
A splitting approach

for the magnetic Schrödinger equation

M. Caliari∗

Dipartimento di Informatica, Università di Verona, Italy
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Abstract

The Schrödinger equation in the presence of an external electromagnetic field is
an important problem in computational quantum mechanics. It also provides
a nice example of a differential equation whose flow can be split with benefit
into three parts. After presenting a splitting approach for three operators with
two of them being unbounded, we exemplarily prove first-order convergence of
Lie splitting in this framework. The result is then applied to the magnetic
Schrödinger equation, which is split into its potential, kinetic and advective
parts. The latter requires special treatment in order not to lose the conservation
properties of the scheme. We discuss several options. Numerical examples in
one, two and three space dimensions show that the method of characteristics
coupled with a nonequispaced fast Fourier transform (NFFT) provides a fast
and reliable technique for achieving mass conservation at the discrete level.

Keywords: magnetic Schrödinger equation, exponential splitting methods,
convergence, Fourier techniques, nonequispaced fast Fourier transform

1. Introduction

In quantum mechanics a lot of phenomena occur under the influence of an
external electromagnetic field. Typical examples include the Zeeman effect,
Landau levels and superconductivity. So, quite a few problems in computa-
tional solid state physics and quantum chemistry require the solution of the
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Schrödinger equation in the presence of an electromagnetic field

iε∂tu =
1

2
(iε∇+A)2u+ V u, t ≥ 0, x ∈ R

d,

u(0, x) = u0(x).
(1)

Here, the unknown u = u(t, x) ∈ C is the quantum mechanical wave function,
V (t, x) ∈ R is the scalar potential and A(t, x) = (A1(t, x), . . . , Ad(t, x))

T ∈ R
d

is the vector potential. In addition ε ∈ (0, 1] denotes the small semi-classical
parameter which is the scaled Planck constant. The equation is considered
subject to vanishing boundary conditions, i.e., lim|x|→∞ u(t, x) = 0. We recall
that mass is a conserved quantity of this equation.

Exponential splitting schemes constitute a well-established class of methods
for the numerical solution of Schrödinger equations (see, e.g., [1, 4, 7, 8, 11]). In
this approach, the kinetic part is solved in Fourier space, which gives spectral
accuracy in space, whereas the multiplicative potential is integrated pointwise
in physical space. The transformation between Fourier and physical space is
carried out using the fast Fourier transform, which results in an overall fast
algorithm. In our situation, however, when the vector potential depends on
the position, we get an additional advection term, which cannot be handled
efficiently with Fourier techniques.

Thus, the structure of problem (1) suggests to split the equation into three
subproblems: a potential step which collects the scalar terms of the potentials
(which are pointwise multiplications), a kinetic step which involves the Lapla-
cian, and an advection step which results from the vector potential. For carrying
out a time step, each of these steps is solved separately and their solutions are
recombined to define the numerical approximation. This is the underlying idea
of exponential splitting schemes (see [14, 5, 12]). In this paper we analyse a
first-order method, the so-called Lie splitting. Note, however, that higher-order
methods can be analysed in exactly the same way, if the underlying problem
has enough spatial smoothness, see [6, 7].

Splitting the magnetic Schrödinger equation for the purpose of its numerical
solution into three subproblems is not a new idea. In their recent paper [9],
Jin and Zhou proposed such a scheme. For the solution of the advection step,
they considered a semi-Lagrangian approach. Such an approach has been used
in many other fields as well (see, e.g., [13, 2, 3]).

Our present paper differs from [9] mainly in the following aspects: we give
a framework for carrying out an abstract convergence proof for exponential
splitting methods applied to (1), and we give a detailed error analysis for the
Lie splitting scheme by identifying the required smoothness assumptions on the
data. Moreover, we address conservation properties of the scheme and identify
an alternative to Lagrange interpolation, as the latter does not conserve mass.

