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Abstract 

 

During the last decade the purchase of green food within a sustainable consumption 

context has gained momentum. In particular, consumers’ preference toward organic food 

represents a form of behavior that can both promote the preservation of the environment 

and contribute to the transition to a more sustainable society. 

Certainly, the choice for a specific type of food is based on personal beliefs, but it is 

also influenced by the social dimension. In relation to this latter aspect, a current issue 

regarding the understanding and prediction of green consumer behavior is strongly related 

with the investigation of the effect exercised by group norms and collective consumption 

(Peattie, 2010). In line with this premise, the Doctoral project aimed to investigate the 

emergence of sustainable consumption behaviors by considering both the individual and 

social aspects. Specifically, the project examined the complex relationship that emerges 

from the dynamic interaction of individual behaviors and social norms in the specific 

context of organic food choice. Since systematic experimentation over time with social 

influence is difficult, the research employed virtual simulations: to this purpose, an 

interdisciplinary approach between psychological methods and computer sciences was 

adopted. 

The first phase of the Doctoral project examined those psychological theories able to 

explain and predict consumers’ intention to buy organic food products. Accordingly, the 

work by Scalco, Noventa, Sartori and Ceschi (2017) showed by means of a meta-

analytical structural equation model the robustness of the theory of planned behavior 

(TPB; Ajzen, 1991) in this specific context. Therefore, the TPB was assumed as the main 

theoretical framework of the project. 

The second phase addressed the potential conjunctions between psychological 

notions and computer simulations. Particularly, agent-based modeling represents a 

method of investigation of social phenomena that blends the knowledge of social sciences 

with the advantages of virtual simulations. Within this context, the development of 

algorithms able to emulate a realistic reasoning process for autonomous virtual agents is 

one of the most fragile aspects. The paper by Scalco, Ceschi, and Sartori (2017) 

specifically dealt with the translation of the theory of planned behavior into a 

computational form: several issues are discussed and some solutions are offered when 



 

available with the hope to shorten the distance between psychological research and the 

methods provided by computer sciences. 

Finally, starting from the findings provided by the first work and the theoretical 

examination conducted in the second paper, an agent-based model was built to investigate 

how social interactions in relation to organic food products can foster/hinder individual 

buying behavior among customers of grocery stores with different food arrangements. 

Virtual consumers in the simulation replicate a decision-making process grounded on the 

theory of planned behavior: each agent decides to buy conventional/green food on the 

base of its individual preferences and the social influence exercised by others. The agent-

based model showed the effects of social influence on individual behavior: a part of the 

agents would like to buy green products following their individual preferences, however, 

the common norm hampers this intention. Consequently, these agents decide to buy 

regular food instead of green one triggering in this way a locked-in vicious cycle. More 

interesting, the simulation demonstrated that different arrangements of products can 

significantly affect the sales of organic food: nonetheless, the increase of sales of organic 

food also depends on the throng of customers inside the store. 

In the end, the research improves the understanding regarding the effects of social 

norms on individual intention to purchase green food. In addition, it attempts to suggest 

how to foster organic food purchase starting from the results obtained from the 

simulation. As a further consideration, the Doctoral thesis tried to demonstrate the 

advantages of the introduction of agent-based modeling as a valuable method for 

psychological research in relation to the investigation of social phenomena and consumer 

behavior. 
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Now the trees are almost green, 

but will they still be seen 

when time and tide have been. 

Boy into your passing hands, 

please, don't destroy these lands, 

don't make them desert sands. 

  

Soon I hope that I will find 

a seed within my mind 

that won't disgrace my kind. 

 

The Yardbirds, The Shapes of Things (1966) 

 

 

 

 

 

 

 

  



 

  



 

 

1 Introduction 

Environmental sustainability represents a crucial factor to achieve a society able to 

minimize its impact on the ecosystem where it is inserted, lives and grows. This goal is 

currently ranked at the highest levels by the European Union (Boggia, Paolotti, & 

Castellini, 2010). As reported by Peattie (2010), the majority of environmental impact 

(70-80%) of domestic consumption is related to three main categories: food and drink, 

housing (e.g. domestic energy use), and transport (included commuting and leisure). In 

particular, in relation to the first category, Tobler, Visschers, and Siegrist (2011) pointed 

out the fact that food represents a considerable environmental issue. This is firstly due to 

its production (e.g. land and energy request, chemicals, greenhouse gas emissions) and 

transportation. However, also its consumption negatively impacts on the environment: in 

fact, as reported by Tukker and Jansen (2006), in Western countries food consumption 

accounts for about 20-30% of the overall environmental impact. Within this context, at 

the beginning of the current Century, the work by Jungbluth, Tietje, and Scholz (2000) 

suggested three strategies from a consumer perspective in order to reduce environmental 

impact: the avoidance of air-transported products, a preference toward organic food, and 

a reduction of meat consumption. After ten years, Thogersen (2010) and Tobler et al.  

(2011) indicated once more these options as the most effective ways to promote 

sustainability in the context of food consumption. 

It is obvious that food represents a basic need that cannot be disregarded. Hence, 

consumers with their daily purchase decisions can significantly impact on current 

environmental issues. Nowadays, the majority of EU citizens (80%) recognizes the 

impact on the environment as an important issue in relation to purchase choices (European 

Commission, 2009). However, the large-scale survey conducted by Tobler et al. (2011) 

showed that they are not fully aware of the environmental impact of food consumption. 

For instance, they tend to overestimate the negative environmental impact of product 

packaging, while they largely underestimate organic food benefits. Hence, currently there 

is an asymmetry between empirical results and consumers’ perception of environmental 

impact of food choice with consumers undervaluing the importance of green food. 

As reported by the Council of European Union, organic production designates a food 

production system aimed to combine best environmental practices with the preservation 

of natural resources and the application of animal welfare standards. In addition, it 
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employs a production method based on natural substances and processes. The 

environmental advantages of organic food products have been remarked over the years in 

several research works. Particularly, some studies employed life-cycle assessment to 

compare the environmental impact caused by organic and conventional food production 

systems (e.g. Boggia, Paolotti, & Castellini, 2010; Litskas, Mamolos, Kalburtji, 

Tsatsarelis, & Kiose-kampasakali, 2010; Longo, Mistretta, Guarino, & Cellura, 2015): 

most of the studies in this sector supports the idea that organic systems can lower the 

environmental impact w.r.t. conventional methods of production. 

As pointed out by Jackson (2005), it is important to understand how we can promote 

sustainable consumption and discourage unsustainable behaviors. Particularly, the need 

for research from a consumer perspective in the organic food sector has been recently 

acknowledged by the report of the European Commission (2016) on agricultural research 

and innovation. Indeed, the consumption of organic food represents a form of behavior 

that can both promote the preservation of environment and lead the transition toward a 

more sustainable society. Therefore, it becomes crucial to investigate such phenomena in 

order to develop policies aimed to encourage consumers to make greener choice daily. 

1.1 Brief overview of organic food market  

The current importance of organic food sector is also proved by its recent worldwide 

economic growth. Today, the largest organic market is represented by the United States, 

followed by Europe with the 38% of the global retail sales. The recent report by Willer 

and Lernoud (2016) indicates an overall increment of the European organic market from 

2014 by approximately 7.6%: the estimated value of this market is appraised to over 26 

billion euros (Heinze, 2016). Particularly, in the European territory, Germany represents 

the major organic market (30%), followed by France (18%), United Kingdom (9%) and 

Italy (8%) (ISMEA). These four countries account for the two-thirds of European sales 

(Willer & Lernoud, 2016). 

On the one hand, Italy represents one of the countries most interested by organic 

production system. Within the Italian territory, recent statistics report that the trend for 

organic farming increased by the 5.4% from 2013 to 2014. In addition, with respect to the 

worldwide organic food production Italy represents the sixth country with the largest 

areas of organic agricultural land thanks to the over 10% of agricultural land devoted to 

organic farming. The current value of Italian organic market is estimated at about 2.1 
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billion euros (ISMEA). Not surprisingly, the major channel for organic food products 

(39.90%) is represented by the large-scale retail trade with a turnover of about 855 billion 

euros. 

On the other hand, the Italian estimated per capita consumption is about 42.60 euro. 

Even with a constant positive growth over the years (11% from 2010 to 2015), this value 

still set Italy out from the ten countries with the highest per capita consumption of organic 

products (Willer & Lernoud, 2016). Hence, it is clear that organic food sector has room 

to grow over the next years: psychological research should aim to support this growth 

with suggestions based on empirical evidences. 

1.2 Understanding sustainable food consumption 

Undeniably, people can own several different motivations with respect to food choice. As 

reported by Tobler et al. (2011), price, healthiness, sensory appeal, and convenience tend 

to be the most influential factors taken into account in the decision process. However, our 

consumption behavior is not a merely reflection of our preferences or circumstances: it 

also stems from our social relationships. That is to say, besides personal beliefs, the choice 

for a particular type of food can be strongly affected by the influence exercised by the 

social dimension. 

As stated by Wanke (2008), after years of debates it is nowadays recognized the effect 

of social norms on people’s daily behavior. Also Jackson (2005) highlighted that our 

actions are deeply embedded in social contexts: our behaviors are leaded by our personal 

motivations, beliefs and preferences as much as by other people around us say and do. In 

other words, even in the consumption context we do not behave as isolated human beings 

but as members of groups (e.g. families, households, communities). In addition, the 

effects of social influence in the consumption context become stronger in novel or 

uncertain situations: this can be especially true in the case of consumers’ pro-

environmental behaviors (Peattie, 2010). 

Interestingly, the interaction between individual preferences and social factors can 

result in non-trivial situations. Particularly, due to social pressure people might find 

themselves locked in to perform unsustainable behaviors even if contrary to their personal 

beliefs. Accordingly, as argued by Peattie (2010), an emerging issue is related to the 

understanding of green consumer behavior in relation to the influence of group norms and 

collective consumption. In line with this premise, the Doctoral project aimed to 
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investigate the emergence of sustainable consumption behaviors. Specifically, the project 

examined the dynamic interaction between individual preferences and social norms in the 

specific context of organic food choice. 

However, generally our understanding of green behaviors stems from a reductionist 

tradition (Peattie, 2010). Most of the time, within this context research attempted to de-

construct complex social realities in smaller pieces in order to study potential cause-effect 

relationships. Thus, despite the fact that from a sustainability perspective collective 

impact is more significant than the individual one, the emphasis has been largely placed 

on consumers as individuals. As a consequence, we are currently dealing with “a lot of 

individual jigsaw puzzle pieces” (ibid, p. 218) that are not capable to provide a clear 

picture of consumption as social phenomenon. 

As stated by Liao (in Gilbert, 2008), social behavior can be studied through two 

different approaches. The first one matches the reductionist tradition of research and it 

relies on collecting several observations, arranging data and analyzing them: the final and 

hoped outcome is represented by a model that fits such data. The second approach asks 

researchers to have some prior knowledge about a certain social mechanism and then 

build a virtual model of it. With this latter, scientists can simulate dynamics, test several 

hypotheses and, in the end, gain a better understanding of complex social systems as a 

whole. Specifically, the term complex is employed to refer to those (physical or social) 

phenomena and systems endowed with peculiar characteristics such as non-linear 

dynamics, emergent behavior, self-organization, and feedback mechanisms (or, closed-

loops) that can limit the overall predictability of the outcome. Railsback and Grimm 

(2011) highlighted how systems that we face from the reality are too complex, or they 

develop themselves too slowly, to be appreciated by means of the traditional approach: 

indeed, this is true for most of the social processes encountered in market situations. 

For instance, as argued by Rand and Rust (2011) marketing phenomena are complex 

due to the emergent result of many individual agents (such as consumers and sellers): 

when their motivations and actions are combined, even simple behavioral rules can grow 

into sophisticated and unexpected patterns. A further challenge is represented by the 

feedback exercised by the aggregate social pattern on individual choices which 

consequently generates over time a closed-loop between the individual and social 

dimensions. Moreover, consumption represents a complex process due to the 
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heterogeneity of consumers, what they consume, and the dynamic context where they are 

inserted (Armitage & Conner, 1999; Peattie, 2010). 

Established on a reductionist perspective, most of psychological methods of 

investigation fail to capture the emergence of phenomena derived by the dynamic 

interaction of the individual and social dimension as they are unable to deal with a bottom-

up approach (Kozlowski, Chao, Grand, Braun, & Kuljanin, 2013). In addition, they are 

commonly unable to account for feedback mechanisms and they struggle to capture 

heterogeneity (i.e. individual differences). Hence, psychological research should go 

beyond its own boundaries to find a more suitable method of investigation of complex 

social phenomena such as consumption behavior. Accordingly, the present research 

adopted agent-based modeling, a research method originated by the developments of 

computer sciences.  

1.2.1 Computational models for the investigation of social phenomena 

New research methods based on the recent developments of the computer sciences have 

arisen during the last decades. Indeed, one modern area of interest is represented by 

computational social science, which has been recently defined by Cioffi-Revilla (2014, 

p.29) as “the interdisciplinary investigation of the social universe on many scales, ranging 

from individual actors to the largest groupings, through the medium of computation”. As 

an interdisciplinary field, it demands to several disciplines (such as social psychology, 

sociology, economics and computer science) to share their efforts to unearth the 

complexity of social reality. Several methods of analysis and topics are finding their 

common ground on this field. In accordance with Cioffi-Revilla (ibid), currently there are 

five main methods classified within computational social science: automated information 

extraction; social network analysis; geospatial analysis; complexity modeling; social 

simulation modeling. Each one comes with several specializations and, specifically, 

social simulation models include two main approaches to describe complex systems: 

system dynamics and agent-based modeling. The first represents the earliest kind of 

simulation models inside computational social science. This method has been quite 

popular in organizational sciences and economics departments during the last decades 

thanks to the fact that it is a useful instrument, for instance, to describe and forecast 

economic processes (Gilbert, 2008). However, psychological research might hardly find 

benefits from it due to the fact that system dynamic models follow a strong deterministic 
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approach based on equation modeling. Moreover, it works only by taking into account 

aggregated variables (i.e. populations). Agent-based models overcome this issue by 

looking at the single actor.  

In fact, agent-based modeling aims to reproduce the individual behavior of social 

actors thanks to dedicated applications and programing languages (e.g. Logo or Java). 

Agent-based models (ABMs) are tools especially useful to understand and analyze 

complex system dynamics (Epstein, 2008; Gilbert, 2004; Gilbert & Troitzsch, 2005; Jager 

& Janssen, 1994; Miller & Page, 2007) and their application has increased quickly over 

the years in various disciplines (Bozanta & Nasır, 2014). In particular, its application 

found a large interest in the field of environmental sciences (e.g. Ge, Polhill, Craig, Liu, 

& Roberts, 2016; Sánchez-Maroño et al., 2012) and marketing or consumer behavior (e.g.  

Delre, Broekhuizen, & Bijmolt, 2016; Delre, Jager, Bijmolt, & Janssen, 2007; Jager, 2006 

& 2007; Kaufmann, Stagl, & Franks, 2009). 

Inside an ABM, researchers define the rules of behavior of individual agents 

(representing, for instance, consumers or employees): by running the simulation over 

time, it is possible to study the emergence of complex patterns and/or systems that stem 

from the actions and combination of many individual agents. Each agent can be 

programmed to achieve a goal, to own a certain degree of autonomy about its decisions, 

to learn through experience or communication, to perform an action from a range of 

options, and to react to the virtual environment as well as to the other agents of the 

simulation (Gilbert, 2004). In addition, virtual agents can be representative of physical 

entities (such as stores or banks) and endowed with particular features. 

ABMs are useful to investigate aggregate patterns originated by the dynamic 

interactions among many actors (Delre et al., 2016). As noted by Hughes, Clegg, 

Robinson, and Crowder (2012), the major value of agent-based models lies in their ability 

to investigate how the macro-behavior of a system (e.g. innovation diffusion) emerges as 

a consequence from the micro-behavior of many individuals (i.e. the actions of single 

actors). That is to say, it is possible to model the emergence of social phenomena from 

the bottom-up. Starting from this, ABMs allow investigating the feedback mechanisms 

between macro- and micro-behavior as well as the consequent closed-loop between these 

dimensions. In addition, they are able to overcome the common difficulty for 

psychological methods of investigation to treat heterogeneity. In fact, individual 
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differences (e.g. opinions, attitudes, beliefs), as well as ways of social interactions and 

decision-making processes, can be modeled explicitly (Kiesling, Günther, Stummer, & 

Wakolbinger, 2012). 

Hence, the use of computer simulations as a methodology of investigation of social 

mechanisms is rather a new idea, but it comes with great potential thanks to the fact that 

is “an excellent way of modelling and understanding social processes” (Gilbert and 

Troitzsch. 2005, p.1). As suggested by Cioffi-Revilla (2010), similarly to the microscope, 

which granted the access to physics to an incredible micro-universe made up of earlier 

unnoticed elements, laws and processes, computational simulations are the instrument 

that can drive to new theories and applications by means of unprecedented replication and 

virtual experimentation of social processes. Nonetheless, agent-based model should not 

represent a detached method from more common psychological investigation techniques. 

Instead, research should aim to achieve the integration between psychological methods 

of investigation and agent-based modeling.  

In line with this premise, the next section intends to pose the framework of the project 

and the main research question. With more details, the work was divided into three 

specific questions. Then, each of the methods employed by the research project to achieve 

the related objective is briefly illustrated: full details are provided within the successive 

three papers. In the end, section 5 offers a summary of the results obtained by the overall 

project. 

1.3 Research questions and related aims 

Since sustainable consumption encompasses a wide range of behaviors (see for a 

comprehensive list Jackson, 2005, p.3), the framework of investigation was restricted to 

one of the key issue to sustainability (i.e. food consumption) and subsequently the 

research was narrowed to one of the current major trending sector: organic food. 

The main research question addressed green food consumption with the hope to 

contribute to its explanation and promotion: how do social norms among consumers and 

individual preferences work over time to shape buying behavior in the context of organic 

food choice? Hence, the main purpose was the investigation of the dynamic interaction 

between the individual and social dimensions of organic food purchase behavior.  

However, as argued, the research question is framed inside a complex social 

phenomenon endowed by peculiar characteristics (e.g. non-linearity, emergent behavior, 
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and closed-loops). As noted, in this situation, standard psychological methods of 

investigation might appear to limit our capability of understanding: thus, the integration 

with research methods from different disciplines seemed a reasonable path. Particularly, 

agent-based modeling was selected as the proper method to provide an answer to the main 

research question. 

1.3.1 Work phases 

In order to make possible the investigation, the research project was divided into three 

phases leaded by a specific question. In addition, an objective was assigned to each phase. 

1. Is there in literature a psychological theory able to account for consumer 

behavior in relation to both individual and social dimensions? 

The first objective was to identify a psychological theory able to account for 

consumer behavior both from an individual and social dimension. Moreover, 

such framework had to be tested for its validity in the specific context of organic 

food choice. 

2. Is it possible to convert the psychological framework previously identified into 

a straightforward algorithm to simulate consumers’ behavior? 

Psychological theories are mostly presented in literature as informal theories 

rather than formal and strict models. As a consequence, it was reasonable to 

expect issues or potential gaps in the theory when converted into computational 

algorithms. Accordingly, the objective of this phase was to critically review the 

psychological framework from a computational approach in order to highlight 

(and attempt to resolve) potential issues in the process of its application inside 

an agent-based model. 

3. Is the psychological framework previously identified and reviewed a sufficient 

condition to virtually replicate the emergence of lock-in consumption patterns? 

The third objective was to build a computational model (i.e. an agent-based 

model) able to emulate consumers’ decision-making process on the base of the 

main psychological framework previously identified and reviewed. 
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The final agent-based model was expected to replicate the dynamic interaction 

between the individual and social level of consumers’ food choice. In the end, from the 

analysis of different scenarios, the simulation was expected to offer new insights in 

consumers’ behaviors and to suggest potential interventions to foster the consumption of 

organic food products. 
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Abstract 

During the last decade, the purchase of organic food within a sustainable consumption 

context has gained momentum. Consequently, the amount of research in the field has 

increased, leading in some cases to discrepancies regarding both methods and results. 

The present review examines those works that applied the theory of planned behavior 

(TPB; Ajzen, 1991) as a theoretical framework in order to understand and predict 

consumers’ motivation to buy organic food. A meta-analysis has been conducted to 

assess the strength of the relationships between attitude, subjective norms, perceived 

behavioral control, and intention, as well as between intention and behavior. Results 

confirm the major role played by individual attitude in shaping buying intention, 

followed by subjective norms and perceived behavioral control. Intention-behavior 

shows a large effect size, few studies however explicitly reported such an association. 

Furthermore, starting from a pooled correlation matrix, a meta-analytic structural 

equation model has been applied to jointly evaluate the strength of the relationships 

among the factors of the original model. Results suggest the robustness of the TPB 

model. In addition, mediation analysis indicates a potential direct effect from 

subjective norms to individual attitude in the present context. Finally, some issues 

regarding methodological aspects of the application of the TPB within the context of 

organic food are discussed for further research developments. 
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2.1 Introduction 

Pro-environmental behaviors have been related to house-hold management, consumer 

activism with respect to environmental safety, as well as to purchase choice and usage of 

products (Peattie, 2010). A report by the European Commission (2009) highlighted that 

nowadays eight out of ten EU citizens recognize impact on environment as a central 

aspect when deciding which product/good they will buy. Moreover, if queried about what 

kind of actions has the greatest impact on solving environmental issues, a fifth of the 

interviewees put at second place the purchase of products produced by means of 

environmental-friendly methods. In particular, the United Nations have marked 

sustainable consumption as one of the main objectives to achieve environmental 

sustainability (Yadav & Pathak, 2016) and food sustainability has been indeed on UK’s 

policy agenda since before the turn of the last century (Honkanen & Young, 2015). Within 

this context, the work by Jungbluth, Tietje, and Scholz (2000) highlighted the most 

effective ways to reduce the environmental impact of food consumption. Based on life 

cycle assessment1 (LCA) analysis, the first option from a consumer perspective, in order 

to reduce environmental impact, is the refusal of air-transported food, followed by the 

preference for organic products and the reduction of meat consumption. In fact, animal 

products determine higher greenhouse gas emissions than products based on plants since 

vegetables, cereals and legumes – if not transported by plane – have the lowest gas 

emissions (Carlsson-Kanyama & González, 2009).  

More recently, the value of these three options has been acknowledged also by 

Thogersen (2010) and Tobler, Visschers, and Siegrist (2011). In the latter study, a survey 

was carried out to investigate consumers’ beliefs and motivations behind environmental-

friendly consumption behaviors: in contrast to LCA results, consumers appear to rate the 

purchase of organic food and the reduction of meat consumption as the least 

environmentally beneficial options.  Moreover, although avoiding air-transported food 

was rated as more beneficial than the previous behaviors, still it came after the avoidance 

of excessive product packaging and the purchase of regional food. Hence, an asymmetry 

                                                 

1 As reported by Finnveden et al. (2009, p.1), life-cycle assessment represents “a tool to assess the potential 

environmental impacts and resources used throughout a product’s life cycle”. Detailed procedures for 

the application of LCA analysis are illustrated within ISO 2016 and its successive modifications. 
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between empirical results derived from LCA and consumers’ perception of environmental 

impact of food consumption appears to exist with consumers underestimating the 

importance of green food consumption despite of its acknowledged environmental 

relevance. 

Consumers’ preferences toward organic food indeed represent a form of behavior that 

can both promote the preservation of environment and lead the transition toward a more 

sustainable society. Organic food represents a form of sustainable consumption due to the 

fact that it is produced by employing natural processes, by means of sustainable energy, 

and by taking into account the protection of the soil, as well as the animal welfare 

(European Commission, 2014). The environmental benefits of organic food w.r.t 

conventional one have been remarked by several LCA studies. For instance, Boggia, 

Paolotti, and Castellini (2000) assessed the environmental impact of different poultry 

production systems concluding that the organic one owns the lowest environmental 

impact in all crucial impact categories. A similar work was carried out by Litskas, 

Mamolos, Kalburtji, Tsatsarelis, and Kiose-kampasakali (2010) that evaluated the energy 

flow and the effects of different farming systems on gas emissions in sweet cherry 

orchards. Results suggested that an organic system can reduce the employment of non-

renewable energy as well as gas emissions against the conventional one. More recently, 

Longo, Mistretta, Guarino and Cellura (2015) examined energetic and environmental 

impact of apple cultivation in the North of Italy. Once again, a comparison between 

organic and conventional production systems by means of LCA yielded that, despite a 

lowered productivity, an organic production system reduces the environmental impact for 

the majority of the analyzed impact categories.  

A recent report by the European Commission (2016) about agricultural research and 

innovation has acknowledged the need for further research by those types of farming 

systems that implement ecological approaches such as the organic sector. In addition, the 

report highlighted the importance of taking into account the role of consumers. Indeed, 

choices made by consumers can have a backward influence on the food production chain, 

to the extent that the development of organic farming appears to be governed by market 

rules (Padel, Lampkin & Foster, 2011). Within the context of green consumption, 

however, two main types of studies can be differentiated: those coming from marketing 

that are mainly focused on understanding the motivations of consumers, and those coming 



28  Organic food purchase behavior 

 

 

from industrial or economical ecology that are mostly interested in the impact of 

consumer’s behaviors (Peattie, 2010). While the second approach measures the outcome 

of a behavior, the first one investigates the motivations behind it. Thus, in line with the 

first approach, a wide range of studies within the environmental literature has assumed 

the theory of planned behavior (TPB; Ajzen, 1991) as the foundational backbone for 

investigating the psychological factors that drive consumers’ behaviors toward 

sustainable consumption. With the words by Schultz and Kaiser, these studies addressed 

“the degree to which the person wants to produce a positive environmental outcome” 

(2012, p.4). Indeed, TPB represents a solid psychological framework that, more than 

others, has been able to unearth the main motivations behind food choices in relation to 

sustainable consumption (Peattie, 2010). In particular, given the increased importance 

assigned to organic food products as part of a sustainable development and the predictive 

power of Ajzen’s theory, the amount of research aimed at understanding consumers’ 

choice through the application of TPB has grown quickly over the last decade. Some of 

these works have also recently argued the canonical interpretation of the basic tenets of 

the TPB, as well as the strength of the associations between its fundamental factors (see, 

e.g., Al-Swidi, Huque, Hafeez, & Shariff, 2014; Yadav and Pathak, 2016). Therefore, we 

believe that a meta-analysis might be useful to shed light on some of these issues and to 

guide both scholars interested in studying green food-related consumers’ behaviors, as 

well as practitioners who aim at dealing efficiently with the promotion of such products. 

2.2 The theory of planned behavior in relation to organic food consumption 

The theory of planned behavior was developed by Ajzen (1991) moving from the earlier 

theory of reasoned action (Fishbein & Ajzen, 1981). Both theories assume that people’s 

behaviors rely upon deliberative bases (for instance, the contemplation of the outcomes 

of a certain action), but TPB also adds a component able to take into account both real 

and perceived difficulties that a person may experience in relation to the act of performing 

(or not performing) a certain behavior. Thus, TPB is a psychological model that takes into 

account three fundamental aspects of human behavior: personal attitude, subjective 

norms, and perceived behavioral control. These are the basic antecedents of the intention 

to engage in a certain behavior, which in turn mediates their relation with actual behavior 

(Fig. 1). Hence, intention is assumed to capture the motivational dimension and indicates 

the propensity to engage in a specific behavior (Honkanen & Young, 2015).  
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Attitude reflects individual preferences to perform or not perform a behavior. In 

detail, it expresses the global positive/negative evaluation of individuals about a certain 

behavior: the more positive the attitude, the stronger will be the intention to express such 

a behavior (Armitage & Conner, 2001). In the specific context of organic food 

consumption, Sparks and Shepherd (1992) investigated consumers’ purchase of organic 

vegetables and argued that attitude appears to play a crucial role in shaping behavior, by 

directly affecting buying intention. Following Fishbein and Ajzen (1981), attitude can 

indeed be conceived as the sum of different beliefs that may be directly related to purchase 

intentions. Arvola and colleagues (2008) reported that several studies carried out in the 

USA and Europe showed the relevance on consumption intention of beliefs regarding 

organic food characteristics such as taste, healthiness, as well as the perceived benefits 

to/on the environment. However, the strength of the association between attitude and 

behavioral intention in the case of organic food consumption largely varies among 

studies. For instance, a recent study by Al-Swidi et al. (2014) found a strong correlation 

(r = 0.80) on a sample composed of University members and students from Pakistan, 

whereas a study carried out by Onwezen, Bartels, and Antonides (2014) on a Dutch 

sample showed a more modest one (r = 0.56). A study by Guido et al. (2010) also reported 

a small correlation (r = 0.27) using a pooled sample composed of participants from France 

and Italy. Thus, although most of the studies that applied the theory of planned behavior 

to investigate the intention to purchase and consume organic food demonstrated the 

crucial role of attitude in shaping buying intention, the strength of this association still 

remains unclear. 

