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The growing impact of nanotechnology in the field of medicine as a new 

potential clinical therapeutic agent requires the joint efforts of interdisciplinary 

research groups. 

Numerous questions must be faced. The main issues to be considered involve 

the mechanisms of interaction with the cells before, during and after their adhesion 

and internalization, the degradation pathways, cytotoxicity and the therapeutic 

efficacy. 

For these reasons, I attended to the construction of superparamagnetic iron 

oxide nanoparticles capable of providing compelling evidence of any of the above-

described key factors. To assess the utility of these nanoparticles, I chose to treat 

obesity and glioblastoma as two hyperproliferative disease models, which affect 

millions of adult every year worldwide. 

An attractive innovative possibility to approach the hyperproliferation can be 

envisaged in developing heating agents via magnetic nanoparticles. Thanks to their 

unique magnetic properties, superparamagnetic iron oxide nanoparticles now find 

large application as heating mediators for thermotherapy. 

These nanoparticles need to fulfil several criteria in order to be used as 

therapeutic agents in humans, including nontoxicity, heating efficiency and sensitivity 

of detection resulting in a capability of the nanoparticles to be confined preferentially 

at the diseased site. It is common believed in fact that alternative factors, including 

opsonisation, macrophage-mediated transport and passive delivery in general, might 

strongly affect the targeting efficiency and final destiny of nanoparticles. Using 

magnetic nanoparticles coated with protein-targeting biomarkers overexpressed by 

targeted tissue may be provided these factors.  

So the last step of the present work was focused on the construct of a peptide-

nanoconjugate to perform an accurate study of nanoparticle-membrane receptor in 

vivo. 

In summary, the general scope of this thesis was to develop an efficient 

nanoparticle for the investigation of the effect of thermotherapy mediated by 

magnetic nanoparticles on two hyperproliferative diseases. 

Several issues including nanoparticles synthesis, bio-functionalization, toxicity 

and the use as therapeutic agents have been thoroughly examinated and optimized. 

By taking advantage of the interdisciplinary view offered by synergistic chemical, 
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physical and biochemical approaches, I have designed a new nano-system suitable to 

explore new frontiers in the therapy of the hyperproliferative diseases.  

Of course, the clinical application in human treatments is the final goal of this 

and its related research. However, to reach such objective is necessary not only to 

design a suitable system for practical use, but also to assess and optimize the essential 

characteristics for specific effects such as safety, capability to get to the specific 

target, to provide useful signal amplification and to avoid the immunogenic system. 
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I. Background 

Obesity and tumours have become the two major health threats in industrialized 

countries. In most cases they are strictly correlated and they influence each other. 

Among all kinds of tumour one of the most aggressive and with a poor prognosis is 

glioblastoma. 

Currently, for these pathologies there is no an efficient cure and only very 

limited progress has been made in the control of the diseases course and of the ill-

fated prognosis. Only in few cases it is possible to perform surgery and often it is not 

conclusive. Thus, the need for effective therapies is great. 

In recent years, nanoparticles have been the protagonists in biomedical research 

and in some cases they have been clinical applications. Researchers and clinicians use 

the unique chemical/ physical properties of nanomaterials for research investigation, 

for diagnosis and treatment of several otherwise untreatable diseases and for 

improving the performance of many treatments. 
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II. Adipose Tissue 

II.I. General introduction to adipose tissue 

The perception of adipose tissue has dramatically changed with the increase in 

the incidence of obesity and obesity-related comorbidities. Adipose tissue is 

increasingly being considered not simply as fat store, but as a vital and complex 

endocrine organ [1]. It shows protective, mechanical and trophic functions. 

Moreover, data support a potential role of adipose tissue in the evolution of the 

human brain, as well as in myocardial regeneration and repair [2]. 

In humans, adipose tissue is located beneath the skin (subcutaneous adipose 

tissue), around internal organs (visceral adipose tissue), in bone marrow (yellow bone 

marrow), and in breast tissue. 

Most adipose tissue consists 

of several cell types including 

adipocytes and the stromal 

vascular fraction (SVF), 

comprising preadipocytes, 

fibroblasts, vascular endothelial 

cells and a variety of immune 

cells all interspaced by a cytokine-

rich extracellular matrix and 

blood vessels [3].  

Three types of adipose tissue 

exist in humans, namely the 

brown (or plurivacuolar), the 

beige and the most common 

white (or monovacuolar) adipose 

tissue [4]. The beige adipose 

tissue is formed by beige cells which are very similar to white cells having a low basal 

expression of UCP1, but they respond to cAMP stimulation with high UCP1 

expression, reaching similar absolute levels to the brown adipocytes [6]. 

Figure 1: Localization of the major white adipose 
tissue in human body [5]. 
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 The brown fat cells are related to thermogenesis. They use the chemical energy 

of lipids and glucose to produce heat. This process is mediated by the expression of 

the mitochondrial uncoupling protein 1 (UCP1), causing the thermogenesis via 

mitochondrial uncoupling of oxidative phosphorylation of free fatty acids [7].  

Finally, the white adipose tissue is composed by highly metabolically active cells 

containing a single large lipid droplet anchored by collagen fibers forcing the nucleus 

to be squeezed into a thin rim at the periphery. Because of their metabolic function, 

these cells can directly affect the physiologic processes in neighbouring and distant 

cells by activating endocrine and paracrine pathways through an increase in secretion. 

 The most important secretions are fatty acids. In addition, several other lipid 

moieties are released by fat cells; these include prostanoids, cholesterol and retinol. 

Also a wide range of highly diverse protein factor and signalling molecules, called 

adipokines are released from adipose tissue with important roles in the regulation of 

angiogenesis, blood pressure, glucose homeostasis, lipid metabolism vascular 

haemostasis and inflammatory respons [8-9] (Figure 2).  

So, far from being an inert tissue, adipose tissue has been shown to be a super-

dynamic organ with several sophisticated functions influenced by its developmental 

origins but also by its interaction with the other organs. 

 
Figure 2: Factor secreted by adipose tissue [3]. 
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II.II. Adipose tissue’s pathology: Obesity 

Obesity represents a relevant dangerous disease to the public’s health 

industrialized countries. It is considered a high threat because it represents the major 

risk factor in the etiopathology of several other diseases (cardiovascular disease, 

hypertension, hyperlipidemia, diabetes mellitus, stroke and cancer) [10] and it is 

characterized by the expansion of adipose tissue induced by an excessive food intake 

over energy expenditure. A deeply knowledge of the mechanisms involved in the 

homeostasis of adipose tissue must be faced for developing new efficient therapies 

for obesity. 

“The growth of adipose tissue could be either due to an increase in the volume 

of adipocytes (adipose hypertrophy) or to an excess number of adipocytes 

(hyperplasia)”  (Figure 3) [11]. The hyperplasia and hypertrophy result in a 

dysregulation in circulating hormones affecting systemic energy balance. 

 
Figure 3: during overnutrition adipocytes increase in size until further expansion 

becomes limited by the matrix, which undergoes fibrotic changes [4].  

 In the adipose tissue of obese patients increase the concentration of leptin and 

decrease the production of adipokines suggesting that it could be correlated with any 

mitogenic stimuli, anti-apoptotic and pro-angiogenic effects, enhancing the cancer 

risk [12]. Also an alteration in vascular tissue development and hypoxia associated 

with macrophage infiltration is essential during expandibility of adipose tissue. As a 

consequence, the dysfunction of adipose tissue is a critical predictor of metabolic 

disorders, such as insulin resistance, hyperinsulinemia, elevated triglyceride levels, 

low HDL-cholesterol and hypertension [13,14]. 
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It is now clear how much is important to deeply known the mechanism involved 

in obesity because adipocytes exert a profound influence in neighbouring and distant 

tissues by activating endocrine and paracrine pathways through an increase in 

secretion, resulting in a real crosstalk with other tissues (Figure 4). 

 
Figure 4: adipose tissue crosstalk with other tissues [4]. 

Another important criterion in predicting diseases associated with obesity is the 

regional body distribution. “The regional body distribution of adipose tissue is at 

least as important than the total amount of body fat” [15]. For instance, 

accumulation of visceral adipose tissue is associated with insulin resistance, metabolic 

syndrome and related cardiovascular complications. Conversely, peripheral 

subcutaneous adipose tissue exhibits an independent antiatherogenic effect, which is 

not related to the obesity-pathologies. A relative simple technique to evaluate the 

total and regional adiposity in individual involves a study of the whole body with a 

scan densitometer [16].  

As currently the reduction of adipose tissue is obtained by the 

reduction/inhibition of food intake through pharmacological stimulation of the 

central nervous system or by blocking the absorption of lipids in the gut with 

however many side effects, a directly targeting of the adipose tissue could be an 

innovative strategy for obesity treatment.  
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III. Nanotechnology and 

Nanomedicine 

III.I. Introduction to nanomedicine 

The ideas and concepts behind nanoscience and nanotechnology started with the 

physicist Richard Feynman on December 29, 1959, at the American Physical Society 

meeting at the California Institute of Technology with a talk entitled “There’s Plenty of 

Room at the Bottom” 

(Figure 1) describing 

a process in which 

scientists would be 

able to manipulate 

and control individual 

atoms and molecules: 

“ A biological system can 

be exceedingly small. 

Many of the cells are very 

tiny, but they are very 

active; they manufacture 

various substances; they 

walk around; they wiggle; 

and they do all kinds of 

marvellous things- all 

on the very small scale. Also they store information. Consider the possibility that we too can make a 

thing very small, which does what we want- that we can manufacture an object at that level! ”.  

At the present, nanotechnology is defined by the National Institutes of Health in 

USA as “the understanding and control of matter at dimensions of roughly 1 to 100 

nanometers”. At the nanoscale, the nanosystems own unique chemical, physical, and 

biological properties and are also very similar in scale to biological molecules and 

systems, therefore they are potentially useful for biomedical applications. 

Figure 5: Richard Feynman 
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The applications of nanotechnology to the biological systems have recently been 

referred to as “Nano medicine” by the National Institutes of Health in USA [17]. In 

particular, nanomedicine exploits the properties of nanomaterials for the diagnosis 

and treatment of diseases at the molecular level. Nanomaterials are now being 

designed to aid the transport of diagnostic or therapeutic agents through biological 

barriers, to gain access to specific functions, to mediate molecular interactions, and 

to detect molecular changes in a sensitive and highly efficient manner. Nano-

scientists created a new generation of drug delivery vehicles, contrast agents and 

diagnostic devices, some of which are currently undergoing clinical trials or have 

been approved by the Food and Drug Administration (FDA) for use in humans, 

others are in the proof-of-concept stage in research laboratories (Figure 2). 

 
Figure 6: The size of things. Nanoscale devices are one hundred to ten thousand times 

smaller than human cells [18]. 

III.II. Nanoparticles for biomedical application 

In the field of nanomedicine particular attention is given to the nanoparticles: 

particles with a well-defined chemical structure, self-organization and composition 

with sizes ranging between 1 to 100 nm [19]. They own tunable optical, electronic, 

magnetic and biological properties. In addition they can be engineered to have 

different sizes, shapes, chemical compositions, surface chemical characteristics, and 

hollow or solid structures. Nanoparticles generally consist of metal atoms, non-metal 

atoms, or a mixture of metal and non-metal atoms. The surface of nanomaterials is 

usually coated with polymers or bio recognition molecules to achieve an improved 

biocompatibility and selective binding with biological molecules and also to avoid 
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physiological defence systems (opsonization, renal clearance, etc) to optimize 

biodistribution.  

Several nanoparticles are in the clinical trial phase or have already been approved by 

the FDA for use in humans; many others are in the pre-clinical phase [20-21]. Often 

they are designed to treat pathologies otherwise non-curable and are intended for use 

either as drug carriers or as contrast agents for molecular imaging.  

Moreover these nanovehicles can also be coated with polymers, such as in primis 

with polyethylene glycol, to increase their half-life in the blood circulation, to prevent 

opsonins for adhering to the nanomaterial surface, and to reduce the rapid 

metabolism of the nanoparticulate before they reach the target tissue and avoiding 

their accumulation in other tissues. 

Another important approach is to minimize the kidney clearance. In this sense is 

fundamental to modify the physico-chemical properties of the nanoparticles to avoid 

ultrafiltration and secretion in renal nephron.  