The outline of this paper is as follows. We start in section 2 with an abstract
convergence result for splitting into three subproblems. Guided by the prop-
erties of the magnetic Schrödinger equation, we present an analytic framework
that allows us to prove convergence for exponential splitting schemes. We ex-
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emplify this by proving that Lie splitting applied to (1) has order of convergence
one, as expected.

In section 3 we apply a gauge transformation to the magnetic Schrödinger
equation to obtain the equivalent formulation (17) with a divergence-free vector
potential. This formulation is used in (18) to define the employed splitting.
In the following section we show how to compute the solution of the kinetic
step in spectral space and that of the potential step in physical space. For
the advection step we use the method of characteristics. However, since the
characteristic curves do not cut the previous time horizon at grid points, in
general, special care has to be taken. We compare three different possibilities,
namely discrete Fourier series evaluation, local polynomial interpolation and
Fourier series evaluation by a nonequispaced fast Fourier transform (NFFT),
see [10]. The latter allows us to evaluate a Fourier series at an arbitrary set of
points in a fast way. To our knowledge, this transform was not yet applied in
the present context.

In section 7 we present some numerical results. Our main goal is the compar-
ison of the different approximations used in the advection step. In particular,
we study how well the considered numerical algorithms preserve mass, and how
they compare in terms of computational efficiency.

2. Splitting into three operators

For the numerical solution of (1), we propose a splitting approach. Motivated
by the particular form of the vector field, which is the sum of a kinetic, a
potential and an advective part, we consider a splitting into three terms. For
this purpose, we formulate (1) as an abstract initial value problem

∂tu = (A+ B + C)u, 0 ≤ t ≤ T,

u(0) = u0
(2)

in a Banach space X with norm ‖·‖. Below, we will state an analytic framework
for these operators A, B and C that, on the one hand, is sufficiently general to
include the magnetic Schrödinger equation as an example and, on the other
hand, allows us to carry out an abstract convergence proof for (exponential)
splitting methods. We will illustrate our approach by analysing in detail the
Lie splitting scheme1

un+1 = eτCeτAeτBun, (3)

where τ denotes the step size and un is the numerical approximation to the true
solution u(t) = et(A+B+C)u(0) at time t = tn = nτ . We will show below that
the Lie splitting scheme is first-order convergent. Let us stress, however, that
exactly the same ideas can be used to analyse exponential splitting methods of
higher order.

1Throughout the paper eτLu0 will denote the exact solution at time τ of the abstract
(linear) differential equation ∂tu = Lu with initial value u(0) = u0.
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In a first step, we will study the local error ‖eτCeτAeτBu(t)−u(t+τ)‖ of Lie
splitting along the exact solution. For this purpose, we employ the following
assumption.

Assumption 1. Let B be a bounded operator, and let A, C, and A+C generate
strongly continuous semigroups etA, etC , and et(A+C) on X. We assume that
the following bounds hold for 0 ≤ t ≤ T along the exact solution

‖[A, C]esAu(t)‖ ≤ c1, (4a)

‖CesABu(t)‖ ≤ c2, (4b)

‖C2esAu(t)‖ ≤ c3, (4c)

‖CeσACes(A+C)u(t)‖ ≤ c4, (4d)

‖[A+ C,B]es(A+C)u(t)‖ ≤ c5 (4e)

with some constants c1, c2, c3, c4, and c5 that do not depend on 0 ≤ σ, s ≤ T .

Next, we recall the definition of the ϕk functions, which play some role in
our analysis. For complex z and integer k ≥ 1, we set

ϕk(z) =

∫ 1

0

e(1−θ)z θk−1

(k − 1)!
dθ. (5)

These functions are uniformly bounded in the complex half-plane Re z ≤ 0 and
analytic in C. Let E be the generator of a strongly continuous semigroup. Then,
for all k ≥ 1, the following identity holds in the domain of Ek

eτE =
k−1∑

j=0

τ j

j!
Ej + τkEkϕk(τE). (6)

We are now in the position to state the local error bound.