The second component refers to the common social norms (SN) that are perceived by 

individuals in relation to engage (or not engage) in a specific behavior (Ajzen, 1991). 

Adherence to norms is important as it allows group members to avoid triggering rejection 

responses while stimulating a sense of social approval (Cialdini, Bator, & Guadagno, 

1999). In addition, Cialdini, Reno, and Kallgren (1990) distinguished between injunctive 

and descriptive social norms: whereas the former relate to the perception of what people 

generally approve or condemn, the latter are derived by the observation of how the 

majority of people behave in ambiguous conditions. The theory of planned behavior 

especially focuses on the role of injunctive norms. In particular, subjective norms are an 

expression of normative influence, which is related to what the most important referent 
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individuals (w.r.t. a specific topic) consider as an acceptable or unacceptable behavior 

(Scalco et al., 2017). Zagata (2012) suggested that the most relevant source of social 

influence in relation to organic food choice comes from family and friends, whereas work 

colleagues have a negligible effect. Several works assessed the moderate impact of SN in 

relation to the consumption of organic food. Nonetheless, a recent study by Yadav and 

Pathak (2016) has not found any significant effect of subjective norms on the intention to 

buy green food. After all, Armitage and Conner (2001) had already argued that the 

normative component of TPB might represents the weakest amongst the constructs of the 

model.  

Finally, perceived behavioral control (PBC) relates to the individual perception of 

those factors that might foster or hinder the expression of a behavior (Guido et al., 2010). 

According to Ajzen’s model (1991), PBC influences actual behavior only if the behavior 

is not completely under the person’s volitional control. Commonly, barriers to the 

purchase of organic food are associated to the higher prices and lower availability that 

distinguish this kind of products (Robinson and Smith, 2002). As in the attitude case, the 

strength of PBC on buying intention varies across studies. For instance, Dowd and Burke 

(2013) found an association of r = 0.51, whereas Yazdanpanah and Forouzani (2015) 

found a non-significant correlation. Notably, the items used within both investigations to 

measure the PBC focused on personal willingness and easiness to buy organic food rather 

than on different specific barriers (e.g. a higher price). Thus, some concerns regarding the 

influence of the perceived behavioral control on buying intention related with organic 

food still remains unresolved. 

 

Fig. 1 - The original model proposed in the theory of planned behavior (Ajzen, 1991). 
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Over the years, the model proposed by Ajzen has also been extended to include 

several constructs aimed at increasing the variance explained by intention. For instance, 

in the context of organic food products, Robinson and Smith (2002) investigated 

perceived self-identity in relation to environmental consumerism, whereas Arvola and 

colleagues (2008) took into account the role of moral obligations. Nonetheless, a general 

review by Armitage and Conner (2001) showed that the canonical TPB model on average 

accounts for between the 39-50% of the variance in intention and the 27-36% of the 

variance in behavior2. More specifically, the recent work by Dowd and Burke (2013) 

confirmed the robustness of the original TPB model in predicting organic food 

consumption even above previous similar works, explaining 62% of the variation in 

intention. In addition, the original model proposed by Ajzen assumes that the antecedents 

may potentially correlates with each other (see Fig. 1), and several studies have so far 

adopted this structure obtaining significant results (e.g. Bamberg, 2002; Dean, Raats, & 

Shepherd, 2008; Honkanen & Young, 2015). Nevertheless, Tarkiainen and Sundqvist 

(2005) proposed and verified a model where subjective norms directly influenced attitude 

toward the purchase of organic food and no relation is present between SN and PBC. 

Similarly, Lodorfos and Dennis (2008) found a significant causality between social and 

personal spheres. More recently, Al-Swidi et al. (2014) proposed a TPB model in relation 

to organic food purchase where subjective norms impacted on both attitude and perceived 

behavioral control. Again, results appeared to show the existence of a direct relation for 

the SN-attitude association. Consequently, both the relationships of attitude and PBC with 

the social component in shaping buying decisions regarding organic food still remains 

rather uncertain. 

As argued by Lodorfos and Dennis (2008), it seems clear that, although there is 

general agreement on the source of influence on the consume of organic food products, 

there is still the need for a clearer model based on quantitative analysis. In line with this, 

the present work focuses on the previous research that applied the theory of planned 

behavior to predict the intention to buy organic food, with the aim to shed light on the 

                                                 

2 However, it should be stressed that the predictability of the model depends on the type of the examined 

behavior (see, for instance, Armitage and Conner in 2001, or the more recent review by McEachan, 

Conner, Taylor, and Lawton of 2011 regarding health behaviors).  
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relationships among those factors affecting consumers’ choice. Notice however that, in 

contrast to other reviews about the TPB applied to food consumption which considered 

food choice in relation to healthy eating (see for instance, Riebl et al., 2015), the present 

work assumes a specific pro-environmental framework associated to sustainable 

consumption.  

Therefore, the first objective of the present work is to summarize and test both the 

strength of the associations between attitude, subjective norms and perceived behavioral 

control with the behavioral intention to purchase or consume sustainable food (as well as 

between these factors), and the strength of the relationship between intention and actual 

behavior of consumers. In order to do so, a random effects meta-analysis of the 

correlations reported in literature has been carried out, and then the jointly contributions 

of the correlations among the constructs of the TPB have been examined through the 

application of a meta-structural equation model based on a pooled correlation matrix. In 

particular, we aimed to test the significance of the general model proposed by Ajzen 

(1991) as depicted in Fig. 1. The second objective is related to the assessment of some 

alternatives models that have been proposed in literature (e.g. Al-Swidi et al., 2014; 

Lodorfos & Dennis, 2008; Tarkiainen & Sundqvist, 2005), which suggest alternative 

formulations of the antecedents of intention by modifying the relationships between 

subjective norms and attitude and/or perceived behavioral control. 

2.3 Method 

To survey the studies, the following databases were queried during March 2016: Scopus, 

Web of Science, and PsychINFO. The following terms and combinations were used as 

research keys in titles, keywords and abstracts: ("theory of planned behav*" OR "planned 

behav*" OR "Ajzen") AND ("purchas*" OR "recycled" OR "nontoxic" OR "eating" OR 

"organic" OR "green food" OR "sustainable"). Results were extracted from the online 

research engines and recorded into a comprehensive database. Double entries or studies 

with basic missing information were excluded. Due to the broad spectrum of the used 

keywords, the research captured a range of 1174 publications, of which however only a 

selection of 108 were completely on-topic. Each record of the obtained database was 

indeed examined through the titles and/or the abstract and removed unless it matched the 

topic of interest or the general approach. In the end, to enlarge the research, some studies 
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were added to the database by manually searching within the references provided in the 

selection obtained by the previous method.  

2.3.1 Eligibility criteria 

Studies were considered only if they were written in English language and published in 

peer-reviewed journals. In line with McEachan, Conner, Taylor, and Lawton (2011), 

unpublished material was avoided since its absence appears not to pose a threat to the 

validity of the analysis when dealing with the theory of planned behavior (ibid, see Note 

2, p.33). In particular, Schulze and Whittmann (2003) showed how the levels of prediction 

do not significantly differ between meta-analyses of published or unpublished studies that 

examined the TPB. Some of the eligibility criteria already applied in the review by 

Hassan, Shiu, and Parry (2016) were also adopted: namely, all included studies applied a 

quantitative approach in dealing with Ajzen’s model and followed the original 

operationalization proposed by Ajzen (1985, 1991) (see, for a negative example, Singh, 

Fassot, Zhao, and Boughton, 2006). Furthermore, all studies were required to evaluate 

the intention to purchase or consume (either generic or specific) organic food or food 

products produced in a sustainable manner. 

Samples of the studies had to be composed of people older than 18 years since, as 

reported in Visintin et al. (2012), adolescents are still establishing their personal identity, 

so their moral and belief systems and their motivations behind food consumption may 

vary significantly compared to adults. In addition, as stated by Paul, Modi and Patel 

(2016), green contexts can be rather difficult to be understood and comprehended by 

minors. 

In order to allow for the computation of summary effect sizes, each study had to report 

Pearson’s correlations at least between (i) attitude and intention, (ii) subjective norms and 

intention, and (iii) perceived behavioral control and intention. Some studies were then 

excluded as they did not consider all the three basic components of the theory of planned 

behavior or they revised one or more of its constructs. For instance Leßmann and Masson 

(2015) evaluated subjective norms by asking participants: “Most people who are 

important to me purchase organic food”. Such an item addresses descriptive norms, 

whereas the original TPB requests to investigate injunctive social norms (that is, what 

most people who are important to the participant think about the purchase and 

consumption of organic foods). Moreover, since some studies investigated subjective 
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norms in relation to different comparison groups, we decided to take into consideration 

only one of the available correlations with the following order of relevance: (1) generic 

comparisons (such as: “most people who are important to me”), as proposed in Ajzen 

examples (2006); (2) family; (3) peers; (4) colleagues. We assumed that a generic 

reference comparison would be spontaneously associated by participants to the most 

relevant source of influence. Where generic items were not employed, friends and family 

members were preferred to co-workers, as the formers are common referent groups 

(Childers & Rao, 1992), whereas the latter are less important in the specific context of 

organic food (Zagata, 2012). 

Studies that replaced PBC with the perception of consumer effectiveness were also 

accepted (e.g. Honkanen & Young, 2015). Consumer effectiveness has been indeed 

operationalized by Antil (1984, p. 25) as a “judgement of the ability of the individual 

consumer to have an effect on environmental-resource problems”. Within the context of 

green food consumption, we assumed that this construct could overlap with the original 

proposal of control behavior (Ajzen, 1991). Research that evaluated the PBC by assessing 

its sub-dimensions (e.g. Tarkiainen & Sundqvist, 2005, who evaluated separately price 

and availability of organic food) were excluded when an overall correlation with intention 

was not provided. 

Finally, some studies were excluded as they assessed too general intentions that only 

partially related with green food consumption: for instance, Chatzidakis, Kastanakis, and 

Stathopoulou administered a questionnaire based on the TPB framework to investigate 

the “intention to support the fair trade movement” (2016, p. 105). Although fair trade can 

be related to the consumption of organic food, it can as well be related to products of 

different kind (e.g., apparel): thus, attitude and subjective norms may differ significantly 

when controlled for each fair trade product. 

In conclusion, following the previous eligibility criteria, the final database used for 

the meta-analysis was composed of 17 contributions, which provided a total of 23 

different studies and a total sample of 11349 participants. The full process of research and 

selection is summarized in Fig. 2. Among the selected contributions, only one 

contribution (corresponding to a single study; Vermeir & Verbeke, 2008) did not report 

the correlations among attitude, social norms and PBC. Thus, correlations between 

attitude, social norms, PBC and intention were fully provided by 22 investigations (10893 
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participants). Surprisingly, only 6 out of the 23 studies reported correlations between 

actual behavior and the other TPB constructs. In this case, as the number of measures 

were few, both past and prospect (only one case; Bamberg, 2002) behaviors were 

integrated. Although this might affect the reliability of the meta-analytic procedure with 

regard to these specific correlations, at the same time these six studies provided more than 

half of the total sample (6223 participants). 

2.3.2 Coding of the studies 

Selected studies were recorded into an excel database along with several information. 

Regarding their characteristics, we considered the year of publication, the kind of 

intention evaluated (i.e. generic vs specific; organic vs sustainable), the primary purpose 

of the study, the correlations between and among the basic components of the theory of 

planned behavior, and, when available, the correlations between the actual behavior and 

the other TPB constructs. As for the sample, we recorded the mean age, the gender 

distribution (as percentage of female) and its size. The full list of studies that have been 

taken into account by the current review and the related classification based upon the 

aforementioned variables can be consulted in Table 1. Data extracted from the studies 

are reported in Table 2. 

2.3.3 Data analysis 

Effect sizes are standardized values that express the magnitude of an observed 

phenomenon with the aim to make direct comparisons across studies (Field & Gillett, 

2010). Typically, in a meta-analysis, a summary effect is provided that describes the 

general trend. A key issue is then the choice between fixed or random effects models. 

Fixed-effects models (FE) assume that the true effect size is shared by all the studies, 

whereas random-effects models (RE) assume that the effect size varies between studies 

(usually following a normal distribution). As noticed by Field and Gillett (2010), 

researchers should choose the appropriate model beforehand according to the involved 

studies and the desired inferences. In particular, RE models are more appropriate when 

studies are carried out by different researchers in different settings so that effect sizes can 

vary randomly (Bamberg & Moser, 2007; McEachan et al., 2011; Cheung, 2015). 
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Fig. 2 - The flowchart describes the process of research and selection and provides 

information about the number of studies for each phase. 

 

In the present study, a random-effects model was then applied since most of the 

selected studies were carried out independently, with several samples drawn from 

different populations. A RE model appears also to be more in line with the two-fold 

purpose of the present meta-analysis: on one hand, we aimed at obtaining summary 

effects of the correlations between attitude, subjective norms, perceived behavioral 

control, intention, and actual behavior to buy or consume organic food; on the other, we 

aimed to test the relations amongst these constructs by means of a meta analytical 

structural equation model (MASEM; Topa & Moriano, 2010). 
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Summary effects for correlations 

There are several methods to estimate summary effects using RE models. The most 

common ones are those provided by Hunter and Schmidt, Hedges and colleagues and Der 

Simonian and Laird. A brief discussion is provided in Field and Gillett (2010), whereas a 

more exhaustive comparison is given in Field (2005). Based on their analyses, we decided 

to apply the method provided by Hedges (1983), which takes into account the variance 

within the studies, as well as the variance between them. In order to conduct the meta-

analysis on correlations, we used the open source software R (v. 3.3.1; R Development 

Core Team, 2016) and the metafor package (Viechtbauer, 2010). In particular, a summary 

effect was provided as a weighted mean of the examined effect sizes, in which higher 

weights were assigned to those studies employing large samples, whereas less importance 

was given to those using smaller ones3. As suggested by Bamberg and Moser (2007) and 

Schwenk and Möser (2009), correlations were initially transformed in the Fisher’s z scale. 

Jointly with the z metric, the variance and standard errors of the z values were calculated 

by considering the sample size of each study. However, in line with the suggestion 

provided by Field and Gillett (2010), in order to remove a slight positive bias due to the 

r-to-z transformation, we used the adjustment method provided by the same authors. After 

the analysis, Fisher’s z values were converted back into correlations. In addition, as Field 

and Gillett (2010) also suggest to tabulate the original effect sizes when reporting a meta-

analysis along with relevant information (e.g., related sample size), we summarized the 

original correlations in Table 2 for each study considering each couple of variables and 

provided in Table 3 the stem-and-leaf plots about the main correlations between attitude, 

subjective norms and PBC with intention, which offers a more concise perspective on 

data. 

In order to interpret the results of the meta-analytic process, Topa and Moriano (2010) 

recommend to employ the rule of thumb proposed by Cohen’s guidelines (1992) that 

classify correlation coefficients as small, medium or large, for values of about, r = 0.10, 

0.30, and 0.50. A small effect size suggests that the variables may be independent, a 

                                                 

3 As pointed out by Borenstein, Hedges, Higgins, and Rothstein (2009), the way weights are assigned comes 

from the assumptions made about the distribution of the effect sizes in the studies (and it is strictly related 

to the application of fixed- or random-effects models). 
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medium one that the covariance is only partially established, and a large one that the 

covariance between the considered variables is (nearly) perfect. 

After the application of the RE model, two indexes were considered to evaluate the 

heterogeneity among studies: I2 and the Q-test. As stated in Godin, Vézina-Im, Bélanger-

Gravel, and Amireault (2012), the former represents the percentage of total variation in 

the estimated effects that comes from heterogeneity rather than by chance: high 

heterogeneity is given for values of I2 above 75%, whereas low heterogeneity is assumed 

for values below 25%. The null-hypothesis of the Q-test assumes perfect homogeneity 

(Cheung, 2015): thus, if the p-value falls below the threshold of .05, we can conclude that 

the studies are heterogeneous.  

Finally, as suggested by Cheung (2015), residuals were tested in order to detect the 

presence of possible outliers for each summary effect. As proposed by Viechtbauer and 

Cheung (2010), externally standardized residuals (also known as externally studentized 

residuals) were considered. If the application of the Shapiro-Wilk test did not indicate a 

normal distribution of residuals, we proceeded to detect outliers by means of the 

observation of the z-scores and by visually inspecting the normal probability plot. 

MASEM analysis 

A meta-analytical structural equation model was applied to test the strengths of the 

correlations between the components of the theory of planned behavior regarding the 

purchase and consumption of organic food products. This was done through the 

application of meta-analytical procedures that firstly pooled the multiple correlation 

matrices available in the studies and then analyzed the result using structural equation 

models. Analyses were carried out by using the metaSEM R-package (Cheung, 2015). 

Overall, the analyses intended to test several models. Models 1 and 2 (see Fig. 3) 

tested the original TPB model proposed by Ajzen (1991); the former employed all 

included studies, whereas the latter used only the subset of those 6 studies that provided 

all additional correlations between antecedents and behavior. Model 3 (see Fig. 4) was 

tested to assess a direct effect of perceived behavioral control on actual behavior. The 

application was suggested by the work of Shin, Hancer, and Song (2016) in the close 

context of local growth food. 

In addition, some alternative models of the relationships between attitude, subjective 

norms and PBC were tested. These models have been suggested in literature to 
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theoretically describe a direct effect of social norms on attitude which might be relevant 

in the case of green food consumption. Firstly, as suggested by the work of Al-Swidi et 

al. (2014), we assumed a direct effect of subjective norms on attitude while allowing only 

for a covariation between subjective norms and behavioral control (Models 4 and 5, 

depending on the absence or presence of actual behavior as a variable). Secondly, as 

suggested by the works by Lodorfos and Dennis (2008) and by Tarkiainen and Sundqvist 

(2005), the covariation between subjective norms and perceived behavioral control was 

removed (Models 6 and 7, depending on the absence or presence of actual behavior as a 

variable).  Notice that these models come in pairs, since their original studies did not 

consider actual behavior; hence, at a first step, the analyses were performed only on a 

pooled 4x4 matrix including the correlations between attitude, PBC, SN and intention so 

that the tested models included 3 exogenous variables and 1 endogenous one. As a second 

step, the relationships of the previous constructs with behavior was also included into the 

model so that a further endogenous variable was added leading to the complete pooled 

5x5 correlation matrix. The results section reports the indexes typically used to evaluate 

the goodness of a SEM. As indicators of a good fit to the data, it is usually assumed 

RMSEA ≤ 0.05, CFI ≥ 0.90 (if not 0.95), SRMR ≤ 0.08, and TLI ≥ 0.90. 

2.4 Results 

Most of the examined studies were published starting from 2011 (10 out of 17), 6 were 

published during the 2000s, and one in the 90s. Publication distribution is scattered among 

13 journals active on several domains (e.g. economics, environmental studies, social 

psychology), with a third of the papers published on two journals: Appetite (4 studies) 

and British Food Journal (2). Only eleven studies provided data regarding sex 

distribution: the samples were composed of females for a slight majority (M = 52.05). 

Most of the studies started with specific hypotheses (12) rather than being explorative 

research (5). Moreover, about half of the studies (9 out of 17) tried to extend the 

application of the original model proposed by the TPB with the addition of supplemental 

antecedents of intention. The most frequently added factors are related to the perceived 

self-identity of customers and to the moral concern associated with the fairness of 

purchasing sustainably grown food.  



 

 

Table 1 - Summary of the studies considered for the meta-analysis. 

Author(s) Year Primary purpose Intention to consume 
Sample 

country 

Mean 

age 
%Female 

1. Al-Swidi et al. 2014 

Measuring the direct and 

moderating effects of subjective 

norms on attitude, PBC and 

purchase intention of organic 

food 

generic organic food Pakistan 33.89a 25.50 

2. Arvola et al. (study a, first sample) 2008 

Evaluation of the integration of 

measures of affective and moral 

attitude into the original TPB in 

order to predict buying intention 

of organic foods 

organic apples Italy 39.16a 28.00 

3. Arvola et al. (study a, second 

sample) 
2008 organic apples Finland 39.16a 50.00 

4. Arvola et al. (study a, third sample) 2008 organic apples U.K. 39.16a 30.00 

5. Arvola et al. (study b, first sample) 2008 organic pizza Italy 39.16a 28.00 

4
0
 

 
O

rg
a
n

ic fo
o

d
 p

u
r
ch

a
se b

e
h

a
v
io

r
 

 



  

 

   

 

6. Arvola et al. (study b, second 

sample)  
2008 organic pizza Finland 39.16a 50.00 

7. Arvola et al. (study b, third sample) 2008 organic pizza U.K. 39.16a 30.00 

8. Bamberg 2002 

Investigation of the effects of 

three different interventions to 

increase the likelihood to 

purchase organic food in a local 

bio-shop 

generic organic food Germany n.r n.r 

9. Dean, Raats, & Shepherd (study a) 2012 

Impact of moral norms, self-

identity and past behavior in 

relation to the intention to 

purchase specific organic food 

products 

organic tomatoes U.K. 39.16a 76.35 

10. Dean, Raats, & Shepherd (study b) 2012 organic tomato sauce U.K. 39.16a 76.35 

11. Dowd & Burke 2013 

Evaluation of the TPB in 

predicting sustainably sourced 

food with the addition of ethical 

factors (i.e. moral attitude and 

ethical self-identity). 

generic sustainably 

sourced food 
Australia 40.37 79.56 
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12. Guido et al. 2010 

Investigation of the role of ethical 

factor and product personality in 

relation to the intention to buy 

organic food 

generic organic food 
France and 

Italy 
n.r n.r 

13. Honkanen & Young 2015 

Application of the TPB to 

investigate the intention to 

purchase and consume sustainable 

seafood 

sustainably produced 

seafood 
U.K. 47.00 61.00 

14. Lee, Bonn, & Cho 2015 

Investigation of the motivation 

behind the purchase of organic 

coffee by means of the TPB 

organic coffee 
South 

Korea 
24.50a 65.60 

15. Lodorfos & Dennis 2008 

Application of the original model 

proposed by the TPB to 

investigate the intention to 

purchase organic food products 

generic organic food U.K. 40.04a n.r 

16. Onwezen, Bartels, & Antonides 

(study a) 
2014 

Evaluation of the intention to buy 

organic food using the original 

model of the TPB with a special 

consideration on descriptive 

norms and on the pride and guilt 

feelings 

generic organic food Netherlands 44.90 50.20 

17. Robinson & Smith 2002 

Application of the original model 

of the TPB with the addition of 

self-identity as antecedent of the 

behavioral intention 

generic sustainably 

sourced food 
U.S.A. 36.00a 65.00 
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18. Sparks & Shepherd 1992 

Investigation of intention to 

purchase and consume organic 

food products considering the 

attitude, social norms, PBC, self-

identity and past behavior 

generic organic food U.K. n.r n.r 

19. Vassallo et al. 2016 

Application of an extended model 

of the TPB to investigate the 

intention to buy sustainable food 

products with a focus on social 

pressure 

generic sustainably 

sourced food 
Italy 42.43a 60.00 

20. Vermeir & Verbeke 2008 

Use of the original model of TPB 

to predict the intention to buy 

organic dairy products with the 

addition of individual 

characteristics (i.e. confidence 

and personal values) 

sustainable dairy 

products 
Belgium 20.50a n.r 

21. Yadav & Pathak 2016 

Investigation of the intention to 

buy organic food products in a 

developing nation by means of 

the original model of the TPB 

generic organic food India 25.59a 45.00 

22. Yazdanpanah & Forouzani 2015 

Application of the TPB model to 

predict the intention to buy 

organic foods among Iranian 

students with emphasis on moral 

norms and self-identity 

generic organic food Iran 20.98 64.30 

23. Zagata 2012 

Investigation of the intention to 

buy organic food products in the 

context of a country with an 

emerging organic food market 

generic organic food 
Czech 

Republic 
n.r 25.50 

a Mean age was indirectly elaborated on the base of the information provided within the paper.  
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Table 2 - Raw correlations considered for the meta-analytic procedures. 

Research ID 
Sample 

size (N) 

ATT-

SN 

ATT-

PBC 

SN- 

PBC 

ATT-

INT 

SN- 

INT 

PBC- 

INT 

ATT-

BEH 

SN- 

BEH 

PBC-

BEH 

INT-

BEH 

1. Al-Swidi et al., 2014 184 0.562 0.180 0.314 0.798 0.696 0.216 n.r n.r n.r n.r 

2. Arvola et al., 2008 

(study a/sample from IT) 
202 0.690 0.440 0.460 0.730 0.620 0.410 n.r n.r n.r n.r 

3. Arvola et al., 2008 

(study a/sample from UK) 
270 0.520 0.220 0.280 0.600 0.560 0.310 n. r n.r n.r n.r 

4. Arvola et al., 2008 

(study a/sample from FI) 
200 0.570 0.400 0.340 0.670 0.550 0.360 n.r n.r n.r n.r 

5. Arvola et al., 2008 

(study b/sample from IT) 
202 0.760 0.350 0.360 0.710 0.640 0.240 n.r n.r n.r n.r 

6. Arvola et al., 2008 

(study b/sample from UK) 
270 0.460 0.030 0.150 0.550 0.580 0.100 n.r n.r n.r n.r 

7. Arvola et al., 2008 

(study b/sample from FI) 
200 0.510 0.260 0.210 0.510 0.380 0.160 n.r n.r n.r n.r 

8. Bamberg, 2002 320 0.410*** 0.450*** 0.320*** 0.480*** 0.400*** 0.550*** 0.480*** 0.170*** 0.310*** 0.340** 

9. Dean, Raats, & Shepherd, 

2012 (study a) 
501 0.660*** 0.530*** 0.360*** 0.740*** 0.720*** 0.450*** 0.550*** 0.550*** 0.310*** 0.640*** 

10. Dean, Raats, & Shephedr, 

2012 (study b) 
499 0.640*** 0.480*** 0.430*** 0.710*** 0.710*** 0.430*** 0.350*** 0.340*** 0.300*** 0.490*** 

11. Dowd & Burke, 2013 137 0.440** 0.300** 0.300** 0.680** 0.550** 0.510** n.r n.r n.r n.r 
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12. Guido et al., 2010 207 0.040 0.110 0.220*** 0.270*** 0.460*** 0.420*** n.r n.r n.r n. r 

13. Honkanen & Young, 2015 755 0.371** 0.228** 0.130** 0.574** 0.561** 0.319** n.r n.r n.r n.r 

14. Lee, Bonn, & Cho, 2015 482 0.266** 0.183** 0.136** 0.303** 0.491** 0.270** n.r n.r n.r n.r 

15. Lodorfos & Dennis, 2008 144 0.281** 0.120 0.114 0.820** 0.534** 0.486** n.r n.r n.r n.r 

16. Onwezen, Bartels, & 

Antonides, 2014 (study a) 
944 0.344*** 0.171*** 0.228*** 0.561*** 0.524*** 0.185*** 0.420*** 0.421*** 0.185*** 0.657*** 

17. Robinson & Smith, 2002 547 0.476** 0.259** 0.299** 0.459** 0.382** 0.332** n.r n.r n.r n.r 

18. Sparks & Shepherd, 1992 261 0.370*** 0.060 0.050 0.380*** 0.300*** 0.270** n.r n.r n.r n.r 

19. Vassallo et al., 2016 2905 0.320*** 0.670***1 0.250***1 0.780*** 0.630*** 0.430***1 0.550*** 0.470*** 0.600*** 0.730*** 

20. Vermeir & Verbeke, 2008 456 n.r n.r n.r 0.666*** 0.371*** 0.389*** n.r n.r n.r n.r 

21. Yadav & Pathak, 2016 220 0.020 -0.030 -0.090 0.550* - 0.020 0.150 n.r n.r n.r n.r 

22. Yazdanpanah & Forouzani, 

2015 
389 - 0.025 0.003 0.075 0.650*** 0.049 - 0.021 n.r n.r n.r n.r 

23. Zagata, 2012 1054 0.391** 0.388** 0.222** 0.518** 0.497** 0.388** 0.239** 0.272** 0.204** 0.338** 
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Notes. Studies with multiple samples or different research are indicated in parentheses. Raw correlations that were not reported by the original papers are marked with “n.r.”. Significance levels 

are reported from the original analyses (significance levels are not indicated if original papers did not report them).  