Moreover the specific targeting allow minimizing side effects by preventing the 

nonspecific uptake of therapeutic agents from healthy tissues [22]. In addition, the 

high ratio of surface area to volume of nanoparticles favours high surface loading of 

therapeutic agents. Possible applications include drug delivery, cell targeting, multi 

modal diagnostic imaging (MRI, PET, TAC) contrast enhancement, gene therapy, 

biomarker identification, targeted hyperthermia and many others [23]. 

 
Figure 7: Potential of nanomedicine [24].  
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III.II.I. SPIONs as ‘gold standard’ in biomedicine 

Among all kinds of nanoparticles, superparamagnetic iron oxide nanoparticles 

(SPIONs) have attracted attention as interesting cargos for biomedical application 

because of their potential usefulness in oncological medicine [25] as contrast agents 

in magnetic resonance imaging and as colloidal mediators for cancer magnetic 

hyperthermia [26] thanks to their physic properties [27], biocompatibility [28], 

biodegradability [29] and facile synthesis [30]. In fact, SPIONs exhibit unique 

physical and chemical properties summarized as superparamagnetic behaviour that 

dramatically changes some of the magnetic properties [31]. Moreover, FDA has 

already approved SPIONs for use in humans; in fact the release of the iron ions 

upon dissolution can be assimilated by the body via physiological processes in their 

own metabolism. However, it remains crucial to monitor their use as therapeutic 

agents for repeated and chronic treatments [32].  

Because of their very small size, SPIONs can be administered by alternative 

routes to injection, including inhalation [33], ingestion [34], and skin penetration [35]. 

It can be assumed that they are able to interact with intracellular structures and 

modulate the physiology of the cell with external, non-invasive and harmless stimuli. 

Typically, SPIONs are composed by a magnetic core providing the specific 

properties and by a biocompatible coating that provides ample functional groups for 

conjugation of additional therapeutic moieties (Figure 3). 

 
Figure 8: schematic illustration of a full-suite SPION. The magnetic core serves as MRI 
contrast and as heat source for hyperthermia instead the polymer coating increases 
biocompatibility, reduce the uptake by immune system and allows the functionalization with 
antibody or chemotherapeutics [26].  
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III.II.II. SPIONs as heat mediators for hyperthermia  

A very innovative application of SPIONs is thermotherapy, which is considered 

a supplementary treatment associated with chemotherapy, radiotherapy and surgery 

[36]. In fact thanks to their superparamagnetic behaviour, SPIONs are able to 

produce heat when subjected to an alternating magnetic field (AMF) [37]. The origin 

of the magnetic properties lies in the orbital and spin motions of electrons, whose 

spin and angular momentum are associated with a magnetic moment. So, applying an 

external magnetic field operating at a specific frequency and power based on the 

SPIONs properties causes heat by hysteresis loss, Nèel relaxation, and induced eddy 

currents. Therefore they became available heat mediator exhibiting a sufficient 

heating capacity to achieve satisfactory temperatures in vivo without the addition of 

functional moieties. The amount of heat generated depends on the nature of 

magnetic material and of magnetic field, the frequency of oscillation and the cooling 

capacity of the blood flow in the tumour [38-39].  

It is thought that, in such a temperature range, the function of many structural 

and enzymatic proteins within cells is modified, which in turn alters cell growth and 

differentiation and can induce apoptosis. Cancer cells are sensitive to temperature 

increase and are killed when the temperature rises above 43 °C, whereas the normal 

cells can survive at higher temperature values. So, a novel hyperthermia route for 

tumours would consist of concentrating SPIONs around and inside the tumour 

tissue and making them heat through energy absorption from an external alternating 

magnetic field  (Figure 5). 

 
Figure 9: general procedure for thermotherapy. SPIONs were firstly injected into the 

human body and then an externally applied alternating magnetic field induced the 
hyperthermia [40]. 
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Superparamagnetic iron oxide nanoparticles-mediated magnetic hyperthermia 

(SMHT) seems to have advantages over conventional hyperthermic approaches 

because heat-generating nanoparticles could be prepared in colloidal suspensions 

suitable for fast injection avoiding the need for macroscopic implants. In addition, 

their distribution could potentially be controlled by different targeting strategies, and 

the particles could be made small enough to cross the biological barriers and generate 

heat very close to target tissue reducing side effects compared to traditional 

treatments. The SMHT could be performed according three strategies: arterial 

embolization hyperthermia (AEH), direct injection hyperthermia (DIH), and 

intracellular hyperthermia (IH). Their use appears as the most promising cancer 

hyperthermia therapy in particular because of the better temperature homogeneity. 

With respect to the patient’s comfort, it was found that the product Hv (where H 

is the amplitude and v the frequency of the AC magnetic field) should be lower than 

4.85 X 108 A m-1 s-1 for a treatment duration of one hour [41]. Moreover, the 

frequency has to be superior to 50 kHz for avoiding neuromuscular electro 

stimulation and lower than 10 MHz for appropriate penetration depth of the rf-field 

[42]. 

A few studies in humans using iron oxide nanoparticles as mediators of magnetic 

hyperthermia are ongoing for the treatment of colon cancer [43], prostate cancer [44] 

and for the reduction of bone tumours [45], with promising clinical outcomes. 

Clinical results showed that the combination of radiation therapy and hyperthermia 

conducted to a substantial therapeutic improvement [46]. Very recently, it has been 

demonstrated that improved efficiency could be obtained combining AMF and near-

infrared laser irradiation [47].  
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IV. Assembling a nanoplatform 

 IV.I. Chemical synthesis  

As the superparamagnetic behaviour depends on several parameters, it’s relevant 

to carefully evaluate the chemical variability to realize efficient SPIONs. In fact, the 

final size, composition, shape (spherical, rod-like, star-like, wires, octahedral, cubic 

etc.) of SPIONs depend on the salt and surfactant additives, reactant concentrations, 

reaction temperatures and solvent conditions used during their synthesis.  

Preparing monodisperse SPIONs requires the separation of nucleation step from 

the growth of nanocrystals. The “burst nucleation” event occurs at a critical 

supersaturation of the monomer concentration. The resulting nuclei grow at the 

same rate, obtaining monodisperse nanocrystals. Nevertheless these nanocrystals 

agglomerate rapidly to minimize their surface energy. Thus, a suitable capping agent 

is necessary to stabilize these nanoparticles and prevent them by forming aggregates. 

Numerous synthetic methods are used to synthesize SPIONs [48-55]. 

Among all these methods the thermal decomposition is the most used thanks to 

the possibility of obtaining SPIONs with a better-controlled size and morphology. A 

typical thermal decomposition requires the presence of a metal complex and a 

surfactant in an organic solvent with a high-boiling point. In the reaction, the 

precursors are heated up from a homogeneous mixture. In the heating up procedure, 

all the precursors are mixed and heated, so magnetic nanoparticles are made by 

tailoring reaction temperature and precursors concentration. Oleic acid is used as 

surfactant for nanoparticle stabilization and for the control of nanoparticle size and 

morphology. The metal precursors are usually metal acetylacetonates and metal 

oleates. At the end is obtained are obtained size-controlled monodisperse Fe3O4 

nanoparticles (Figure 13). 

 
Figure 10: schematic illustration of the formation of Fe3O4 nanocrystals [56].  
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IV.II. Surface modification 

Obtaining stable, biocompatible and storable SPIONs requires modifying the 

SPIONs surface. In fact in the absence of any surface coating, SPIONs have 

hydrophobic surfaces with a large surface area to volume ratio. Due to colloidal 

interactions between the particles, these particles agglomerate and form large clusters 

resulting in aggregation and precipitation. Stabilizers such as surfactants or polymers 

are usually added at the time of preparation to prevent aggregation of the nanoscale 

particulate leading to a hydrophobic surface. To make these nanoparticles 

biocompatible their surface needs to be functionalized with a surfactant addition. 

Surfactant addition is achieved by means of the adsorption of amphiphilic molecules 

that contain both a hydrophobic segment and a hydrophilic component. The 

hydrophobic segment forms a double layer structure with the original hydrocarbon 

chain anchored to the nanoparticle surface, while the hydrophilic groups are exposed 

to the outer layer of the nanoparticle, conferring it water solubility. This bifunctional 

surfactant has one functional group available for binding to the nanoparticle surface 

tightly via a strong chemical bond and the second functional group at the other end 

has a polar character so that the nanoparticle can be dispersed in water or be 

conjugated to a further molecule. 

There are various kinds of materials that can be chosen for coating 

nanoparticles: Polymer coating materials, including lipids, proteins, dendrimers, 

gelatin, dextran, chitosan and PEG [57].  

 
Figure 11: strategies for SPIONs surface modifation [58].   
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V. Aim of the work  

Currently there is no an efficient treatment for the “hyper-proliferative” diseases 

and though research remains to be done into the development of accurate therapies. 

 The aim of my PhD project was to take advantage of the efficacy of the 

magnetic hyperthermia mediated by super iron oxide nanoparticles (SPIONs) to 

enhance the targeting and the therapeutic effect of the thermotherapy against two 

“hyper-proliferative” disease cellular models: obesity and glioblastoma. 

In fact, magnetic hyperthermia mediated by magnetic nanoparticles represents a 

new promising approach, particularly for its ability to reach the targeted tissue and to 

modify the cellular behaviour avoiding side effects.  

Therefore, my PhD thesis included three chapters, in which I have described in 

more details the nanoparticles and their possible applications. 
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1.1. Introduction 

1.1.1. Magnetic hyperthermia 

Since of the pioneering work of Gilchrist et al. [1] the pursuit of innovative, 

multifunctional, efficient and safer SPIONs for magnetic hyperthermia represents a 

current challenge. Magnetic hyperthermia is based on the generation of heat via an 

alternating magnetic field (AMF) exploiting SPIONs as heating foci. In fact applying a 

specific AMF based on the SPIONs formulation causes the SPIONs to heat because 

SPIONs are able to convert electromagnetic energy into heat by hysteresis loss, Nèel 

relaxation, and induced eddy currents [2]. 

The heating ability of SPIONs subjected to an AMF is expressed as Specific 

Absorption Rate (SAR). SAR measures the rate at which energy is absorbed per unit 

mass of iron [3]. SAR values are influenced by the structure and the composition of 

the nanoparticles as well as by the concentration and the size of the nanoparticles. 

Moreover SAR changes (nanoparticles being equal) with the frequency and the 

amplitude of the magnetic field applied during the measurements [4].  

Thus, as exists physical limitation in hyperthermia application [5] it is of great 

importance to develop a SPION able to induce hyperthermia with maximum 

efficiency and minimum toxicity. 
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1.1.2. Aim of the work  

SAR values strongly depend on the chemical structure of the SPIONs. In order 

to reach the greater temperature with the minimum particles concentration is 

necessary to optimize the synthesis of the SPIONs as heating mediator avoiding 

toxicity and side effects. 

Therefore, in this chapter I present the synthesis, characterization and the study 

of the heating power of three different kinds of SPIONs specifically designed as 

magnetic fluid hyperthermia heat mediators. Starting from an iron-oleate complex we 

synthesized two different kinds of SPIONs with few modifications in the synthetic 

approach. In this way we obtained two different nanoparticles: spherical iron oxide 

nanoparticles (SIOs) and polyhedral oxide nanoparticles (PIONs).  

The first step study was focused on the heating ability of these two different 

kinds of nanoparticles to choose the more efficient for the second step in vitro in 

adipocytes. 

Alternatevely for the second study we decided to change the synthetic procedure 

of SPIONs realizing iron oxide nanocubes (IONs) as more efficient heat mediator 

for hyperthermia treatment in glioblastoma. 
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1.2. Materials and Methods 

1.2.1. Reagents 

All reageants and solvents were of analytical grade and were used without any 

further purification. Water was deionized and ultrafiltered by a Milli-Q apparatus 

(Millipore Corporation, Billerica, MA). 

For the spheric and polyhedral iron oxide nanoparticles: iron chloride (98%), 

sodium-oleate (95%), 1-octadecene (90%), oleic acid (90%), poly- (isobutylene-alt-

maleic anhydride) (85%) (Mw ≈ 6000 g mol-1 corresponding to roughly 20 mmol of 

monomer units per polymer chain), dodecylamine (98%), tetrahydrofurane 

anhydrous 99.9%), dimethyl sulfoxide, ethanol, hexane, acetone and chloroform 

were purchased from Sigma-Aldrich.  