Theorem 1 (Local error bound). Under Assumption 1, the following bound

for the local error holds

‖eτCeτAeτBu(t)− u(t+ τ)‖ ≤ Cτ2, t ∈ [0, T − τ ] (7)

with a constant C that does not depend on t and τ .

Proof. Our proof uses ideas developed in [7]. Since B is bounded, the numer-
ical solution can be expanded in the following way

eτCeτAeτBu(t) = eτCeτA
(
I + τB +O(τ2)

)
u(t)

= eτCeτAu(t)
︸ ︷︷ ︸

P1

+ τeτCeτABu(t)
︸ ︷︷ ︸

Q1

+O(τ2). (8)
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The exact solution, on the other hand, is expanded with the help of the variation-
of-constants formula. Applying this formula twice yields the representation

eτ(A+B+C)u(t) = eτ(A+C)u(t) +

∫ τ

0

es(A+C)Be(τ−s)(A+B+C)u(t)ds

= eτ(A+C)u(t)
︸ ︷︷ ︸

P2

+

∫ τ

0

es(A+C)Be(τ−s)(A+C)u(t)ds

︸ ︷︷ ︸

Q2

+O(τ2).
(9)

Collecting all the terms, we can rewrite the local error as

eτCeτAeτBu(t)− u(t+ τ) = P +Q+O(τ2), (10)

where P = P1 − P2 and Q = Q1 −Q2.
For expanding P1 we employ the ϕ2 function (see (6)) to get

eτCeτAu(t) = eτAu(t) + τCeτAu(t) + τ2C2ϕ2(τC)eτAu(t).

Using the variation-of-constants formula twice, we can rewrite P2 as

eτ(A+C)u(t) = eτAu(t) +

∫ τ

0

esACe(τ−s)Au(t) ds

+

∫ τ

0

esAC
∫ τ−s

0

eσACe(τ−s−σ)(A+C)u(t) dσds.

Thus, to bound P , we need first to estimate

τCeτAu(t)−
∫ τ

0

esACe(τ−s)Au(t)ds, (11)

and then to bound the remaining terms. Let f(s) = esACe(τ−s)Au(t). Then,
the expression (11) becomes

τf(0)−
∫ τ

0

f(s)ds = τf(0)−
∫ τ

0

(

f(0) +

∫ s

0

f ′(σ)dσ

)

ds = −
∫ τ

0

∫ s

0

f ′(σ)dσds,

and can be bounded with assumption (4a)

∥
∥
∥
∥

∫ τ

0

∫ s

0

eσA[A, C]e(τ−σ)Au(t)dσds

∥
∥
∥
∥
≤ cτ2. (12)

Furthermore, by employing assumptions (4c) and (4d), the remaining terms in
P can be estimated as

‖τ2C2ϕ2(τC)eτAu(t)‖ = ‖τ2ϕ2(τC)C2eτAu(t)‖ ≤ cτ2 (13)

and ∥
∥
∥
∥

∫ τ

0

esAC
∫ τ−s

0

eσACe(τ−s−σ)(A+C)u(t)dσds

∥
∥
∥
∥
≤ cτ2. (14)
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Taking all together, we have shown that P = O(τ2).
As regards Q, by setting g(s) = es(A+C)Be(τ−s)(A+C)u(t) and proceeding in

the same way as for (11) we obtain

Q = τeτCeτABu(t)−
∫ τ

0

g(s) ds

= τeτCeτABu(t)− τg(τ)−
∫ τ

0

∫ s

τ

g′(σ) dσds

= τeτCeτABu(t)− τeτ(A+C)Bu(t)

−
∫ τ

0

∫ s

τ

eσ(A+C)[A+ C,B]e(τ−σ)(A+C)u(t) dσds.