Abbreviations. ATT = attitude; SN = subjective norms; PBC = perceived behavioral control; INT = behavioral intention; BEH = actual behavior. 
1 PBC correlation coefficients are reported with a negative sign in the original research: the sign has been reversed to match the operationalization performed by the majority of studies.  

* p < 0.05; ** p < 0.01; *** p < 0.001 

 

Table 3 - Stem-and-leaf plots of the original correlations between attitude and intention (3.a), subjective norms and intention (3.b), perceived behavioral 

control and intention (3.c), and intention and behavior (3.d). 

Table 3.a – Att-Int  Table 3.b – SN-Int 

Stem Leaf  Stem Leaf 

.2 70  - .0 20 

.3 03, 80   .0 49 

.4 59, 80  .1  

.5 10, 18, 55, 55, 61, 74               .2  

.6 00, 50, 66, 70, 80  .3 00, 71, 80, 82 

.7 10,10, 30, 40, 80, 98  .4 00, 60, 91, 97 

.8 20  .5 24, 34, 50, 50, 60, 61, 80              

   .6 20, 30, 40, 96 

   .7 10, 20 

     

     

Table 3.c – PBC-Int  Table 3.d – Int-Beh 

Stem Leaf  Stem Leaf 

- .0 21  .3 38, 40 

.1 00, 50, 60, 85   .4 90  

.2 16, 40, 70, 70  .6 40, 57 

.3 10, 19, 32, 60, 88, 89  .7 30 

.4 10, 20, 30, 30, 50, 86    

.5 10, 50    
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Overall, the studies involved sampled participants from 14 different countries. The 

majority of them included European samples (17 out of 23), three studies employed 

samples from Asia, one from Australia, one from Middle-East and one from USA. It 

should be noted that the European sample included a majority of Italian participants (n = 

3265), followed by English (n = 1859) and Czech (n = 1054). Generally speaking, the 

number of participants was satisfactory for all the examined studies, with a minimum of 

137 participants (Dowd & Burke, 2013). Some studies (9 cases) applied sophisticated 

statistical analyses, such as structural equations modeling: within these cases, for some 

of these studies (Al-Swidi et al., 2014; Arvola et al., 2008) the number of subjects were 

however below the minimum acceptable threshold of 10 subjects for parameter suggested 

by Kline (2011). 

Most of the time the questionnaire administered by the researchers investigated the 

intention to purchase or consume general food products: thus, items used to measure the 

TPB constructs were phrased in relation to “organic food” (n = 9) or “sustainably sourced 

food” (n = 4). Instead, specific organic products investigated by the included studies were: 

apples, pizza, tomatoes, tomato sauce, coffee, or dairy products. Correctly, most of the 

studies (14 out of 17) reported all the original items employed to assess the constructs of 

the TPB. 

Generally, the correlations retrieved from the examined studies showed large 

discrepancies, ranging from small to great effects for all the relationships between the 

antecedents and the behavioral intention. The widest variation among correlations was 

found however for the association between subjective norms and intention, which showed 

a maximum value of rmax = 0.72 (Dean, Raats, & Shepherd, 2012), and a minimum value 

close to the null one (rmin = -0.02; Yadav & Pathak, 2016). 

2.4.1 Summary effects 

As mentioned in the data analysis section, the application of a fixed-effects model is 

considered appropriate only when there is a very low variation among studies; vice-versa, 

a pool of studies with high heterogeneity should be examined with a random-effects 

model. We therefore applied the latter to all examined correlations. However, in order to 

assess the goodness of our assumptions, we evaluated the I2 and Q-test values: I2 values 

ranged among the examined correlations from a minimum of 86.48% to a maximum of 

98.05% thus indicating an overall very high heterogeneity among studies (see Table 4). 
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Similarly, the Q-test constantly reported values associated with a p-value < 0.001, thus 

confirming the discrepancy among the studies. Therefore, the applied RE model 

confirmed to be the appropriate solution for the current cases.  

Residuals appeared normally distributed in all cases with the exception of the 

correlations between perceived behavioral control and actual behavior. In this case, one 

extreme outlier appeared (i.e., Vassallo, Scalvedi, & Saba, 2016, r = 0.60). A further 

meta-analytic process where the outlier was removed was performed. Again, the Shapiro-

Wilk test did not indicate a normal distribution and two minor outliers were identified 

(Onwezen, Bartels, & Antonides, 2014; Zagata, 2012). We consider this an issue that 

might be due to the different measures employed during the evaluation of the PBC: further 

considerations regarding this point are given in the conclusion. 

Results obtained from the meta-analyses are presented in Table 4. Each summary 

effect is supplied with its relative lower and upper limits for the 95% confidence interval. 

The strongest summary effect is given by the association between attitude and intention 

(SEatt-int = 0.61). Similarly, a lower but still large correlation resulted between subjective 

norms and behavioral intention (SEsn-int = 0.50). Conversely, the third antecedent shows 

a medium effect size in relation to intention (SEpbc-int = 0.32). A similar pattern was found 

in relation to the associations between the antecedents of intention and actual behavior. 

Particularly, the strongest correlation was found between attitude and behavior (SEatt-pbc 

= 0.44), followed by subjective norms-behavior (SEsn-beh = 0.38) and PBC-behavior 

(SEpbc-beh = 0.33). Moreover, the correlation between the behavioral intention and actual 

behavior was moderate to large (SEint-beh = 0.55). 

Interestingly, the correlations among the antecedents of intention also show different 

magnitudes. On one hand, the perceived behavioral control shows a small association 

with both attitude (SEatt-pbc = 0.28) and subjective norms (SEsn-pbc = 0.24). On the other 

hand, a medium effect size was obtained for the association between attitude and 

subjective norms (SEatt-sn = 0.43). The latter results appear to be of particular interest 

since, as it will be shown in the following, it might suggest an indirect relation between 

social norms and intention mediated by attitude.  

2.4.2 Test of the original model 

In order to evaluate the combined strengths of the relationships among attitude, subjective 

norms, PBC, behavioral intention, and behavior, the meta-analytic structural equation 
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framework provided by Cheung (2015) was used. Ajzen’s model was tested in order to 

achieve a comprehensive description of previous findings in literature. Results and fit 

indexes are summarized in Table 5. 

Firstly, the model was tested by taking into account all 23 studies (Model 1; χ2(3) = 

8.618, p = 0.0348, RMSEA = 0.0128, SRMR = 0.0509, TLI = 0.9836, CFI = 0.9951). 

Secondly, the same model (Fig. 3) was tested considering only the six studies that 

provided all the correlations between antecedents, intention, and behavior (Model 2; χ2(3) 

= 4.02, p = 0.2590, RMSEA = 0.0074, SRMR = 0.0344, TLI = 0.9960, CFI = 0.9988). In 

particular, the goodness-of-fit indexes of the latter are far above the acceptable thresholds. 

Therefore, the TPB appears to be confirmed as an adequate theoretical framework to 

predict the intention to purchase and consume organic food products. Regarding the 

estimated parameters, the major influence on consumers’ buying intention is confirmed 

to be played by the individual attitude (β = 0.44, 95% CI=[0.31,0.56]), followed by the 

subjective norms (β = 0.35, 95% CI=[0.24,0.46]) and finally by the perceived barriers to 

the purchase of food products (β = 0.12, 95% CI=[-0.01,0.24]). Additionally, a strong 

effect from intention to behavior emerges (β = 0.62, 95% CI=[0.54,0.70]). Nonetheless, 

several medium correlational effects are present among the antecedents of intention. 

Interestingly, the estimated association between social norms and attitude confirmed to 

be the strongest as it was already previously noticed in the summary effects.  

In addition, the full TPB model (Model 2) underwent a further investigation. In 

particular, we tried to assess the invariance of the model by distinguishing between those 

studies that framed the questionnaire items w.r.t. the kind of food products (i.e., “organic 

food”) and those that rather focused on the production method (such as, “sustainable 

produced food”). This analysis was run to check the validity of the theoretical a-priori 

integration into the previous analyses. Results obtained in the first condition showed no 

substantive differences, neither in the fitness of the model nor in the strength of the paths 

with respect to the original models. Unfortunately, we were unable to obtain reliable 

estimates in the second condition for the full model due to the fact that studies that 

included the correlation between intention and behavior were too few. However, given 

the fact that the results obtained in the first condition were not different from the one 

where studies were integrated, and that the results obtained for both groups in those 

models (see next section) tested in absence of the association intention-behavior did not 
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differ, it is reasonable to presume that even the second condition would lead to a similar 

output.  

Finally, a further model (Model 3; Fig. 4) based on an extension of the TPB model 

was investigated. This test was suggested by the unusually skewed distribution of the 

correlation between PBC and actual behavior (with respect to the other here presented) 

obtained during the computation of the summary effects. Moreover, the same model has 

been recently validated by Shin, Hancer, and Song (2016) in the context of local food 

purchase. In detail, the structure is the same of Model 2 but a direct effect from PBC to 

behavior is added. The indexes of fit were comparable if not superior to the previously 

discussed models: χ2(2) = 4.27, p = 0.1184, RMSEA = 0.0100, SRMR = 0.0337, TLI = 

0.9901, CFI = 0.9980. The same model that takes into account only the aforementioned 

six studies shows even better increments of the goodness-of-fits. It should be stressed, 

however, that such a model might be affected by the presence of outliers associated to 

high samples, in particular Vassallo et al. (2016) found a correlation of 0.60 between PBC 

and actual behavior. If the same analysis is carried out on the remaining five studies, the 

fit indexes are still very good χ2(2) = 3.028, p = 0.2201, RMSEA = 0.0124, SRMR = 

0.0277, TLI = 0.9931, CFI = 0.9988, but the estimated effect for the PBC-behavior 

coefficient is very low, 0.04, with a 95% confidence interval containing the zero and 

ranging from -0.05 to 0.11. This suggests the importance to explore this connection in 

further research. 

2.4.3 Alternative models 

In addition to the original Ajzen’s formulation of the TPB, some alternative models were 

tested that postulate a direct relation between subjective norms and attitude. A first 

alternative assumes, in addition to such a direct effect, only a correlation between 

subjective norms and PBC (Models 4 and 5). This test was suggested by the study of Al-

Swidi et al. (2014). A second alternative also drops this last association (Models 6 and 7). 

The test of this model was suggested by work by Tarkiainen and Sundqvist (2005) and 

Lodorfos and Dennis (2008). Since the aforementioned works did not employ a measure 

of actual behavior, Models 4 and 6 were run by excluding the construct, whereas Models 

5 and 7 tried to include the association between intention and behavior. 

Results suggest that both Models 4 and 5, in spite of a significant chi-square, might 

be considered acceptable, with slightly better indexes of fit for the model which includes 
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the effect of intention on actual behavior (Model 5; χ2(4) = 27.345, p < 0.001, RMSEA = 

0.0227, SRMR = 0.0710, TLI = 0.9486, CFI = 0.9795). On the contrary, results for Model 

6 indicate that this model is unable to fit the original data (Model 6; χ2(2) = 136.45, p < 

0.001, RMSEA = 0.0770, SRMR = 0.1467, TLI = 0.5593, CFI = 0.8531). Remarkably, 

the same assumption tested with the addition of actual behavior does not lead to any 

improvement in the fit (Model 7; χ2(5) = 145.97, p < 0.001, RMSEA = 0.0498, SRMR = 

0.1262, TLI = 0.7528, CFI = 0.8764). It then appears that the suggestion to exclude the 

correlation between subjective norms and perceived behavioral control is empirically 

falsified. 

Since however Model 5 is equivalent to Model 1 (minus the correlation between PBC 

and Attitude), it should not be surprising that the tested models seem to fit well using both 

correlation or a direct effect between SN and attitude. In order to test whether the 

substantive different implications associated to a direct affect rather than a correlation 

might be supported, a mediation analysis was performed to determine if an indirect effect 

of social norms on attention might be detected. Mediation analysis was carried out by 

using the method provided by Selig and Preacher (2008) which allows to generate R code 

to determine confidence intervals for indirect effects based on a montecarlo method. The 

test was conducted on the mediations SN-attitude-intention and SN-PBC-intention. 

Results confirm attitude as a potential mediator between subjective norms and intention 

(95% CI = [0.12,0.19]), thus suggesting that a direct effect of social norms to attitude 

might be plausible. On the contrary, the test conducted with PBC as mediator shows 

results strongly close to zero (95% CI = [0.02,0.05]) meaning that, although a mediation 

effect of PBC might exists, it can be considered negligible so that a simple correlation 

between SN and PBC suffices. 

2.5 Discussion and conclusions 

The present work reviewed the relationships among attitude, subjective norms and 

perceived behavioral control in relation to the intention to and the actual purchase and 

consumption of organic food products. Remarkably, the majority of the identified studies 

have been conducted in the last six years: this demonstrates that the concern for the 

consumption of sustainable food is spreading together with the interest in understanding 

the psychological motivations behind consumers’ intention to purchase food produced in 

a sustainable manner.



 

 

Table 4 - Summary of the results obtained from the application of the meta-analysis procedures. 

TPB Construct association k Total sample Weighted r CI 95% Ll CI 95% Ul Q-test I2 (Ll – Ul) 

Attitude-SN 22 10893 0.432 0.340 0.517 443.96*** 96.75 (94.38 - 98.42) 

Attitude-PBC 22 10893 0.277 0.194 0.357 833.06*** 94.94 (91.64 - 97.59) 

SN-PBC 22 10893 0.238 0.182 0.292 123.06*** 86.48 (73.25 - 93.85) 

Attitude-Intention 23 11349 0.614 0.550 0.671 626.23*** 96.08 (93.25 - 98.06) 

SN-Intention 23 11349 0.504 0.429 0.571 457.21*** 95.94 (93.11 - 98.00) 

PBC-Intention 23 11349 0.325 0.266 0.382 210.41*** 90.89 (84.06 - 95.55) 

Attitude-Behavior 6 6223 0.437 0.337 0.528 128.30*** 94.73 (86.71 - 99.14) 

SN-Behavior 6 6223 0.379 0.263 0.484 83.87*** 95.61 (87.76 - 99.28) 

PBC-Behavior 6 6223 0.328 0.192 0.452 322.09*** 96.58 (91.72 - 99.44) 

Intention-Behavior 6 6223 0.552 0.403 0.672 331.87*** 98.05 (95.00 - 99.68) 

Notes.  k = number of raw correlations; CI = confidence interval; Ll = Lower limit; Ul = Upper limit; SN = subjective norms; PBC = perceived behavioral control. 

*** p < 0.001 
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Table 5 - Summary of the indexes of the goodness-of-fit obtained for each tested MASEM. 

Model χ2 (df)  p-value RMSEA RMSEA 

95% Li 

RMSEA 

95% Ui 

SRMR TLI CFI AIC BIC 

Model 1 

Original TPB model 
8.618 (3) 0.035  0.013 0.003 0.023 0.051 0.984 0.995 2.618 -19.393 

Model 2 

Original TPB model 
4.023 (3) 0.259  0.007 0.000 0.024 0.034 0.996 0.999 -1.977 -22.185 

Model 3 

Original TPB model 

PBC → BEH 

4.268 (2) 0.118  0.010 0.000 0.023 0.034 0.990 0.998 .268 -14.406 

Notes. Models 1 and 3 include 23 studies with an overall sample composed by 11349 participants, while Model 2 employed 6 studies (6223 participants). 

 → denotes direct effect. 
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Fig. 3 - Original model of the TBP elaborated on the bases of the pooled correlation matrix. Parameters are those obtained by fitting Model 2. 

 
 

Fig. 4 - Model based on the TPB with the inclusion of a direct effect from PBC to actual behavior. Parameters are obtained by fitting Model 3. 
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Interestingly, contributions to this topic are scattered among journals of different 

fields. This reflects the interdisciplinary nature of the research and the broad interested 

demonstrated, for instance, by economists, nutritionists and social psychologists. 

Moreover, although the majority of the included studies were comprised of a European 

sample, their variety reflects rather well the idea exposed by Peattie (2010) about the 

geographical expansion of green consumption, which in its turn highlights the 

globalization of the concerns regarding environment. 

In spite of this growing attention, it appears that the research in this field has more 

frequently focused on the intention to purchase and consume generic sustainable food 

products, rather than focusing on the actual behavior and/or on specific categories of 

products (such as organic coffee or tomatoes). Most of all, we would like to highlight a 

potentially misleading error that emerged from the review: very few of the examined 

studies paid attention to differentiate between the act of purchasing from the actual 

consumption of organic food. Hence, future research should investigate the actual 

behavior while distinguishing between these actions: as an example, participants enquired 

at the grocery store might just be responsible to shop for the whole family, and thus they 

might not be really concerned about the purchase of sustainable product for their own 

interest but under the requests of others family members. As to the results of the meta-

analysis, they showed the magnitude of the single relationships among the constructs of 

the TPB. As one may expect, individual attitude owns the major potential to affect 

consumers’ buying intention. This particular correlation is close to the reasonable limit 

of predictive utility suggested by Ajzen (2011; r = 0.60). In addition, a significant 

correlation emerged between attitude and actual behavior. However, results also 

demonstrated the significant support of subjective norms in shaping the intention to buy 

organic food products. In fact, in contrast with the idea that social norms might represent 

the weakest part of the TPB (Armitage & Conner, 2001), the summary effects show a 

moderate influence of the social sphere on the intention to buy organic food in the context 

of sustainable environment. Most of all, the importance of social norms appears to be also 

supported by mediation analysis which emphasize how attitude might mediate between 

social norms and intentions in the present context. As already indicated by Lodorfos and 

Dennis (2008), it is rather important to promote this kind of product through the social 

medium of consumers. Thus, marketers interested to promote organic food should 
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identify important/relevant people (i.e. opinion leaders) and invest on their endorsement 

in order to quickly influence consumers’ behavior. A consequent implication concerns 

the promotional campaigns employed to support organic farming or consumption. Several 

members of the EU already support events such as “Organic Action Days” (European 

Commission, 2014). In light of this finding, this kind of activity might play a crucial role 

to promote the diffusion of green food in a twofold manner: firstly, it may affect 

consumers’ beliefs regarding organic food, shaping individual attitude; secondly, 

campaign days might foster the spreading of a shared positive social norm toward the 

consumption of organic food products.  

In contrast, perceived behavioral control seemed to play a minor role with respect to 

behavioral intention. However, it must be noted that the items assessing this factor show 

several incongruences among the studies. In particular, during the review, an important 

issue emerged in relation to PBC and attitude: the same product characteristics in different 

investigations are conceived, and consequently measured, sometimes as part of the 

attitude component and sometimes as part of the behavioral control. This appears to be 

particularly evident with respect to price and availability of organic food. As an example, 

Guido et al., (2010) and Al-Swidi et al. (2014) presented an item related with the product 

price as a behavioral belief measured within the individual attitude whereas Zagata (2012) 

presented the price as a potential barrier during the evaluation of PBC. Conversely, the 

first authors assessed the perceived availability of organic food products as part of the 

individual attitude, whereas the second and the third ones proposed the same element as 

a potential barrier to the purchase. It appears that these kinds of incongruences among 

studies might pose a threat to the reliability and generalizability of the results. We 

recommend to consider price and availability within the measurement of the PBC, as they 

are strictly related to the individual perception that a consumer has the capacity to 

purchase organic food products: this is coherent with the explanation provided by Ajzen 

(2005) of perceived behavioral control. In addition, items related to price and availability 

were also included by Armitage and Conner (1999) within the measurement of PBC, in 

order to predict the intention to adhere to low-fat diets. 

Analyses also showed a large summary effect for the relationship between behavioral 

intention and actual behavior. The magnitude of such a correlation was stronger than the 

other direct associations with behavior thus supporting, on one hand, that intention is the 
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best predictor of actual behavior, but also on the other hand the notion of intention-

behavior gap, meaning that even the strongest intention might not be transformed into a 

consequential action (see for instance, Sniehotta, Scholz, and Schwarzer, 2005). 

Nonetheless, there were very few studies that reported correlations among intentions and 

actual behavior, thus posing a potential threat to the reliability of this result. Remarkably, 

this issue is not new, as it has already been encountered by Schwenk and Möser (2009) 

while reviewing the more general environmental behavior, where among twenty-five 

selected studies only eleven reported the actual correlation intention-behavior. 

Consequently, a major concern regards the data collection: only 30% of the examined 

studies reported the correlation between the intention and the past or the prospect 

behavior. This might pose a further threat to the validation of the theory of planned 

behavior in relation to the purchase and consumption of organic food as its investigation 

appears to be often interrupted at the stage of consumers’ behavioral intention. We 

strongly suggest that further studies take into consideration the evaluation of actual 

behavior of participants with respect to the purchase and consumption of organic food in 

addition with the other components of the TPB. Research aimed to investigate consumers’ 

behavior should invest to include measures of actual marketplace behavior. Since a 

measure of prospect behavior may pose some difficulties as it requires the observation of 

consumer’s behavior, we recommend to devote at least two items inside the questionnaire 

to investigate past behavior of consumers. 

The final part of the analyses employed meta-analytical structural equation modeling 

to test several TPB models and investigate the multiple relationships among its constructs. 

As shown by means of the MASEMs, within the domain of organic food choice the 

original framework proposed by Ajzen (1991) might be considered a robust description 

of the ongoing processes. However, it is interesting to notice that a potential direct effect 

might occur between subjective norms and attitude. This result, which firstly emerged in 

studies that did not considered actual behavior in their analysis, appears also to hold in 

presence of actual behavior. Mediation analyses allowed to deepen this point by showing 

that individual attitude seems to play the role of mediator between subjective norms and 

behavioral intention. That is to say, the social sphere might be able to affect individual 

attitude besides behavioral intention. This was already noted by Tarkiainen and Sundqvist 

(2005, p.816) who affirmed that “it seems that positive (or negative) attitudes toward 
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buying organic food «pass on» among people”. In other words, people who see organic 

food in a positive way might be able to influence the attitude formation of other 

consumers. Indeed, this means that investing in the diffusion of a positive norm toward 

organic food may work more efficiently than changing consumers’ attitude. On the 

contrary, PBC does not seem to be directly affected by subjective norms. However, it 

appears to affect both intention and actual behavior. This second relationship is also 

supported by a recent work of Shin, Hancer and Song (2016), who find a direct effect 

between PBC and behavior in a similar context. Nevertheless, it should be stressed that 

such an interesting result deserves further investigation: on one hand the associated 

MASEM shows extremely good fit indexes; on the other hand, however, there are at least 

three points that raise some concern and deserve to be deepened: firstly, as it has been 

previously stressed, perceived behavioral control items in the selected studies were not 

always methodologically sound or well-defined; secondly, there were actually only six 

observations of such a correlation; thirdly, the studentized residual analysis showed that 

their distribution might not be symmetric but highly skewed, with one outlier which is 

also associated to one of the studies with the larger samples. Removing such a study leads 

to a MASEM that shows extremely good fit indexes but also a very small value of the 

path coefficient between PBC and behavior. Conclusions on this specific issue appear 

then not to be possible and further investigations should be considered in future research. 

In conclusion, it is our opinion that in spite of some limitations, like the limited 

availability of some quantitative measures for some of the considered effects, the decision 

to limit the research to published studies, and the choice of modeling with pure random-

effects meta-analysis some studies which instead might have been partially correlated, 

the present review should provide a reliable evidence that the theory of planned behavior 

has a solid ground in green food consumption. In particular it is our opinion that at least 

three issues have emerged clearly: firstly, the need for a more methodologically robust 

exploration of the constructs in the future literature; secondly, the importance to establish 

whether the relation between perceived behavioral control and actual behavior truly holds 

for the present context; thirdly, the importance to explore whether the mediation role of 

attitude between subjective norms and behavioral intention could be suitable for other 

similar green products, such as locally produced food (or, local specialties), fair trade 

products, or even eco-friendly electronic devices. Indeed, the recent work by Paul, Modi, 
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and Patel (2016) appears to confirm the validity of this suggestion for the broad category 

of green products. Thus, besides food products, future research should consider the 

application of structural equation modeling techniques to test either the validity of the 

canonical TPB model or one of the proposed alternative effects in order to deepen our 

understanding of the relationship between the social and the individual dimensions on 

consumers’ purchase of green products. 
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Abstract 

It is likely that computer simulations will assume a greater role in the next future to 

investigate and understand reality (Rand & Rust, 2011). Particularly, agent-based 

models (ABMs) represent a method of investigation of social phenomena that blend 

the knowledge of social sciences with the advantages of virtual simulations. Within 

this context, the development of algorithms able to recreate the reasoning engine of 

autonomous virtual agents represents one of the most fragile aspects and it is indeed 

crucial to establish such models on well-supported psychological theoretical 

frameworks. For this reason, the present work discusses the application case of the 

theory of planned behavior (TPB; Ajzen, 1991) in the context of agent-based 

modeling: it is argued that this framework might be helpful more than others to 

develop a valid representation of human behavior in computer simulations. 

Accordingly, the current contribution considers issues related with the application of 

the model proposed by the TPB inside computer simulations and suggests potential 

solutions with the hope to contribute to shorten the distance between the fields of 

psychology and computer science. 
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3.1 Introduction 

In 1952 (p.169) K. Lewin wrote: “there is nothing more practical than a good theory”. 

Vansteenkiste and Sheldon (2006) clarified this assertion affirming that theorists should 

work to develop theories that can be applied to solve real problems, whereas researchers 

in applied psychology should take advantage of available scientific theory to solve 

problems. Indeed, a good theory can lead to develop specific interventions aimed to 

drastically change people behaviors. However, if we look closer, Lewin’s idea hides an 

intriguing paradox. In fact, if we would like to apply Lewin’s teaching, we were 

immediately arrested by its fuzziness: how is it possible to mark as good a theory? An 

attempt to answer to this question was provided by Eysenck (1987), whereas more 

recently Cramer (2013) suggested six criteria. Particularly, in order to assess the quality 

of scientific theories Cramer proposed to consider: 

i. Comprehensiveness: a valid psychological theory should be able to “describe, 

explain, predict, and control phenomena and behaviors” (ibid, p. 9). 

ii. Applied value: applicability concerns the ability to presents “effective solutions to 

life’s problems” (ibid, p. 11). 

iii. Precision and testability: constructs should be clearly defined and strictly 

interrelated. Furthermore, constructs should be testable by valid measurements 

and through falsifiable hypotheses. 

iv. Parsimony: a psychological theory should not be too complex to allow its testing1. 

v. Empirical validity: a good theory should be able to provide an explanation to 

potential disconfirming evidences. 

vi. Heuristic value: this criterion suggests that a valuable scientific theory should be able 

to open new perspectives and directions in other fields. 

The present contribution briefly discusses the goodness the theory of planned 

behavior (TPB; Ajzen, 1991) in light of these criteria2. On the one hand, it is argued that 

                                                 

1 A negative example to understand the concept of parsimony is given in Jackson (2005) in relation to the 

theory of buyer behavior by Howard and Sheth. 

2 However, due to the limited amount of space we decided to focus the discussion to issues and solutions. 

Hence, references in section 3.2 are limited to major works and reviews related with Ajzen’s framework. 
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Ajzen’s proposal has proven itself as a remarkable good theory over the years. On the 

other hand, the contribution applies a novel approach in order to highlight some gaps that 

should be consider in relation to the application of the TPB inside interdisciplinary works. 

The hope is to contribute to shorten the distance between psychology and computer 

science providing support to a specific theory that more than others may be helpful to 

establish a common ground for interdisciplinary works. 

3.2 Ajzen’s theoretical framework 

Theory of planned behavior assumes that people behave considering the implications of 

their actions (Ajzen, 2011a).  Beliefs play a central role in the model: they represent the 

information used to evaluate a certain behavior and they are supposed to determine the 

three basic antecedents of intention to act. Background factors (such as age or income) 

are generally not considered by the model: however, these factors can exert an indirect 

influence on intention by affecting beliefs (ibid). TPB does not propose a strict rational 

model of decision making: in fact, recently Ajzen (2014, p. 3) emphasized that “people’s 

attitudes, subjective norms and perceptions of control follow reasonably and consistently 

from their beliefs, no matter how the beliefs were formed”. Accordingly, TPB does not 

make any assumptions regarding the objectivity or truthfulness of individual beliefs: they 

can be unproved or even irrational. In addition, TPB does not propose that people engage 

constantly in the full process of evaluation: once formed, intentions and its antecedents 

are readily available to drive behaviors (Ajzen & Fishbein, 2005). 

TPB is a psychological model that takes into account three fundamental aspects of 

human behavior: personal attitude, subjective norms and perception of control (Fig. 1). 

These are the antecedents of the intention to perform a specific behavior, whereas 

intention mediates the relationship between the previous constructs and actual behavior.  

