENTER) {
3 // all aliases of the receiver becomes locked
4 MONITORENTER monitorenter = (MONITORENTER) �rst;
5 int rec = monitorenter.getDereferenced();
6 BitSet<Alias> added = getConstraint().createEmptySet();
7 for (Alias alias : expAliasing.get() .at(monitorenter).stack(rec))
8 added.add(alias);
9
10 De�niteAliasingInformation alias =

aliasing .get() .at(monitorenter);
11 for (TypeCursor local: monitorenter.getLocals())
12 if (alias . localStack(local . getSlotPosition () , rec))
13 added.add(Local.mk(local.getSlotPosition(),

local .getType(), getProgram()));
14
15 getConstraint().arc(new UnionArc<Alias>(position(�rst),

getConstraint().constant(added), position(second)));
16
17 return true;
18 }
19 else
20 return false;
21 }

When exiting a synchronized block, all expressions having type compatible
with the locked object are removed from the set:

1 private boolean buildArcsForMONITOREXIT(Bytecode �rst,
Bytecode second) {

2 if (�rst instanceof MONITOREXIT) {
3 �nal MONITOREXIT monitorexit = (MONITOREXIT) �rst;
4
5 getConstraint().arc(new Arc<Alias>(position(�rst),

position(second)) {
6

10.3 GuardedBy 141

7 @Override
8 protected BitSet<Alias> pass(BitSet<Alias> set) {
9 BitSet<Alias> result = getConstraint().createEmptySet();
10 ReferenceType unlockedType = monitorexit.getType();
11 int rec = monitorexit.getDereferenced();
12 PossibleReachabilityInformation reach =

reachability .get() .at(monitorexit);
13
14 // we determine which aliases keep being de�nitely locked

after this instruction
15 for (Alias alias : set) {
16 Type aliasType = alias.getType();
17 if (!aliasType.possiblySubtypeOf(unlockedType)
18 && !unlockedType.possiblySubtypeOf(aliasType))
19 // the static type information is enough to conclude

that the alias is not unlocked
20 result .add(alias) ;
21 else if (alias instanceof Local) {
22 int l = ((Local) alias) .getLocal();
23 if (! reach.stackLocal(rec, l) ||

!reach.localStack(l , rec))
24 result .add(alias) ;
25 }
26 else if (alias instanceof StaticFieldAlias) {
27 if (! reach. stackStatic(rec) ||

!reach. staticStack(rec))
28 result .add(alias) ;
29 }
30 else if (alias instanceof FieldOfLocal) {
31 int l = ((FieldOfLocal) alias) .getLocal();
32 if (! reach.localStack(l , rec))
33 result .add(alias) ;
34 }
35 else if (alias instanceof FieldOf) {
36 int l = startingLocal((FieldOf) alias) ;
37 if (l >= 0 && !reach.localStack(l, rec))
38 result .add(alias) ;
39 }
40 else if (alias instanceof ArrayLocalAlias) {
41 int l = ((ArrayLocalAlias) alias) .getArray();
42 if (! reach.localStack(l , rec))
43 result .add(alias) ;
44 }
45 else if (alias instanceof ArrayLocalLocal) {
46 int l = ((ArrayLocalLocal) alias).getArray();

142 10 Implementation

47 if (! reach.localStack(l , rec))
48 result .add(alias) ;
49 }
50 }
51
52 return result;
53 }
54
55 /∗∗
56 ∗ Goes back to the starting local of a chain of �eld

dereferences , if any.
57 ∗
58 ∗ @param alias the chain of �eld dereferences
59 ∗ @return the local , or −1 if no such local exists
60 ∗/
61
62 private int startingLocal(FieldOf alias) {
63 Alias base = alias .getBase();
64 if (base instanceof FieldOfLocal)
65 return ((FieldOfLocal) base).getLocal();
66 else if (base instanceof FieldOf)
67 return startingLocal((FieldOf) base);
68 else
69 return −1;
70 }
71 });
72
73 return true;
74 }
75 else
76 return false;
77 }

11

Conclusion

We have developed a new multi-threaded BDD library in Java. Several threads
can share the same unique table of nodes and caches. This reduces the memory
footprint and avoids repeating computations in di�erent threads. Moreover,
we implemented distinctive features like a representation for Boolean func-
tions that keeps equivalent variables separate from the BDD, and a factory
that checks the integrity of the node table, either on user's demand or on
every access. Its use in our program analyzer Julia led to the reduction of
the memory occupied by BDD nodes when performing analyses for several
injection types in parallel.