For the nanocubic iron oxide nanoparticles: Iron (III) acetylacetonate (99%), 

decanoic acid (99%), poly-(maleic anhydride alt-1-octadecene) and dibenzyl ether 

(99%) were purchased from Sigma-Aldrich. 

1.2.2. Synthesis of iron-oleate complex 

The iron-oleate complex was prepared by reacting iron chlorides and sodium 

oleate according to Park et al. [6]. Briefly, 1.8 g of iron chloride (FeCl3
.6H2O, 4 

mmol) and 3.65 g of sodium oleate (12 mmol) has been dissolved in a mixture 

solvent composed of 8 mL ethanol, 6 mL distilled water and 14 mL hexane. The 

resulting solution has been heated to 70°C and kept at that temperature for 4 hours. 

At the end of the reaction, the upper organic layer containing the iron-oleate 

complex was washed three times with 30 mL distilled water in a separatory funnel. 

After washing, hexane was evaporated off, resulting in iron-tri-oleate complex in a 

waxy dark red solid form (2.6 g). 

1.2.3. Synthesis of surfactant-coated spherical iron 

oxide nanoparticles (SIOs) 

Spherical iron oxide nanoparticles (SIOs) synthesis has been performed by 

solvothermal decomposition of iron tri-oleate in octadecene refluxed at 320 °C for 1 

h in the presence of oleic acid as surfactant as by Park et al [6]. Briefly, 3.6 g (4 
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mmol) of the iron-tri-oleate complex synthesized as described above and 5.7 g of 

oleic acid (20 mmol) were dissolved in 200 g of 1-octadecene at room temperature. 

The reaction mixture was heated to 320 °C with a constant heating rate of 3.3 °C 

min-1 and then kept at this temperature for 30 min. When the reaction temperature 

reached 320 °C, several reaction occurred and the initial transparent solution became 

turbid and brownish black. The resulting solution containing the nanocrystals was 

then cooled to room temperature and 50 mL of ethanol was added to the solution to 

precipitate the nanocrystals. The precipitate was washed several times with a mixture 

of hexane/acetone and the SIOs were dispersed in chloroform and stored at room 

temperature at a concentration of 10 mg mL-1. SIOs concentration has been gained 

by ICP-calibration curve (in chloroform). 

1.2.4. Synthesis of surfactant-coated polyhedral iron 

oxide nanoparticles (PIONs) with 

hyperthermic properties 

Based on the previous synthesis we decided to synthesize polyhedral iron oxide 

nanoparticles (PIONs) by a slight modified solvothermal decomposition starting 

from the iron-oleate complex. Iron-oleate (80 mmol) was dissolved in 200 g of 1-

octadecene at room temperature and 5.7 g of oleic acid (20 mmol) was added. The 

reaction mixture was heated to 110 °C for 1 h to remove solvent humidity, then 

raised to 200 °C and manteined at this temperature for additional 2 h. Next, the 

temperature was gradually raised (3°C/min) to reflux (320 °C) and refluxed for 2.5 h. 

The dark solution was finally cooled to room temperature and diluted with ethanol 

(100 mL) to precipitate the nanocrystals and centrifuged. The precipitate was washed 

several times with a mixture of hexane/acetone and the PIONs were collected and 

dispersed in chloroform and stored at room temperature at a concentration of 10 mg 

mL-1. PIONs concentration has been gained by ICP-calibration curve (in 

chloroform).  
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1.2.5. Synthesis of nanocubic iron oxide 

nanoparticles (IONs) with hyperthermic 

properties  

Based on a previous study [7] we decided to synthesize iron oxide nanocubes 

(IONs) with a diameter of 19 nm. Briefly, 0.353 g (1 mmol) of iron (III) 

acetylacetonate and 0.69 g (4 mmol) of decanoic acid were mixed in 25 mL of 

dibenzyl ether. The solution was degassed at room temperature for 45 min, then 

heated to 200°C (5°C/min) and kept at this temperature for 2.5 h. Finally, the 

temperature was increased to reflux temperature (at a rate of 10°C/min) and kept at 

this value for 1 h. After cooling to room temperature the IONs were collected by 

adding a 4-fold volume of acetone/chloroform and centrifuged at 8000 rpm. The 

sample was washed three times and at the end dispersed in 15 mL of chloroform. 

1.2.6. Polymer synthesis for water-phase transfer 

As SIOs and PIONs are hydrophobic, to transfer them in water phase we 

synthesized the amphiphilic polymer named PMA by condensation of poly 

(isobutylene-alt-maleic anhydride) with dodecylamine according to Cheng-An J. Lin 

[8]. To obtain a monodisperse polymer it is very important to carry out the reactions 

at room temperature and to use the organic solvents in anhydrous quality.  

For this synthesis, as clearly described in literature [9] we placed in a round flask 

3.084 g of poly-(isobutylene-alt-maleic anhydride) and dissolved 2.70 g of 

dodecylamine (15 mmol) in 100 mL of tetrahydrofurane.  

The two solutions were vigorously mixed together, sonicated for several seconds 

(~20 s), and heated to 55-60 °C (just below boiling point of THF) for 1 hour. 

Afterwards, the solution was pre-concentrated to about one third of the original 

volume in a rotavap system (Laborota 4000, Heidolph) under reduced pressure (p = 

200-150 mbar) in order to enhance the reaction between the polymer and the amine. 

Once the sample had been concentrated, it was left stirring overnight. Then, the 

solvent was slowly evaporated in a rotavap system until the polymer was completely 

dried. 

Finally, the PMA was re-dissolved in 25 mL anhydrous CHCl3 with a resultant 

concentration of 0.5 M monomers (= 12.5 mmol /25 mL). 
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For the functionalization of the polymer with fluoresceinamine, appropriate 

amounts of fluoresceinamine dissolved in EtOH (1 M) were slowly dropped into the 

diluted polymer solution (0.5 M) and reacted overnight under stirring. The amount of 

added molecules was calculated in such ways that between 0.25% and 4% of the 

anhydride rings of the polymer backbone were reacted. After evaporation of the 

organic solvent under reduced pressure, the polymer was re-dissolved in chloroform 

to a final concentration of 0.5 M monomers. 

For IONs we used the commercial poly-(maleic anhydride alt-1-octadecene). So 

we dissolved this polymer in CHCl3 to a final concentration of 0.5 M. 

1.2.7. Water-phase transpher 

SIOs, PIONs and IONs suspended in chloroform were transferred to water 

phase by coating them with a 0.5 M solution of the above-described polymers. The 

polymer solution and the nanoparticles were mixed for 30 min at room temperature 

(100 polymer units per nm2 of NPs surface for SIOs and PIONs and 500 polymer 

units per nm2 of NPs surface for IONs). The organic solvent was then completely 

evaporated under reduced pressure, and the solid is then resuspended in sodium 

borate buffer (SBB, 20 mM pH 12) to hydrolyze the remaining maleic anhydride 

groups of the polymer shell. 

After this phase transfer, the nanoparticles were hydrophilic and were suspended 

in water by two rounds of diluition and reconcentration through an Amicon filter (50 

kDa filter cutoff) (Millipore Corporation, Billerica, MA) concentrator tube by 

centrifuging at 3000 rpm to remove the excess unbound polymer. The resulting 

polymer-coated nanoparticles were dispersible and stable for at least 6 months in 

water phase.  

Limited to the experiments with fluourescent analysis fluoresceine amine–PMA 

(FA@PMA) was used. 

1.2.8. Particle size and surface charge analysis  

Nanoparticles hydrodynamic size and surface charge were performed using a 

Malvern Zetasized Nano ZS ZEN3600 (Worcestershire, UK) operationg at a λ of 

633 nm and a fixed scattering angle of 173°C. The sample concentration was 

adjusted to keep attenuator values between 7-9. The refractive index was 1.524. The 

measurements were performed in triplicate after dilution with MilliQ® water.  
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ζ-Potential measurements were elaborated on the same instrument equipped 

with an AQ-809 electrode soaked in 10 mM NaCl aqueous solution (pH 7.25, σ = 

14.2 mS cm–1), and data were processed by Zeta-Plus software. Sight distribution 

spectra were collected (at 23 °C) by NanoSight LM10 from NanoSight Limited 

(Amesbury, U.K.) and analyzed with NTA software. 

1.2.9. Iron quantification by ICP analysis  

The iron concentration was determined by elementary ICP-OES analysis. Briefly 

to 500 µL samples, were added 3 mL of aqua regia and, after 72 h, the samples were 

diluited with 7 mL of distilled water. All samples were measured in triplicate with 

Optima 700 DV ICP-OES (Perkin Elmer, Waltham, MA). 

1.2.10. Hyperthermic efficiency of nanoparticles 

Hyperthermic properties of nanoparticles were determined by calorimetric 

measures on sample exposed to the different AMF varying the frequency between 

110 and 521 kHz and the magnetic field amplitude in a 9-25 mT range (Magnetherm, 

NanoTherics ltd, UK). Samples were placed inside an induction coil and exposed for 

20 minutes to the AMF. The temperature variations were recorded with a 

multichannel optical fiber thermometer (Fotemp4, Optocon Systems, DE). The 

optical probe was placed slightly beneath the surface of the medium; a second one 

was placed near the induction coil and used as reference for ambient temperature. 

The thermal efficiency was expressed as SAR. 

Because it was not possible to ensure the completely adiabatic condition of the 

experimental setup, this value was determined as the initial slope of the temperature 

increase, estimated by considering the linear term of a polynomial fitting of the 

heating curve of the samples [10]: 

 

SAR= 1/me(Σcimi dT/dt) 

 

me = total mass of iron 

Ci = specific heat of different species in solution 

mi = weight of different species in solution 

dT/dt= slope of the T(t) curve 
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1.2.11. Statistical Analysis 

Data were expressed as mean ± standard deviation (SD). Data were analyzed by 

ANOVA. Post hoc analysis was carried out when statistical significance P<0.05 (*), 

and P<0.01 (**) was detected.  
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1.3. Results and Discussion 

1.3.1. Synthesis and characterization of 

superparamagnetic iron oxide nanoparticles  

Synthesizing monodisperse nanocrystals is of key importance, because the 

heating properties of the nanoparticles depend strongly on their shape and 

dimension. Here we synthesized two different kinds of monodisperse nanocrystals 

from organometallic precursors by solvothermal decomposition in octadecene with 

the aim to develop a suitable heat mediator for our study. 

According to Park et al. [6] we firstly synthesized the iron-oleate complex by 

reacting iron chloride and sodium oleate. The iron-oleate complex was then 

dissolved in 1-octadecene and slowly heated to 320° aging at that temperature for 30 

min (Figure 1). 

 

Figure 1: synthesis of iron oxide nanocrystals [6]. 

“The iron-oleate complex acts as the growth source for the synthesis. Nucleation 

occurs at 200-240 °C triggered by the dissociation of one oleate ligand from 

Fe(oleate)3 precursor by CO2 elimination. The major growth occurs at 300°C 
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iniziated by the dissociation of the remaining two oleate ligands from the iron-oleate 

species” [6]. The high temperature and the presence of stabilizing surfactants 

provided an optimal crystal nucleation and growth resulting in highly uniform and 

monodisperse nanoparticles.  

 Moreover, as clearly described by Park et al. the choice of the solvent is highly 

relevant for the particle size, which depends on the boiling point of the solvent. We 

chose 1-octadecene (b.p. 317°C) to obtain highly uniform and monodisperse 

spherical nanocrystals (SIOs).  

Unfortunately, as these nanoparticles did not shown hyperthermic properties, we 

decided to modify the procedure to obtain larger nanoparticles usable for 

hyperthermia. These nanoparticles were prepared by first keeping the iron tri-oleate 

solution in oleic acid/octadecene at 200 °C for 2 h, then gradually raising the 

temperature (3 °C/min) to reflux, refluxing for 2.5 h and finally cooling the dark 

solution to room temperature. In this way, we obtained polyhedral iron oxide 

nanocrystals (PIOs) with high SAR values. 