 

Fig. 1 - The framework proposed by the TPB (original source: Ajzen & Fishbein, 2005). 
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Attitude reflects individual preferences to perform (or not perform) a certain behavior 

(Ajzen, 1991).  Following Fishbein and Ajzen (1981), attitude can be conceived as the 

results of the interaction between behavioral beliefs and expected outcomes. The former 

indicate the perceived likelihood that a behavior will produce a certain effect, whereas 

the latter measure the desirability of that particular outcome. 

The concept of subjective norms refers to those decision maker’s beliefs about 

people’s approval of a certain behavior (Ajzen, 1991). This component is constituted by 

the joint evaluation of individual normative beliefs (i.e. the perceived likelihood that the 

most important people to the person approve such behavior) and the motivation to comply 

to those norms.  

The last factor pertains to the individual perception of those environmental factors 

that can facilitate or inhibit the expression of behavior (Ajzen, 2011a). In other words, 

the perceived behavioral control (PBC) aims to capture people’s confidence that they are 

capable of performing the behavior under investigation (Ajzen, 2006). PBC is comprised 

by the likelihood to perform an action due to perceived/physical barriers (e.g. the 

availability of products in stores) and the perception of control of these factor.  

Finally, behavioral intention is assumed to capture the force of the individual 

motivation to try performing a specific behavior (Ajzen, 1985). Generally, intention has 

been demonstrated to be the best predictor of actual behavior, over and behind attitude, 

social pressure, or habit (Ajzen, 2014). In accordance with Ajzen (1991), the final value 

of intention can be computed as a linear function of the three basic antecedents weighted 

for their relevance: the weight of each component is indeed highly dependent on the 

investigated behavior and population (Ajzen, 2011a; Ajzen & Fishbein, 2005; Fife-

Schaw, Sheeran, & Norman, 2007). However, some works in the nonlinear dynamics 

field argued that the application of a linear approach in the specific case of the TPB can 

result in a simplified description of the interaction between individual attitude and social 

dimension compared to nonlinear models (Smerz & Guastello, 2008; Guastello, Aruka, 

Doyle, & Smerz, 2008; Jacobsen & Guastello, 2007). For instance, the cusp catastrophe 

model applied by Smerz and Guastello (2008) on binge drinking behavior was able to 

account for 2.6 times more than a linear model. Finally, the theory suggests that the 

probability of expression of a certain behavior is proportional to the value of intention 

(Ajzen, 1991). 
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Several reviews and meta-analyses proved the suitability of the model to efficiently 

describe, explain and predict a wide range of human behaviors (see for instance, Aertsens, 

Verbeke, Modelaers, & Huylenbroeck, 2009; Ajzen & Fishbein, 2005; Armitage & 

Conner, 2001; Conner & Armitage, 1998; Fife-Schaw et al. 2007; Guillaumie, Godin, & 

Vézina-Im, 2010; Han & Stoel, 2016; McEachan, Conner, Taylor, & Lawton, 2011; Riebl 

et al., 2015; Topa & Moriano, 2010). In this sense, the TPB is certainly able to account 

for the first criteria suggested by Cramer (i.e. comprehensiveness). 

Furthermore, despite some limitations, as reported in Ajzen (2011a, 2014) since its 

introduction the TPB has been successfully applied to drive behavior change 

interventions. Interestingly, the usefulness has been noteworthy in the field of consumer 

studies for the promotion of pro-environmental and healthy behaviors (e.g. Ajzen, 2011a; 

Bamberg & Moser, 2007; Jackson, 2005; McEachan et al., 2011; Riebl et al. 2015; Topa 

& Moriano, 2010). Practical applications of Ajzen’s framework can be traced numerous 

times in literature: consequently, it is possible to assert that the TPB meets Cramer’s 

second criterion. 

In addition, over the years, numerous studies aimed to investigate decision-making 

processes assumed the theory of planned behavior as main research background: in 2010, 

Ajzen’s paper achieved over 4550 citations (Ajzen, 2011b). Thus, with respect to the third 

criterion proposed by Cramer (i.e. precision and testability), the model proposed by the 

TPB can be endorsed with an enviable amount of evidences. Moreover, Armitage and 

Conner (2001) demonstrated that the original model of the TPB can account on average 

for 27% of the variance of intention and 39% of behavior while at the same time the 

model remains parsimonious as it considers only three basic components of human 

behavior (i.e. the individual, social and contextual factors). Therefore, also the fourth 

criterion (i.e. parsimony) requested by Cramer is covered. Nonetheless, the model is 

declared opened to the addition of further constructs. 

Cramer also asks to a good scientific theory to answer to those potential 

disconfirming evidences that may arise from its application: above all, the recent 

discussion between Sniehotta, Presseau, and Araújo-Soares (2014) and Ajzen (2014) is 

able to demonstrate how this scientific theory is far from its disconfirmation or retirement. 

Finally, the sixth criteria (i.e. heuristic value) suggests that a good theory should be 

able to generate new perspectives and to inspire novel directions in other fields. 
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Regarding this point, we believe that this theoretical framework might be able to bridge 

the gap between psychological research and computer science more than other competing 

theories.  

On the one hand, Zhang and Nuttall (2011) already supported the application of the 

TPB inside computer simulations affirming that this particular theoretical framework 

allows a relatively easy translation into the form of computational algorithm and at the 

same time it is able to account for the individual, social and contextual elements into a 

single comprehensive theory. Similarly, Elsenbroich and Gilbert (2014) endorsed Ajzen’s 

theoretical model as a suitable framework to model social norms in computer simulations. 

Again, also Jager, Janssen, De Vries, De Greef, and Vlek (2000) and Schlüter et al. (2017) 

claimed their support to the application of the theory of planned behavior as basic model 

of decision-making for autonomous virtual agents. 

On the other hand, as pointed out by Sun (2008), informal theories(c) are useful to 

create explanations of complex behaviors, but they are far from precise predictions, 

whereas computational models can be intellectually enlightening about the theories that 

they aim to capture. Accordingly, we support the idea that psychological research can 

indeed benefit from the approach proposed by computational modeling since the 

development of virtual simulations such as agent-based models (ABMs) require a 

thorough analysis and comprehension of the most practical aspects of psychological 

knowledge. Starting from this, we argue that agent-based model approach can aid social 

scientists to consider in a unique manner the practical implications of psychological 

theories. In addition, Sun argued that “all branches of science progress from informal 

theory to formal model” (ibid, p.269): agent-based modeling might lead the transition in 

the specific field of social and organizational psychology as well as related subfields (such 

as consumer behavior and environmental psychology). 

However, as pointed out by Schlüter et al. (2017), the merely process of formalization 

of a theory into a computational model often leads to recognize obstacles, gaps, and 

shortcomings. Hence, in the next section we briefly introduce agent-based modeling 

approach and successively discuss issues and potential solutions related with the 

introduction of the TPB into a computational model. In relation to this approach, the 

recent work by Schlüter and colleagues discussed in a comprehensive way the challenges 

that agent-based modelers might face when confronted with the development of virtual 
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agents grounded on psychological theories. The authors reviewed and discussed several 

theories from social sciences offering a wide perspective on the argument and in relation 

to several virtual agents’ cognitive abilities (e.g. perception, reasoning and learning). In 

contrast, the present work intends to focus its attention on the specific application case of 

the theory of planned behavior: hence, the discussion is limited to the design of 

psychological decision-making models for virtual agents. 

3.3 Agent-based models 

Agent-based modeling is a method of investigation of social phenomena that blends the 

knowledge of social sciences with the advantages of virtual simulations. Its roots can be 

traced to the work by Schelling (1971) who demonstrated how spatial segregation can 

result over time by the constant application of few simply rules by many independent 

agents. Besides, the works by Wolfram (2002) were able to demonstrate the emergence 

of complex properties at the system level with a small number of rules that define the 

interaction among agents.  In the 80s, following an evolutionary approach, Axelrod 

(1986) employed simulations in order to show how cooperative behavior can result by 

the evolution over time of social norms (and meta-norms) within strategic situations. 

Later, Latané and Nowak (1994) employed simulations to illustrate the emergence of 

group processes and to investigate attitude distribution and change over time. 

So far, this approach has been fruitfully applied in several fields, such as market 

dynamics, innovation diffusion, environmental psychology, consumer behavior (e.g. 

Jager, 2006; Jager et al., 2000; Roozmand et al., 2011) and more recently on 

organizational psychology (e.g. Dal Forno & Merlone, 2004; Hughes, Clegg, Robinson, 

& Crowder, 2012; Sartori, Ceschi, & Scalco, 2014; Secchi, 2015). 

Computer simulations are able to reproduce individual and social behavior thanks to 

dedicated software (Scalco, Ceschi, Sartori, & Rubaltelli, 2015). As noted by Gilbert and 

Troitzsch, the use of computer simulations as a methodology of investigation of social 

mechanisms is rather a new idea, but it comes with great potential thanks to the fact that 

is “an excellent way of modelling and understanding social processes” (2005, p.1). Often 

ABMs are employed for the investigation of nonlinear dynamic systems: they are indeed 

able to show how the behaviors of many single agents acting for their own interest can 

produce self-organized systems due to their constant interaction over time (Guastello, 

2008). Indeed, as noted by Guastello (2001), most of psychological and social phenomena 
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follow nonlinear dynamics, starting from the relationship between strength and 

perception of physical stimuli observed by Weber and Fechner. Guastello also noticed 

that nowadays the knowledge originated in the field of nonlinear dynamic systems can 

successfully address the investigation of those phenomena already observed in the past, 

but for which the proper methods and concepts were missing, such as the dynamic 

interaction between individual preferences and social norms. Nonlinear dynamic systems 

intend to describe the complexity of phenomena as a whole (rather than reduce the 

investigation to the single parts of the system) with a particular attention to the temporal 

dimensions (Guastello, & Liebovitch, 2009). It is worthy to note, that, even if the temporal 

dimension is undoubtedly a pervasive element in every social and psychological 

phenomena, its inclusion in mainstream social psychology has been yet not fully 

recognized (Vallacher et al., 2013).  

Accordingly, as pointed-out by Hughes and colleagues (2012), the major value of 

agent-based models lies in their ability to investigate how macro-behavior emerges as a 

result of micro-behavior: that is to say, contrarily to most of the methods of investigation 

in the social sciences, agent-based models are able to replicate the emergence of social 

phenomena. For example, ABMs are well suited to investigate how individual preference 

toward a broad category of products may result in the creation of a shared norm that in 

its turn influences individual buying behavior within a constant dynamic process (see for 

instance the work by Janssen and Jager, 1999). As stated by Guastello (2007), emergence 

remained “a black box” until nonlinear dynamic systems offered the suitable concepts 

and methods for its investigation. Generally, the term emergence refers to those observed 

phenomena (in biology as well as in social systems) where the higher-order properties of 

behavior of the system which result from the interaction of the single parts cannot be 

reduced nor explained recurring to only the proprieties of the elements (Vallacher et al., 

2013). Computer simulations are a privileged method for the investigation of emergence 

phenomena as they allow specifying the elements attributes and the rules of interaction, 

and to observe the emergence of system behaviors that were not beforehand programmed 

(ibid). 

However, we believe scholars as well as practitioners from the psychology field 

might be discouraged to employ ABMs due to several factors. Firstly, currently agent-

based modeling owns an unclear definition due the wide interdisciplinarity (Secchi, 
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2015). The field is still in its early phases and common languages, as well as methods, 

are currently under discussion and bounded by disciplines. Currently, even the term 

“agent-based model” is not unanimously accepted and it can overlap with similar ones in 

other fields. Following Jager (2006), agent-based models require the formalization of 

artificial humans, called “agents”, inside a virtual world where the researcher can 

experiment with the complexity that arise through the interactions of the individual, social 

and environmental layers. Inside an agent-based model, people’s individual differences, 

ways of social interactions and decision-making processes can be modeled explicitly 

(Kiesling, Günther, Stummer, & Wakolbinger, 2012). Above all, agent-based model 

approach demands the development of algorithms where such agents are able to 

autonomously make decisions and interact similarly to humans (i.e. there is no central 

process that governs agents). 

Secondly, in contrast to statistical approach, ABMs are strictly related to population 

heterogeneity: that is to say, each virtual agent is endowed with peculiar characteristics 

such as beliefs, preferences, or any individual difference (Squazzoni, Jager, & Edmonds, 

2013). A recent review on agent-based models of innovation diffusion conducted by 

Kiesling and colleagues (2012) showed an increasing interest in agent-based modeling: 

as explained by the authors, this shift mainly occurred due to the ability of ABMs to take 

into account consumers heterogeneity in contrast to mathematical models. Interestingly, 

among these models, agents’ decision-making process is commonly designed starting 

from the theory of planned behavior. 

Nonetheless, the development of an algorithm able to recreate the reasoning engine 

of independent agents represents one of the most fragile aspects of this kind of works 

(Ceschi, Scalco, Dickert, & Sartori, 2015). Indeed, the support of psychological theories 

to develop realistic decision-making processes for virtual agents is needed in order to 

increase the validity of simulated behaviors (Jager, 2006; Jager & Janssen, 2003). 

Roozmand et al. (2011, p.1030) even claimed: “what is important in agent modeling is 

presenting an architecture which functions like the human mind”. 

Though, the transformation of an established psychological theory into the form of a 

computer algorithm can arise several issues, and even a “good theory” can show gaps 

when confronted with agent-based model approach. 
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3.4 Current issues and potential solutions 

As suggested by Schubring, Lorscheid, Meyer, and Ringle (2016), the clarification of 

how agents reason about their choices is both challenging and crucial in order to achieve 

a reliable virtual model of human behavior. The following subsections describe some of 

the problems that can be encountered when attempting to apply the theory of planned 

behavior as main reasoning engine for virtual agents. Where possible we tried to suggest 

potential solutions or workarounds based on literature or our personal experience. 

3.4.1 Data and preliminary model assessment 

Rand and Rust (2011) pointed out that agent-based model approach allows the 

concretization of many psychological theories while at the same time it is able to deal 

with real data. However, the integration of data starting from an established theoretical 

background such as the TPB is still under development. By the way, Alt and Lieberman 

(2010) proposed an ambitious work that attempted to connect in a straightforward way 

the gap between survey data method and virtual simulations. Unfortunately, in their 

example the authors employed second-hand data (specifically, the World Values Survey) 

that could not correctly match the theoretical assumptions required by the TPB. In 

addition, no statistical analyses were conduct to confirm the goodness of fit of selected 

items with the model proposed by the TPB. Indeed, statistical analyses are a necessary 

step in order to assess the ability of Ajzen’s model to explain and predict the examined 

behavior (Ajzen, 2011a). This operation should be conducted before the actual 

application of the TPB inside an ABM. If Ajzen’s model is not able to provide a sufficient 

explanation of the examined behavior, the factors, measures or the model itself should be 

reviewed. In addition, statistical procedures such as regression analyses are required to 

supply the weights of each antecedents of intentions (ibid). Thorough guidelines 

regarding the development of questionnaires based on the TPB and proper application of 

statistical analyses can be found for instance in Ajzen (2006), Francis et al. (2004), and 

Hankins, French and Horne (2000). 

3.4.2 Dealing with a static model 

As pointed-out by Schlüter et al. (2017) it is certainly a challenge to develop a model of 

causal relationships able to account for behaviors and interactions over time. Virtual 
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simulations are executed over time while the original TPB was mainly developed as a 

predictive model rather than as a theory of behavior change (Ajzen, 2014).  

As initially suggested by Ceschi, Dorofeeva, Sartori, Dickert and Scalco (2015) and 

further elaborated in Scalco et al. (2017), an established structural equation model (SEM) 

of the behavior under examination can serve as a reliable starting point to design agents’ 

decision-making process. SEMs are a modeling technique commonly widespread among 

social and psychological science (Hox & Bechger, 2009) where the relationships among 

variables is expressed by regression coefficients: a structural equation model is in fact 

built within a cause-effect framework. Thus, the theory of planned behavior can be 

represented using a SEM: the standardized regression coefficients obtained by the 

statistical output will consequently suggest the relative magnitude of the effect of personal 

attitude, social influence and PBC on intention. Similarly, a regression coefficient is 

provided for the association intention-behavior. 

However, SEMs are conceived as static models: that is to say, they are not able to 

express change over the time. Fuzzy logic and the method proposed by Schubring et al. 

(2016) might represent interesting workarounds to connect SEM and agents’ decision-

making processes. 

The work by Casillas, Martínez-López, and Martínez (2004) illustrates the 

application of fuzzy logic as a practical solution to complement the results obtained 

through structural equation modelling. In fact, fuzzy logic “enables the use of uncertainty 

measures to quantify the ambiguity associated with the prediction of psychological 

parameters” (Kushwaha & Kumar, 2009, p.131): thus, it is particularly useful to formalize 

and reason with psychological concepts.  

An additional and recent alternative is supplied by the work of Schubring et al. 

(2016). In this case, the authors proposed an interesting and quite straightforward method 

to compute probabilities starting from the regression coefficients obtained by means of a 

partial-least square structural equation model. By using the specific parameter related to 

the association intention-behavior, it is possible to obtain a value of probability which can 

be processed by computers. Interestingly, in their work Schubring et al. (2016) applied in 

a fruitful way the proposed approach to the technology acceptance model, which shares 

some similarities with the theory of planned behavior. 
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3.4.3 When does intention become behavior? 

Although the TPB offers a formal way to compute behavioral intention, the theory cannot 

really define when individuals will actually perform an action. For example, how is it 

possible to establish a threshold value for intention such that agents will actually adopt 

innovation? The general formula associated with the theoretical framework merely 

suggests that the probability to express a certain behavior is proportional to intention 

(Ajzen, 1991). Intention-behavior gap represents an issue from an agent-based modeling 

perspective since a detailed and flawless algorithm is required to run simulations. 

Schlüter et al. (2017) observed that options that have a higher intention are more 

likely to be executed. Accordingly, the TPB has been applied with success inside the 

agent-based model proposed by Kniveton, Smith, and Black (2012), which simulated the 

immigration flows in Burkina Faso. In this case, behavioral intention is calculated for 

each of the possibility given to virtual agents (i.e. to migrate in one of four parts of the 

state or abroad): the alternative with the highest intention value is chosen and the 

associated behavior is then performed. Similar works are presented in Schwarz and Ernst 

(2009) and Scalco, Jager, Bolderdijk, Ceschi and Sartori (a working paper presented in 

the successive chapter).  

Alternatively, in order to connect intentions with actual performance of behavior, Alt 

and Lieberman (2010) suggested to normalize across the virtual agents the obtained 

valued of behavioral intention providing for each agent a relatively likelihood that should 

be compared with the overall population. Similarly, the model by Sogani, Muduganti, 

Hexmoor, and Davis (2005) asks agents to compute the behavioral intention as a 

probability or, alternatively, as a threshold value that can be set by the modeler. 

Another method of resolution comes from the work by Schubring et al. (2016). Since 

this work has been already discussed in the previous section, it will not be considered 

further here. 

3.4.4 Feedback mechanisms 

Complex dynamic systems commonly studied by agent-based models are often 

characterized by feedback mechanisms and closed-loops. As explained by Conte et al. 

(2012), loop process expresses the link between micro- and macro-level: the behaviors at 

the individual level determine the whole system outcome, which then provides a feedback 

to the individuals. In other words, the choices made by virtual agents have an overall 
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effect on the behavior of higher social structures (such as teams or the society as a whole) 

that in its turn affects the subsequent decisions of single agents at the next time step (Fig. 

2). This process endures over the time of the simulation. In this case, the social component 

of the TPB (i.e. subjective norms) can serve to link agents’ individual behavior with the 

creation of a shared norm at the macro-level that can be then interiorized by virtual agents. 

 

Fig. 2 - The picture represents the closed-loop between micro- and macro-level. Whereas the 

former involves single agents, the latter is interested by the emergence of social phenomena. The 

meso-level represents the bridge between these levels where the interaction among agents takes 

place. Following the theory of planned behavior, agent’s intention (Int) to perform a certain 

behavior (Be) should be characterized by its attitude (AT), subjective norm (SN) and perceived 

behavioral control (PBC). In addition, individual behavior can influence backward the 

antecedents of intention. When an agent is inserted within a social context, the behavior expressed 

by other agents will exercise an influence on it, which in its turn will affect others at the next time 

step in a constant interaction over time. 

 

Nonetheless, feedback mechanisms should be thought also at the individual level. In 

this sense, the TPB is limited due to the fact that it is not able to specify how the actual 

behavior will affect the basic antecedents of the intention. Researchers need to make 

specific assumptions about this point. However, a first suggestion comes from Ajzen 

(2011a): in the context of behavioral interventions, the author suggested that new 

information can change behavioral, normative or control beliefs. In this sense, Ajzen and 

Fishbein (2005) noticed that the performance of a behavior represents itself a source of 

new information to the individual. Similarly, Staats (2003) suggested that the TPB allows 

Single agent
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a dynamic evolution of the antecedents of the intention based on repeated behavior. 

Moreover, some works assumed past behavior as a predictor of behavioral intentions (e.g. 

on consumer behavior, Dean, Raats, and Shepherd, 2012) or actual behavior (see in 

particular the literature reviewed by Conner and McMillan, 1999).  

In line with this, Verwaart and Valeeva (2011) proposed an agent-based model in 

order to investigate the adoption of animal health practices among farmers with the aim 

to support the development of food safety policies. The decision to adopt food safety 

practices was purely based on the theory of planned behavior. Farmers update their 

behavioral and normative beliefs in accordance with a feedback system based on, 

respectively, premiums or penalties for their actual performance, and the observation of 

other producers. 

Alternatively, other works assumed the evaluation of the outcome of actual behavior 

as a direct affect that may change attitude. For instance, an interesting computational 

model has been developed by Sogani and colleagues (2005) with the intent to reproduce 

and predict the acceptance of computer technology. Again, agents’ decision making 

process was characterized starting from the TPB. The authors proposed a closed-loop 

between the amount of technology users and subjective norms. In other words, they 

connected the number of adopters with the formation of an injunctive social norm.   

3.4.5 Partiality of the explanation 

As discussed in section 3.2, TPB represents a parsimonious model of decision-making 

based upon a deliberative process. Few simple rules can be sufficient to observe the 

emergence of complex social patterns: however, it is undeniable that several other 

psychological mechanisms can be related to the actual expression of a certain behavior. 

Particularly, we suggest that in relation to agents’ modeling habit and impulsiveness 

should be considered as complementary explanations. 

On the one hand, Verplanken and Orbell (2003) identify habit as a precise 

psychological construct rather than a mere frequency of observed behavior (i.e. contrary 

to the notion of past behavior). Also Ajzen (2001) argued that habit can directly influence 

behavior such that intentions can become even irrelevant when an action has been 

performed many times. 

On the other hand, impulsiveness is related to actions performed spontaneously with 

poor consideration regarding the associated consequences (Beatty & Ferrell, 1987). 
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Churchill, Jessop, and Sparks (2008) jointly evaluated the TPB model with a measure of 

impulsivity to predict high-calorie snack consumption. Results showed that the additional 

inclusion of impulsiveness contribute to the prediction of the investigated behavior over 

and above the standard TPB model. 

As a consequence, a realistic virtual agent should be endowed at least with the chance 

to perform actions starting from habit, impulsive behavior or a deliberative process. 

Again, starting form an established structural equation model, habit, impulsive and 

deliberative behavior can be modeled as probabilistic functions thanks to the contribution 

by Schubring et al. (2016; see section 3.4.2). 

Nonetheless, we recognize that several other heuristics can be relevant: regarding this 

point, Jager and Janssen (2003) offered a helpful categorization based on individual 

cognitive effort and the use of social information. 

3.5 Summary 

As noticed by Rand and Rust (2011), it is likely that computer simulations such agent-

based models will assume a greater role in the next future in order to help us understand 

reality. As discussed, it is important that such simulations could be grounded on 

established psychological theoretical frameworks. As pointed out by Schlüter et al. 

(2017), one of the major challenge of agent-based modelers relies on the identification 

and transformation of informal theories on decision-making into clear and straightforward 

causal models of relationships such that they might be processed by a computer. Given 

this, we briefly reviewed the goodness of the theory of planned behavior through the 

application of the sixth criteria proposed by Cramer (2013). We consequently recognized 

the theory of planned behavior as a efficient and parsimonious model of representation of 

virtual agents’ decision-making processes. Its ability to consider individual, social and 

external factors in conjunction with its solid background makes it a valuable resource and 

a common reference for interdisciplinary works between psychological research and 

computer simulations. Particularly, the ability of the theory to design a framework able 

to take into account jointly individual preferences and social influence is consistent with 

the examination of potential loops between micro- and macro-behaviors of social systems 

usually investigated by means of ABMs. In addition, physical barriers can be virtually 

designed to prevent the actual agent’s performance and study the consequences with 

respect to the simulated behavior. As a conclusion, the theory of planned behavior is 
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certainly able to offer a valid and realistic model of deliberative decision-making process 

for virtual agents: the application of concepts and methods from the nonlinear dynamics 

field such as agent-based modeling is expected to further improve the ability to explain 

social phenomena. As argued by Elliott and Kiel (2004), agent-based modeling might be 

the method able to bring acceptance and functionality to the sciences of complexity. 

Nonetheless, by reviewing the theoretical background, agent-based model approach 

enforced us to deduce the ultimate implications of the TPB: this process led to recognize 

some gaps in the specific application of this theory. These issues have been discussed in 

relation to computer simulations and some solutions available at our knowledge were 

offered when possible. Though, despite the division proposed within the current work, 

discussed issues can present several interconnections. For instance, feedbacks 

mechanisms can be thought in relation to model dynamics, as well as the integration of 

data can be associated with the evaluation of competing behaviors. Indeed, the 

interconnection among these issues represents itself a further challenge for theory and 

model development. 

Finally, it is important to remark that the theory of planned behavior represents only 

a theoretical framework for the design of agents’ decision-making processes: indeed, the 

complexity of human behavior should be captured through the support of different 

theories and multiple disciplines (Jager & Janssen, 2003; Schlüter et al., 2017). In light 

of this, much work is expected to be conducted over the next years in order to significantly 

mark the alliance between psychological knowledge and computer simulations of social 

human behavior.  
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Abstract 

Consumers’ choice for standard versus green products (such as organic ones) plays a 

critical role in the market development of sustainable food: over the years, research 

devoted most of its efforts to investigate individual motivations behind green 

consumer behavior. Particularly, an emerging issue is strongly related with the 

investigation of the influence of group norms and collective consumption (Peattie, 

2010). However, since systematic experimentation with social influence is difficult, 

we developed a virtual simulation with the purpose to study how interaction among 

customers of grocery stores can foster/hinder intention to buy green food and how 

consumers can be affected by different food arrangements. In this way, we also 

connected the theory of planned behavior (Ajzen, 1991) with a social phenomenon 

recently identified by Bolderdijk and Cornelissen (2017): undercover altruism, which 

states that individuals sometimes act more morally in private than in public settings if 

they perceive that a certain behavior is exceptional.  

The simulation creates a population of virtual consumers inside a grocery store. For 

each product that should be purchased, the agents can decide between conventional 

and organic food. Two store configurations are taken into account: mixing versus 

separating green and conventional food. The general results showed the emergence of 

undercover altruism: agents would like to buy green products following their 

individual preferences, however, the common norms hamper this intention. 

Eventually, many agents decide to buy regular food instead of green one triggering in 

this way a locked-in vicious cycle. Finally, the simulation demonstrated that different 

arrangements of food products can significantly affect the sales of organic food: 

nonetheless, the increase of sales of organic food also depends on the throng of 

customers inside the store. 
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4.1 Introduction 

In stimulating a transition toward a sustainable society, the food sector plays an important 

role: in this respect, consumers’ preference for green rather than conventional products 

represents a crucial factor for the market development of sustainable food. Generally, the 

terms “green food” or “sustainable food” is employed to refer to three kinds of product 

(Vassallo, Scalvedi, & Saba, 2016): locally grown food (including specialties), fair trade 

products, and organic food. The organic food market has grown considerably in the last 

decade along with a significant geographical expansion suggesting a growing concern 

regarding environmental issues (Daunfeldt & Rudholm, 2014; Peattie, 2010). 

In fact, organic products derive from a farming system aimed to combine best 

environmental practices with the preservation of natural resources and the application of 

animal welfare standards (European Council, 2007). The environmental benefits of 

organic production system have been empirically tested over the years. Above all, life-

cycle assessment analyses constantly report an overall lower environmental impact for 

organic production systems with respect to conventional ones (e.g. Boggia, Paolotti, & 

Castellini, 2010; Litskas, Mamolos, Kalburtji, Tsatsarelis, & Kiose-kampasakali, 2010; 

Longo, Mistretta, Guarino, & Cellura, 2015). In addition, the preference toward organic 

food has been recognized as the second most effective way to minimize the environmental 

impact of food consumption from consumer point of view (Jungbluth, Tietje, & Scholz, 

2000; Thogersen, 2010; Tobler, Visschers, & Siegrist, 2011). 