We have formalized an object-sensitive notion of taintedness that can be
applied to reference types. We have built a new, �ow-, context- and �eld-
sensitive static taintedness analysis based on this notion, proved it sound,
implemented it in the Julia analyzer, and evaluated it. It scales to real code
and gives useful results. As far as we know, this is the �rst object-sensitive
taintedness analysis. As usual in static analysis, soundness is jeopardized by
the use of re�ection or non-standard class loaders. However, soundness is still
relevant since it increases the con�dence on the results, up to those features.
Julia deals with the full bytecode generated by Java 8, including the new
invokedynamic.

The novelty of the approach stems from Def. 8.8 of a property of refer-
ence types as a reachability property, whose relevance goes beyond the case
of taintedness analysis. Here, we mean reachability of data from a memory
reference, which is not reachability of abstract states through execution paths
as in [90]. Def. 8.8 results in an object-sensitive analysis: the taintedness of
an object determines that of its �elds; a drawback is that a sound analysis
must consider side-e�ects at putfield and call. The analysis becomes then
�eld sensitive through an oracle-based approach (Sec. 8.3.1), already used for
nullness analysis [102]. Hence the oracle is a general technique for building
sound �eld-sensitive static analyses.

144 11 Conclusion

The extension of this work to implicit and hidden �ows would provide a
stronger guarantee against injections of tainted information into a set of sinks.
The problem is complex: implicit �ows in Java are not just due to condition-
als but also to exception branches and dynamic resolution of method calls.
The risk is that a sound analysis w.r.t. implicit �ows would end up being
very conservative and imprecise. Declassi�cation might be helpful here, but
its meaning for reference types (not just primitive values) must be studied.
The extension of this work to the analysis of JSP, that are non-Java code
mixed and interacting with Java code, currently not analyzed by Julia (only
partially by concurrent tools), would avoid missed alarms, as Sec. 8.4 shows.
It is also important to explain the warnings to the users, with an execution
trace where data �ows from sources into sinks. Fortify SCA already provides
some support in that direction.

A locking discipline makes concurrent programming manageable. Used
properly, it guarantees the lack of data races. Used improperly (with vague
de�nitions or no mechanical checking), it is error-prone at best and misleading
at worst.

Current de�nitions of locking disciplines and their implementations suf-
fer from many ambiguities; furthermore, they often specify name protection
rather than value protection, even though name protection does not in general
provide a guarantee of freedom from data races. These ambiguities and un-
soundness are a real issue in practice. We have formalized and proved a value-
protection semantics, eliminating both the ambiguities and the unsoundness.
Our locking discipline formalism is a common language for discussing data
races and can also be used to express value protection. The leap from name
to value semantics may be desirable in other domains as well.

Our case studies of real-world code show that programmers often make
mistakes (precision 19�100%, recall 6�84%): they write locking-discipline spec-
i�cations that their programs do not follow, and they fail to write ones that
their programs do follow. Programmers seem to often assume an unsound
name-protection semantics for the locking-discipline speci�cations. We have
shown that the value-protection semantics is more restrictive and possibly
harder to use; but the more accurate documentation and the reduction in
bugs should be worth it.

References

1. The Akka Framework. http://akka.io.
2. Android. https://developer.android.com.
3. The Apache Hadoop Project. http://hadoop.apache.org/.
4. The bitcoinj library. http://bitcoinj.github.io.
5. BuDDy. http://buddy.sourceforge.net.
6. CAL. http://embedded.eecs.berkeley.edu/Research/cal_bdd.
7. The Checker Framework. http://types.cs.washington.edu/

checker-framework/.
8. CUDD. http://vlsi.colorado.edu/~fabio/CUDD.
9. ITC99 Benchmark Circuits. http://www.cerc.utexas.edu/

itc99-benchmarks/bench.html.
10. Java Modeling Language. http://www.eecs.ucf.edu/~leavens/JML/

jmlrefman/.
11. The JavaBDD Library. http://javabdd.sourceforge.net.
12. JDD. http://javaddlib.sourceforge.net/jdd.
13. The Julia Static Analyzer. http://www.juliasoft.com.
14. SableJBDD. http://www.sable.mcgill.ca/~fqian/SableJBDD.
15. Soft Error. https://en.wikipedia.org/wiki/Soft_error.
16. Spring. http://spring.io.
17. M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race