1.3.2. Polymer Synthesis 

An amphiphilic polymer was synthesized as coating agent according to the 

inventor Chen-An J. Lin in order to obtain water-soluble sPIONs [8]. The polymer is 

based on a poly-(maleic anhydride) backbone. This backbone represents the 

hydrophilic part, instead the hydrophobic side chains are constructed by a reaction of 

the anhydride rings with the amino-groups of dodecylamine. The concept of this 

polymer has been successfully demonstrated in several work of Parak’s group [9,11]. 

The maleic anhydride groups of the PMA backbone have been assumed to be 100 % 

reactive to primary amino-ligands through spontaneous amide linkage, which 

converts one maleic anhydride group into one corresponding amide and one free 

carboxylic acid group.  

It’s important to underline that we chose to react only the 75% of the anhydride 

rings with the amino-group of dodecylamine. The remaining 25 % of the anhydride 

rings were used in a second step for linking additional functional molecules. For 

instance, we conjugated 1% of the remaining anhydride rings with fluoresceinamine 

as organic fluorophore for the required fluorescence assays. In this way the 
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alkylamines of the fluoresceinamine can directly linked to the anhydride rings by the 

reaction of the anhydride with the amine.  

 
Figure 2: Chemical structure of the polymer. a) poly-(isobutylene-alt-maleic anhydride) 

backbone (hydrophilic part). b) dodecylamine (hydrophobic part) C) conjugation of the 
polymer with the dodecylamine. Each monomer unit comprises one anhydride ring. At the 
end we obtained an amphiphilic polymer with and hydrophilic backbone and a hydrophobic 
sidechain [9]. 

1.3.3. Water-phase transfer 

Because of their biological application, colloidal stability and water phase transfer 

of magnetic iron oxide nanoparticles are required. Thus, SPIONs were coated with 

the above-described PMA. In the coating process, the hydrophobic alkyl chains 

intercalated between those of oleic acid, which acted as surfactant, instead the 

hydrophilic backbone lend to the water solubility of the nanoparticle. So, the PMA is 

wrapped around the nanoparticles and the organic solvent is replaced by acqueous 

solution enabling the phase transfer to aqueos solution. 
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Figure 3: Scheme of the polymer coating procedure [8]. 

Upon phase transfer to water solution the remaining maleic anhydride groups of 

the polymer were hydrolyzed with Sodium Borate Buffer at pH 12 and then the 

nanoparticles were transferred to water phase to yield negatively charged carboxyl 

groups, which provide electrostatic repulsion lending to stable dispersion of 

nanoparticles.  

Phase transfer resulted in three different hydrophilic nanoparticle aqueos 

solutions: spherical shape iron oxide nanoparticles (SIOs) as determined by 

Transmission Electron Microscopy (TEM) (Figure 4A) with a diameter of 12.6 ± 0.4 

nm as measured by dynamic light scattering (DLS) (Figure 4B) and with a ζ-potential 

of –59.3 ± 2.3 mV (Figure 4C), likely suggesting a high stability of SIOs with 

minimum aggregation at physiological pH. In fact, a zeta potential value higher than 

± 30 mV is generally required for a colloidally stable nanoparticle dispersion [12].  
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Figure 4: Physical characterization of SIOs. A) Transmission electron microscopy image 

of SIOs. B) Size distribution of SIOs by DLS measure. C) Zeta Pontential Distribution of 
SIOs by Zeta-Sizer Analysis. 

We also obtained polyhedral iron oxide nanoparticles (PIONs) consisting of a 

mixture of nanocubes, truncated octahedral and irregular polyhedral as determined 

by TEM (Figure 5A) with batch-to-batch reproducibility, having an average size of 

25.1 ± 0.1 nm as detemined by DLS (Figure 5B) and a ζ−potential of –68.9 ± 4.3 

mV (Figure 5C). Also in this case, the zeta potential suggests a high stability in a 

physiological milieu. 

 
Figure 2: Physical characterization of PIONs. A) Transmission electron microscopy 

image of PIONs. B) Size distribution of PIONs by DLS measure. C) Zeta Potential 
Distribution of PIONs by Zeta Potential Analysis.  
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Figura 6: Physical characterization of IONs. A) Transmission electron microscopy of 

IONs. B) Size distribution of IONs by DLS measure. C) Zeta Potential Distribution of IONs 
by Zeta Potential Analysis. 

Alternatively  we obtained cubic iron oxide as determined by Transmission 

Electron Microscopy (TEM) (Figure 6A) with a diameter of 19.6 ± 0.4 nm as 

measured by dynamic light scattering (DLS) (Figure 6B) and with a ζ-potential of –

69.3 ± 2.3 mV (Figure 6C), likely suggesting a high stability of IONs with minimum 

aggregation at physiological pH. 
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1.3.4. Determination of the hyperthermic power of 

SPIONs in acqueos medium 

We assessed the magnetic hyperthermia (MHT) efficiency of SPIONs in aqueous 

suspension at a [Fe] of 4 mM (corresponding to ~1 mg mL–1) by varying the 

frequencies between 110 and 521 kHz and the magnetic field amplitude in a 9-25 mT 

range. While the hyperthermic efficiency of SIOs was negligible at all tested 

frequencies, PIONs exhibited frequency-dependent heat capacity with an optimal 

response at 521 KHz and 25 mT (Figure 6 A-B). Because the measurements were 

performed in non-adiabatic conditions, the curve slopes were fitted only in the first 

30 s. SAR values relative to the different conditions are summarized in Figure 6B. 

 

 
Figure 6: A) Temperature variation as a function of AMF exposure time measured on a 

sample of PIOs containing iron at a concentration of 4 mM. B) SAR values as a function of 
AMF exposure. 

Then we tested the MHT by varying the concentration between 3 and 25 mM 

(Fig. 7, A and B). The amount of heat produced by SMHT increased linearly with 

PION concentration (Fig. 7, A and B). The application of MHT to the sample 

resulted in a temperature increase of 20 °C after 120 s reaching a plateau after 6 

minutes with a maximal ΔT of 22.5 °C. 

 
Figure 7: A) temperature variation as a function of iron concentration on a sample of 

PIOs exposed to an AMF of 521 KHz and 24 mT. B) histogram representation of the 
temperature variation. 
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Therefore, our results suggested that only PIONs could provide heat capacity 

suitable for utilization as hyperthermic mediators and PIONs were thus selected for 

the biological study. Physical charatecterization and best heating curve of PIONs 

were summarized in Figure 8. 

 
Figure 3: Physical characterization of PIONs. A,B) Transmisson electron microscopy 

images of PIONs at different scaling. C) Temperature variation of AMF exposure time 
measured on a sample of PIONs containig iron at a concentration of 25 mM (MHT at 521 
KHz, 25 mT). 

Unfortunately the hyperthermic efficiency of IONs was negligible at all tested 

frequencies. This result suggests us to optimize the synthesis procedure.  
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1.4. Conclusions 

As reported in literature, not every kind of SPIONs is able to induce heat. Thus, 

slighty modifying a well-known synthetic procedure, we developed a new efficient 

nanoparticles responsive to AMF and usable for SMHT. This approach is expected 

to be of general utility and may become a universal strategy for the development of 

new efficient nanoparticles for thermotherapy. 

My results suggested that only PIONs were able to induce heat when subjected 

to an AMF and only them could provide heat capacity sufficiently suitable for the 

utilization as heating mediators in our in vitro model for adipocyte cells. Thus, for the 

first application we decided to use PIONs as heating mediators in adipocytes causing 

an impact on the adipocytes triglyceride metabolism. 

For the second study we decided to develop a nanoparticle with a better heating 

capacity, as we wanted to induce death in tumour cells. Thus, as the heating capacity 

strongly depends on the shape of the magnetic nanoparticles we decided to 

synthesize iron oxide nanocubes (IONs) as the best heating mediators for 

hyperthermia on glioblastoma. 

Unfortunately the hyperthermic efficiency of IONs was negligible at all tested 

frequencies. This result suggests us to spend more time trying to optimize the 

synthesis procedure obtaining better heating mediator. 
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2.1 Introduction 

2.1.1. Adipose Tissue Reduction 

The involvement of overweight and obesity on the pathogenesis and 

aggravation of several life-threatening diseases, including diabetes mellitus, cancer, 

cardiac and liver diseases, and of fatal events, such as stroke and myocardial 

infarction, is now well established. So there is an urgent need to develop new 

efficient treatments for the adipose tissue reduction. 

At present, the reduction of adipose tissue is obtained by different invasive and 

non-invasive techniques, including bariatric surgery, liposuction, laser, ultrasounds, 

cryolipolysis, and radiofrequency, which however do not change the energy balance 

equation and are subjected to detrimental side effects. Moreover in some cases 

these treatments require electronic devices raising the temperature in all the tissues 

exposed to heating source without any selective effect on the adipose tissue [1-3]. 

Also some pharmacological agents, including sibutramine rimonabant, are now 

withdrawn from the market, and others like amphetamine and orlistat are used in 

the management of obesity [4]. They operate like anorexizant agents on the appetite 

suppression interacting with central receptors or on the suppression of fat 

absorption by the first tract of gut. However these drugs showed limited efficacy 

and unacceptable side effects (strokes, intestinal serious side effect, kidney failure, 

severe hepatotoxicity or correlation with a higher incidence of cancer), leading to 

the withdrawn from the market or strict limitations on their use [5]. 

However little is known about the biomechanism of obesity and overweight in 

humans. These patologies result in a dysregulation in circulating hormones that 

affect systemic energy balance leading to several life-threating diseases, including 

type 2 diabetes mellitus (T2D), stroke, heart and liver disease, and enhancing the 

cancer risk [6-11]. 

Thus, understanding the molecular and cellular events regulating the 

mechanisms of hyperplasia and hypertrophy in adipose tissue is crucial to design 

rational therapies to prevent and treat obesity avoiding side effects [12].  

Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) 

and hypertrophy (cell size increase) [13]. The hyperplasia and the hypertrophy in 
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adipocytes are determined by a metabolic imbalance between the triglyceride 

storage and removal referred as lipolysis. This catabolic process is precisely 

regulated through hormonal and biochemical signals that concur to the rapid 

turnover of lipids within the fat cells [14]. Lipolysis is a key of importance for the 

turnover of lipids in the fat cells; indeed a dysregulation of this turnover underlines 

several pathological conditions. The “canonical pathway” takes place in the lipid 

droplets with other co-working enzymes involved in the regulation of metabolic 

processes [15, 16]. “Canonical lipolysis” is tightly regulated via adipose triglyceride 

lipase (ATGL), the limiting-step enzyme in the triglyceride metabolism, producing 

diacylglycerol, metabolized by a hormone-sensitive lipase (HSL) into glycerol and 

fatty acids. 
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2.1.2. Aim of the work  

Several studies proved that heat shock produces alteration in energy 

metabolism of white adipose tissue resulting in the liberation of glycerol and fatty 

acids used by other organs as energy substrates [17]. 

Even if the use of iron oxide nanoparticles as heat mediators is mainly 

dedicated to cancer thermotherapy, we reasoned that our Polyhedral Iron Oxide 

nanoparticles (PIONs) presented in Chapter 1 could be also exploited to induce a 

monitored hyperthermic effect in white adipocytes without any cellular damage or 

toxic effect.  

As our PIONs exhibited effective heat capacity in aqueos solution when 

subjected to an alternating magnetic field (AMF), the aim of the present study was 

to investigate the effect of applying intracellular superparamagnetic hyperthermic 

treatment (SMHT) in reducing the lipid content in mature adipocytes as a novel 

strategy to counteract obesity and the multiple pathologies associated.  
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2.2. Materials and Methods 

2.2.1. Cell cultures 

3T3-L1 preadipocytes (ECACC, Sigma-Aldrich, St. Louis, MO, USA) were sub 

cultured in Dulbecco’s modified Eagle’s medium nutrient mixture F12 (DMEM-

F12) containing 10% fetal bovine serum, 100 units mL–1 penicillin and 100 µg mL–1 

streptomycin in a humidified incubator at 37 °C with 5% CO2. To stimulate 

differentiation into adipocytes the cells were grown to confluency in 35x10 mm 

Petri dish and then were differentiated in accordance with a well-established 

standard adipocyte differentiation kit (3T3-L1 Differentiation Kit, Sigma-Aldrich, 

St. Louis, MO, USA). After 3-days of induction the medium was changed and the 

cells were matured in high-glucose Dulbecco’s modified Eagle’s medium containing 

10 µg mL–1 of insulin. Eight-days post-induction cells were subjected to the 

different treatments. 