The research in this specific sector has gained momentum during the last decade 

witnessed by the positive trend of marketing research interested to understand consumers’ 

motivations toward organic products (Scalco, Noventa, Sartori, & Ceschi, 2017). 

Nevertheless, the need for further research in the organic food sector from a consumer 

perspective has been recently encouraged by the report of the European Commission on 

Agricultural Research and Innovation (2016). Particularly, as pointed out by Peattie 

(2010), a current issue regarding the investigation of green consumer behavior is strongly 

related with the investigation of the influence of group norms and collective consumption. 

Indeed, the collective impact of consumers’ choice can affect backward food production 

stimulating the growth of organic farming systems. Hence, it becomes important to 

investigate the social dimension behind consumers’ preference toward organic products 
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in order to support marketers and policy-makers in encouraging people to make greener 

choices daily. 

4.2 Social dimension of consumption 

On the one hand, the choice for a particular type of food is indeed based on personal 

beliefs. For instance, Tobler et al. (2011) pointed out that sensory appeal, perception of 

healthiness, and price tend to be the most influential factors that can affect consumers’ 

food choice. Bonti-ankomah and Yiridoe (2006) explained that the preference for organic 

rather than conventional food is largely based on “credence characteristics”: that is to say, 

consumers are attracted by attributes that are difficulty (or even impossible) to notice but 

still play an important role in the decision process. Interestingly, in the case of organic 

products some characteristics are impossible to be evaluated by consumers even after the 

consumption (e.g. chemicals). Particularly, several studies regarding the preference 

toward organic products highlighted the major role played by perceived environmental-

friendliness, taste, healthiness and quality (Arvola et al., 2008; Daunfeldt & Rudholm, 

2014; Honkanen, Verplanken, & Olsen, 2006; Scarpa et al., 2007; Vermeir & Verbeke, 

2006).  

On the other hand, consumption behavior also depends on the perception of social 

norms. Product choices are deeply connected with social dimension to the extent that even 

in the consumption context we do not behave as isolated human beings but as members 

of groups. Following Cialdini and Trost (1998), a social norm represents a rule that is 

known and understood by the members of a certain group and that leads (or constrains) 

the choice of action without being an explicitly shared law. In other words, social norms 

can be seen as unwritten rules that shape our daily behavior.  

It is generally accepted by literature to distinguish the reason behind conformation 

toward social norms between normative and informational motivations. Due to the high 

interrelation between these sources of influence they are difficult to untangle both from a 

theoretical and empirical perspective (Cialdini & Goldstein, 2004). Nonetheless, while 

the former is generally explained by the aim to gain social approval from the members of 

a referent group, the latter is connected with the need for an accurate interpretation of 

reality and the identification of the proper behavior (Deutsch & Gerard, 1955). In 

particular, the tendency to conform to social standards is higher when people find 

themselves in situations characterized by novelty, ambiguity or uncertainty, which can be 
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the case of consumers who intend to engage in pro-environmental behaviors like the 

purchase of organic food (Cialdini, 2001; Peattie, 2010).  

A possible downside of social influence is represented by lock-in situations (Janssen 

& Jager, 1999): if in a population of consumers many individuals prefer green products, 

but do not choose them because they falsely assume - on the basis of observation - that 

the norm is against green products, they are likely to purchase regular products, thus 

strengthening the norm for conventional products in a vicious cycle. As pointed out by 

Griskevicius, Cantú, and Van Vugt (2012), imitation of others’ behavior is recognized as 

an unconscious process automatically triggered by our brain. This process has been 

underappreciated in the understanding of environmental issues: in fact, much of these 

problems come from a conflict between what people believe they ought to do and what 

they see (or believe) others do. Similarly, Jackson (2005) acknowledged that people’s 

choices are constantly affected by social norms such that these latter can represent a 

powerful source of influence to hinder or to encourage pro-environmental behaviors. 

Therefore, a transition or tipping-point in social norms can lead the behavioral change of 

consumers with great benefits for the environment (Nyborg et al., 2016). 

Nonetheless, recent results obtained by Bolderdijk and Cornelissen (2017) suggest 

that consumers who privately are inclined to purchase a green product may avoid doing 

so publicly out of the fear that their norm-deviating behavior may elicit negative social 

responses on behalf of fellow consumers who frequently choose conventional products. 

Interestingly, the research has been able to bring to light a social phenomenon, defined as 

“undercover altruism”, that goes against the common idea that we give our best version 

of ourselves to gain social approval. On the contrary, among the techniques that people 

can employ to integrate themselves with a social group, they may choose to avoid 

showing their most virtuous tendencies. Particularly, undercover altruism specifies that 

individuals sometimes act more morally in private than in public settings if they perceive 

that a certain behavior is exceptional.  

The authors conducted several studies across different settings in order to evaluate 

the occurrence of this phenomenon in relation to donation behaviors. Particularly, in 

Studies 1A and 1B the likelihood of making donations to strangers (a panhandler and a 

street musician) was examined in relation to two different conditions: when the donators 

were alone and when they were in the presence of other people who would witness the 
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donation. The presence of observers was supposed to elicit an uncomfortable social 

comparison: by anticipating such situation, people may prefer to avoid donating when 

accompanied. As supposed, the results showed that the likelihood of donating was lower 

when people were accompanied by others in comparison to when they were alone.  

In contrast, Study 1C examined the intentions to donate in the context of a 

supermarket that was supporting a 3-day Catalonian food drive. Several cues were 

provided suggesting a free donation of food as the common norm (e.g. volunteers were 

present inside the store wearing t-shirts and sponsoring the campaign). In this case, a 

donation was made by almost half of the observed customers (contrary to the previous 

studies, where donations were rare). Moreover, people were more likely to donate when 

accompanied rather than when alone. 

Thus, when charity is not supported by a distinctive norm (like in Study 1A and 1B) 

the presence of others inhibits people to engage in acts of pro-social behavior. On the 

contrary, when pro-social behaviors are clearly supported by contextual cues people do 

not prevents themselves from acting morally. Indeed, in the latter case, cues promoting 

the donations as a common behavior overcome the chance of express donation behavior 

as an exhibition of moral superiority. 

In addition, Study 4 examined whether vegetarians and vegans prefer to avoid 

positioning themselves as morally superior by concealing their dietary preferences. In 

particular, participants were offered with the opportunity to express their inclination by 

signing a petition to increase the vegetarian options in supermarket assortments. Each 

participant was inserted in a group discussion with other three people: in reality, these 

latter were instructed confederates who, before the participant receive it, read the petition 

and openly decided to refuse to sign it. Vegetarians as well as vegans were supposed to 

be prone to sign the petition as it was in line with their personal attitude. However, 

deciding to sign the petition can be interpreted as a signal of moral reproach against 

others. Thus, the experimental setting was specifically designed to elicit undercover 

altruism: in fact, it was expected that the participants might be motivated to hide their 

moral inclinations in order to avoid potential awkward social situations. In addition, the 

effect of contextual cues was examined under the supposition that a participant might be 

more inclined to exhibit a virtuous behavior when this does not imply a moral reproach 

against others (similarly to Study 1C). Thus, two conditions were created where the 
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petition was externally endorsed or not. Results supported the hypotheses: particularly, 

when a public support was not present, only a slightly majority of the vegetarians and 

vegans signed the petition. On the contrary, when an external endorsement was present 

the number of participants who decided to sign the petition was significantly higher 

compared to the previous condition. 

Therefore, without clear cues suggesting a virtuous act as a common and accepted 

behavior, people seem to be more prone to engage in exceptional acts of pro-social and 

pro-environmental behavior when they do not perceive any kind of social presence. The 

authors suggested that this behavior might be driven by the common ability of individuals 

to anticipate possible negative reactions by people who do not share the same moral 

concerns. Before taking a morally superior position through exceptional virtuous acts, 

people may prefigure the creation of an uncomfortable situation where they are implicitly 

affirming that all other behaviors are wrong. In addition, people are aware that such 

awkward social comparison might represent a threat to the members of a social group 

who might therefore engage in defensive responses (such as ridicule or exclude the source 

of the threat). For instance, Minson and Monin (2012) studied the anticipation of moral 

reproach felt by a majority of meat-eaters when considering the moral choices made by a 

potential minority of vegetarians. The results showed that meat-eating participants 

perceived small differences between the morality of meat-eaters, whereas they expected 

vegetarians to feel this gap as almost ten times larger. More interesting, the force of the 

defensive responses (measured as negative associations) was positively correlated with 

the expectancy that a vegetarian exhibits its moral superiority. Consequently, in order to 

integrate with groups, people sometimes avoid to behave on the base of their best 

tendencies preferring to conform to the norm. 

Bolderdijk and Cornelissen concluded suggesting that the low diffusion of 

environmental-friendly products may not reflect a real selfish preference. On the contrary, 

the refusal of such products could be related to an adaptive response to an underlying 

control mechanism hided in the social dimension. As a consequence, the number of 

consumers motivated to engage in pro-environmental consumption might be 

underestimated due to those consumers trapped inside a lock-in vicious cycle driven by 

the tendency to “undercover altruism”. 
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In line with this premise, the presented model attempted to investigate the dynamic 

interactions between the individual and social dimension in shaping buying behavior in 

the specific context of organic food. Particularly, the research employed agent-based 

modeling to recreate the consumption context of numerous consumers inside a grocery 

store. This methodology of investigation of social phenomena has grown quickly in the 

field of marketing and consumer behavior (Jager, 2007; Delre, Broekhuizen, & Bijmolt, 

2016; Rand & Rust, 2011) due to its advantages compared to the experimental or 

analytical approach. Above all, it allows the chance to investigate the interaction over 

time among the individual, social and environmental dimensions, to avoid difficulties and 

costs associated with real experiment settings, and to testing different scenarios following 

a “what-if” approach.  

Thus, the research aim is twofold: firstly, the model attempts to virtually recreate the 

phenomenon of consumers’ social influence in order to understand how it can 

foster/hinder the adoption of green products prevailing individual preferences. In this way 

we also aim to connect the theory of planned behavior with a specific social phenomenon 

(i.e. undercover altruism) through a computational approach able to show the lock-in of 

sustainable products inside a dynamic model. Accordingly, in the present simulation each 

virtual agent is able to choose independently between conventional or green products 

based on its own personal beliefs: however, their choices are also affected by the choices 

made by surrounding agents. 

Secondly, we aim to explore if this socio-psychological barrier to sustainable 

behaviors can be affected (and overcome) by means of different kinds of store layout. 

Indeed, research has already suggested that product arrangement and position can 

increase product sales by engaging more efficiently individual consumer (Daunfeldt & 

Rudholm, 2014; Santucci & Schifani, 1999; van Herpen, van Nierop, & Sloot, 2012; Van 

Nierop, Fok, & Franses, 2008). However, literature within this topic had little 

consideration about social influence due to product location inside stores. In fact, in 

contrast to specialized organic retailers which attract more habitual rather than occasional 

organic buyers, large-scale retail stores (such as grocery stores) can offer the chance to 

increase sales of green food due to the different kinds of consumers they gather together. 

However, undercover altruism might suggest that even an opposite effect can occur (i.e. 

a regression toward conventional products by regular buyers of organic food). Thus, the 
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model intends to investigate when the physical arrangement of conventional and green 

food products can enhance/reduce the chance of consumers to affect each other choices 

toward a category of products. Ultimately, the virtual model should suggest how certain 

arrangement of food products inside grocery stores can promote the purchase of green 

food via social influence. Hence, following the distinction proposed in Kiesling, Günther, 

Stummer, and Wakolbinger (2012), the current model employ a high level of abstraction 

and generic representations rather than focusing on practical aspects (e.g. sales forecast). 

Indeed, only basic data were introduced since we focus the investigation on the effect 

over time of social norms on individual preferences. 

4.3 Main theoretical framework 

Consumer behavior research suggested several models in order to explain and predict 

organic food choice (Bonti-ankomah & Yiridoe, 2006). Among these, the theory of 

planned behavior (TPB; Ajzen, 1991) has been largely employed with successful results 

both in studies that examined food purchase behavior from an environmental and health 

perspective (see for instance the reviews by McEachern, Schroder, Willock, Whitelock, 

& Mason, 2007, Riebl et al., 2015, and Scalco, Noventa, Sartori, & Ceschi, 2017).  

The theory of planned behavior explains an action as a consequence of a deliberative 

process based primarily on the intention to perform it. Intention to buy is then affected by 

three fundamentals factors: personal attitude, subjective norms, and perceived behavioral 

control (PBC). Particularly, following Ajzen (1991), attitude can be conceived as the 

product of belief strength and the evaluation of a certain outcome or attribute. For 

instance, in the context of green behavior, the outcome can be represented by the 

perceived probability to minimize the environmental impact thanks to the purchase of a 

certain item. The second term represents the influence exercised on a subject by the 

perception of others’ beliefs and the observation of their behavior. Finally, PBC defines 

consumers’ confidence to be able to carry out the purchase. Thus, it depends both from 

psychological (e.g. price perception) and contextual factors (e.g. the availability of 

products). 

We acknowledge that also habit and impulsive behavior can both affect product 

choices: however, we choose to ground our model on a deliberative model of decision 

making given the fact that 74% of all purchase decisions are made inside stores 

(Daunfeldt & Rudholm, 2014). Besides, in contrast with potential criticisms toward the 
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cognitive requests and rationality linked to Ajzen’s decision-making model, it is 

important to consider that once formed, intentions and its antecedents are readily available 

to drive behaviors and that no assumption are made about the objectivity or truthfulness 

of consumers’ beliefs (Ajzen, 2014; Ajzen & Fishbein, 2005; Bonti-ankomah & Yiridoe, 

2006). Moreover, given the aim to investigate the dynamic interaction between individual 

and social dimensions the TPB offers the chance to model a psychological decision-

making process able to take into account both these dimensions. 

In addition, several studies during the last decades employed Ajzen’s model (both in 

the original and extended versions) as the main framework to investigate consumers’ 

motivations behind the purchase of organic food (Conner & Armitage, 2006; Guido, 

Prete, Peluso, Maloumby-Baka, & Buffa, 2010). Particularly, in order to evaluate the 

significance of the relationships between the model factors, a meta-analysis has been 

recently conducted by Scalco, Noventa, Sartori, and Ceschi (2017). The results showed 

the robustness of Ajzen’s model to explain the purchase and consumption of green 

products. Specifically, attitude seems to have the major effect on intention to buy organic 

food (r = 0.61) followed by subjective norms (r = 0.50). In contrast, perceived behavioral 

control contributes more modestly (r = 0.32). Furthermore, the analyses showed also a 

large correlation between intention and actual behavior (r = 0.55). In addition, the authors 

built a structural equation model based on the TPB starting from the pooled correlation 

matrix of the examined studies in order to obtain an exhaustive validation of the whole 

framework. Once more, the results confirmed the relative magnitudes of the antecedents 

of intention. However, the model highlighted intention as the best predictor of buying 

behavior over and above attitude. Consequently, the theory of planned behavior appears 

to be a valid and reliable psychological model to develop virtual agents’ decision-making 

process for organic food purchase. Nonetheless, Ajzen’s theoretical framework can arise 

several issues in the process of implementation inside an agent-based model (Scalco, 

Ceschi, & Sartori, 2017; Schlüter et al., 2017): consequently, some additional work was 

required to obtain a flawless algorithm for the virtual model. 
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4.4 Model overview 

The simulation is developed in Netlogo 6.01 (Wilensky, 1999) and it creates a population 

of virtual consumers inserted inside a grocery store with the goal to purchase several food 

products. Each agent has a shopping list with a specific number of products that must be 

purchased before leaving: it can choose a product within the whole store and it can move 

freely in order to reach it. The goal pursuit by the agents is to fulfill their personal 

shopping list with food products: when they are satisfied (i.e. the list is completed) they 

exit from the store2. The number of items to be purchased is randomly assigned at the 

beginning of the simulation, while the maximum length of the shopping list can be fixed 

from the interface (from 1 to 7). 

Each purchased product is added to the agent’s virtual shopping cart: for each item 

the agent can decide between a conventional or a green version. Besides their personal 

preferences, each agent independently chooses to buy green or conventional food on the 

base of the local consumption pattern it perceives. The decision-making process is 

implemented following the model provided by the theory of planned behavior (Ajzen, 

1991). Starting from this, the basic formulation employed to determine the intention to 

purchase a certain product at time t for a random agent i is equal to: 

𝐼𝑡,𝑖 = 𝑤1(𝐴𝑡,𝑖) + 𝑤2(𝑆𝑁𝑡,𝑖) + 𝑤3(𝑃𝐵𝐶𝑡,𝑖) 

For modeling purposes and due to the fact that the agents in the simulation are 

“compelled” to buy, we assumed intention to buy like the direct expression of behavior. 

However, since TPB is not able to provide a threshold value such that intention turns into 

the actual performance of buying behavior, we followed similar works that computed the 

intention for each course of action (e.g. Kniveton, Smith, & Black, 2012). Thus, at each 

time step of the simulation every agent computes both the intention to buy conventional 

and green food: the highest intention drives the consequent purchase behavior. As shown 

by the previous formula, intention (I) is composed by three main factors: attitude (A), 

social norms (SN) and perceived behavioral control (PBC). The terms indicated by ws are 

statistical regression coefficients assumed from the structural equation model proposed 

                                                 

1 The code of the simulation is available in section 6 (“Appendix”). 
2 We did not take into account the post-evaluation process and allowed agents to enter a second time inside the store 

since our purpose for this simulation was limited to the investigation of those essential conditions that allow the 

spread of social norms. 
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by Scalco, Noventa, Sartori, and Ceschi (2017). They determine the relative importance 

of individual preference, social influence and contextual factors in the specific case of 

organic food purchase. 

More specifically, within the present model attitude (A) is based on the evaluation of 

several food characteristics that can be manipulated by the interface to simulate different 

levels of product attributes. Coherently with the idea that the attitude toward a product 

stems from a multifaceted set of beliefs (Guido et al., 2010), the computation of agents’ 

attitude toward regular and green products is based on multiple evaluations of food 

characteristics compared with agent’s personal belief.  

Agents’ beliefs are obtained from a previous survey structured following Ajzen’s 

guidelines (Ajzen, 2006) and gathered from a 147 student participants. Beliefs from this 

sample showed a normal distribution given that kurtosis and skewness did not exceed 

suggested conventional threshold values (Field, 2009). Examined beliefs were 

specifically related to the perception of (i) healthiness, (ii) safety (i.e. likelihood that 

organic food is free from chemicals), and (iii) environmental friendliness3. Thus, the 

virtual agents have been endowed with three personal beliefs regarding organic food: a 

value from 0 to 6 normally distributed based on the mean and standard deviation obtained 

from the original sample. Beliefs related to conventional food products are equally 

distributed but we supposed a reduction by 10% of consumers’ expectations on the same 

three attributes. During the simulation, each agent compares its personal beliefs regarding 

food with the actual characteristics of the products. If the food attribute exceeds the 

personal beliefs of the agent, that particular food scores one point, otherwise zero. The 

final evaluation for both kinds of product is computed as the average value of scores: 

consequently, attitude to buy regular or green food ranges from 0 to 1. This allows 

performing a comparison with the others elements of the general formula.  

The second term (SN) indicates the common kind of product purchased at a given 

time by the surrounding consumers. As stated by Kiesling, Günther, Stummer, and 

Wakolbinger (2012), social influence operates on multiple levels: particularly, the authors 

distinguished among micro-, meso- and macro-level to indicate, respectively, the 

influence exercised locally through pairwise communication (especially, word-of-

                                                 

3 Besides product price, research suggested these as the most important factors in relation to the evaluations of organic 

products in consumers’ purchase decision process (Bonti-ankomah & Yiridoe, 2006). 
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mouth), the influence originated from the immediate social environment (e.g. the 

neighborhood), and, finally, the influence that comes from the interaction of an agent with 

the society as a whole. Following this categorization, the current work focused the 

investigation of social influence at the meso-level, where conformism and social 

comparison are common phenomena (ibid). In addition, in line with the model proposed 

by the work of Verwaart and Valeeva (2011), subjective norm is inferred by each agent 

through the observation of the choices made by other consumers walking inside the virtual 

store. Thus, every agent evaluates the common norm by calculating the number of 

adopters of regular and green food over the total number of customers considered within 

a limited space (i.e. the aisle). Likewise attitude, the final value of this factor ranges from 

0 to 1.  

The last term (PBC) represents the perceived behavioral control. In the case of 

organic food, price and availability of products seem to be the most relevant factors that 

can hinder the actual purchase of products (Al-Swidi et al., 2014). With respect to the 

former, we assumed a premium price for organic product equals to 35%: this value was 

obtained from previous research (Defrancesco & Rossetto, 2007; Santucci & Schifani, 

1999). Average product price can be manipulated from the program interface from 0€ to 

5€. Instead, the availability of products is explicitly defined by the program code: a time 

interval can be defined such that products are randomly restocked when they are out of 

stock. 

4.5 Tested scenarios 

Some research already demonstrated the different effects of products arrangement in 

stores on consumer’s choices. For instance, Van Nierop et al. (2008) showed that shelf 

layout can significantly affect sales and marketing effectiveness, whereas van Herpen et 

al. (2012) found that the arrangement of products by brand leads to higher market share 

for organic products. Following the latter, when sustainable products are clustered 

together they enhance their chances to be purchased thanks to the fact that they are noticed 

more easily and quickly in comparison to when they are placed close to comparable 

conventional products (where they become less distinctive). Thus, sales of green food are 

generally higher when products are clustered rather than scattered among product 

categories. 
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Nonetheless, while product position on shelves has been extensively examined, 

locations issues have received much less attention in literature (ibid). In particular, 

influence among consumers and spread of norms about food consumption due to product 

arrangement in stores has not be taken into account yet. A further examination of product 

arrangement can attempt to consider the social dimension of purchase behavior. In fact, 

when sustainable products are clustered it is more likely that consumers having a different 

attitude toward food (i.e. conventional/green) do not gather together; instead, when green 

and conventional food are placed closely consumers might affect each other choices by 

the mere observation and the internalization of common norms. In the latter case social 

phenomena like undercover altruism (Bolderdijk & Cornelissen, 2017) might suggest that 

habitual organic buyers can deceive their intentions to buy green food if it is located close 

to regular food due to the presence of buyers less concern with environmental or health 

issues. Different arrangements of product within the virtual store should provide some 

insights regarding the circumstances of when this phenomenon can occur. 

Hence, in order to study how food arrangement can affect the spread of social norms, 

part of the simulation code is specifically devoted to design the store. In particular, the 

program allows arranging conventional/green food on virtual shelves as well as their 

position inside the store. For the purposes of this work, we selected two basic 

configurations with distinct product positions. Fig. 1 depicts an example of the virtual 

store with the different arrangements: the first one replicates a supermarket allocating 

green food in a separate area of the store, thus creating a strong differentiation between 

regular and organic food (condition A: clustered products). Conversely, the second 

configuration creates the opposite situation: products are allocated by mixing up green 

and conventional food among the aisles (condition B: mixed products). 

Each configuration is tested in several scenarios. Particularly, in order to assess the 

agents’ behavior on the base of the developed decision-making model, the first set of runs 

was conducted under basic control conditions (SC1). Therefore, these first simulations 

were performed by assigning to green and conventional products the same level regarding 

each one of their attributes (i.e. any difference regarding healthiness, safety and 

environmental-friendliness was modeled), apart from price which was lower for the latter 

kind of food. Thus, following a rational decision-making process we expected that every 

agent would prefer to buy conventional food. 
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Fig. 1 - The figure shows the different configurations of the virtual store. Customers are 

shown using blue arrows. Orange patches indicate exits. Organic food is represented by green 

squares, whereas conventional products are indicated by red ones. Numbers on the patches 

represent the amount of available products. 

 

Successively, we varied the number of consumers inside the virtual store between the 

second and third scenarios (SC2 and SC3). Thus, while the former emulates a crowded 

grocery store, in the latter only few customers are present among the aisles. Indeed, since 

social phenomena such as undercover altruism are dependent on the presence of other 

people, we supposed that the number of agents within the virtual store can affect the 

spread of social norms. Particularly, in line with the results by Bolderdijk and Cornelissen 

(2017), we expected to observe a reduction of the sales of green products when the 

supermarket is crowded rather than relatively empty given that the common norm favors 

conventional products. 

Similarly, we manipulated the maximum number of products that the agents are 

interested to purchase during the simulation (i.e. the length of the shopping list). We 

expected that a short list of products can hinder the spread of norms since the amount of 

products to be purchased can be positively correlated with the time spent by consumers 

inside the store. Once again, for this variation we distinguished between 

crowded/uncrowded markets (SC4 and SC5). A summary of configurations for tested 

scenario is reported inside Table 1. Products attributes are reported as the difference 

between characteristics of green food compared to conventional one. In this case, we 

hypothesized a constant difference equals to 50% (except in SC1). In the same way, 
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following the results reported by previous works, premium price of organic food was 

fixed at 35% (Defrancesco & Rossetto, 2007; Santucci & Schifani, 1999). 

Table 1 - Configurations associated to tested scenarios.  

Scenario No. agents Max items ΔEF ΔHL ΔSE 

SC1 50 7 0% 0% 0% 

SC2 350 7 +50% +50% +50% 

SC3 50 7 +50% +50% +50% 

SC4 350 2 +50% +50% +50% 

SC5 50 2 +50% +50% +50% 

Notes. Each scenario is replicated 250 times under conditions A (clustered products) and B (mixed 

products). No. agents = the number of agents generated at the beginning of each run of the 

simulation; Max items = maximum number of products to purchase; ΔEF, ΔHL, ΔSE = difference 

between regular and organic products in relation to environmental-friendliness, healthiness, safety. 

4.6 Results 

The first set of runs (SC1) was conducted in order to observe the behavior of the applied 

model of decision-making under neutral conditions: in fact, when product attributes 

present no difference, except a lower price for conventional food, it is reasonable to 

expect that agents overlook green products. As supposed, results confirmed that the 

agents disregarded in every run green products preferring conventional ones (Table 2). 

Different arrangements of products have no effect on buying behavior. Base on this result, 

we did not proceed to test SC1 with a higher number of agents as it is realistic to expect 

the same result regarding the amount of green product sold. 

Scenario 2 and 3 tested the model with a different number of customers inside the 

store. Despite the higher values assigned to the attributes related to green products, due 

to the higher price and the force exercised by the common norm the amount of organic 

food sold was lower compared to conventional ones both in the clustered and mixed 

configuration of each scenario. 

Interestingly, the reduction of sales for organic product differed from the expectations 

(Table 2 and 3). T-tests performed on the distribution of green product sales among the 

repetitions of the simulation confirmed the significant differences between the clustered 

and mixed configurations of green products in both Scenario 2 and 3. However, the 

arrangements of products seem to have a different effect depending on the number of 

agents inside the store. In fact, in SC2 the amount of green products sold in the clustered 

condition (M = 313.28, SD = 43.76) appears significantly higher (t(498) = 13.401, p < 

0.001) compared to the mixed condition (M = 260.08, SD = 45.01). On the contrary, in 
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SC3 the volume of organic food purchased by the agents in the clustered condition (M = 

40.95, SD = 9.58) is significantly lower (t(498) = -10.999, p < 0.001) when compared to 

the mixed condition (M = 50.15, SD = 9.11).  

 

Fig. 3 - The charts show the amount of conventional and organic food sold (distinguished 

on the base of condition) in the crowded stores (SC2) and in those sparsely populated (SC3). 

 

Finally, in SC4 and SC5 the maximum amount of product to be purchase was reduced 

in order to observe potential differences in the spread of social norms due to the time 

spent by the agents inside the store. Once again, the scenarios differ for the number of 

agents (higher in SC4). In this case, the different arrangements of food inside the store 

did not lead to a significant increase of products in neither tested scenario. Nonetheless, 

it is interesting to note that the results emerged in the previous scenarios appear to be 

replicated also in this case. In fact, on the one hand in SC4 the average number of organic 

products sold appears higher (though not significant; t(498) = 1.054, p = 0.293) in the 

clustered condition (M = 129.92, SD = 13.32) rather than the mixed one (M = 128.60, SD 

= 14.75). On the other hand, in SC5 the amount of green products sold in the cluster 

condition was lower (M = 18.62, SD = 4.15) compared to the second one (M = 19.13, SD 

= 4.23). Again, also in this case the difference has not been proved to be significant (t(498) 

= -1.346, p = 0.179). 