detection for java. ACM Trans. Program. Lang. Syst., 28(2):207�255, 2006.
18. A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and inferring

local non-aliasing. In Cytron and Gupta [42], pages 129�140.
19. Apache. Tomcat. http://tomcat.apache.org.
20. Apache. Velocity. http://velocity.apache.org.
21. Apache. Zookeeper. https://zookeeper.apache.org.
22. D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan. Automated Testing

for SQL Injection Vulnerabilities: An Input Mutation Approach. In ISSTA,
pages 259�269, San Jose, CA, USA, 2014.

23. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L. Traon,
D. Octeau, and P. McDaniel. Flowdroid: precise context, �ow, �eld, object-
sensitive and lifecycle-aware taint analysis for android apps. In M. F. P. O'Boyle
and K. Pingali, editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI '14, Edinburgh, United Kingdom - June 09
- 11, 2014, page 29. ACM, 2014.

http://akka.io
https://developer.android.com
http://hadoop.apache.org/
http://bitcoinj.github.io
http://buddy.sourceforge.net
http://embedded.eecs.berkeley.edu/Research/cal_bdd
http://types.cs.washington.edu/checker-framework/
http://types.cs.washington.edu/checker-framework/
http://vlsi.colorado.edu/~fabio/CUDD
http://www.cerc.utexas.edu/itc99-benchmarks/bench.html
http://www.cerc.utexas.edu/itc99-benchmarks/bench.html
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/
http://javabdd.sourceforge.net
http://javaddlib.sourceforge.net/jdd
http://www.juliasoft.com
http://www.sable.mcgill.ca/~fqian/SableJBDD
https://en.wikipedia.org/wiki/Soft_error
http://spring.io
http://tomcat.apache.org
http://velocity.apache.org
https://zookeeper.apache.org

146 References

24. A. Baddeley. Working memory: looking back and looking forward. Nat Rev
Neurosci, 4(10):829�839, Oct 2003.

25. R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in robdd-
based implementations of pos. In A. M. Haeberer, editor, Algebraic Methodol-
ogy and Software Technology, 7th International Conference, AMAST '98, Ama-
zonia, Brasil, January 4-8, 1999, Proceedings, volume 1548 of Lecture Notes in
Computer Science, pages 471�485. Springer, 1998.

26. G. Barthe, D. Pichardie, and T. Rezk. A certi�ed lightweight non-
interference java bytecode veri�er. Mathematical Structures in Computer Sci-
ence, 23(5):1032�1081, 2013.

27. G. Barthe, T. Rezk, and A. Basu. Security types preserving compilation.
Computer Languages, Systems & Structures, 33(2):35�59, 2007.

28. D. Bogdanas and G. Rosu. K-Java: A complete semantics of Java. In ACM
SIGPLAN-SIGACT POPL, pages 445�456, Mumbai, India, 2015.

29. F. Bossi. Coral: a modern c++ library for the manipulation of boolean func-
tions. http://www.cs.unipr.it/Informatica/Tesi/Fabio_Bossi_20090225.
pdf.

30. C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for safe programming:
preventing data races and deadlocks. In M. Ibrahim and S. Matsuoka, edi-
tors, Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2002, Seattle,
Washington, USA, November 4-8, 2002., pages 211�230. ACM, 2002.

31. C. Boyapati and M. C. Rinard. A parameterized type system for race-free java
programs. In L. M. Northrop and J. M. Vlissides, editors, Proceedings of the
2001 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA 2001, Tampa, Florida, USA, October
14-18, 2001., pages 56�69. ACM, 2001.

32. K. S. Brace, R. L. Rudell, and R. E. Bryant. E�cient implementation of a
BDD package. In DAC, pages 40�45, 1990.

33. R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677�691, 1986.

34. J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more e�-
ciently in symbolic model checking. In DAC, pages 403�407, 1991.

35. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 10�20 states and beyond. In Proceedings of the Fifth
Annual Symposium on Logic in Computer Science (LICS '90), Philadelphia,
Pennsylvania, USA, June 4-7, 1990, pages 428�439. IEEE Computer Society,
1990.