2.2.2. Cell viability Assay 

The cytotoxicity of PIONs toward adipocytes was assessed by the loss of cells 

viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) 

test. Adipocytes were seeded (5 × 103 cells per well) in a 96-well plate and grown 

for 24 h in a humidified incubator at 37 °C with 5% CO2. After 24 h the medium 

was replaced with fresh medium containing different PIONs concentrations (10, 

20, 50 100 µg mL–1). After 6, 12, 24, 48 h of exposure at 37 °C, cells were washed 

with PBS 1X and then incubated for 3 h at 37 °C with 0.1 mL of 3-(4,5-dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) stock solution previously 

diluted 1:10 in DMEM-F12 medium without phenol red. After incubation, 

dimethyl sulfoxide (0.1 mL) was added to each well to solubilize the formazan. The 

absorbance in each well was read by a microplate reader (CHROMATE 4300 

Awareness Technology, USA) at a wavelength of 570 nm using a reference 

wavelength of 620 nm. 
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The test was conducted in triplicate. Statistical comparisons between treated 

and control samples were performed by using the non-parametric Mann Whitney U 

test. The cell viability (%) was calculated with the following equation: 

CV%=
ODsample

ODcontrol

× 100 

2.2.3. Flow cytometry analysis of PIONs 

internalization 

8-Days post-induction adipocytes were incubated with 10, 20 and 50 µg mL–1 

of fluoresceinamine@PIONs (FA@PIONs) at different time-points (15 min, 4, 24, 

48 h) at 37 °C with 5% CO2. After treatments, cells were washed with PBS 1X, 

detached and analyzed by flow cytometry in order to quantify the percentage of 

positive cell population. Sample acquisition (10000 events) was performed by 

Gallios Flow cytometer (Beckman Coulter Inc.) and analyzed by FlowJo Software. 

The analysis was conducted in triplicate and statistical analysis was performed by 

using the one-way Anova test. 

2.2.4. Confocal Laser Scanning Microscopy 

For Confocal Laser Scanning Microscopy, 8-days post-induction adipocytes 

were incubated with three different concentrations of FA@PIONs (10, 20, 50 µg 

mL–1) at four different time-points (15 min, 4, 24, 48 h). The culture medium was 

then removed by aspiration from the coverslips and gently washed with PBS at 

room temperature. The cells were then fixed with 4% buffered formalin for 30 min 

at room temperature. The coverslips were washed out of the formalin with PBS for 

2 minutes. For the permeabilization the coverslips were incubated in 0.5% Triton 

X-100 with PBS for 5 min. The typically adipocyte overexpression of the Glucose 

Transporter GLUT4 was marked with Antibody NBP1-49533AF647 (Novus 

Biologicals Europe, UK) labeled with AlexaFluor®647. The antibody was firstly 

diluited in BSA to a final concentration of 14 µg/mL and then the coverslips were 

incubated with the antibody for 1 h at room temperature in a dark environment. 

The coverslips were washed gently in PBS for three times 5 minutes each. The 

nuclei were then stained with HOECHST 3342 diluited in PBS to a final 

concentration of 0.2 mM. The coverslips were then inverted onto a glass slip with a 
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drop of Entellan® as mounting media. Images were obtained with Leica TCS SP5 

inverted confocal microscope (Leica). DM IRE2 confocal microscope equipped 

with an argon/krypton laser. Three laser lines were activated UV (405 nm), Visible 

(488 nm) and Visible (633 nm). A 40x objective (oil immersed, numerical aperture 

1) was used. To acquire and merge the images the Leica LAS AF software (Leica) 

was employed. Image contrast in each channel was then set using ImageJ software. 

At least 5 fields per each sample of two biological replicates were taken. 

2.2.5. SMHT treatment 

Based on the results of cell viability and the internalization test, 3T3-L1 

adipocytes were incubated for 24 h with 50 µg mL–1 of PIONs into a Petri dish. 

After 24 h the treated cells were placed inside the coil and exposed for 20 minutes 

to an AMF with a frequency of 521 KHz and strength of 25 mT. The cells were 

processed for the triglyceride quantification, glycerol content in the medium, 

ultrastructural morphology and qRT-PCR immediately after SMHT and 24 h post-

hyperthermia.  

Statistical comparisons between treated and control samples were performed 

by using the Mann Whitney U test. 

2.2.6. qRT-PCR 

Total RNA was isolated from the control and treated adipocytes using RNA-

easy Plus Mini Kit (QIAGEN; Milan, Italy). RNA (1.5 mg) was reverse transcribed 

using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems; 

Monza, Italy) and amplified using a StepOnePlus Real-Time PCR System (Applied 

Biosystems; Monza, Italy). The target cDNAs were amplified using SYBR® Green 

PCR Master Mix (Invitrogen; Monza, Italy) together with gene-specific primers for 

peroxisome proliferator-activated receptor γ, PPARγ (fwd: 

AGAGATGTGCAAACAGGGCT, rev: GCAAAGGGTTGGGTTGGTTC); 

adipsin (fwd: GTGCAGAGTGTAGTGCCTCA, rev: 

CCAACGAGGCATTCTGGGAT); adiponectin (fwd: 

ATCTGGAGGTGGGAGACCAA; rev: GGGCTATGGGTAGTTGCAGT); 

adipose triglyceride lipase, ATGL (fwd: AGAGATGTGCAAACAGGGCT, rev: 

GCAAAGGGTTGGGTTGGTTC); p53 (fwd: AAACGCTTCGAGATGTTCCG; 

rev: CTTCAGGTAGCTGGAGTGAGC); b-actin	 (fwd: 
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CATCGTGGGCCGCTCTA, rev: CACCCACATAGGAGTCCTTCTG). PCR 

conditions were 95 °C for 20 s, 95 °C for 3 s, and 60 °C for 30 s for 40 cycles. PCR 

products were measured using a StepOnePlus Real-time PCR System (Applied 

Biosystems; Monza, Italy) and relative ratios were calculated using the 2^(−ΔΔCT) 

method [18]. Data were expressed as fold changes to control. Statistical 

comparisons were performed by using the Mann Whitney U test. 

2.2.7. Transmission Electron Microscopy 

For transmission electron microscopy, the cells were fixed with 2.5% (v/v) 

glutaraldehyde and 2% (v/v) paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, 

at 4° C for 1 h, post-fixed with 1% osmium tetroxide and 1.5% potassium 

ferrocyanide at room temperature for 1 h, dehydrated with acetone and embedded 

in Epon. Ultrathin sections were stained with lead citrate and observed in a Philips 

Morgagni transmission electron microscope (FEI Company Italia Srl, Milan, Italy) 

operating at 80 kV and equipped with a Megaview II camera for digital image 

acquisition. 

2.2.8. Oil Red O staining and intracellular 

triglyceride quantification 

The degree of adipocyte differentiation and lipid accumulation of cytoplasmic 

triglycerides were detected by staining with Oil Red O (Bio-Optica, Milan, Italy). 

Briefly, the cells were washed in PBS, fixed with 4% buffered formalin for 30 min 

at room temperature. Once formalin was discarded, cells were stained for 20 min 

with 0.5 % Oil Red O solution. The nuclei were stained for 2 min with 

hematoxylin. The stained cells were photographed at 10×, 20× and 40× optical 

magnification using an Olympus microscope (BX-URA2, Olympus optical, 

GMBH, Hamburg, Germany) equipped with Image ProPlus software (Media 

Cybernetics, Rockville, USA). The triglyceride quantification was determined by 

measuring the lipid droplets content. Stained droplets were dissolved in 

isopropanol and then quantified by measuring absorbance at 490 nm with a 

VICTORTM X Series Multilabel Plate Reader. The results are shown as relative 

triglyceride content compared with the control according to Ramírez-Zacarías	et al. 

[19]. Statistical analysis was conducted by using the Mann Whitney U test. 
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2.2.9. Glycerol analysis of release of fatty acid from 

adipocytes exposed to SMHT 

The lipolytic effect of PIONs in 3T3-L1 adipocytes was determined by 

measuring the amount of glycerol released into the medium after hyperthermia 

treatment. Glycerol concentration was measured using a Glycerol Assay Kit 

(Sigma-Aldrich, St. Louis, MO, USA). In this kit, glycerol concentration is 

determined by a coupled enzyme assay involving glycerol kinase and glycerol 

phosphate oxidase, resulting in a colorimetric product (λmax= 570 nm). The 

concentration of glycerol in the samples has been determined from the standard 

curve using the equation: 

C= 
A570 sample

slope
 

C = concentration of glycerol in sample (mM); 

slope = slope determined from standard curve. 

The test was conducted in triplicate and statistical comparisons were performed 

by using the Mann Whitney U test.  
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2.3. Results and Discussion 

2.3.1. PIONs toxicity in 3T3-L1 adipocyte cells 

To test the impact of the different PIONs concentrations on cellular viability 

3T3-L1 adipocytes were incubated with 10, 20, 50 and 100 µg mL1 of PIONs in 

DMEM-F12 with 10 µg mL-1 of insulin at 37 °C for 6, 12, 24 and 48 h. MTT Assay 

monitored the extent of cellular viability. Figure 1 shows the time- and dose-

dependent decrease in cell viability. Only samples treated with 100 µg mL–1 

nanoparticles exhibited percentage of cell viability fraction lower than 80% at 6 h, 

reaching a minimum between 24 and 48 h. Therefore MTT assay suggested that 

PIONs were safe up to the concentration of 50 µg mL-1 at short and long 

incubation time, whereas 100 µg mL-1 PIONs induced a significant increase in cell 

death already after 6 h incubation.  

 

Figure 1: MTT Assay at 6, 12, 24, 48 h after PIONs uptake. **P< 0.001 vs .  untreated. 

2.3.2. PIONs uptake in 3T3-L1 adipocyte cells 

For the following experiments only PIONs concentrations safe for adipocytes 

were used. Eight days post-induction, mature adipocytes were incubated with 10, 20 

and 50 µg mL1 of dye-labeled PIONs with fluoresceinamine (FA@PIONs) in 

DMEM-F12 with 10 µg mL-1 of insulin at 37 °C for 15 min, 4, 24 and 48 h. Figure 
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2 shows time- and dose-dependent increase in uptake. Only samples treated with 50 

µg mL–1 nanoparticles exhibited labeling fraction higher than 20% at 4 h, reaching 

maximal cell labeling between 24 and 48 h.  

 

Figure 2: PIONs uptake in 3T3-L1 adipocytes. Flow cytometry analysis of FA-PIONs 
internalized by adipocytes represented as percentage of FA-positive cells compared to 
untreated cells. Histograms show a dose- and time-dependent uptake. **P < 0.01 vs . 
untreated. 

In order to confirm the internalization of PIONs in 3T3-L1-derived 

adipocytes, cells labelled for GLUT4 were incubated for 24 h at 37 °C with 10, 20, 

50 mg mL–1 of FA@PIONs, and analyzed by confocal microscopy (Figure 3). 

Images show a dose-dependent PIONs uptake, with a maximal internalization at 

the concentration of 50 µg mL–1.  

Interestingly, most of the internalized green fluorescent FA@PIONs appear as 

yellow dots due to the overlapping with the red signal of the membrane receptor 

Glut4, thus suggesting an endocytotic processes. Moreover, 50 µg mL–1 of PIONs 

did not change the expression of GLUT4 receptor, a key marker of 3T3-L1 

adipocyte differentiation, indicating that PIONs uptake did not interfere with the 

differentiation process. Moreover, confocal microscopy also reveals the safety of 

PIONs because of, once internalized, PIONs still remained confined in the 
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cytoplasm, never entering the nucleus even at the longest incubation time. Entering 

the nucleus may represent a risk for the cell function, because of the possible 

interaction between PIONs and nucleic acid. 

 
Figure 3: Intracellular localization of PIONs. Confocal microscopy merged images of 

3T3-L1 adipocytes after 24 h incubation with A) 0 mg mL–1 (control), B) 10 µg mL–1, C) 20 
µg mL–1, and D) 50 µg mL–1 FA-PIONs (green). Cell membrane receptors were detected 
with the anti-Glut4 antibody (red) and nuclei were stained with Hoechst (blue). Arrows 
indicate internalized FA-PIONs (their green signal ovelaps the Glut4 red signal thus 
appearing as yellow dots).  Note the evident staining of Glut4 (overexpressed in adipocytes) 
in all samples, demonstrating that treatment does not induce dedifferentiation. 