 

 



 

 

Table 2 - Amount of conventional and green product sold in each scenario and associated ratio distinguished on the base of condition: clustered 

products (A) versus mixed products (B).  

Scenario SC1 SC2 SC3 SC4 SC5 

Condition A B A B A B A B A B 

Conven. products sold 199.81 199.18 1086.21 1138.66 158.62 151.24 395.89 396.31 56.38 55.68 

Green products sold 0 0 313.28 260.08 40.95 50.15 129.92 128.60 18.62 19.13 

Ratio 0 0 0.29 0.23 0.26 0.34 0.33 0.33 0.34 0.35 

Notes. The results report the average value obtained by the repetition of 250 runs of the simulation for each condition. 

 

Table 3 - t-Tests performed on the distribution of green product sold between conditions A and B. 

Scenario SC1* SC2 SC3 SC4 SC5 

t(df) 0.487(498) 13.401(498) -10.999(498) 1.054(498) -1.346(498) 

p-value 0.627 < 0.001 < 0.001 0.293 0.179 

* Since in SC1 no green product was sold, t-test was performed on the distribution of conventional products sold. 
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4.7 Discussion and conclusions 

As discussed, consumers play an important role in shaping environmental issues through 

their daily purchase behaviors. Indeed, the choice for organic products appears to be a 

valuable answer from a consumer point of view in order to reduce the environmental 

impact of food consumption. Particularly, the preference for green food products in 

contrast to conventional ones can contribute the growth of an environmental-friendly 

production systems and thus support a transition toward a sustainable society. However, 

food choice represents a complex behavior difficult to understand and investigate: 

individual factors play a critical role in consumers’ decision process, while the social 

dimension constantly affects and reshapes personal preferences and, eventually, buying 

intentions.  

Interestingly, individual and social dimensions are able to create a closed-loop thanks 

to their constant interaction such that consumers might find themselves trapped in a 

locked-in vicious cycle where, even when green food is generally preferred, conventional 

products are more likely to be purchased. In addition, the insights provided by the work 

by Bolderdijk and Cornelissen (2017) suggest that behaviors that are seen as exceptional 

(such as the purchase of green food in large-retail stores) might not be performed in order 

to avoid creating uncomfortable social situations.  

Therefore, the present research aimed to test the dynamic interaction between the 

individual and social dimension of organic food purchase. An agent-based model was 

built in an attempt to connect an established theoretical framework (i.e. the theory of 

planned behavior) with social phenomena such as normative influence and undercover 

altruism. Accordingly, the simulation has been able to replicate the effect of social 

influence among consumers inside the virtual stores. Despite personal preferences, 

several agents show the tendency to rely on the phenomenon of undercover altruism 

highlighted by Bolderdijk and Cornelissen (2017). That is to say, they prefer to add to 

their virtual shopping cart conventional products due to the presence of other agents 

within the surrounding area even when their attitude was higher for organic products. 

Thus, the behavior of these particular agents reinforces the norms toward conventional 

products which in turn affects the choices of the following agents. 

However, the presence of this phenomenon seems to be stressed or reduced both on 

the base of the products arrangement and the crowd present inside the store. In fact, while 
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the crowded store (SC2) showed a higher volume of green products sale in the clustered 

condition, the opposite effect was observed in a relatively empty supermarket (SC3), 

where organic products obtained a larger preference when mixed with conventional 

products rather than clustered. 

Thus, the results obtained especially from scenarios SC2 and SC3 provides some 

additional insights in relation to the arrangement of food and the promotion of a positive 

norm toward organic products. In fact, van Herpen et al. (2012) already suggested that by 

clustering organic products their sales increase thanks to the fact that their visibility is 

enhanced (i.e. they are noticed quickly) rather than when mixed with other conventional 

products: however, the present model showed that this result is more easily obtained in 

crowded stores rather than empty ones. This effect may be due to the fact that a clustered 

arrangement of green food together with a distinct location prevents a regression of those 

consumers due to undercover altruism phenomenon: indeed, the effects of social 

dimension are limited since consumers who frequently choose conventional products are 

separated in a distinct area and cannot exercise a strong influence on green consumers as 

in the mixed condition. Conversely, the likelihood to sell organic products in relatively 

empty grocery stores appears higher when green food is mixed with conventional one. 

This effect may be explained by the minor influence that green consumers perceive by 

other people and the slow spread of a positive norm toward organic products. In this case, 

a potential solution to foster the spread of sustainable food might be represented by 

bundles of different organic products (rather than the more common offer “2 for 1”) in 

order to nudge green consumers to move along the aisles of the stores. In this way, a 

consistent minority (Moscovici & Zavalloni, 1969) might work as a cue signaling the 

preference for organic products as a common behavior rather than appears as an 

exceptional act. In contrast, the results suggest that the same solution might be 

counterproductive in the case of a crowded store with mixed products. 

In addition, it can be suggested that large-retail stores characterized by consistent 

flows of customers prefer the arrangement of green food on separate and distinctive area 

of the store (as suggested by the results of van Herpen et al., 2012). Conversely, stores 

aware of a sporadic flow of consumers should prefer to mix green with conventional 

products. Particularly, the effects generated by a cluster and a mix configuration of 
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products on green food sales should be especially considered to those supermarkets highly 

affected by seasonality of consumers (e.g. store located in tourism destinations). 

Nonetheless, the current model presents several limitations. Firstly, the work focused 

on a single fragment of the common evaluation process of market products. As suggested 

by Kotler, Armstrong, Saunders, and Wong (1996) choices made by consumers represent 

a process comprised by several distinct phases (i.e. need recognition; information search; 

evaluation of alternative; purchase; and post-purchase experience). Indeed, the simulation 

focused purely on a deliberative evaluation of the proposed alternatives (i.e. 

conventional/green food). 

Secondly, we acknowledge that the work focused on a sole psychological theory (i.e. 

the theory of planned behavior). Indeed, as pointed out by Schlüter et al. (2017) several 

theories from different disciplines (particularly, economics and psychology) should be 

reviewed and integrated inside a social simulation in order to obtain a far more 

comprehensive description of the reality via agent-based models. Moreover, within the 

current model we employed the original version of the theory of planned behavior where 

three antecedents determine agents’ intention to buy green products. Future developments 

of the simulation should take into account also further constructs: indeed, additional 

variables can help to improve the explanation and power of prediction of virtual decision-

making processes related to organic food consumption. For instance, values and trust in 

food producers have been identified as significant factors that can affect intention to buy 

organic products (Aertsens, Verbeke, Mondelaers, & Huylenbroeck, 2009; Suh, Eves, & 

Lumbers, 2015).  

Thirdly, the proposed work focused its attention on spatial distribution of green and 

conventional products and the differences among products attributes were not extensively 

explored but constrain to reasonable assumptions. Actually, the model attempted to 

explore the phenomenon of undercover altruism, which represents a hindrance to the 

adoption of pro-environmental behaviors, in relation to the spread of social norms from 

an abstract level. Hence, additional work is expected in order to improve the accuracy of 

the predictions of the current model.  

Finally, it seems interesting to focus the investigation on innovators’ motivations 

rather than undercover altruists, as well as their connection with the social dimension of 

food consumption. That is to say, future developments of the model should aim to shed a 
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light on those conditions that favor the emergence of those individuals with a positive 

attitude toward conventional product but who prefer to goes against the common norm 

and purchases green food products. 
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5 Conclusions  

As argued, food consumption has a crucial impact on current environmental issues.  

Particularly, consumers’ preference toward organic food plays a crucial role in order to 

achieve the goal of a sustainable society. Besides country governments, the need for 

research in this sector from a consumer point of view has been promoted by the report by 

the European Commission (2016). Accordingly, the present project aimed to investigate 

food consumption from a social perspective with the purpose to aid marketers as well as 

policy makers to encourage pro-environmental behaviors. Particularly, the present 

research project has been divided into three main questions addressed each one by a 

specific scientific paper: the next sections provide a brief overview of the results obtained 

by each work. 

5.1 Validation of the psychological framework 

As pointed out by Kalafatis, Pollard, East, and Tsogas (1999), several explanatory 

theories have been developed over the years in order to explain driver mechanisms of 

people purchase decisions. As discussed, in the field of consumer behavior the theory of 

planned behavior (Ajzen, 1991) remarkably demonstrated its power of explanation. In 

addition, this theoretical framework has been successfully employed in the field of food 

consumption, environmental studies, and agent-based modeling. Due to the vast amount 

of literature available, the ability of explanation and prediction, and the chance to jointly 

consider individual and social factors, it was hypothesized that the TPB might be a valid 

answer to the first question proposed by the current research project.  

Over the years several studies employed the TPB in order to explain and predict 

consumer behaviors in the specific context of organic food choice: however, contrasting 

findings emerged. Thus, it was important to appraise the validity of Ajzen’s model in this 

specific context. To achieve this objective, the first work (Scalco, Noventa, Sartori & 

Ceschi, 2017) reviewed those studies that employed this theoretical framework to predict 

consumers’ intention to purchase and consume organic food. The purpose was to test the 

significance of the original model proposed by the TPB in comparison to more recent 

alternative models. Hence, a meta-analytical procedure was applied to test the strength of 

each relationship among model constructs. The results showed the robustness of this 

psychological model to explain the purchase and consumption of organic products. 



114  Organic food purchase behavior 

 

 

Specifically, attitude seems to have the greatest impact on intention to buy organic food 

(r = 0.61), followed by subjective norms (r = 0.50). Instead, perceived behavioral control 

contributes more modestly (r = 0.32). Furthermore, the analyses also showed a large 

summary effect between intention and actual behavior (r = 0.55). 

In addition, the research employed a meta-analytical structural equation model in 

order to synthesize multiple correlation matrices into a comprehensive structural equation 

model. Once more, the results confirmed the significance of the theoretical framework 

and the relative magnitudes of the antecedents of intention (however, the statistical model 

highlighted intention as the best predictor of buying behavior over and above attitude). 

Thus, the theory of planned behavior appeared to be a valid and reliable psychological 

framework to explain and predict organic food purchase. Starting from this, the TPB was 

adopted as the primary framework for the development of a realistic virtual agent’s 

decision making process.  

5.2 Approaching an informal theory from a computational point of view 

As suggested by Zhang and Nuttall (2011), Ajzen’s theory offers a theoretical framework 

(relatively) easy to be converted into the form of an algorithm. However, a critical review 

of the theory from a computational point of view was required in order to highlight 

potential issues or gaps that might result in the successive phase of application. 

Accordingly, the second contribution of the project (Scalco, Ceschi, & Sartori, 2017) 

attempted to critically review the theory of planned behavior in light of the computational 

approach proposed by agent-based modeling. This work addressed the potential 

conjunctions between the psychological knowledge and virtual simulations in the specific 

application case of the theory of planned behavior. On the one hand, the work is based on 

an in-depth examination of the major works by the original proposer of the theory (i.e. 

Isaac Ajzen). On the other hand, the contribution benefits from a previous experience of 

modeling this particular theoretical framework inside a virtual model of recycling 

behavior (see Scalco et al., 2017, provided as annex of the current work). 

The paper illustrated how the theory of planned behavior has been proved over the 

years as a consistent and remarkable good theory, which is supported by numerous 

research scattered among different fields. However, as expected, when the computational 

approach was applied to the theoretical framework, this latter showed the presence of 

potential gaps. Particularly, the major issue lies in the addition of the temporal dimension 
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(see section 3.4.2). Nonetheless, some works drawn from the computational sciences have 

been able to provide interesting solutions useful to overcome this limitation. In addition, 

the theory of planned behavior does not offer clear information regarding the potential 

feedback mechanisms derived by the performance (and appraisal) of the performed 

behavior. Modelers should pose specific assumptions in relation to this point. Finally, it 

is crucial to assess the validity of the model proposed by the TPB for the behavior under 

examination: in this case, methods from psychological research (e.g. structural equation 

models) can serve to this purpose and to drive the development of the computational 

model algorithms. 

5.3 Emulate consumers’ behavior and promote organic food purchase 

Finally, starting from the findings from the first work and the examination conducted in 

the second paper, an agent-based model was built to investigate how social interactions 

in relation to green food products can foster/hinder buying intention among customers of 

grocery stores with different store layouts (Scalco, Jager, Bolderdijk, Sartori, & Ceschi, 

working paper). Each virtual consumer has the chance to decide to purchase conventional 

or organic food. The related decision-making process has been grounded on the TPB and 

the results obtained from the presented meta-analytical structural equation model. 

Particularly, we employed a computational approach in order to connect a psychological 

framework with a specific social phenomenon recently identified by Bolderdijk and 

Cornelissen (2017): undercover altruism. In the end, the simulation has shown to be able 

to replicate the complex relationship that stem from the dynamic interaction between 

consumers’ preferences and the effects of social influence. 

Interestingly, the final simulation provided an answer to the promotion of pro-

environmental behavior. In fact, on the one hand, the tested scenarios confirmed the 

results provided by van Herpen et al. (2012): sales of organic products increase when 

these products are clustered rather than when mixed with conventional ones. Indeed, the 

effects of the social influence exercised by those consumers who prefer regular products 

is strongly reduced when green food products are clustered and set apart from 

conventional ones. Moreover, the presence of undercover altruists is largely reduced such 

that green consumers can based their purchases on personal attitudes without the 

interference of the social dimension. On the other hand, this result is confirmed only in 

the case of a crowded market. In fact, the model showed that the likelihood to sell organic 
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products in sparcely populated stores is higher when the green and conventional products 

are mixed. This result might be explained by a reduced social influence effect on this kind 

of consumers. In addition, under this condition it is possible to hypothesizes a slow spread 

of a positive norm toward green products also in those consumers who were initially more 

inclined toward conventional products.  

Starting from these findings, the computational model offered some suggestions to 

promote the purchase of organic food. Briefly, grocery stores should arrange their 

conventional and green products on the base of the average flow of consumers. This can 

be especially remarked for those supermarkets which are highly affected by seasonality 

of clients. In addition, stores with sporadic flow of consumers should consider to mix 

conventional and food products. Moreover, in order to support the spread of a positive 

norm toward sustainable food, these markets can consider the idea to promote special 

bundles of different organic products. In this way, consumers are encouraged to move 

along the aisles of the store to collect different green products: the formation (and 

visibility) of a consistent minority (such as suggested by the studies by Moscovici) might 

promote green behavior as a common behavior rather than appears as an exceptional act. 
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6 Appendix 

The following section reports the original code employed to run the simulation presented 

inside the paper “Green Consumer Behavior: Simulating the Diffusion of Sustainable 

Food inside Grocery Stores” by Scalco, Jager, Bolderdijk, Sartori, & Ceschi (sect. 4). 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; $MAIN CODE                   ;; 

;; Define the main procedures   ;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;; includes the code employed to design the store, compute buying 

intention, and customers data initialization 

__includes ["Store_Layout_Design.nls" "TPB_Library_v.2.1.nls" 

"Customers_data.nls"] 

 

 

globals [ 

 

  MonitorNormStd     ;; average values related to the perceived social 

norm among the agents 

  MonitorNormGrn 

  MonitorAttStd      ;; average values related to the individual 

attitude of the agents 

  MonitorAttGrn 

  availability       ;; compute the ratio between conventional over 

green products 

  StdFood            ;; amounts of conventional and green food 

  GrnFood 

  N.UA               ;; total numbers of undercover altruists 

  N.CH.std           ;;   "      "       choerent toward green food 

  N.CH.grn           ;;   "      "       choerent toward regular food 

  N.IN               ;;   "      "       innovators 

  %CH.std            ;; percentages of the previous values 

  %CH.grn 

  %UA 

  %IN 

  grnProdSold        ;; amount of green and conventional products 

bought by the agents 

  stdProdSold 

 

] 

 

patches-own [ 

 

  foodType           ;; kind of food (green/standard) on the patch 

  isEmpty?           ;; true if products on the patch (i.e. shelve) is 

out of stock 

 

] 

 

turtles-own [ 

 

  mxLngShopList      ;; number of products that the agent's must buy 

before exit 
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  shopList           ;; list of products bought by an agent 

  lastProdBought     ;; the last product bought by the agent (also, 

the last item added to the shop list) 

  satisfied?         ;; true if shopping list is full, false otherwise 

  productTarget      ;; the product the agent is looking for inside 

the supermarket 

  decided?           ;; used to maintain the focus on an object until 

the agent achieves it 

  path               ;; employed in earlier phases of the model to 

monitor the path of the agents in the world 

  age                ;; age of the agent 

  mark               ;; to avoid count turtles more than one time in 

plots and monitors 

  out?               ;; to avoid killing turtle (otherwise plots and 

monitors will invalidate results) 

 

  ;; personal beliefs 

  belief.chemfree    ;; min acceptable standard about chemfree 

  belief.price       ;; max price for food (i.e. Willigness to Pay) 

  belief.health      ;; min acceptable standard about health of food 

  belief.env         ;; importance of the collective benefits  

 

  Norm.Std           ;; evaluation of social norm adopted by 

surrounding agents 

  Norm.Grn 

  Att.Std            ;; personal attitude toward std/green product 

  Att.Grn 

  ItB.StdFood        ;; intention to buy (ItB) std/green food 

  ItB.GrnFood 

  role               ;; behavior assumed by the agents 

(UA/CH.grn/CH.std/IN) 

 

] 

 

;;;;;;;;;;; 

;; SETUP ;; 

;;;;;;;;;;; 

 

;; Create the requested number of consumers 

to generate-customers 

 

  crt #cstmrs 

  [ 

    ;; set the new customers on the entrance (= yellow patches) 

    move-to one-of patches with [pcolor = yellow] 

    set color blue 

    set heading 180 

    ;; initialize internal agent's variables 

    initializeCustomer 

    ;; generate a set of beliefs 

    generatePreferences 

  ] 

 

end 

;;;;;;;;;;;; 

;; GO     ;; 

;;;;;;;;;;;; 

 

;; Main procedure of the simulation model 
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to go 

 

  ;; update global vars each cycle 

  updateGlobals 

 

  ;; Some basics control before the begin of the simulation 

  if not any? patches with [pcolor = yellow] [ user-message "Please, 

define entrances and cashiers." stop ] 

 

  ;; Regulate customers flow inside the store 

  if (cstmrs-flow != 0 and ticks != 0) and ( (remainder ticks cstmrs-

flow) = 0) [ generate-customers ] 

 

  ;; agents on orange patches are considered as customers that exits 

from the store 

  ask turtles [if ([pycor] of patch-here = max-pycor and [pcolor] of 

patch-here = orange) [set out? true stop]] 

 

  ;; agents that are moving around the store shop 

  ask turtles with [out? = false] 

  [ 

    ifelse ((not satisfied?)) 

    [ goShopping ]   ;; if shopping list is not full, agent goes on 

looking for products 

    

 

[ goHome ] ;; if the sopping cart is full, the agent goes

toward the store exits (i.e. orange patches) 

  ] 

 

  ;; Refill the shelves every fixed ticks (0 = no restock) 

  if ((restock-time? != 0) and (ticks mod restock-time? = 0)) [ 

restock ] 

 

  ;; update graphs and monitors 

  updateOutput 

  updateDisplay 

 

  ;; if all agents filled the shoplist the simulation can stop 

  if all? turtles [satisfied? = true] [stop] 

 

; wait 0.1 ;; active to follow agents movement on screen 

  tick 

 

end 

 

;; Compare intentions to buy standard/green food based on TPB and 

define a specific product to buy inside the store 

to decide-product 

 

  if not decided? 

  [ 

    ;; decision can also take into account habit 

    let p.habit random-float 1 

    let foodChoice red ;; instantiate a temporary var 

    ifelse ((p.habit < habitStrength) and (habit? = true)) 

    [ 

      set foodChoice red ;; decision made on the base of habit 

    ] 

    [ 
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      ;; decision based on a deliberative process ("TPB_Library" is 

here called) 

      calcTPBs  ;; evaluate the kind of product that should be bought 

      ifelse ItB.StdFood >= ItB.GrnFood [ set foodChoice red ] [ set 

foodChoice green] 

    ] 

    set productTarget one-of patches with [pcolor = foodChoice] 

    set decided? true 

  ] 

 

end 

 

;; Update the agent's shopping list, remove product from shelves and 

updates the amount of product sold 

to goShopping 

 

  ;; the agent decides what product it needs to buy at the store 

  decide-product 

  let choice [pcolor] of productTarget 

 

  face productTarget ;; set the agent toward the product to buy 

  if (distance productTarget < 1.5) ;; agent pick up the product  

  [ 

    ifelse [plabel] of productTarget > 0 

    [ 

      if choice = 15  ;; 15 = red color -> std product 

      [ 

        set shopList fput "std" shopList 

        set lastProdBought "std" 

        set stdProdSold stdProdSold + 1 

      ] 

      if choice = 55  ;; 55 = green color -> grn product 

      [ 

        set shopList fput "green" shopList 

        set lastProdBought "green" 

        set grnProdSold grnProdSold + 1 

      ] 

      ;; remove the chosen product from the shelve 

      ask productTarget 

      [ 

        set plabel plabel - 1 

        set plabel-color white  ;; reset color of plabel 

        if plabel = 0 

        [ 

          set foodType pcolor   ;; store the kind of food that was on 

the shelve to restock it later 

          set pcolor white 

        ] 

      ] 

    ifelse (length shopList = mxLngShopList)  

    [ set satisfied? true stop ] ;; if list is full, agent is ok 

 

    [ 

      set decided? false 

      generatePreferences ;; generate a new set of preference for the 

next product to buy 

      decide-product      ;; after agent bought a product, 

productTarget is reset 

    ] 
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  ] 

 

    [ 

      set decided? false  ;; if the product target isn't available, 

agent must choose another product 

      decide-product 

    ] 

 ] 

 

  ;; if the shopping list is full the agent is satisfied and (at the 

next cycle of the sim) can go to the exits 

  if (length shopList = mxLngShopList) [ set satisfied? true stop ] 

 

  ;; If the agent is not in front of the products it must go toward it 

  ifelse not any? patches with [pcolor = choice] 

  [ stop ] 

  [ 

    if (one-of neighbors4 != productTarget ) 

    [ 

      movement(productTarget) 

    ] 

  ] 

 

end 

 

;; Ask agents to reach the exits when they completed the shopping list 

to goHome 

 

  ;; procedure to reach the cashier and follow the line 

  ifelse [pcolor] of patch-here = orange 

  [ 

    move-to one-of neighbors4 with [(pcolor = orange)] 

  ] 

  [ 

    let target one-of patches with [pcolor = orange and pycor = max-

pycor] 

    movement(target) 

  ] 

 

end 

 

;;;;;;;;;;;;;;;;; 

;; MOVEMENTS   ;; 

;;;;;;;;;;;;;;;;; 

 

;; Procedure to move the agents around the store and reach products 

to movement [trg] 

 

  face trg ;; face the product target to buy 

 

  let target-xcor [pxcor] of trg 

  let target-ycor [pycor] of trg 

  let steps nobody 

 

  ifelse (satisfied?) 

  ;; if agent is not satisfied, it cannot move to cashiers 

  [ set steps neighbors4 with [(pcolor = black) or (pcolor = yellow) 

or (pcolor = orange)]] 

  ;; if shopList is full, agent can move to the cashiers 
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  [ set steps neighbors4 with [(pcolor = black) or (pcolor = yellow)]] 

 

  let next-step min-one-of steps [distancexy target-xcor target-ycor] 

  set path fput next-step path 

 

  move-to next-step 

 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;; 

;; PLOTs and OUTPUT   ;; 

;;;;;;;;;;;;;;;;;;;;;;;; 

 

;; Update global vars related to norms and attitudes 

to updateOutput 

 

  if count turtles with [satisfied? = false] > 0 

  [ 

    set MonitorNormStd mean[Norm.Std] of turtles with [satisfied? = 

false] 

    set MonitorNormGrn mean[Norm.Grn] of turtles with [satisfied? = 

false] 

    set MonitorAttStd mean[Att.Std] of turtles with [satisfied? = 

false] 

    set MonitorAttGrn mean[Att.Grn] of turtles with [satisfied? = 

false] 

  ] 

 

end 

 

;; Update food availability inside stores, global vars and agents' 

roles 

to updateGlobals 

 

  ;; ask TPB Library to define agents' behavior on the based of 

attitude and perceived soc norm 

  defineRoles 

 

  ;; evaluate the amount of food supply inside the virtual store 

  set StdFood sum [plabel] of patches with [pcolor = red] 

  set GrnFood sum [plabel] of patches with [pcolor = green] 

  set availability StdFood / GrnFood 

 

  ;; update global vars to track trends related to agents' behaviors 

  if count turtles with [mark = false] > 0 

  [ 

    set N.UA count turtles with [role = "Undercover-altruist" and mark 

= false] 

    set N.CH.std count turtles with [role = "Coherent STD" and mark   

= false] 

    set N.CH.grn count turtles with [role = "Coherent GRN" and mark = 

false] 

    set N.IN count turtles with [role = "Innovator" and mark = false] 

 

    set %UA N.UA / (count turtles) 

    set %IN N.IN / (count turtles) 

    set %CH.std N.CH.std / (count turtles) 

    set %CH.grn N.CH.grn / (count turtles) 

  ] 
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  ;; mark one time those agents who bought something to avoid to count 

them at each step 

  ask turtles with [(lastProdBought = "std" or lastProdBought = 

"green") and (satisfied? = true)] [set mark true] 

 

end 

 

;;;;;;;;;;;;;;;; 

;; DISPLAY    ;; 

;;;;;;;;;;;;;;;; 

 

;; Update the visualization of the simulation 

to updateDisplay 

 

  ;; neutral color for every agent 

  if color-preferences = "Neutral" 

  [ ask turtles with [color != blue] [set color blue] ] 

 

  ;; color agents on the base of individual preference 

  if color-preferences = "Color ind preferences" 

  [ 

    ask turtles 

    [ 

      ifelse stdFood.Attitude >= grnFood.Attitude 

      [ set color red -  (3 * stdFood.Attitude) ] 

      [ set color green - (3 * grnFood.Attitude) ] 

    ] 

  ] 

 

  ;; color agents on the base of intention to buy 

  if color-preferences = "Intention to Buy" 

  [ 

    ask turtles 

    [ 

      ifelse ItB.StdFood >= ItB.GrnFood 

      [ set color red -  (3 * stdFood.Attitude) ] 

      [ set color green - (3 * grnFood.Attitude) ] 

    ] 

  ] 

 

  ;; color agents on the base of the percevied social norm 

  if color-preferences = "Color perceived soc norm" 

  [ 

    ask turtles 

    [ 

      ifelse (((Norm.Std = 0) and (Norm.Grn = 0))) 

      [ set color grey ] 

      [ 

        ifelse (Norm.Std > Norm.Grn) 

        [ set color red -  (3 * Norm.Std) ] 

        [ set color green - (3 * Norm.Grn) ] 

      ] 

    ] 

  ] 

 

  ;; show behaviors of the agents using agents' labels 

  ifelse Show-roles? and any? turtles with [role != ""] 

  [ ask turtles 
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    [ 

      if role = "" [set label ""] 

      if role = "Coherent GRN" [set label "CH.grn" set label-color 

green] 

      if role = "Coherent STD" [set label "CH.std" set label-color 

red] 

      if role = "Undercover-altruist" [set label "UA" set label-color 

blue] 

      if role = "Innovator" [set label "IN" set label-color magenta] 

    ] 

  ] 

  [ ask turtles [set label ""] ] 

 

end 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; $CUSTOMERS' BASIC DATA              ;;; 

;; Initialize variables and beliefs   ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

 

;; Initialize each internal agent's variable 

to initializeCustomer 

   

  set lastProdBought "" 

  set productTarget one-of patches with [pcolor = red] 

  ;; NB following common norm, first decision is set on std products 

  set decided? false 

  set path [[]] 

  set age 18 + random 13 

  generatePreferences 

 

  set mark false 

  set out? false 

  set satisfied? false 

  set mxLngShopList 1 + random maxShoppingProducts 

  set shopList [] 

 

  set Norm.Std 0 

  set Norm.Grn 0 

 

  set ItB.StdFood 0 

  set ItB.GrnFood 0 

  set role "" 

 

end 

 

;; Generate a set of beliefs for a particular agent 

to generatePreferences 

   