36. D. Clark, C. Hankin, and S. Hunt. Information �ow for algol-like languages.
Computer Languages, 28(1):3�28, 2002.

37. D. G. Clarke, J. Potter, and J. Noble. Ownership types for �exible alias pro-
tection. In B. N. Freeman-Benson and C. Chambers, editors, Proceedings of
the 1998 ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages & Applications (OOPSLA '98), Vancouver, British Columbia,
Canada, October 18-22, 1998., pages 48�64. ACM, 1998.

38. J. C. Corbett, M. B. Dwyer, J. Hatcli�, and Robby. Expressing checkable
properties of dynamic systems: the bandera speci�cation language. STTT,
4(1):34�56, 2002.

39. P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model
for static analysis of programs by construction or approximation of �xpoints.

http://www.cs.unipr.it/Informatica/Tesi/Fabio_Bossi_20090225.pdf
http://www.cs.unipr.it/Informatica/Tesi/Fabio_Bossi_20090225.pdf

References 147

In R. M. Graham, M. A. Harrison, and R. Sethi, editors, Conference Record
of the Fourth ACM Symposium on Principles of Programming Languages, Los
Angeles, California, USA, January 1977, pages 238�252. ACM, 1977.

40. N. Cowan. Chapter 20 what are the di�erences between long-term, short-term,
and working memory? In V. F. C. Wayne S. Sossin, Jean-Claude Lacaille and
S. Belleville, editors, Essence of Memory, volume 169 of Progress in Brain
Research, pages 323 � 338. Elsevier, 2008.

41. D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universes for race safety.
In VAMP 2007: Veri�cation and Analysis of Multi-threaded Java-like Programs
(VAMP), pages 20�51, Lisbon, Portugal, Sept. 2007.

42. R. Cytron and R. Gupta, editors. Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation 2003, San
Diego, California, USA, June 9-11, 2003. ACM, 2003.

43. W. Dietl, S. Drossopoulou, and P. Müller. Generic universe types. In E. Ernst,
editor, ECOOP 2007 - Object-Oriented Programming, 21st European Confer-
ence, Berlin, Germany, July 30 - August 3, 2007, Proceedings, volume 4609 of
Lecture Notes in Computer Science, pages 28�53. Springer, 2007.

44. J. C. Doshi, M. Christian, and B. H. Trivedi. SQL FILTER - SQL injec-
tion prevention and logging using dynamic network �lter. In J. L. Mauri,
S. M. Thampi, D. B. Rawat, and D. Jin, editors, Security in Computing and
Communications - Second International Symposium, SSCC 2014, Delhi, In-
dia, September 24-27, 2014. Proceedings, volume 467 of Communications in
Computer and Information Science, pages 400�406. Springer, 2014.

45. R. Drechsler. Verifying integrity of decision diagrams. In W. D. Ehrenberger,
editor, Computer Safety, Reliability and Security, 17th International Confer-
ence, SAFECOMP'98, Heidelberg, Germany, October 5-7, 1998, Proceedings,
volume 1516 of Lecture Notes in Computer Science, pages 380�389. Springer,
1998.

46. Eclipse. The Jetty project. http://eclipse.org/jetty.
47. M. D. Ernst, A. Lovato, D. Macedonio, C. Spiridon, and F. Spoto. Boolean

formulas for the static identi�cation of injection attacks in java. In M. Davis,
A. Fehnker, A. McIver, and A. Voronkov, editors, Logic for Programming,
Arti�cial Intelligence, and Reasoning - 20th International Conference, LPAR-
20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of Lecture
Notes in Computer Science, pages 130�145. Springer, 2015.

48. M. D. Ernst, A. Lovato, D. Macedonio, F. Spoto, and J. Thaine. Locking dis-
cipline inference and checking. In L. K. Dillon, W. Visser, and L. Williams,
editors, Proceedings of the 38th International Conference on Software Engi-
neering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 1133�1144.
ACM, 2016.

49. C. Flanagan and S. N. Freund. Type-based race detection for java. In M. S.
Lam, editor, Proceedings of the 2000 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), Vancouver, Britith
Columbia, Canada, June 18-21, 2000, pages 219�232. ACM, 2000.

50. C. Flanagan and S. N. Freund. Type inference against races. In R. Gi-
acobazzi, editor, Static Analysis, 11th International Symposium, SAS 2004,
Verona, Italy, August 26-28, 2004, Proceedings, volume 3148 of Lecture Notes
in Computer Science, pages 116�132. Springer, 2004.