These data were corroborated by TEM analysis (Figure 4) of adipocytes treated 

with 50 µg mL–1 PIONs at 37 °C. Ultrastructural observations demonstrated that 

PIONs were internalized via endocytosis and enclosed in endosomes (Figure 4, A 

and B): once in the cytoplasm, the PIONs were always compartmentalized into 

both endosomes (Figure 4C) and residual bodies (Figure 4D), often occurring very 

close to lipid droplets (Figure 4E). No structural cell damage was observed 

following PIONs internalization. 
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Figure 4: TEM images of PIONs uptake and intracellular distribution in 3T3-L1 
adipocytes after 24 h incubation with PIONs (50 µg mL–1). A) PIONs were internalized by 
adipocytes v ia  endocytosis (arrow) and B) compartmentalized into endosomes (arrowhead). 
C) PIONs accumulated inside many endosomes (arrowheads) ubiquitously distributed in 
the cytoplasm, D) as well as in residual bodies (asterisks) also containing heterogeneous 
cell remnants. Mitochondria (M) and endoplasmic reticulum cisternae were abundant and 
well structured, demonstrating the absence of cell damage. E) Residual bodies containing 
PIONs also occurred very close to lipid droplets (L). N: cell nucleus.  
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2.3.3. Impact of SMHT on intracellular 

distribution and cytotoxicity of PIONs in 

adipocytes 

Based on the previous results we chose to induce the SMHT treating 3T3-L1 

adipocytes 24 h with 50  µg mL-1 of PIONs incubation. The adipocytes were 

positioned in an induction coil and subjected to an AMF for 20 min (MHT at 521 

KHz, 25 mT).  

Ultrastructural analysis showed no ultrastructural cell damage immediately after 

and 24 h after SMHT (Figure 5). TEM images showed interruptions in the 

membranes of the residual bodies caused by the entrapped PIONs. This broken 

event allows their release into the cytoplasm (Figure 5A) and their accumulation 

around and even into the lipid droplets (Figure 5B). Some lipid droplets were also 

extruded from the cell suggesting a lipolytic effect (Figure 5C).  

Large amounts of PIONs were found into adipocytes until 48 h, suggesting a 

long-lasting cytoplasmic persistence. 24 h after SMHT were found only few and 

small lipid droplets in the cytoplasm. No ultrastructural cell damage was observed 

following PIONs internalization until 48 h incubation, confirming the safety of 

these nanoparticles at the concentration used (Figure 5D). 

A further advantage is that PIONs occurring in the cytoplasm are often 

enclosed in vesicular structures, i.e., endosomes formed during the endocytic 

process and residual bodies derived from the lytic pathways. These are important 

data, because a cell damage could prelude to necrotic or apoptotic processes 

responsible for inflammatory events in vivo. Moreover, since PIONs were still 

confined in the endosomes even after long incubation times the iron contained in 

PIONs never get in contact with the cytosol avoiding a potential source of 

oxidative stress [20]. 
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Figure 5: TEM images of adipocytes after PIONs-mediated SMHT. A) After 

hyperthermic treatment, some residual bodies containing PIONs appeared as damaged, 
with interruptions along their membranes (thin arrows), thus allowing the release of PIONs 
into the cytoplasm (arrowheads). B) Once free in the cytoplasm, some PIONs were found 
around and inside lipid droplets (L). C) Lipid droplets (L) approached the cell surface and 
were extruded (asterisk). D) 24 h after the hyperthermic treatment, a few lipid droplets of 
small size (L) were found in the cytoplasm, while mitochondria (M), endoplasmic reticulum 
and Golgi complexes (arrowheads) were well developed, demonstrating no cell damage and 
suggesting a high metabolic activity. N: cell nucleus. 

Accordingly, the MTT assay and the quantitative determination of tumor 

suppressor p53 mRNA expression performed on adipocytes proved the safety of 

SMHT. 

The histograms in Figure 6, A and B, show the percentage of cell viability 

under SMHT in comparison with control conditions (untreated cells subjected to 

AMF and cells treated only with PIOs but not exposed to AMF) both immediately 

after and 24 h after SMHT. No significant difference was noted in all cases 

compared to untreated cells at both time points. 

Further confirmation of the safety of our approach was derived from quantitative 

determination of tumor suppressor p53 mRNA expression in adipocytes 

immediately after and 24 h post-treatment (Figure 6, C and D, respectively). This 

experiment was mandatory to provide information about cytotoxic and mutagenic 
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effects of SMHT treatment, as an impairment of p53 gene expression normally 

affects cell growth, programmed cell death/apoptosis and cellular senescence [21]. 

Our data confirmed that neither PIONs uptake nor AMF application and the 

combination of both (SMHT) affected significantly p53 expression, which is 

particularly relevant in view of a possible clinical translation of this therapeutic 

approach. 

 
Figure 6: Effect of SMHT with PIONs on cellular viability. A) MTT assay performed 

immediately after and B) 24 h after hyperthermic treatment. The proportion of viable cells 
was referred to untreated adipocytes (100%). C) mRNA expression of p53 gene immediately 
after and D) 24 h after hyperthermia were obtained by qRT-PCR. Data were analyzed with 
the 2^(-ΔΔCT) method [18] and normalized to untreated cells.  
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2.3.4. Lipolytic effect of SMHT in 3T3-L1 mature 

adipocytes 

The effect of SMHT on the adipocyte metabolism was determined immediately 

after and 24 h after the SMHT.  

The lipolytic effect of SMHT on adipocytes was firstly assessed using a light 

microscopy after staining the cells with Oil Red O (Figure 7, A-D). The lipid 

depletion was confirmed by the significant decreased absorbance values of Oil Red 

O- extracted stain corresponding to triglycerides amount (Figure 7E), as well as by 

the concomitant increase in glycerol content in the culture medium after SMHT 

(Figure 7F). 

The absorbance of Oil Red O-extracted stain was measured by UV-vis 

spectroscopy. Eventually, to confirm the extrusion of glycerol outside the cells, we 

measured glycerol content in the medium by a colorimetric assay (Figure 7F). 

Data by microscopy examination showed the effective reduction in the lipid 

content mediated by SMHT compared to the other treatments (Figure 7, A and C). 

Further analysis of triglyceride content showed significant decrease (> 65%) of the 

lipid droplets after the SMHT treatment compared to the controls (Figure 7E). 

Furthermore, as the decrease of lipid in adipocytes is mediated by the release of 

glycerol throughout the lipid droplets in the medium, the polyol content in the 

supernatants was measured by a colorimetric assay. The analysis of the supernatants 

showed an increasing in glycerol content in the medium up to 3.5 µg mL–1 thus 

confirming its extrusion outside the cells (Figure 7F).  

As showed by electron microscopy also light microscopy (Figure 8) revealed 

low lipid content up to 24 h after SMHT in the treated adipocytes. So the SMHT 

results in a prolonged lipolytic effect. 

Beyond the evident lipolytic effect of SMHT, the results of these experiments 

suggested possible impact of this treatment on adipocyte metabolism that deserved 

more thorough investigation. 
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Figura 7: 3T3-L1 adipocytes subjected to hyperthermic treatment. SMHT hyperthermic 

treatment induces a visible reduction of lipid droplets in adipocytes (D) compared to the 
other treatment conditions, including A) control, B) PIONs without AMF, and C) AMF 
without PIONs. Intracellular lipid droplets were stained with Oil Red O and nuclei were 
stained with Eosin and visualized by light microscopy. Scale bar = 30 mm. The lipolytic 
effect was determined E) by assessment of the triglyceride content in adipocytes by fat 
extraction with isopropanol and spectrophotometric measurement of Oil Red O-stained 
adipocytes at 490 nm (data are referred to untreated sample, 100%). *P<0.01 vs .  untreated; 
^P<0.05 vs .  PIONs and AMF and F) by measuring the amount of glycerol released in the 
medium after hyperthermia treatment using a colorimetric Glycerol Assay Kit providing a 
quantitative analysis of adipocyte content. *P<0.01 vs .  untreated; ^P<0.05 vs .  PIONs and 
AMF. 

 
Figura 8: 3T3-L1 adipocytes 24 h after SMHT.Brightfield microscopy images (Oil Red 

O and hematoxylin staining) of control adipocytes (A), adipocytes incubated with PIONs 
(B), adipocytes exposed to AFM (C) and adipocytes 24h after SMHT.  
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2.3.5. SMHT effects on intracellular metabolism of 

triglycerides in 3T3-L1 adipocytes 

To start getting insight into the molecular basis of the observed SMHT-

induced lipolysis, we performed qRT-PCR analysis to assess the expression levels 

of key genes involved in lipid metabolism. We focused our attention on PPARγ and 

ATGL, as both genes play key roles in the adipolysis process [22, 23]. PPARγ 

mediates several processes among which the regulation of ATGL expression. 

ATGL is the limiting-step enzyme in the triglyceride metabolism, producing 

diacylglycerol, subsequently metabolized by hormone-sensitive lipase into glycerol 

and fatty acids. Therefore, ATGL plays a prominent role in triglyceride 

mobilization [24, 25]. In particular, due to the fact that ATGL is a key-enzyme in 

lipolysis deputed to triglycerides hydrolysis, it was investigated if the observed 

lipolytic effect observed after SMHT treatment was mediated by an overexpression 

of ATGL gene. 

 As shown in Figure 8, A and B, no significant differences were observed 

immediately after SMHT for both PPARγ and ATGL transcripts, compared with 

untreated, PIOs- and AFM-treated cells. This data also demonstrated that SMHT 

did not affect the status of cell differentiation as PPARγ is also a typical marker of 

mature adipocytes. Similar results were obtained 24 h after SMHT (Figure 7 E, F).  

Lipid metabolism is a balance between adipolysis and adipogenesis [26]. 

Adipsin is acknowledged as a critical adipokine regulating adipogenesis trough the 

regulation of the acylation stimulating protein (ASP), a key mediator of adipose 

tissue triglyceride storage [27-29]. On this basis, we sought to investigate whether 

variations in adipsin expression had occurred as a cell attempt to compensate for 

lipid depletion (lipolysis), by promoting de novo triacylglycerol storage. As shown 

in Figure 8C, neither PIONs, AMF or SMHT significantly affected adipsin 

expression in comparison to untreated adipocytes.  

These very interesting results suggested the involvement of a novel/alternative 

mechanism in the effective lipolysis observed. 
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Figura 9: Immediately Effect of SMHT with PIONs on adipocyte metabolism. Relative 

mRNA expression of atgl, pparγ , atgl target genes in 3T3-L1 adipocytes. SMHT does not 
modify the status of differentiation of adipocytes (B), and the cellular metabolism (A, C, D). 
Gene expression was analyzed by quantitative real-time PCR. Data were analyzed with the 
2-ΔΔCt method. Analysis were conducted in triplicate and statistical analysis were 
performed using the Mann Whitney U test. No signficant differences were found. 

 

 

 
Figura 10: Effect of SMHT with PIONs 24 h after on adipocyte metabolism. Relative 

mRNA expression of pparγ , atgl target genes in 3T3-L1 adipocytes. SMHT does not modify 
the status of differentiation of adipocytes (A), and the cellular metabolism (B). Gene 
expression was analyzed by quantitative real-time PCR. Data were analyzed with the 2-
ΔΔCt method. Analysis were conducted in triplicate and statistical analysis were performed 
using the Mann Whitney U test. No signficant differences were found.  

A B 
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2.4. Conclusions 

Most life-threatening human pathologies, including cancer, diabetes mellitus, 

cardiovascular dysfunctions, and chronic inflammatory disorders are directly or 

indirectly caused by or associated to excess body weight. Thus, there is an urgent 

need to find out new solutions to rapidly and efficiently reduce the lipid 

components of adipose tissue using safe and physiologically mild approaches 

combined with healthy and balanced diet. 

The results of our study suggested that targeting the energy storage of white 

adipose tissue with SMHT might be used as an innovative anti-obesity strategy 

promoving an anti-adipogenic effect.  