  ;; Beliefs related with personal attitude 

  set belief.env random-normal 3.90 1.54  

  ifelse belief.env > 6 [set belief.env 6] [ if belief.env < 0 [set 

belief.env 0] ] 

  set belief.health random-normal 4.69 1.17 

  ifelse belief.health > 6 [set belief.health 6] [if belief.health < 0 

[set belief.health 0] ] 

  set belief.chemfree random-normal 4.55 1.40 
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  ifelse belief.chemfree > 6 [set belief.chemfree 6] [ if 

belief.chemfree < 0 [set belief.chemfree 0] ] 

 

  ;; Beliefs related to PBC 

  set belief.price random-normal 4.36 1.89  

  ifelse belief.price > 6 [set belief.price 6] [ if belief.price < 0 

[set belief.price 0] ] 

 

end 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; $THEORY OF PLANNED BEHAVIOR                      ;; 

;; Calculate intention to buy a specific product   ;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; TPB CALCULATION        ;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;; Compute the intention to buy green/conventional food 

to calcTPBs 

   

  ;; weights are taken from Scalco, Noventa, Sartori, & Ceschi (2017) 

  set ItB.StdFood ((0.44) * stdFood.Attitude + (0.35) * 

stdFood.SocNorm + (0.12) * stdFood.PBC) 

  set ItB.GrnFood ((0.44) * grnFood.Attitude + (0.35) * 

grnFood.SocNorm + (0.12) * grnFood.PBC) 

   

end 

 

;; Define the behavior of each agents in the simulation based on 

attitude and perc soc norm 

to defineRoles 

   

  ask turtles with [satisfied? = false] 

  [ 

    set role "" 

    ifelse ([pcolor] of productTarget = red 

      and (stdFood.Attitude >= grnFood.Attitude) 

      and (stdFood.SocNorm >= grnFood.SocNorm)  

      and (ItB.StdFood > ItB.GrnFood) ) 

    [set role "Coherent STD"] 

    ;; attitude and SN are coherent toward conventional products 

    [   

      ifelse ([pcolor] of productTarget = red 

        and (stdFood.Attitude < grnFood.Attitude) 

        and (stdFood.SocNorm > grnFood.SocNorm) 

        and (ItB.StdFood > ItB.GrnFood) ) 

      [set role "Undercover-altruist"] 

      ;; attitude is green, but SN goes against it and it buy std food 

      [ 

        ifelse ([pcolor] of productTarget = green 

          and (grnFood.Attitude >= stdFood.Attitude) 

          and (grnFood.SocNorm >= stdFood.SocNorm) 

          and (ItB.GrnFood > ItB.StdFood) ) 

        [set role "Coherent GRN"] 

        ;; attitude and SN are coherent toward green products 

        [ 
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          if ([pcolor] of productTarget = green 

            and (grnFood.Attitude < stdFood.Attitude) 

            and (grnFood.SocNorm > stdFood.SocNorm) 

            and (ItB.GrnFood > ItB.StdFood) ) 

          [set role "Innovator"] 

          ;; attitude is for std food, but SN goes against it and it 

buy green food 

        ] 

      ] 

    ] 

  ] 

   

end 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; STD vs GREEN EVALUATIONs   ;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;; Report standard food attitude 

to-report stdFood.Attitude [] 

   

  let eval.chemfree 0 

  let eval.health 0 

  let eval.env 0 

  let eval.final 0 

   

  ;; compute lower expectations on conventional food 

  let temp.low.belief.chemfree belief.chemfree - (belief.chemfree * 

lowFactor) 

  let temp.low.belief.health belief.health - (belief.health * 

lowfactor) 

  let temp.low.belief.env belief.env - (belief.env * lowfactor) 

   

  ;; evaluate each factor as a comparison between the personal beliefs 

of the agent and the actual char of the food. If the belief is met 

by the characteristcs of the food, it scores 1, otherwise 0 

  ifelse (stdFoodHealth < temp.low.belief.chemfree ) [set 

eval.chemfree 0] [set eval.chemfree 1] 

  ifelse (stdFoodEnv < temp.low.belief.health) [set eval.health 0] 

[set eval.health 1] 

  ifelse (stdFoodChem < temp.low.belief.env) [set eval.env 0] [set 

eval.env 1] 

   

  ;; final evaluation of food is the avg score of the characteristics 

  set eval.final ((eval.chemfree + eval.health + eval.env) / 3)  

   

  set Att.Std eval.final ;; update internal variable 

  report eval.final 

   

end 

 

;; Report green food attitude 

to-report grnFood.Attitude [] 

   

  let eval.chemfree 0 

  let eval.health 0 

  let eval.env 0 

  let eval.final 0 
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  ifelse (grnFoodHealth < belief.chemfree) [set eval.chemfree 0] [set 

eval.chemfree 1] 

  ifelse (grnFoodEnv < belief.health) [set eval.health 0] [set 

eval.health 1] 

  ifelse (grnFoodChem < belief.env) [set eval.env 0] [set eval.env 1] 

   

  set eval.final ((eval.chemfree + eval.health + eval.env) / 3)  

   

  set Att.Grn eval.final 

  report eval.final 

   

end 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; PERCEIVED SOCIAL NORM    ;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;; Report percevid social norm toward conventional products 

to-report stdFood.SocNorm 

   

  ;; create a group of agents represented by those customers 

sorrounding the called agent 

  let socialGroup nobody 

  set socialGroup other turtles in-radius 1.5 with [(length shopList > 

0) and (pcolor != orange)] 

  ;; NB: the instruction avoids to consider agents with no products in 

the cart or at the cashiers  

  ;; NB: "in-radius" includes even the turtle who is executing 

instructions, so it must be remove from agentset using "other" 

     

  ifelse count socialGroup = 0 

  [ report 0 ] ;; If there is no-one around, or if people around did 

not buy anything, social influence is equal to zero 

  [  

    let stdFoodBuyers count socialGroup with [lastProdBought = "std"] 

    set Norm.Std stdFoodBuyers / (count socialGroup) 

    report stdFoodBuyers / (count socialGroup) 

  ] 

 

end 

 

 

 

;; Report percevid social norm toward green products 

to-report grnFood.SocNorm 

   

  let socialGroup nobody 

  set socialGroup other turtles in-radius 1.5 with [(length shopList > 

0) and (pcolor != orange)] 

   

  ifelse count socialGroup = 0 

  [ report 0 ] ;; If there is no-one around, or if people around did 

not buy anything, social influence is equal to zero 

  [  

    let grnFoodBuyers count socialGroup with [lastProdBought = 

"green"] 

    set Norm.Grn grnFoodBuyers / (count socialGroup) 
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    report grnFoodBuyers / (count socialGroup) 

  ] 

   

end 

 

;;;;;;;;;;;;; 

;; PBC    ;;; 

;;;;;;;;;;;;; 

 

;; Report standard food PBC 

to-report stdFood.PBC [] 

  let eval.price 0 

  let eval.final 0 

  let stdFoodPrice 0 

  set stdFoodPrice precision(foodPrice)2  

   

  ifelse (stdFoodPrice > belief.price) [set eval.price 0] [set 

eval.price 1] 

  set eval.final ((eval.price) / 1) 

   

  set Att.Std eval.final 

  report eval.final 

   

end 

 

 

;; Report green food PBC 

to-report grnFood.PBC [] 

   

  let eval.price 0 

  let eval.final 0 

  let grnFoodPrice 0 

  set grnFoodPrice precision(foodPrice * (1 + deltaPrice))2  

   

  ifelse (grnFoodPrice > belief.price) [set eval.price 0] [set 

eval.price 1] 

  set eval.final ((eval.price) / 1)  

   

  set Att.Grn eval.final 

  report eval.final 

 

end 

   

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; $STORE DESIGN                            ;; 

;; Design the layout of the grocery store   ;;                                      

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

 

;; Fill the shelves with standard food products (plabel = current 

available supply) 

to fillStdFood 

   

  set pcolor red 

  ifelse place-single-product? [ set plabel 1 ] [ set plabel 1 + 

random 50 ] 

  set plabel-color white 

  show plabel 
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  set isEmpty? false  

  display 

 

end 

 

;; Fill the shelves with green food products (plabel = current 

available supply) 

to fillGrnFood 

 

  set pcolor green 

  ifelse place-single-product? [ set plabel 1 ] [ set plabel 1 + 

random 50 ] 

  set plabel-color white 

  show plabel 

  set isEmpty? false  

  display 

 

end 

 

;; User can place standard product on the shelves with a click 

to place-std.food 

   

  if mouse-down?     ;; reports true or false to indicate whether 

mouse button is down 

  [ 

    ask patch mouse-xcor mouse-ycor 

    [ fillStdFood ] 

  ] 

   

end 

 

;; User can place green product on the shelves with a click 

to place-grn.food 

   

  if mouse-down? 

  [ 

    ask patch mouse-xcor mouse-ycor 

    [ fillGrnFood ] 

  ] 

   

end 

 

;; User can delete products, walls or shelves with a click of the 

mouse 

to delete 

   

  if mouse-down? 

  [ 

    ask patch mouse-xcor mouse-ycor 

    [ 

      set pcolor black 

      set plabel-color black 

      set plabel "" 

      display 

    ] 

  ] 

   

end 
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;; User can place the chashiers (= exits) with a click 

to define.cashiers 

   

  if mouse-down?   

  [ 

    ask patch mouse-xcor mouse-ycor 

    [ set pcolor orange ] 

  ] 

   

end 

 

;; User can define the entrances with a click 

to define.entrances 

   

  if mouse-down?      

  [ 

    ask patch mouse-xcor mouse-ycor 

    [ set pcolor yellow ] 

  ] 

   

end 

 

;; Restock new supplies when called 

to restock 

   

  ask patches with [plabel = 0] [set isEmpty? true] 

  ask patches with [pcolor = white and isEmpty? = true] 

  [ 

    ifelse foodType = red 

    [ fillStdFood ] 

    [ fillGrnFood ] 

  ] 

   

end 

 

;; Design a standard supermarket with no effort by the users 

to simple.market 

   

  ca 

  set N.CH.grn 0 

   

  ;; Create shelves 

  ask patches with [(pxcor = 12) and (pycor > -12) and (pycor < 7)] 

[set pcolor white] 

  ask patches with [(pxcor = -12) and (pycor > -12) and (pycor < 7)] 

[set pcolor white] 

  ask patches with [(pxcor = 8) and (pycor > -12) and (pycor < 7)] 

[set pcolor white] 

  ask patches with [(pxcor = -8) and (pycor > -12) and (pycor < 7)] 

[set pcolor white] 

  ask patches with [(pycor = -5)] [ask neighbors4 [set pcolor black]]                     

  ask patches with [(pycor = 7) or (pycor = 4) or (pycor = 1) or 

(pycor = -1) or (pycor = -9)] [set pcolor black] 

   

  first-food-arrangement 

   

  set-default-elements 
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  ;; initialize the market at a random historical moment where 

consumers are inside the grocery store 

  crt #cstmrs 

  [ 

      move-to one-of patches with [pcolor = black] 

      set color blue 

      set heading random 360 

      initializeCustomer 

      generatePreferences 

  ]  

   

end 

 

;; Design 1 entrance and 5 cashiers 

to set-default-elements 

   

  let i min-pxcor 

  repeat 7 

  [ 

    ;; design 2 standard entrances on the top-edges of the world 

    ask patches with [(pycor = max-pycor or pycor = max-pycor - 1) and 

pxcor = i] [set pcolor yellow] 

    ask patches with [(pycor = max-pycor or pycor = max-pycor - 1) and 

pxcor = i * (-1)] [set pcolor yellow] 

    ;; design 3 chashiers on the centre-top of the world 

    ask patches with [(pycor = max-pycor or pycor = max-pycor - 1) and 

(pxcor = -4 or pxcor = 0 or pxcor = 4) ] [set pcolor orange] 

    set i i + 1 

  ] 

   

end 

 

;; Arrange the food for the first time the store 

to first-food-arrangement 

   

  ;; If mix? is true, the procedure will mix std food with green food, 

otherwise they will be placed in separate aisles 

  if not mix-products?  

  [  

    ask patches with [(pcolor = white) and (pxcor < 0)][ fillStdFood ] 

    ask patches with [(pcolor = white) and (pxcor > 0)][ fillGrnFood ] 

    set-default-elements 

    stop 

  ] 

  let halfShelves count (patches with [pcolor = white]) / 2 

  ask n-of halfShelves patches with [pcolor = white] [ fillStdFood ] 

  ask n-of halfShelves patches with [(pcolor = white) and (pcolor != 

red)]  [ fillGrnFood ] 

   

end 

 

;; Procedure allows switching the arragement of food during the 

simulation (used to evaluate switches related to tipping-point) 

to switch-food-arrangement 

   

  if not mix-products?  

  [ 

    ask patches with [(pcolor = red or pcolor = green)and(pxcor < 0)] 

[ fillStdFood ] 
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    ask patches with [(pcolor = red or pcolor = green)and(pxcor > 0)] 

[ fillGrnFood ] 

    set-default-elements 

    stop 

  ] 

  let halfShelves count (patches with [isempty? = false]) / 2 

  ask patches with [isEmpty? = false] [fillStdFood] 

  ask n-of halfShelves patches with [pcolor = red] [set isEmpty? true] 

  ask patches with [isEmpty? = true] [fillGrnFood] 

   

end 
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Abstract 

In the near future, the waste management sector is expected to reduce substantially the 

adverse effects of garbage on the environment. However, the increasing complexity 

of the current waste management systems makes the optimization of the waste 

management strategies and policies challenging. For this reason, waste prevention is 

the most desirable goal to achieve. Despite this, low levels of household recycling 

represent the key factor that complicates the current scenario. Keeping this in mind, 

the present work investigates the determinants of recycling behavior through the 

development of an agent-based model. Particularly, we examined what would induce 

households to increase the probability to engage in recycling behaviors on the base of 

the individual attitude and sensitivity to social norms. The theory of planned behavior 

(TPB) has been implemented as agents’ cognitive model in environmental studies with 

the aim to predict recycling outcomes. Furthermore, in order to increase the realism of 

the simulation and the adherence of the model with the theory, we followed two 

strategies: firstly, we used real data to model a city district (Diong, 2012). Secondly, 

we made use of the coefficients of the structural equation model presented in the work 

by Chu and Chiu (2003) to build the agents’ cognitive model. As a whole, the results 

are in line with literature on descriptive social norms. Furthermore, the results indicate 

that the introduction of descriptive social norms represents a valuable strategy for 

public policies to improve household recycling: however, injunctive social norms are 

needed first. 

  

                                                 

1 The current study represents an extension of the work requested to the completion of the Ph.D. research 

project. However, it was particularly useful to deepen the connections between the theory of planned 

behavior proposed by Ajzen and agent-based modeling. The current chapter is based on the work 

appeared in A. Alonso-Betanzos, N. Sánchez-Maroño, O. F. Romero, G. Polhill, T. Craig, J. Bajo, & J. 

M. Corchado (Eds.), Agent-Based Modeling of Sustainable Behaviors (2017). 



136  Annex 

 

 

7.1 The problem with waste 

Environmental protection ranks very high on the global agenda. In 1987, the World 

Commission on Environment and Development (the Brundtland Commission) introduced 

a new term known as sustainable development (United Nations Commission, 2004). This 

concept was later used to describe the international community’s attitude regarding 

economic, social, and environmental development. So far, only some countries have 

taken advantage of the economic possibilities of waste management, exploiting the 

general need of countries to dispose of their waste and combining it with the equally 

widespread necessity to find sustainable means to generate energy. Currently, Sweden 

represents the best example: they have converted waste processes into a profitable sector, 

leading them, in the last few years, even to import waste from other countries (Rousta, 

Richards and Taherzadeh, 2016). 

Most of all, the waste management sector is expected to achieve significant results in 

the near future, with a substantial reduction of the adverse effects of garbage on the 

environment. However, the increasing complexity of the current waste management 

systems coupled with the demanding environmental protection targets makes the 

optimization of the waste management strategies and policies challenging. For this 

reason, waste prevention is the most desirable option, followed by the preparation of 

waste for reuse, recycling, upcycling and other recovery, with disposal (such as landfills) 

as the last resort.  

With respect to recycling participation, ample evidence exists that the problem with 

household waste will continue to grow over time. This evidence includes sociological 

factors pertaining to overpopulation, the increasingly faster pace of resource exploitation, 

as well as the over-consumption made possible by higher incomes. In 2012, the United 

Nation (UN) made projections that the population of the earth may reach 8.3 and 10.9 

billion by 2050 (United Nations, 2014): such a population increase would speed the rate 

of natural resource depletion and increase the production of wastes. Thus, the problem is 

twofold: we would be faced with the loss of both materials and energy; likewise, the 

problem of treating and disposing of the waste, which itself can cause environmental 

damage and additional costs to society. For instance, the European Commission has 

estimated that the per-year costs of municipal and hazardous waste disposal in Europe 

already exceeds €75 billion (European Commission, 2007). 
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Given this annual cost, there is a great motivation to reduce expenses and, if possible, 

make the sector pay for itself or even turn it into a profit. For example, costs can be 

reduced by taking advantage of the possibilities of the waste-to-energy processes 

(Psomopoulos, Bourka, and Themelis, 2009).  

At any rate, in order to achieve a better future management of waste, governments 

need the cooperation of their citizens. Nowadays, low household participation represents 

a key factor able to complicate the waste-recycling scenario in most countries.  In 

Sweden, recycling compliance significantly increased from 1975 to 2012 (Rousta, 

Richards and Taherzadeh, 2016). In fact, during 1975, landfills received almost 1.500.000 

tons (62% of municipal solid wastes; MSW), while, in 2012, this number was less than 

33.000 tons (less than 1% of MSW). While the municipal recycling rates only went from 

6% in 1975 to 32% in 2012, other materials have been sorted and processed in beneficial 

ways with energy recovery going from 30% to 52% and biological treatment going from 

2% to 15% in the same period. This means that consumer compliance to the 

environmental program is equal to, or at least near, 99-100%, assuming that certain 

products may not feasibly be reprocessed into either energy or other goods. 

If such a high rate of consumer compliance in recycling programs is not possible 

everywhere, what are the alternatives? There have been recycling programs that rely on 

sorting of household waste at a Material Recovery Facility (MRF) where commingled 

waste is processed. The problems associated with MRF waste separation is, first of all, a 

large investment in equipment such as “mills, cutters, screens, magnetic separators, float-

sink separators, cyclones, drum separators” (Rousta and Dahlén, 2016, p.62). In addition, 

there are risks of contaminants for the workers.  Despite these obstacles, the crucial factor 

for most programs simply relies on the fact that the quality of the recovered materials is 

often substandard. Indeed, if recycled materials should replace raw materials inside 

production processes, the purity of the former becomes important, even from a financial 

perspective, and it is critical that valuable materials have not been mixed together with 

foodstuff and other contaminants (Sundqvist, 2005). In line with these considerations, if 

commingled collection with sorting at MRFs is problematic, we are left with the difficult 

task of creating citizen compliance with processes of waste separation at the source. 

Consequently, a refinement of waste management strategies becomes urgent in order 

to implement policies able to go behind both preventing waste and creating a market for 
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recycling. In such a framework, recycling household waste becomes crucial, as it would 

reduce waste while saving resources. Moreover, it is critical that the public sector 

examines incentives that would promote recycling in households. The degree and 

intensity to which people conform to these behaviors depend on several technical or 

sociological factors, as well as the demographic and economic facts about the households 

(Tobias, Brügger, and Mosler, 2009). Overall, the success of a recycling programme is 

due to a mix of good public policy and efforts to increase public awareness and, thus, 

households’ behavior.  All of this must be take into account in order to achieve sustainable 

changes leading to new social norms. 

Given these reasons, arising critical question is what would induce households to 

recycle their waste in a practicable way. One of the possible answers lies in a simple 

psychological phenomenon that is widely known but poorly understood: people’s 

behavior is largely shaped by the behavior of those around them. In psychology, this 

phenomenon takes the name of social norms. These latter are in fact one of the most 

powerful customary rules that govern behavior in groups and societies. 

However, traditional forms of market research (e.g. focus groups and surveys) are of 

limited use in a social norm campaign. When people are polled, they typically 

underestimate the effects of the campaign, because they are not usually aware that it had 

an effect on them. An issue that has received very little attention in the literature deals 

with the question of what is the most effective way to activate policy strategies in order 

to produce behavioral change. Therefore, to simulate possible scenarios for policy 

strategies, we created an agent-based model (ABM) representing a virtual society 

engaged in recycling behaviors. Indeed, agent-based modeling represents a promising 

alternative to traditional attempts to understand how social processes work over the time. 

Some authors even argue that “agent-based simulation (…) is the only feasible way of 

understanding the tangle of complex social phenomena, such as those that involve norms” 

(Edmonds, 2013, p.47). Indeed, modern computer simulations as a methodology of 

research within social sciences is a rather new idea, but it comes with great potential 

thanks to the fact that is «an excellent way of modelling and understanding social 

processes» (Gilbert, & Troitzsch, 2005, p. 1). Overall, their major value lies in the ability 

to investigate how the macro-behavior of a system emerges as a result of micro-behaviors 

(Hughes, Clegg, Robinson, & Crowder, 2012). Within the current work, the micro-
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behavior is represented by virtual consumers and their propensity to recycle, whereas the 

macro-behavior is expressed by the virtual society and leads to promote or hinder pro-

environmental behavior of agents.  

In our work we chose to expand on the theory of planned behavior, originally 

developed by I. Ajzen (1991), as a valuable cognitive model of the virtual agents 

populating the simulation. An agent is here defined as a computational entity that we can 

use as the basis for simulating social processes, as though the entity were a human agent 

that could perceive, act, and interact within a virtual environment in a way that we can 

call autonomous (Schwarz and Ernst 2008). Moreover, Ajzen’s work was further 

developed by Chu and Chiu (2003) into an integrated model on household waste 

recycling. Specifically, our work presents a model scaled from their original findings in 

order to assign probability distributions that satisfactorily simulate recycling behavior. In 

models such as this, the stochastic factor is important, given the fact that we can more 

realistically recreate the acts of agents that might not all act according to plan. This means 

that there is a strong possibility that different people will act differently even when 

provided the same instructions and given the same situation. By accounting for this in our 

model, we gain realism in our simulation (Garson, 2009). 

7.2 Social norms theory and recycling behaviors 

As suggested by Cialdini and Trost (1998), norms are a widespread construct in social 

research because they indeed represent a worthwhile psychological phenomenon that can 

help explain human behaviors. Following their work, we chose to describe social norms 

as “rules and standards that are understood by members of a group, and that guide and/or 

constrain social behavior without the force of laws” (ibid, p.152). In other words, social 

norms can be easily conceived as unwritten rules: everyone experiences them daily, as 

they often guide our behavior without consciously asking or wondering about their 

validity. For instance, we know that it is a general rule to greet someone who we known 

when we hastily meet him/her on the stairs. We are not forced to do so, but we know that 

this can represent a violation of an accepted common rule. 

Adherence to the norms of a social group allows members to avoid rejection and 

increase social approval (Cialdini, Bator & Guadagno, 1999). In their work, Cialdini, 

Bator and Guadagno (1999) reported also the interesting study conducted by Aronson and 

O’Leary (1983). The research started from the notion that prompts and informational 
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campaigns are not very effective most of the time to modify the behavior of people if they 

are asked to adopt an innovation or to change their habits. Instead, the adoption of new 

behaviors can be promoted if individuals observe others actively engaging in it. 

Following this consideration, they started monitoring the behaviors of several subjects 

when showering and the resulting usage of water. To reduce the consumption of this 

latter, they created two conditions with the aim of improving the awareness of the 

importance of avoiding water losses. In the first condition, the authors applied a sign 

outside of the shower room. This prompt explained in four consequential instructions that 

water must be opened under the shower just on a first time to wet down and after being 

soaped to rinse off. In this way, the prompt invited to turn off the water when soaping up. 

In a further condition, a confederate of the researchers was introduced into the shower 

room. In fact, research indicates that social norms are most compelling when people are 

shown evidence that the behavior they are being encouraged to adopt is already practiced 

by people similar to them (see Social Comparison Theory; Festinger, 1954). When 

entered into the shower room, the confederate followed the instructions proposed by the 

prompt: thus, he modeled the proper behavior. Within this condition, the number of 

accidental participants who exhibit the right behavior increased up to 53% (against the 

6% of people who followed the prompt in the previous condition). The authors concluded 

the study affirming that “having people model the appropriate behavior suggests to others 

that conserving water by turning off the shower is a reasonable and worthwhile thing to 

do” (ibid, p. 223). Therefore, the results demonstrate how powerful normative influence 

can be as social phenomena.  

7.2.1 Understanding and investigating social norms 

An important distinction is usually made among studies regarding norms. In fact, within 

psychological and sociological literature it is rather common to find references about 

descriptive social norms and injunctive social norms. The former refer to informational 

influence and they are related to the observation of what most others do in a particular 

situation. In contrast, the latter type of norms can be seen as the source of normative 

influence, which is related to what other people consider as acceptable or unacceptable 

behavior (Cialdini, Bator, and Guadagno, 1999). Therefore, descriptive social norms 

simply consider how others behave, without a positive or negative evaluation of the 

behavior and without providing evidence of what is helpful behavior from the results of 
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their actions (Göckeritz, Schultz, Rendón, Cialdini, Goldstein, and Griskevicius, 2010). 

As stated by Cialdini (2007), descriptive social norms are able to transmit a simple but 

effective message: “If a lot of people behave in this way, this is probably the right thing 

that I should do”. Besides, following the perspective proposed by Cialdini, Reno and 

Kallgren (1990), descriptive norms can represent a shortcut to make decisions in 

situations where there is a prevalence of ambiguity about the behavior that should be 

performed. Injunctive social norms, on the other hand, tend to be focused on social 

rewards (for instance, social approval) and punishment (in some cases, even the rejection 

one’s own group) related to certain behaviors. 

Moreover, there is an important aspect related to the psychological notion of saliency 

of norms. In fact, as reported in Cialdini, Reno and Kallgren (1990), norms do not have 

an equally powerful effect at all times and in all situations. Instead, norms must be made 

salient to elicit the proper response from people: that is to say, they have to be “activated” 

in the mind of individuals. For instance, Cialdini and Goldstein (2004) experimentally 

demonstrated that an injunctive normative message can increase norm accessibility, and 

consequently promote the recall of the right behavior, when it is linked to a functional 

mnemonic cue that can easily be perceived in upcoming conditions. In addition, as shown 

by the work by Cialdini, Reno and Kallgren (1990), anti-littering norms can become 

salient by pointing out that littering constitutes a blameworthy action: in this way, they 

are injunctive norms as they bring with them a negative connotation. As expressed by 

Demarque, Charalambides, Hilton, and Waroquier (2015), “persons who are contextually 

focused on normative considerations are most likely to act in norm-consistent ways” 

(p.167). Thus, it is when injunctive anti-littering norms are made salient, that people will 

tend to improve their pro-environmental behavior (Cialdini Reno, and Kallgren, 1990). 

Finally, regarding salience, the previous authors specify that when only one (descriptive 

or injunctive norm) is made salient to an individual’s mind, that norm will exercise the 

stronger influence on the subsequent individual’s actions. Following the previous 

considerations, we can consider recycling behavior as a specific form of prosocial 

behavior, which is in turn related with social norms (Cialdini & Goldstein, 2004; Cialdini 

et al., 1990). Specifically, household recycling behaviors are motivated by social norms, 

whereas, instead, financial incentives may even reduce these actions, as they undermine 
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the intrinsic motivations of people reducing the proneness toward recycling (Brekke, 

Kverndokk, and Nyborg, 2003). 

As an example, a rather interesting work about social norms has been provided by 

Savarimuthu, Purvis, Purvis, and Cranefield (2009). Following a bottom-up approach, 

they investigated the spread of a norm against littering inside a park within a virtual 

society. Particularly, they set up a (bi-dimensional) simulation environment with several 

agents that were able to interact in a social context. The agents interacted when they met 

on the same spot: in this situation, each agent was able to observe the behavior of the 

other one (littering/not littering). Furthermore, the authors developed a payoff matrix 

where pro-environmental behavior had a positive payoff (0.5), whereas littering had a 

negative payoff (-0.5). When an agent decided to pollute the park, the shared environment 

is ruined: this means negatively influencing the entire virtual society given that this action 

has an impact on the general productivity. Within the model by Savarimuthu et al., the 

term productivity is used to indicate the benefits that the agents receive when using the 

public park. Finally, the final payoffs are computed as the sum of the individual payoff 

and the park productivity. No central mechanism is present within the simulation; instead, 

each agent that considers littering as a blameworthy behavior has the ability to punish an 

agent engaged in an inappropriate behavior. Punished agents switch from littering to a 

pro-environmental behavior when the number of the received punishments exceeds their 

individual resistance to change. The main observable output of the simulation is 

constituted by the emergence of a norm (i.e. littering or not littering). 