51. C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular veri�cation for
shared-memory programs. In D. L. Métayer, editor, Programming Languages

http://eclipse.org/jetty

148 References

and Systems, 11th European Symposium on Programming, ESOP 2002, held
as Part of the Joint European Conference on Theory and Practice of Software,
ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings, volume 2305 of
Lecture Notes in Computer Science, pages 262�277. Springer, 2002.

52. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for java. In J. Knoop and L. J. Hendren,
editors, Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Berlin, Germany, June 17-19,
2002, pages 234�245. ACM, 2002.

53. C. Flanagan and S. Qadeer. A type and e�ect system for atomicity. In Cytron
and Gupta [42], pages 338�349.

54. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, Reading, MA, 1995.

55. S. Genaim, R. Giacobazzi, and I. Mastroeni. Modeling secure information �ow
with boolean functions. In P. Ryan, editor, WITS'04, April 2004.

56. S. Genaim and F. Spoto. Information �ow analysis for java bytecode. In
R. Cousot, editor, Veri�cation, Model Checking, and Abstract Interpretation,
6th International Conference, VMCAI 2005, Paris, France, January 17-19,
2005, Proceedings, volume 3385 of Lecture Notes in Computer Science, pages
346�362. Springer, 2005.

57. S. Genaim and F. Spoto. Constancy analysis. In M. Huisman, editor, FTfJP,
Paphos, Cyprus, July 2008. Radboud University.

58. P. Gerakios, N. Papaspyrou, and K. F. Sagonas. A type and e�ect system for
deadlock avoidance in low-level languages. In S. Weirich and D. Dreyer, editors,
Proceedings of TLDI 2011: 2011 ACM SIGPLAN International Workshop on
Types in Languages Design and Implementation, Austin, TX, USA, January
25, 2011, pages 15�28. ACM, 2011.

59. B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java
Concurrency in Practice. Addison-Wesley, 2006.

60. Google. Guava: Google Core Libraries for Java 1.6+. https://code.google.
com/p/guava-libraries.

61. C. S. Gordon, M. D. Ernst, and D. Grossman. Static lock capabilities for dead-
lock freedom. In B. C. Pierce, editor, Proceedings of TLDI 2012: The Seventh
ACM SIGPLAN Workshop on Types in Languages Design and Implementa-
tion, Philadelphia, PA, USA, Saturday, January 28, 2012, pages 67�78. ACM,
2012.

62. J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java Language
Speci�cation. Addison Wesley, Boston, MA, Java SE 8 edition, 2014.

63. J. Gray. Why do computers stop and what can be done about it? In Symposium
on Reliability in Distributed Software and Database Systems, pages 3�12, 1986.

64. D. Grossman. Type-safe multithreading in cyclone. In Z. Shao and P. Lee,
editors, Proceedings of TLDI'03: 2003 ACM SIGPLAN International Workshop
on Types in Languages Design and Implementation, New Orleans, Louisiana,
USA, January 18, 2003, pages 13�25. ACM, 2003.

65. J. Huang, Q. Luo, and G. Rosu. Gpredict: Generic predictive concurrency anal-
ysis. In A. Bertolino, G. Canfora, and S. G. Elbaum, editors, 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy,
May 16-24, 2015, Volume 1, pages 847�857. IEEE Computer Society, 2015.

66. S. T. Iqbal and E. Horvitz. Disruption and recovery of computing tasks: �eld
study, analysis, and directions. In M. B. Rosson and D. J. Gilmore, editors,

https://code.google.com/p/guava-libraries
https://code.google.com/p/guava-libraries

References 149

Proceedings of the 2007 Conference on Human Factors in Computing Systems,
CHI 2007, San Jose, California, USA, April 28 - May 3, 2007, pages 677�686.
ACM, 2007.

67. Y. Jang and J. Choi. Detecting SQL injection attacks using query result size.
Computers and Security, 44:104�118, 2014.

68. N. Kobayashi and K. Shirane. Type-based information analysis for low-level
languages. In The Third Asian Workshop on Programming Languages and Sys-
tems, APLAS'02, Shanghai Jiao Tong University, Shanghai, China, November
29 - December 1, 2002, Proceedings, pages 302�316, 2002.