The modulation of cellular metabolism in adipocytes takes advantage of the 

hyperthermic property of superparamagnetic iron oxide nanoparticles. Here we 

show that colloidally stable PIONs endowed with good heat capacity were taken up 

by mature adipocytes and released from endosomal compartmentalization into the 

cytoplasm upon application of an AMF, which results in PIONs accumulation in 

close proximity of lipid droplets. Free PIONs seem to preferentially migrate close 

to and even inside lipid droplets: this preference could be associated to the 

amphiphilic character of nanoparticle coating. SMHT triggers the disintegration of 

large lipid stores into minute droplets activating the metabolic function of the cell, 

which makes the metabolism and removal of triglycerides highly effective. This 

phenomenon does not induce cell damage probably because residual bodies do not 

contain lytic enzymes and/or membrane integrity is rapidly restored, similarly to the 

process of endosomal escape [30].  

 Interestingly, the observed lipolytic process is not accompanied by increased 

expression of ATGL, whose mRNA expression is normally elevated by peroxisome 

proliferator-activated receptor (PPARγ) agonists. This suggests that a pathway 

involving other than PPARγ and ATGL effectors may be involved in the lipolysis 

effect by SMHT and yet to be defined. Alternatively, one can hypothesize the 

occurrence of a “thermal stimulus” responsible for lipid extrusion to be further 

investigated. Moreover, mRNA expression of adipsin, the major adipokine released 

by adipose cells promoting triglyceride storage in adipocytes, was not upregulated 
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as a means to counteract the significant lipid loss, thus establishing a possible 

correlation with the prolonged (24 h) delipidated state of the SMHT-treated 

adipocytes. The latter observation further argues in favor of a lipolytic mechanism 

independent of the “canonical” events regulating the process. 

This particular delipidation process has been recently investigated in detail in 

human adipocytes: it is an active process triggered by cell stress, and lipid droplets 

are extruded through micropores transitory forming in the plasmalemma, thus 

allowing cell structural preservation and viability [31].  

Accordingly, adipocytes subjected to SMHT not only remain fully vital up to 24 

h post-treatment, but also show well-preserved ultrastructural features and 

unaltered expression of genes involved in lipid metabolism and in cell 

differentiation process. This result is promising in view of the fundamental role of 

adipocyte differentiation in maintaining the cell commitment, preventing 

transcription and translation error rates and undesired signal deletions that increase 

the risk of neoplastic degenerations associated to obesity management. 

Notably, the treatment results in a significant delipidation persisting, for at least 

24 h, in the absence of cell death, damage or dedifferentiation. The biological 

reasons of such a rapid and massive lipolytic effect remain unclear. However our 

results clearly demonstrated that under controlled applied conditions SMHT can act 

as a mild controlled stress able to efficiently activate a physiological lipolytic 

process.  

The success of this pioneering approach in vitro opens promising perspectives 

for the application of SMHT in vivo as an innovative safe and physiological mild 

approach against obesity. In view of a possible future translation of this therapeutic 

approach, we envisage that the effect of SMHT treatment of adipocytes might 

impact adipose hypertrophy and hyperplasia in overweight subjects thus affecting 

adipose tissue dysfunction and contributing in the prevention of cancer, T2D and 

cardiovascular diseases.  
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3.1 Introduction 

3.1.1. Glioblastoma 

“Gliomas are the most common type of primary brain tumour and are often fast 

growing with a poor prognosis for the patient. Their complex cellular composition, 

diffuse invasiveness and capacity to escape therapies has challenged researchers for 

decades and hampered progress towards an effective treatment” [1].  

According to the World Health Organization system of classification and 

grading, Glioblastoma represents the most anaplastic tumour of astrocytic lineage-

astrocytoma grade IV [2]. It is the most common and most aggressive, showing 

vascular endothelial proliferation, necrosis and very high cell density and atipias. Also 

the characterization of the distinct molecular genetic markers associated with the 

tumour has provided subclasses of glioma to be identified based on a molecular 

signature or gene expression patterns. This sub-classification allows the correlation 

of treatment effects or prognosis with molecular markers, so that patients can be 

more effectively selected for more appropriate therapies. The sub-classification has 

also contributed to the more detailed elucidation of components of molecular 

oncogenic pathways. For example which oncogenes are activated, such as the growth 

factor receptor (EGFR) involved with the migration of glioma cells throughout the 

central nervous system. 
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It is also important to underline the presence of the glioma stem cells, which are 

responsible for maintaining these tumours after therapy and repopulating tumours 

after gross total resection. These cells express markers that can be used to identify 

the cells that are capable of tumour formation when xenotransplanted and have a 

capacity for self renewal, clonogenicity and differentiation into a broad range of cell 

types. The most important marker of the cancer stem cell is the CD133 [3].  

 

 
Figure 1: Stem cell differentiation and tumorigenesis [1]. 

3.1.2 SPIONs as contrast agents in MRI 

The use of SPIONs as contrast agents for MRI was associated with substantial 

increases in diagnostic sensitivity and specificity [4]. The aim of their use is 

visualizing molecular characteristics of physiological or pathological processes in 

living organisms before they manifest in form of anatomic changes. 

 MRI offers several advantages over alternative techniques, including lack of 

irradiation, possibility to generate 3D images, excellent spatial resolution with 

optimal contrast within soft tissues and a very good signal-to-noise ratio. 

Paramagnetic (e.g. gadolinium) and superparamagnetic (e.g. SPIONs) compounds 

can be used as MR contrast agents. While the paramagnetic species enhance the 

signal in T1-weighted images resulting in positive contrast, magnetic nanoparticles 

provide strong signal enhancement in T2-weighted images (negative contrast), owing 

to a different contrast mechanism [5]. 
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Contrast agents may be used for identifying specific biomarkers. Ideally, the 

biomarkers should be abundantly and only expressed on the desired cell types. 

Furthermore, disease-specific biomarkers should be clearly different form healthy 

status. To identify the specific biomarker SPIONs would be composed of two 

components: 1) the magnetic iron oxide core represents the imaging component and 

2) the attached molecules represent the targeting or affinity component.. 

In case of tumours a contrast can be observed between tissues with and those 

without having captured superparamagnetic iron oxide nanoparticles, owing to a 

difference in the precession frequency of water protons in proximity of paramagnetic 

nanodipoles (Figure 11). 

 
Figure 2: iron oxide nanoparticles for early detection of cancer [6]. 
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3.1.3. SPIONs as theranostic agents 

“Theranostic” is defined as the capacity of combining diagnosis and therapy into 

a single agent [7]. “Theranostic agents” allow obtaining more specificity and more 

sensibility in the therapeutic diagnosis and prognosis.  

Nanotechnology has offered an unprecedented opportunity to design 

“nanotheranostic agents” that can act as therapeutic and contrast agent combining 

therapy and diagnosis. These nanoparticles possess unique optical or magnetic 

properties that could be combined with the loading of therapeutic agents allowing 

for the conjugation of a second or third functionality, a feature that encourages the 

formation of an all-in-one nanosystems with comprehensive features. 

 
Figure 3: Application of theranostic nanomedicine formulation [7].  

 

3.1.4. Targeting nanoparticles 

The real challenge in nanomedicine is represented by the possibility of realizing a 

therapeutic agent with maximum specificity and sensibility. It means develop a 

nanoparticle capable of recognizing the sick site showing its effect preferentially in 

this site with a real reduction of side effects. For this purpose designing suitable 

functionalized nanoparticles is a general procedure claim.  

To increase to probability of achieving the target the first requirement is a long-

circulating effect. As the macrophages recognize the nanoparticles as “hosts” and 

remove them from the blood circulation is necessary to realize macrophage-evading 

nanoparticles. Furthermore, long-circulating particles escape from macrophages 
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could accumulate where the capillaries have open fenestrations and vascular 

abnormalities such as in tumour or in obesity cases where the endothelial barrier is 

perturbed by inflammatory or other processes. 

The design of such “stealth ” nanoparticles requires the consideration of a 

multitude of physico-chemical and physiological factors, affecting circulation time 

[8]. 

Generally the surface protection by a barrier of hydrophilic groups prevents the 

opsonin adsorption and therefore avoids the macrophage recognition. Among 

several molecules, linear dextrans, Polyethylene glycol (PEG) and their derivates are 

widely used in order to improve the circulation lifetime and bioavailability and 

decrease their immunogenicity, renal clearance rate and dosing frequency. PEG has 

been shown to be the most effective polymer for suppressing protein adsorption. It 

is the α,ω−dihydroxyl derivate of polyethylene oxide and is a flexible polymer, 

hydrophilic (but also soluble in some organic media), not biodegradable and easily 

excreted from living organisms by physiological routes. The optimal molecular 

weight varying between 2000 and 5000 Da and its functional end-groups are available 

for derivatization leading to numerous possibilities for covalent attachment. 

 
Figure 4: macromolecules used as hydrophilic coating for monuclear phagocyte system-

evading nanoparticles [9]. 

Ligand conjugation is the second requirement for active targeting. To enhance 

the capability of long-circulating nanoparticles to be uptaken from target cells , the 

surface of nanoparticles has to be modified with ligands that specifically bind to the 
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receptors present on the target cells, by molecular recognition processes involving 

antibody-antigene interactions. Among these ligands, often recurring are 

oligosaccharides, oligopeptides, folic acid, antibodies and their fragments. 

Due to the unique specificity of monoclonal antibodies for their molecular 

counterparts and to the possibility to produce immunoglobulins for almost every 

known marker receptor, this class of proteins is usually considered the preferred 

choice for active targeting and great effort has been devoted to the development of 

antibody-functionalized nanocarriers. 

Therefore, for tumour targeting, folic acid, antibodies or peptides could be 

grafted to PEGylated nanoparticles in order to take advantage of the frequent 

overexpression of the specific receptors onto the surface of human cancer cells. 

Interestingly, nanoparticles conjugated with antibodies appeared to interact more 

efficiently with their receptors than free antibodies.  

However, antibody coupling has at least two drawbacks: 1) the overall size of the 

antibodies (typically into the range 15-20 nm), which cause particles to diffuse poorly 

through biological barriers, and 2) their immunogenicity, i.e. the property of being 

able to elicit an immune response within an organism.  

For this reason, the coupling of small non-immunogenic ligands to polymeric 

carriers has been also investigated. 

3.1.5. GE11 Peptide 

Targeting may be essential for efficiency mediated cell-binding of shielded 

nanoparticles and enhanced nanoparticles uptake by receptor-mediated endocytosis 

or related uptake pathways.  

Epidermal growth factor (ErbB1, EGFR) is a typical receptor used for targeting 

tumour cells and is overexpressed by glioblastoma cells. Various EGFR binding 

molecules have been explored as targeting ligands, including recombinant EGF 

protein, EGFR binding antibodies and peptides. Among all these ligands the 

enriched phage clone encoding the amino acid sequence YHWYGYTPQNVI 

(designated as GE11) was described as the best efficient. “Competitive binding assay 

and Scatchard analysis revealed that GE11 peptide bound specifically and efficiently 

to EGFR with a dissociation constant of 22 nM, but with much lower mitogenic 

activity than with EGF. The peptides were internalized preferentially into EGFR 

highly expressing cells, and they accumulated in EGFR overexpressing tumor 



 82 

xenografts after i.v. delivery in vivo. In conclusion GE11 is a potentially safe and 

efficient targeting moiety for selective drug delivery systems mediated through EGF” 

[10]. 

The PEGylation reduces the complement activation (innate immune system), 

improves solubility, reduces the interaction with blood cells and serum proteins, 

provides a better biocompatibility and prolongs blood circulation times [11]. 
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3.1.6. Aim of the work  

Currently there is no an efficient cure and only very limited progress has been 

made in the control of the glioblastoma course. Thus, the need for effective therapies 

is great. In particular this involves the drug delivery across the blood-brain barrier. 

Beyond molecular targeting of a specific cellular signalling pathway, more complex 

tumour-associated processes such as cell migration, immunosuppression or 

angiogenesis could also be targeted. 

Several studies proved that heat shock produces apoptosis on cancer cells 

resulting in tumour reduction. 

Even if the use of my previous PIOs was mainly dedicated to adipose tissue, I 

reasoned that changing the synthesis procedure could be also exploited to obtain a 

more efficient heating mediator and to induce a hyperthermic effect in glioblastoma 

cells as described in Chapter 1. 