The results show that a norm against littering is established when the number of 

punishers is sufficiently high (at least 10% of the initial population). Otherwise, the non-

littering norm spreads across the population and the productivity drops gradually. As 

noted by the authors, this kind of process occurs commonly inside online-based 

encyclopedias: a norm of collaboration is established only when there is a sufficient 

number of reviewers that censor, or even ban, false contributors. Furthermore, the work 

highlights how social norms can be successfully being established among society if the 

costs related with enforcements are low. 

7.3 Dealing with social norms from a computational approach 

Jager and Jannsen (2003) highlighted the importance to develop theoretical models of 

human decision processes starting from empirical research. Despite this, as pointed out 
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by Ceschi, Scalco, Dickert, and Sartori (2015), currently there is still a lack of real 

integration between computational modeling and cognitive theories, both from a 

methodological and theoretical perspective. Indeed, cognitive psychological modeling 

can provide the means by which it becomes possible to identify the driving forces behind 

the recycling behavior and to determine the most likely successful factors for public 

policies. Literature indicates that environmental attitudes and situational and 

psychological variables are likely to be important predictors of the recycling behavior.  

Interestingly, in their extensive work Elsenbroich and Gilbert discussed how to model 

norms (2014). Three fundamentals approaches can be useful to apply in agent-based 

modeling when dealing with social norms. One of these is represented by the well-known 

social network analysis. A social network is composed by two kind of elements: nodes 

(i.e. agents) and their ties (i.e. the relationships among agents). Social network analysis 

focuses primary on the latter. Given the fact that our model is aimed to investigating the 

spread of social norms without implying relationships among agents (at least, nothing 

more than closeness), we moved forward from this approach. 

A second formalization invokes the social impact theory. This was firstly proposed 

by Latané (1981) and it was aimed to turn the influence (the “impact”) of one subject on 

another one into a mathematical formulation. Latané suggested considering three 

fundamental elements for his theory: social forces, the psychological law, and the number 

of targets. The first one, social forces, is composed of three main parts (the number of 

people that can exert influence, the strength of the influence -depending on the 

relationships established among the subjects and their individual features-, and the 

immediacy of the impact). Furthermore, the fundamental law states that the social impact 

experienced by an agent will increase with the number of agents who are exercising social 

pressure. This increment follows a logarithmic function, such that a new agent will 

exercise less influence than the previous one. Finally, the third component refers to the 

number of agents influencing a subject. The estimation of the final value of the social 

impact is promptly given by the sum of the previous three main components. However, 

as stated by Elsenbroich and Gilbert (2014), even if social impact theory has the 

advantage to be generalizable, it is rather difficult to evaluate the social force and 

immediate component. 
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The last approach considered by the authors is the one that, more than the others, 

stems from a psychological background and that has been implemented inside the present 

work: the theory of planned behavior (TPB; Ajzen, 1991), which provides a valuable 

theoretical and cognitive framework to understand and explain the influence of several 

psychological factors, including social norms. 

7.4 The psychological bases of the theory of planned behavior 

Models of psychological cognitive functioning can be particularly useful to isolate the 

different aspects that may drive recycling behaviors, and, consequently, those successful 

factors of public policy that can enhance this kind of behavior. The theory of planned 

behavior has been developed from the previous Theory of Reasoned Action (Fishbein, 

and Ajzen, 1981). They both assume that people have a rational basis for their behavior 

in that they consider the implications of their actions. Particularly, the theory of planned 

behavior represents a psychological theory that, more than other cognitive models, has 

been extensively used within environmental studies (see for instance: Botetzagias, Dima, 

and Malesios, 2015; Chan and Bishop, 2013; Chen and Tung, 2009; Cheung, Chan, and 

Wong, 1999; Do Valle, Rebelo, Reis, and Menezes, 2005; Kaiser and Gutscher, 2003; 

Mannetti Pierro, and Livi, 2004; Pakpour, Zeidi, Emamjomeh, Asefzadeh, and Pearson, 

2014; Ramayah, Lee, and Lim, 2012; Tonglet, Phillips, and Bates, 2004; Tonglet, 

Phillips, and Read, 2004; Vicente and Reis, 2008). 

According to the TPB, intentions to engage in recycling behavior stem from three 

main factors: subjective norms, individual attitudes and the perceived personal control. 

The concept of subjective norms refers to the individual’s belief that people important to 

the decision maker see their behavior as the appropriate way to act. Aceti (2002) argues 

that people are motivated to recycle by the actual pressure they receive from family and 

friends to do so. Furthermore, simply knowing that family, friends, and neighbors 

participate in recycling activities increases the likelihood of participation. In this spirit, 

Stern, Dietz, Kaloff, and Guagnano (1995) stressed the importance of considering the 

social structure within which individuals are embedded, based on the belief that social 

structures shape individuals’ experiences and ultimately their personal values, beliefs and 

behaviors. Following Trafimov and Finlay (1996), it may be suggested that subjective 

norms are relevant only for participants with higher accessibility of a collective self. 

However, according to Cialdini’s Theory of Normative Behavior (Cialdini, Reno, and 
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Kellgren 1990), it may be suggested that the actual impact of subjective social norms is 

underestimated when it is measured by means of anonymous questionnaires completed in 

private settings (Stiff and Mongeau, 1994). In fact, Cialdini, Reno, and Kallgren (1990) 

showed that, in experimental settings, where an injunctive anti-littering norm was made 

salient, participants’ littering behavior was significantly reduced. As indicated by Cialdini 

and Trost, those institutions that want “to activate socially beneficial behavior should use 

procedures that activate injunctive social norms, since these norms appeared to be more 

general and more cross-situational effective” (1998, p.161). 

The concept of attitude refers to the individual’s evaluation of the action. Boldero 

(1995) found that intentions to recycle newspapers directly predicted actual recycling and 

that attitudes toward recycling predicted the recycling intentions. The expectations can 

reflect past experiences, anticipation of upcoming circumstances, and the cultural 

background. Davies, Foxall, and Pallister (2002) argued that recycling attitudes should 

be separated into two components: an affective and a cognitive element. The former 

consists of the emotional approach to the recycling imperative, whereas the latter consists 

of the knowledge about the outcomes and consequences of performing the recycling 

behavior (Tonglet, Phillips, and Read, 2004). 

Finally, the concepts of perceived control and moral obligation refer to the 

individual’s perception of their ability to perform behaviors. Taylor and Todd (1995) 

found that both attitudes toward recycling and perceived behavioral control were 

positively related to individuals’ recycling and composting intentions. According to TPB, 

perceived behavior control will influence actual behavior only if the behavior is not 

completely under the person’s volitional control.  

7.5 Integrating an empirical model of recycling behavior  

Agent simulations range from highly structured artificial worlds with few simple rules 

and constraints (Kohler and Gummerman, 2001) to complex models where agent 

interactions constrain subsequent iterations of the simulation (Sawyer, 2001) and/or 

multiple structural layers are considered (Stinchcombe, 2001). It is well known that the 

development of these algorithms is the most fragile aspect of the simulation analysis. 

Within the present work, in order to design a virtual society, a key activity is represented 

by the identification of an amount of the agent’s attributes that are significant for 

recycling behavior. These attributes span from basic demographic attributes (i.e., age, 
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education and income), to more specific features (i.e., environmental sensitivity, self-

confidence and sense of social belonging; Ceschi, Rubaltelli, and Sartori, 2014). Most of 

the impact is due to these attributes and therefore it is important to consider them for the 

aims of the analysis. As a consequence, it is recommended to start from some empirical 

models, such as a structural equation model (SEM). 

SEMs are a modeling technique rather widespread in social and psychological science 

(Hox and Bechger, 2009). They derive from the integration of three fundamental 

statistical techniques applied by social sciences: particularly, they combine path analysis, 

factor analysis, and multiple regression models. In this way, structural equation models 

are able to combine the methods usually applied by, respectively, sociology, psychology, 

and economy. Inside a structural equation model, the relationships among variables are 

expressed by regression coefficients: consequently, the entire model is developed 

following a cause-effect interpretation. The design of the model is firstly conducted 

following theoretical literature: that is to say, by connecting variables following findings 

provided by the current available research. Then, the model is tested statistically: starting 

from the covariance matrix of the examined variables, the fit of the model with the data 

is estimated by means of a maximum likelihood method. Usually, to obtain the parameters 

several iterations are needed until the “best fit” of the model with the data is achieved. 

Among other social sciences, these models found a large usage within psychological 

research thanks to the fact that they are able to link latent variables to observable 

variables. In fact, as pointed out by Krishnakumar and Ballon (2008), a remarkable 

benefit of this framework is that correlations of observed indicators are clearly made as 

arising out of subjacent factors that are accountable for the results. That is, SEMs are able 

to reveal and to quantify the relationship between a behavioral expression and its 

underlying psychological construct. For instance, they can corroborate the existence of 

latent factors, such as verbal and mathematical intelligences, starting from the observed 

responses of a psychological test. 

Nevertheless, one downside of the structural equation modeling approach is 

represented by the difficulty to properly capture all crucial variables regarding a specific 

behavior during the beginning phase of a literature review and design of the theoretical 

model. In addition, given the complexity of human behavior, results extracted from 

literature sometimes can lead to confusing or overlapping variables. The model suggested 
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by Ajzen (1991) represents a fundamental schema of human behavior, as it is able to take 

into account three fundamental and distinct factors at the same time: the personal 

psychological attitude, the impact of the social sphere and the combination of perceived 

and actual factors that can hinder a certain behavior. Indeed, the schema proposed by the 

theory of planned behavior represents a fundamental framework to properly design a 

structural equation model when dealing with pro-environmental behavior. In line with 

this, Zhang and Nuttall already stated how the TPB can summarize psychological, 

sociological and environmental elements related to decision-making processes and, at the 

same time, it still remains relatively easy to code: the authors concluded that these 

characteristics make the TPB “particularly suited to modelling consumer behavior in 

agent-based simulation” (2011, pg. 173).  

A valuable example of the application of structural equation modeling designed 

following the theory of planned behavior is given by the work by Chen and Tung (2014). 

They conducted research to develop an extension of the TPB aimed to explain and predict 

the consumer’s intention to stay in green hotels. Following current literature, they started 

designing the research model, which should explain the antecedents of intention to visit 

green hotels, based on the individual attitude, subjective norms and perceived behavioral 

control. In addition, they extended the classical model of TPB by taking into account the 

perceived moral obligation of the studied subjects. By means of structural equation 

modeling, the authors were able to estimate path coefficients among the designed research 

model, uncovering the “force” of the causal relationships among variables. Furthermore, 

they were able to assess the indirect effect of consumer’s environmental concern on the 

intention to visit green hotels. Finally, structurally equation modelling allowed revealing 

that the most indispensable factor of the model to predict intention to visit green hotel 

was the perceived behavioral control.  

At any rate, as remarked by Hox and Bechger (2009), it is important to note that a 

structural equation model (even when corroborated by the data) does not imply the truth 

of the model itself. There could be several other competing models able to achieve the 

same fit with the data. 

In addition, a current limitation of structural equation models is related to the 

difficulty to take into account individual differences among people. Essentially, 

individual differences are characterized as a set that makes individuals particular, 
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according to their inclinations, capabilities and outcomes. This set of characteristics can 

affect the result of the application of general psychological laws, making their results 

uncertain. For instance, the studies by Tversky and Kahneman, (e.g., 1986) within the 

framework of prospect theory revealed a general psychological law defined as “loss 

aversion” (also commonly known as risk aversion). Briefly, this law tries to explain why 

people are more prone to weight losses substantially more than objectively commensurate 

gains when evaluating economic prospects. However, this sensitivity to losses may differ 

among people (e.g., Tversky and Kahneman, 1986; Kahneman, Knetsch, and Thaler, 

1991; Mitchell, & Mickel, 1999; Ceschi, Rubaltelli and Sartori, 2014). That it is to say, 

people perceive losses more than their actual objective value, but individual differences 

modulate this perception. Starting from this, agent based modeling can help to 

dynamically represent, in a natural way, several scales of analysis and the importance of 

structures at different levels, none of which is easy to accomplish with other modeling 

techniques (Gilbert and Terna, 2000). In this way, the limitation of SEMs regarding the 

modeling of individual differences may be seen conversely related with the advantage of 

ABMs to represents agents’ heterogeneity (see for instance, Sartori, Ceschi, & Scalco, 

2014). 

7.6 Specific aim and hypotheses of the simulation 

The aim of the current work is to present a model able to simulate a number of 

characteristics that have been scaled from the original work by Chu and Chiu (2003), 

modeled, and assigned with probability distributions to simulate the recycling behavior. 

Usually, the purpose of this stochastic effort is to endow agents with a “personality”. 

Contemplating the possibility of fuzzy logic implies greater simulation realism as 

different agents act differently in the same situation. Agents with personality lead to the 

modeling of more complex interactions where, for example, hypotheses may be tested 

more effectively by considering teams of agents with different personalities rather than 

single agents (Garson, 2009). 

The built simulation tested two specific hypotheses related with the framework of the 

theory of planned behavior. On the one hand, the first hypothesis is related to injunctive 

social norms. Specifically, we expect that those agents that are mostly sensitive to these 

types of norms will also be less susceptible with respect to the impact of external 

conditions on their intention to recycle. Assuming scenarios with extreme values of 



An agent-based model for waste recycling  149 

 

 

recycling rate, the intention of the householders to recycle will be stable over time. 

Instead, assuming a scarce recycling rate, only those agents that are most influence by 

injunctive social norms will engage in recycling behavior. We presume that the 

simulation will end with a stable equilibrium.  

On the other hand, the second hypothesis is connected with descriptive social norms. 

Particularly, we think that those agents that most of all are sensitive to these types of 

norms will be influenced negatively by the impact of external conditions, reducing the 

probability to recycle. In low recycling rate scenarios, the intentions to recycle will be 

weak. This is due to the fact descriptive social norms reduce the probability to recycle 

among the population. In contrast, in scenarios with a high recycling rate, the intention of 

householders to behave properly will be strong, thanks once again to the effects of 

descriptive social norms. We presume that the simulation will end with a self-reinforcing 

stable equilibrium.  

7.7 The Planned Recycling Agent Behavior model  

Our analysis is based on a simulation model of the “Planned Recycling agent Behavior” 

(PRB_1.1) that produces virtual neighborhoods with different agent types, waste 

generation and collection processes (Fig. 1; Ceschi, Dorofeeva, Sartori, Dickert, & 

Scalco, 2015). The scaling of the agents’ features is based on the coefficients relating to 

the TPB and taken from an SEM on motivations to recycling behavior developed by Chu 

and Chiu (2003), which represents an extension of Taylor and Todd’s (1995) efforts to 

suggest ways to influence recycling behavior. The application of scaling allows us to 

accelerate the simulation lowering hardware requirements to run the algorithm, leaving 

untouched the original ratio between agents’ variables. Particularly, the model that has 

been presented in Chu and Chiu (2003) included four basic coefficients expressing the 

recycling behavior, which include the force of subjective norms (SNr), the individual 

environmental attitude (ATr), the moral obligation perceived by the agent (PMOr) and the 

perceived behavioral control (PBCr). These factors reflect the traditional model proposed 

within the theory of planned behavior (Ajzen, 1991), but the inclusion of moral obligation 

extends the original model. Thus, the mathematical expression of the model can be 

represented by the subsequent formula: 

𝐵𝑟 ≅ 𝐵𝐼𝑟[𝑤1(𝐴𝑇𝑟) + 𝑤2(𝑆𝑁𝑟) + 𝑤3(𝑃𝐵𝐶𝑟) + 𝑤4(𝑃𝑀𝑂𝑟)] 
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Where the term Br refers to the actual expression of the behavior, and BIr expresses 

the intention toward that behavior. As there are no components between these elements, 

the theory of planned behavior (Ajzen, 1991) assumes that intention of behavior is itself 

a reliable measure of the probability to engage in that particular behavior. In line with the 

proposal by Ajzen (1985), the four terms indicated with w are empirically determined 

regression coefficients used to weigh each element of the formula. Moreover, the term 

ATr refers to the personal attitude of a particular agent toward a certain behavior: thus, 

the agent computes the attitude on its expectations of the behavioral results. Boldero 

(1995) suggested that the personal attitude could represent a good predictor of recycling 

behaviors. Again, the perceived behavioral control is comprised inside the equation by 

the term PBCr. This refers to the actual difficulties that an agent might experience and the 

perceived control that it can potentially have on them. Taylor and Todd (1995) reported 

how both behavioral control and attitude are positively related to the individual 

motivation toward recycle. 

Finally, the subjective norms are included by the term SNr. Taken together with moral 

obligation (PMOr), they constitute the social determinants of the recycling behavior. 

While the subjective norms of the model are related with the behavior of the 

neighborhood, the moral obligation is connected with the injunctive norms shared by the 

society. 

7.8 The formal model 

The values of the four previous constructs contained by the structural equation model 

illustrated by the work by Chu and Chiu (2003) have been parameterized by a stochastics 

computation and used inside the simulation as probabilistic factors of behaving. In 

addition, in order to initialize the parameters (for instance, the number of households, 

trucks, waste production, etc.) we exploited the data contained inside the report about 

Kaohsiung City (Diong, 2012), used also by Chu and Chiu. Specifically, we referred to 

the values relative to the San-min district, the largest one of Kaohsiung with more than 

353 thousand people and with a number of households equals to one-third of the 

population. All coefficients used to run the simulation are summarized inside Table 1. 

The algorithm generates the virtual city and then, during the simulation, it manages 

three kind of agents: neighbored agents, garbage transporters, and landfills (see Fig. 1). 

More details about these agents are presented by the following subsections. 
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Table 1 - Coefficients applied to the simulation PRB_1.1. Values 1-6 are extracted from the 

work by Diong (2012) and they refer to San-min district. Values 7-10 are taken from the 

standardized and normalized regression coefficients of the structural equation model presented 

within the work by Chu and Chiu (2003). 

Coefficient Value 

1. Population present in the virtual district 35,3451 

2. Total number of neighborhood agents 1,100 

3. Number of transportation systems 8 

4. Landfields 2 

5. Daily rubbish production for neighborhood (R and Rre)  427 kilo 

6. Critical situation for a neighborhood 9 ton 

7. Coefficient of the environment attitudes (ATr) 0.18 

8. Coefficient of the subjective norms (SNr) 0.12 

9. Coefficient of the perceived behavioral control (PBCr) 0.33 

10. Coefficient of the perceived moral obligation (PMOr). 0.10 

7.8.1 The neighborhood agent 

All agents inside the simulation are able to generate recycled rubbish (Rre) and non-

recycled rubbish (R). This is based on the probabilities of psychological constructs and 

other agent habits. Neighborhood agents recycle if they possess high levels of 

environment attitudes (ATr), high subjective social norms (SNr), and perceived behavioral 

control (PBCr). This link is not mediated by other aspects (Fig. 2). Probabilities of these 

psychological constructs are normally distributed among agents. 

If the level of subjective norms (SNr) of an agent is sufficiently high, it can be socially 

influenced by other agents close to it. When this happens, neighbor agents close to the 

agent are observed and more recycled rubbish is produced if the neighbor observed is also 

recycling. We defined as “peer influence” (PIr) the tendency of an agent to be influenced 

by others around it. 

In addition, the general disposition of the agents to recycle is computed within the 

simulation by a decay (and an inverse decay) function aimed to resemble human 

psychophysical sensitivity (see, for instance, Weber, 1843). This function has been 

developed starting from the original model of motivation and satisfaction of needs over 

time proposed in the work by Jager and Janssen (2012). 

Furthermore, agents’ recycling behavior is negatively influenced by the actual 

presence of rubbish around them. In fact, agents are endowed with the ability to observe 

the level of rubbish that is produced by others. When this exceeds the critical level, agents 

start to decrease the probability to recycle. We defined this phenomenon as “surrounding 

influence in recycling” (SIr) and it is computed by means of another decay function related 
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with the quantity of rubbish existing in the neighborhood at a certain instant of the 

simulation. Both peer influence and surrounding influence are determinants of the 

probability of an agent to recycle by being influenced by others. 

 

Fig. 1 - Example of the PRB_1.1 simulation. The simulation presents three different types of 

agents. (1) Neighborhood agents turn their color from yellow to red assuming different shades. 

Yellow color indicates a stable situation, orange represents a state close to the critical level, red 

means instead that R achieved the critical level. Each one of the over 700 yellow square represents 

a household composed on the average of 1.5 agents. (2) Garbage transportation systems are 

represented in the model as grey and green small rectangles among neighborhoods. (3) Landfills 

are indicated by the green and the grey rectangle at the center of the world. They represent, 

respectively, the recycling and non–recycling landfills. 

 

 

 

Fig. 2 – Schema of reasoning of the agents inside PRB_1.1. 
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The schema depicted in Fig. 2 explains agents’ behaviors inside the simulation 

PRB_1.1. Considering a random agent i, at every cycle it compares the possible actions 

and then it executes one of them. The comparison is performed by assessing the 

probability levels: the value of p ranges between 0 and 1 and it is considered low when 

lower than 0.50, otherwise it is high. The strategy followed by an agent depends on five 

basic processes: 

 process 1: agent i computes the value of probability related with its 

environmental attitude p(ATr), perceived moral obligation p(PMOr), and 

perceived behavioral control p(PBCr). If the sum of these values exceeds a 

probability threshold of 0.50, the agent follows this strategy and it will produce 

more recycled rubbish (Rre) than regular rubbish (R). 

 process 2: if the sum of p(ATr), p(PMOr), and p(PBCr) does not reach a high 

level, process 1 is rejected, thus the agent applies process 2 and it recycles less. 

In this way, it increases the level of non-recycled rubbish (Rre). 

 process 3: the agent computes the influence exercised by other agents (that is, 

p(SNr)). When it enters in this state, the agent will set the variables related with 

the recycle rate and not-recycle rate by observing another random agent close 

to it and the level of rubbish in the vicinity. Having this information, the agent 

estimates the peer influence (PIr) and the surrounding influence (SIr) in 

recycling and their probabilities. The PIr level is computed by the agent each 

time using a specific function, which depends on whether the other agents are 

recycling (1) or not (0). 

 process 4: the agent computes the level of the peer influence p(PIr): if it is high 

it decides to increase the probability to recycle. 

 process 5: if the agent is scarcely influenced by the surrounding agents (i.e. 

there is a low level of p(SIr)) the agent will recycle less. 

7.8.2 The garbage transportation system and the landfills 

The model involves a transportation system, which takes away garbage from 

neighborhood agents and moves it to the collecting points. The pathways adopted by pick-

up trucks are optimized considering distance and time. Pick-up trucks get to the closest 

neighborhood agents to collect R and Rre.  
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Two types of trucks have been designed and implemented inside the simulation: the 

first one is devoted to collect only recycled rubbish (the green truck in Fig. 1); conversely, 

the second one is dedicated to gather only non-recycled rubbish. In Fig. 1 they are 

indicated as, respectively, the green and grey truck. Both trucks assign priority to the 

neighborhood with the highest rubbish level. After a specific amount of R or Rre 

collected, garbage trucks move to the closest landfill. 

Furthermore, there are two types of collecting points (i.e. landfills) in the simulation: 

one for unseparated garbage R, the other one for recycled garbage Rre. The landfill 

removes the garbage carried by pick-up trucks over time. Besides, the virtual environment 

reproduces in a two-dimensional space (specifically, a torus) a district composed of 1.100 

neighborhood agents. Agents are free to consume, recycle, and move within the 

boundaries of this virtual world. 

7.9 Results and conclusions 

As stated, environmental protection ranks very high on the global agenda. However, the 

increasing complexity of the current waste management systems makes the optimization 

of the waste management strategies and policies challenging. For this reason, waste 

prevention is the most desirable result to achieve. Despite this, low household 

participation to recycling represents the key factor that complicates the current scenario. 

Recycling household wastes becomes crucial, as it would reduce waste while saving 

resources. The present work investigates the determinants of recycling behavior through 

the development of an agent-based model. Particularly, the programed simulation tries to 

answer to the following question: what would households induce to increase the 

probability to engage in recycling behaviors? In line with this, we chose to describe here 

social norms as “rules and standards that are understood by members of a group, and that 

guide and/or constrain social behavior without the force of laws” (Cialdini and Trost, 

1998). Moreover, we distinguished between the processes that lead the spreading of 

descriptive and injunctive social norms. While the former are related with the observation 

of others’ behaviors, the latter are related to what other people consider as an acceptable 

behavior (Cialdini, Bator, and Guadagno, 1999). 

Besides the specific hypotheses and the results obtained by the research, the present 

contribution proposes a novel approach to agent-based modeling which includes 

integration of theories and quantitative methods commonly applied within psychological 
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research. Specifically, we argue that the implementation of results obtained from 

statistical techniques such as structural equation models can add a significant validity 

with respect to the agents’ behavior, due to the fact that a SEM is able to statistically 

express the link between a certain behavior and its psychological antecedents. In addition, 

due to the potential difficulties related with the design of a proper theoretical model of 

behavior, the scheme proposed by the theory of planned behavior represents a valuable 

framework. In this way, in order to build a structural equation model regarding recycling 

behavior (as well as similar pro-environmental behaviors) it is recommended to take into 

account at least the three fundamental elements proposed by Ajzen's model (1991). The 

validity of the model should be successively tested by applying proper statistical 

procedures. In the end, the results can be smoothly implemented inside an agent-based 

model as exemplified by the current work: in fact, the values extracted from the SEM 

represent the basic coefficients of the agent's reasoning engine. Moreover, we argue that 

the limitation of SEMs regarding individual differences is overcome by the potential 

ability of computer simulations of generating heterogeneous agents. 

 

Fig. 3 - A screenshot from one run of the ABM based on the PRB_1.1 with higher R levels 

than Fig. 1. Neighborhood agents turn color because of the R level. When R is equal to the critical 

level they turn red, orange if they are close to the critical level, yellow when the situation is stable. 
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In the current work, the TPB is applied as agents’ cognitive model with the aim to 

predict the recycling outcomes on the base of the individual attitude and sensitivity to 

social norms. This approach may help to identify the factors of public policy that can 

enhance pro-environmental behaviors. We based the parameters in the simulation on the 

data contained inside the report about Kaohsiung City (Diong, 2012) to model a city 

district. We also made use of the coefficients contained by the structural equation model 

presented inside the work by Chu and Chiu (2003) in order to build the agents’ cognitive 

model. These values are parameterized by a stochastics computation and used inside the 

simulation as probabilistic factors of behaving. Undeniably, a potential limitation of the 

present study is based on using parameters and information provided by previous studies 

that might not fit perfectly for the proposed model: future research will have to 

corroborate the integration of the TPB and SEMs within an agent-based model by 

conducting the whole research process, from the design of the theoretical behavior model 

to the implementation into a virtual model. Agent-based models can simulate the efficacy 

of different recycling campaigns under equal conditions and, at a subsequently stage, 

allow the simulation of specific policies under different conditions. Moreover, agent-

based models are mostly structured on algorithms that illustrate the behaviors of agents, 

identify their causal effects, and specify critical parameter estimates. Therefore, 

stochastic simulation, while retaining its versatility, is also time-effective and cost-

effective. However, it is important to state that the agent behavior is stochastic. As we 

suggested, factors of SEMs can be implemented inside ABMs, in contrast to equations of 

aggregation.  

The preliminary results of the model available on the site owned by OpenABM 

Consortium show stability and reliability in relation to the outcomes of the simulation. 

The visual impact creates a virtual circle where household motivation to recycle is 

reinforced. This circle expresses the consequences of descriptive social norms. On the 

contrary, the failure in recycling when the environment is full of rubbish contaminates 

the neighbors' behavior (Fig. 3). As a whole, the results are in line with literature on 

descriptive social norms (Cialdini, Bator, and Guadagno, 1999; Cialdini, 2007; 

Botetzagias, Dima, and Malesios, 2015). Findings in the literature about social norms and 

littering agree that in a “dirty” environment individuals are inclined to litter more than 

those subjected to a “clean” environment (e.g., Cialdini, Reno, and Kallgren, 1990), 
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mainly because of the peer influence, due to the fact that agents continuously observe and 

mimic each other’s behavior. Similarly, the surrounding has its own effect because the 

amount of garbage present in the system drives the trend away from its stable level. To 

conclude, the results obtained from several runs of the model indicate that the introduction 

of descriptive social norms represents a valuable strategy for public policies to improve 

household recycling. However, it is important to consider the sequence used to apply 

norms: injunctive social norms are needed in order to implement further policies based 

on descriptive social norms. 
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