69. D. G. Kumar and M. Chatterjee. MAC based solution for SQL injection. J.
Computer Virology and Hacking Techniques, 11(1):1�7, 2015.

70. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers, 28(9):690�691, 1979.

71. P. Laud. Semantics and program analysis of computationally secure informa-
tion �ow. In D. Sands, editor, Programming Languages and Systems, 10th
European Symposium on Programming, ESOP 2001 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2001 Gen-
ova, Italy, April 2-6, 2001, Proceedings, volume 2028 of Lecture Notes in Com-
puter Science, pages 77�91. Springer, 2001.

72. T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine
Speci�cation, Java SE 7 Edition. Addison-Wesley Professional, 1st edition,
2013.

73. L. Liu, J. Xu, M. Li, and J. Yang. A dynamic SQL injection vulnerability test
case generation model based on the multiple phases detection approach. In 37th
Annual IEEE Computer Software and Applications Conference, COMPSAC
2013, Kyoto, Japan, July 22-26, 2013, pages 256�261. IEEE Computer Society,
2013.

74. B. Long and B. W. Long. Formal speci�cation of Java concurrency to assist
software veri�cation. In IPDPS, page 136, Nice, France, April 2003.

75. A. Lovato, D. Macedonio, and F. Spoto. A thread-safe library for binary
decision diagrams. In D. Giannakopoulou and G. Salaün, editors, Software
Engineering and Formal Methods - 12th International Conference, SEFM 2014,
Grenoble, France, September 1-5, 2014. Proceedings, volume 8702 of Lecture
Notes in Computer Science, pages 35�49. Springer, 2014.

76. Y. Lu, J. Potter, and J. Xue. Structural lock correlation with ownership types.
In M. Felleisen and P. Gardner, editors, Programming Languages and Systems
- 22nd European Symposium on Programming, ESOP 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7792 of Lecture
Notes in Computer Science, pages 391�410. Springer, 2013.

77. A. Makiou, Y. Begriche, and A. Serhrouchni. Improving web application �re-
walls to detect advanced SQL injection attacks. In 10th International Con-
ference on Information Assurance and Security, IAS 2014, Okinawa, Japan,
November 28-30, 2014, pages 35�40. IEEE, 2014.

78. C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design:
OBDD - Foundations and Applications. Springer, 1998.

79. MITRE/SANS. Top 25 Most Dangerous Software Errors. http://cwe.mitre.
org/top25, September 2011.

80. M. Mizuno. A least �xed point approach to inter-procedural information �ow
control. In NCSC, pages 558�570, 1989.

http://cwe.mitre.org/top25
http://cwe.mitre.org/top25

150 References

81. M. Naik, A. Aiken, and J. Whaley. E�ective static race detection for java. In
M. I. Schwartzbach and T. Ball, editors, Proceedings of the ACM SIGPLAN
2006 Conference on Programming Language Design and Implementation, Ot-
tawa, Ontario, Canada, June 11-14, 2006, pages 308�319. ACM, 2006.

82. NASA. Java PathFinder. http://babelfish.arc.nasa.gov/trac/jpf.
83. D. Nikolic and F. Spoto. De�nite expression aliasing analysis for Java bytecode.

In 9th International Colloquium on Theoretical Aspects of Computing (ICTAC
2012), pages 74�89, Bangalore, India, September 2012.

84. D. Nikolic and F. Spoto. De�nite expression aliasing analysis for java bytecode.
In A. Roychoudhury and M. D'Souza, editors, Theoretical Aspects of Comput-
ing - ICTAC 2012 - 9th International Colloquium, Bangalore, India, September
24-27, 2012. Proceedings, volume 7521 of Lecture Notes in Computer Science,
pages 74�89. Springer, 2012.

85. D. Nikolic and F. Spoto. Reachability analysis of program variables. In
B. Gramlich, D. Miller, and U. Sattler, editors, Automated Reasoning - 6th
International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29,
2012. Proceedings, volume 7364 of Lecture Notes in Computer Science, pages
423�438. Springer, 2012.

86. OWASP. Benchmark. https://www.owasp.org/index.php/Benchmark.
Checked on Oct 13, 2016.

87. J. Palsberg and M. I. Schwartzbach. Object-oriented type inference. In
A. Paepcke, editor, Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA'91), Sixth Annual Conference, Phoenix,
Arizona, USA, October 6-11, 1991, Proceedings., pages 146�161. ACM, 1991.