The aim of the present study was to investigate the effect of applying 

intracellular superparamagnetic hyperthermic treatment (SMHT) in reducing the 

mass tumour as a novel strategy to counteract glioblastoma and the cell migration. 

It is worth noting that, similarly to many other nanoparticles, SPIONs surface 

may be functionalized and their distribution controlled by targeting strategies, thus 

focusing the hyperthermic treatment preferentially in the unhealthy cells. 

So I decided to functionalize IONs with the GE11 peptide targeting EGF 

receptor of glioblastoma cell line to have an active targeting so to induce the 

thermotherapy preferentially on the cancer cells reducing side effects. In fact for 

glioblastoma targeting GE11-PEG12NH2 peptide has been shown to mediate 

sequence-specific binding of model nanoparticles to EGFR expressing cells and 

remarkably increased uptake activity. 
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3.2. Materials and Methods 

3.2.1. Cell cultures 

U87-MG cell line (purchased by ATCC Manassas, VA), was cultured in Eagle’s 

Minimum Essential Medium (EMEM) with 10% of Fetal Bovine Serum (FBS), 1% 

of a mix of penicillin/streptomycin 1:1 and 1% of L-glutamine 200 mM, in 25 cm2 

plates and incubated at 37°C in humidified air with 5% CO2. Medium and L-

glutamine were purchased by Sigma-Aldrich (Italy), while serum and antibiotic mix 

were acquired by GIBCO Life Technologies (USA). When at confluence, cells were 

treated with trypsin-EDTA 1% (GIBCO Life Technologies, USA), harvested and 

centrifuged at 1200 rpm for 5 min. The supernatant was discarded and cells pellet 

was resuspended in 1 ml of complete medium, placed in 75 cm2 plates and incubated 

at 37°C and 5% of CO2 until 80% confluence was detectable. EGFR expression in 

U87MG cells was determined using flow cytometer FACSCanto (BD biosciences) 

with a primary anti-EGFR antibody and an anti-�FITC antibody secondary 

(millipore). 

3.2.2. GE11 Solid-phase Synthesis 

GE11-PEG12NH2 peptide is generated by standard Fmoc-Solid phase assisted 

synthesis (SPS). SPS offers a way to synthesize precisely defined oligomer structures. 

The SPS can be carried out manually with an overhead shaker using microreactors 

with polyethylene filters for vacuum filtration. The amount of resin depends on the 

determined resin loading and of the scale size (1/L [mmol/g] x scale size [mmol] = 

resin amount [g]). Approximately 10 µmol of resin correlate with approximately 20 

mg of yield. 

I always followed a repetitive synthesis cycle: 

• Coupling (60 min). 

• Washing (3× DMF, 3× DCM). 

• Kaiser’s Test (1). 

• Deprotection (2). 

• Washing (3× DMF, 3× DCM). 

• Kaiser’s Test. 
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A 2-chlorotrityl chloride resin is used as solid support. The Resin was firstly 

loaded in a syringe reactor and swelled with DCM for 20 min. Coupling of the Fmoc 

protected amino acids is performed with a fourfold excess (based on the quantity of 

free amines) whilst an identical excess of HOBt and PyBOP is used for preactivation. 

DIPEA is added with an eightfold excess (also related to free amines). HOBt and 

PyBOP are dissolved in 5 mL of DMF/g of resin and the (artificial) amino acids are 

dissolved in 5 mL of DCM/g of resin. The corresponding amount of DIPEA is 

added, the solutions are mixed for preactivation and added to the resin.  

Coupling, as well as deprotection are verified by testing for free amines 

qualitatively using Kaiser’s test. If the result is unsatisfying the previous coupling or 

deprotection step is repeated.  

For the GE11PEG12NH2 I followed this procedure: 

1. Considering resin loading and desired synthesis scale size, take the required 

amount of preloaded 2-chlorotritylchloride resin and transfer into the 

corresponding reactor. 

2. Swell the resin for 30 min with 10 mg/mL DCM. 

3. Synthesize the GE11 peptide by sequential coupling and deprotection of Fmoc-

L-Ile-OH, continue with Fmoc-Val-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-

Gln(Trt)-OH, Fmoc-L-Pro-OH, Fmoc-L-(Thr)-tBu-OH, Fmoc-Tyr(tBu)-OH, 

Fmoc-L-Gly-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Trp(BOC)-OH, Fmoc-L-His(Trt)-

OH and end with Fmoc-Tyr (t-Bu)-OH. 

4. Continue with the synthesis at the free amine by coupling Fmoc-dPEG12-NH2 

using the standard coupling conditions. 

5. Dry the peptide on high vacuum for 30 min 

6. Prepare a clevage cocktail (3) for cleaving the resin from the acid labile linker 

7. Apply 10 mg/mL of cleavage solution to resin for 90 min at RT and collect it 

afterwards. 

8. The resin is washed afterwards three times with 10 mg/mL resin of TFA. 

9. Allow the combined solutions to evaporate to 1mL and to precipitate in a 

dropwise manner into a 50 mL of ice cold precipitating solution (4). 

10. Centrifuge for 20 min (4000 g, 4°C), discard the supernanant and dry the 

precipitate under nitrogen (N2) stream. 
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11. Dissolve the obtained product in size exclusion running buffer and purify it by 

Size Exclusion Chromatography (SEC). 

12. Take the product containing fractions, and pool them into a tared 15 mL tube, 

then snap freeze and lyophilize. 

The GE11PEG12NH2 peptide were purified with Sephadex G10 size exclusion 

chromatography (SEC) medium and characterized with MALDI_TOFL instrument. 

At the end the obtained HCl salt of the oligomer was stored at -20 °C. 

Fmoc and Boc-protected α-amino acids were purchased from Iris Biotech, 

Marktredwitz, Germany) and Fmoc-N-amido-dPEG12-NH2 from Quanta 

Biodesign, Powell, Ohio, USA. DCM, N,N-Dimethylformamide (DMF), DIPEA. 1-

Hydroxybenzotriazole (HOBt). Benzotriazol-1-yl-oxy tripyrrolidinophosphonium 

hexafluorophosphate (Pybop®) were purchased from Multisyntech GmbH, Witten, 

Germany. 
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3.3. Results and Discussion 

Taking the advantage of the SPS I obtained a novel GE11-PEG12NH2 oligomer 

charatecterized by a well-defined chemical structure as described in Figure 5.  

 

 
Figure 5: Chemical structure of GE11 peptide conjugated with PEG12NH2.  
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The high yield of the synthesis and the purity of the obtained oligomer were 

confirmed by Mass Spectroscopy (Figure 6). The final molecular weight of the above 

described GE11PEG12NH2 oligomer was determined as 2141,3 Da. 

 
Figure 6: Mass Spectrum of GE11-PEG12NH2.  
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3.4. Conclusions 

Nowadays the need for an efficient therapy of the glioblastoma disease is great. 

The prognosis for the patients with glioblastoma is always poor and the treatments 

are ineffective and often very toxic. 

Thus, there is an urgent need to find out new solutions to rapidly and efficiently 

reduce the tumour mass using safe specific and physiologically mild approaches. 

Thermotherapy was described as a very innovative and efficient treatment that colud 

be combined with surgery. However is necessary to develop a suitable, stable and 

efficient heating mediator. 

Unfortunately, as described in Chapter 1 IONs obtained until now need to be 

optimized realizing a best efficient heating mediator. 

However, the result of the SPS suggested that once obtained suitable IONs, they 

could be immediately functionalized with the GE11 peptide realizing an active 

targeting thermotherapy for glioblastoma. In fact the glioblastoma cells were 95% 

positive for the EGF receptor and the GE11 peptide is the best ligand for this 

receptor. 

This approach might be used as an innovative anti-glioblastoma strategy. The 

death of the glioblastoma cells might take advantage of the hyperthermic property of 

superparamagnetic iron oxide nanoparticles hypothesizing a “thermal stimuls” 

responsible of the “killing effect”. 

Notably, the studies described in literature, the promising thermotherapy effect 

and the need of realizing an efficient therapy suggest continuing with the synthesis 

optimization of the IONs, with the functionalization with the GE11 peptide 

targeting selectively the glioblastoma cell line.  
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3.6. Notes 

(1) The Kaiser’s test solutions is based on 80% (w/v) phenol in EtOH; 5% (w/v) 

ninhydrin in EtOH; KCN/pyridine (2 mL of 1 mM KCN in 98 mL of pyridine). 2% 

1 mM KCN (v/v) in pyridine. 

(2) Fmoc-deprotection solution is composed of 20% (v/v) piperidine/DMF.The 

Capping solution: 80/15/5 (v/v/v) DCM/MeOH/DIPEA. 

(3) The Cleavage cocktail: 95/2.5/2.5 (v/v/v) trifluoro acetic acid 

(TFA)/triisopropylsilane (TIS)/dH2O. 

(4) The Precipitating solution: 1/1 (v/v) methyl tert-butyl ether (MTBE)/n-hexane. 
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General Conclusions  
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During my PhD I have studied the therapeutic potential of Hyperthermia 

mediated by SPIONs in two different in vitro cellular models of two relevant 

hyperproliferative diseases: 3T3-L1 adipocytes for obesity (Chapter 2) and U87-MG 

for Glioblastoma (Chapter 3). 

Given the nanostructure of these SPIONs, there is a broad range of options in 

their construction and functionalization of their surface, which makes it possible to 

endow them with multiple and specific properties.  
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However the efficacy and safety of nanoconstructs must be preserved and 

validated by in vitro studies in order to avoid side effects, in view of the development 

of therapeutic approaches. 

Based on these considerations, in the present thesis I have taken advantage of 

SMHT to address the following issues of biomedical relevance: 

• In Chapter 1 I have presented the possibility to synthesize efficient SPIONs as 

heating mediator. My results suggested that only one type of SPIONs, namely 

PIONs, were able to induce heat when subjected to AMF and only them could 

provide heat capacity sufficiently suitable for the utilization as heating mediators 

in our in vitro model. These PIOs were stable in physiological milieu for at least 6 

months and were covered by an amphiphilic polymer realizing nanoparticles that 

could be functionalized with peptides for active targeting. 

• In Chapter 2, I have carried on in vitro studies on adipocyte cell line, using 

PIONs as heating mediators whereby SMHT causes an impact on the adipocytes 

triglyceride metabolism. The results of our study suggested that targeting the 

energy storage of white adipose tissue with SMHT might be used as an 

innovative anti-obesity strategy promoving an anti-adipogenic effect. Notably, 

the treatment results in a significant delipidation persisting, for at least 24 h, in 

the absence of cell death, damage or dedifferentiation. The biological reasons of 

such a rapid and massive lipolytic effect remain unclear. 

• In Chapter 3, I have presented the SMHT application on glioblastoma cell line. 

This study is very preliminar so I could only show the perspective of this 

application. In the first step I tried to synthesyze a more efficient SPIONs-

heating mediator, but the bad heating results suggested to optimize the synthesis 

procedure. However I realized a very efficient oligomer characterized by the 

sequence GE11PEG12NH2 as targeting agent for the glioblastoma cell line. Once 

obtained the suitable IONs they could be immediately functionalized with the 

GE11 oligomer realizing an active targeting thermotherapy for glioblastoma. In 

fact the glioblastoma cells were 95% positive for the EGF receptor and the 

GE11 peptide is the best ligand for this receptor. This approach might be used 

as an innovative anti-glioblastoma strategy. The death of the glioblastoma cells 

might take advantage of the hyperthermic property of superparamagnetic iron 
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oxide nanoparticles hypothesizing a “thermal stimuls” responsible of the “killing 

effect”. 

In conclusion, we were able to produce very promising heating mediator for 

SMHT with high efficiency of heating, stability and good safety for the surrounding 

microenvironment of therapeutic agents in case of adipocyte cell line. The success of 

this pioneering approach in vitro opens promising perspectives for the application of 

SMHT in vivo as an innovative safe and physiological mild approach against obesity 

and the studies described in literature, the promising thermotherapy effect and the 

need of realizing an efficient therapy suggested us to continue with the synthesis 

optimization of the IONs, with the functionalization with the GE11 peptide 

targeting selectively the glioblastoma tumour. 