88. É. Payet and F. Spoto. Magic-sets transformation for the analysis of java byte-
code. In H. R. Nielson and G. Filé, editors, Static Analysis, 14th International
Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007, Pro-
ceedings, volume 4634 of Lecture Notes in Computer Science, pages 452�467.
Springer, 2007.

89. V. Pech. Concurrency is hot, try the JCIP annotations. http://jetbrains.

dzone.com/tips/concurrency-hot-try-jcip, February 2010.
90. T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural data�ow anal-

ysis via graph reachability. In R. K. Cytron and P. Lee, editors, Conference
Record of POPL'95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Francisco, California, USA, January 23-25,
1995, pages 49�61. ACM Press, 1995.

91. E. Rodríguez, M. B. Dwyer, C. Flanagan, J. Hatcli�, G. T. Leavens, and Robby.
Extending JML for modular speci�cation and veri�cation of multi-threaded
programs. In A. P. Black, editor, ECOOP 2005 - Object-Oriented Program-
ming, 19th European Conference, Glasgow, UK, July 25-29, 2005, Proceedings,
volume 3586 of Lecture Notes in Computer Science, pages 551�576. Springer,
2005.

92. J. Rose, N. Swamy, and M. Hicks. Dynamic inference of polymorphic lock
types. Sci. Comput. Program., 58(3):366�383, 2005.

93. A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE
Journal on Selected Areas in Communications, 21(1):5�19, 2003.

94. A. Sabelfeld and D. Sands. A per model of secure information �ow in sequential
programs. Higher-Order and Symbolic Computation, 14(1):59�91, 2001.

95. G. Salton. Automatic Information Organization and Retrieval. McGraw-Hill,
1968.

http://babelfish.arc.nasa.gov/trac/jpf
https://www.owasp.org/index.php/Benchmark
http://jetbrains.dzone.com/tips/concurrency-hot-try-jcip
http://jetbrains.dzone.com/tips/concurrency-hot-try-jcip

References 151

96. S. Secci and F. Spoto. Pair-sharing analysis of object-oriented programs. In
C. Hankin and I. Siveroni, editors, Static Analysis, 12th International Sympo-
sium, SAS 2005, London, UK, September 7-9, 2005, Proceedings, volume 3672
of Lecture Notes in Computer Science, pages 320�335. Springer, 2005.

97. H. Shahriar and M. Zulkernine. Information-theoretic detection of SQL in-
jection attacks. In 14th International IEEE Symposium on High-Assurance
Systems Engineering, HASE 2012, Omaha, NE, USA, October 25-27, 2012,
pages 40�47. IEEE Computer Society, 2012.

98. L. K. Shar and H. B. K. Tan. Defeating SQL injection. IEEE Computer,
46(3):69�77, 2013.

99. N. M. Sheykhkanloo. Employing neural networks for the detection of SQL
injection attack. In R. Poet and M. Rajarajan, editors, Proceedings of the 7th
International Conference on Security of Information and Networks, Glasgow,
Scotland, UK, September 9-11, 2014, page 318. ACM, 2014.

100. B. Simic and J. Walden. Eliminating SQL injection and cross site scripting
using aspect oriented programming. In J. Jürjens, B. Livshits, and R. Scan-
dariato, editors, Engineering Secure Software and Systems - 5th International
Symposium, ESSoS 2013, Paris, France, February 27 - March 1, 2013. Pro-
ceedings, volume 7781 of Lecture Notes in Computer Science, pages 213�228.
Springer, 2013.

101. C. Skalka and S. F. Smith. Static enforcement of security with types. In
M. Odersky and P. Wadler, editors, Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP '00), Montreal,
Canada, September 18-21, 2000., pages 34�45. ACM, 2000.

102. F. Spoto. Nullness analysis in boolean form. In A. Cerone and S. Gruner, edi-
tors, Sixth IEEE International Conference on Software Engineering and Formal
Methods, SEFM 2008, Cape Town, South Africa, 10-14 November 2008, pages
21�30. IEEE Computer Society, 2008.

103. F. Spoto and M. D. Ernst. Inference of �eld initialization. In R. N. Taylor,
H. C. Gall, and N. Medvidovic, editors, Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA,
May 21-28, 2011, pages 231�240. ACM, 2011.

104. F. Spoto and T. P. Jensen. Class analyses as abstract interpretations of trace
semantics. ACM Trans. Prog. Lang. Syst., 25(5):578�630, 2003.

105. N. Sterling. WARLOCK - A static data race analysis tool. In Proceedings of
the Usenix Winter 1993 Technical Conference, San Diego, California, USA,
January 1993, pages 97�106. USENIX Association, 1993.

106. F. Tip and J. Palsberg. Scalable propagation-based call graph construction
algorithms. In M. B. Rosson and D. Lea, editors, Proceedings of the 2000 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA 2000), Minneapolis, Minnesota, USA, October 15-19,
2000., pages 281�293. ACM, 2000.

107. O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ: ef-
fective taint analysis of web applications. In M. Hind and A. Diwan, editors,
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21,
2009, pages 87�97. ACM, 2009.

108. T. van Dijk and J. van de Pol. Sylvan: Multi-core decision diagrams. In C. Baier
and C. Tinelli, editors, Tools and Algorithms for the Construction and Analysis

152 References

of Systems - 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9035 of Lecture Notes in
Computer Science, pages 677�691. Springer, 2015.

109. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure
�ow analysis. Journal of Computer Security, 4(2/3):167�188, 1996.

110. T. Wu, J. Pan, C. Chen, and C. Lin. Towards SQL injection attacks detection
mechanism using parse tree. In H. Sun, C. Yang, C. Lin, J. Pan, V. Snásel,
and A. Abraham, editors, Genetic and Evolutionary Computing - Proceeding of
the Eighth International Conference on Genetic and Evolutionary Computing,
ICGEC 2014, October 18-20, 2014, Nanchang, China, volume 329 of Advances
in Intelligent Systems and Computing, pages 371�380. Springer, 2014.

111. Y. Zhao and J. Boyland. Assuring lock usage in multithreaded programs with
fractional permissions. In 20th Australian Software Engineering Conference
(ASWEC 2009), 14-17 April 2009, Gold Cost, Australia, pages 277�286. IEEE
Computer Society, 2009.

	Introduction
	BDD Concurrent Library
	Identification of Injection Vulnerabilities
	Locking Discipline Inference

	Background
	Boolean Functions
	Shannon Expansion
	Representations of Boolean Functions

	Concurrency in Java
	The Java Memory Model

	Abstract Interpretation

	State of the Art
	Binary Decision Diagrams
	Existing Implementations
	The Concurrent Library Sylvan

	Identification of Injection Vulnerabilities
	Locking Discipline Inference
	Static and Dynamic Analysis

	Part I Binary Decision Diagrams
	Boolean Function Manipulation with BDDs
	Binary Decision Diagrams
	Ordered Binary Decision Diagrams
	Reduced OBDDs

	General Implementation Features
	Our new Thread-Safe Package
	Library Structure
	Internal Garbage Collection
	Operation Caches

	Concurrency
	Synchronizing with Garbage Collection
	Synchronizing with Resize
	Synchronizing Hash Table Updating
	Synchronizing Caches

	Experiments and Comparisons
	Circuits
	Combinational Circuits
	Sequential Circuits

	N-queens
	Parallel Problems
	Knight's Tour
	Transition Relation Construction

	ER representation
	Operations
	Implementation
	Experiments
	N-queens
	Julia

	Integrity Check
	Usage
	Implementation
	Cyclic Redundancy Check

	Experiments

	Part II Program Analysis
	Identification of Injection Vulnerabilities
	Example
	Denotational Semantics of Java Bytecode
	Taintedness Analysis
	Making the Analysis Field-Sensitive

	Experiments
	The OWASP Cybersecurity Benchmark
	Analysis of the OWASP Benchmark with Julia
	Results

	Multithreaded Experiments

	Locking Discipline Inference
	Locking Discipline Semantics
	Dining Philosophers Example
	Design Space for Locking Discipline Semantics
	Name Protection and Value Protection
	Definition of @GuardedBy
	Definition of @Holding

	Locking Discipline Inference
	Creation Points Analysis
	Definite Aliasing Analysis
	Definite Locked Expressions Analysis
	Implementation
	Inference of the Locking Discipline
	Calls to Library Methods

	Experiments
	Subject Programs and Methodology

	Implementation
	The Julia Analyzer
	Injection
	GuardedBy

	Conclusion
	References