The double integral is bounded with the help of assumption (4e) by cτ2. For
the remaining two terms, we use that

eτCeτABu(t) = eτABu(t) + τCϕ1(τC)eτABu(t)

and employ once more the variation-of-constants formula

eτ(A+C)Bu(t) = eτABu(t) +
∫ τ

0

esACe(τ−s)(A+C)Bu(t) ds.

Assumption (4b) shows that their difference is again bounded by cτ2. From this
we conclude the assertion. �

Assumption 1 guarantees that the semigroups, generated by A, B, and C
satisfy the bounds

‖etA‖ ≤M1e
tω1 , ‖etB‖ ≤ etω2 , ‖etC‖ ≤M3e

tω3 , t ≥ 0

for some constants M1 ≥ 1, M3 ≥ 1, ω1, ω2, and ω3. Moreover, it is possible to
choose an equivalent norm ‖ · ‖∗ on X such that ‖etA‖∗ ≤ etωA . Unfortunately,
this is still not enough to prove stability, in general. Therefore, we impose an
additional assumption.

Assumption 2. There is a constant ωC such that ‖etC‖∗ ≤ etωC for all t ≥ 0.

Under this additional assumption, it is easy to show stability.

Theorem 2 (Stability). Under Assumptions 1 and 2, Lie splitting is stable,

i.e., there is a constant C such that

∥
∥
∥

(
eτCeτAeτB

)j
∥
∥
∥ ≤ C (15)

for all j ∈ N and τ ≥ 0 satisfying 0 ≤ jτ ≤ T . �

Proof. Our assumptions imply that
∥
∥eτCeτAeτB

∥
∥
∗ ≤ eτ(ωA+ωB+ωC) from which

the assertion follows. �
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From consistency and stability, convergence follows in a standard way.

Theorem 3 (Global error bound). Under Assumptions 1 and 2, the Lie

splitting discretization (3) of the initial value problem (2) is convergent of or-

der 1, i.e., there exists a constant C such that

‖un − u(tn)‖ ≤ Cτ,

for all n ∈ N and τ > 0 satisfying 0 ≤ nτ = tn ≤ T .

Proof. We express the global error with the help of a telescopic sum

un − u(tn) =
((

eτCeτAeτB
)n − enτ(A+B+C)

)

u(0)

=

n−1∑

j=0

(
eτCeτAeτB

)n−j−1 (
eτCeτAeτBu(tj)− u(tj+1)

)

and use the estimates (7) and (15). �

3. Example: the magnetic Schrödinger equation

The electromagnetic field in R
3 is the combination of the electric field E

and the magnetic field B. Both fields depend on time and space, in general.
Mathematically, they are given by a scalar potential V and a vector potential
A, respectively

E = −∇V − ∂A

∂t
, B = ∇×A.

Making use of the fact that we can impose conditions on the potentials as long as
we do not affect the resulting fields, we will apply the following transformations

ũ(t, x) = u(t, x) eiλ(t,x),

Ã(t, x) = A(t, x) + ε∇λ(t, x),
Ṽ (t, x) = V (t, x)− ε∂tλ(t, x).

(16)

One natural choice is to impose a so-called Coulomb gauge, i.e., to select λ in
such a way that ∇· Ã = 0. Consequently, this gauge λ has to satisfy the Poisson
equation ε∆λ = −∇ ·A.

Applying (16) to the Schrödinger equation (1) and dropping right away the
tildes, we obtain the following problem

iε∂tu = −ε
2

2
∆u+ iεA · ∇u+

1

2
|A|2u+ V u, t ∈ [0, T ],

u(0, x) = u0(x)

(17)

with a divergence-free vector potential A.
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We are now in the position to give a precise formulation of the three subprob-
lems that are used in our splitting. Henceforth, they will be called potential,
kinetic and advection step, respectively:

∂tu = Bu = − i

ε

(
1

2
|A|2 + V

)

u, (18a)

∂tu = Au =
iε

2
∆u, (18b)

∂tu = Cu = A · ∇u, ∇ ·A = 0. (18c)

The kinetic step (18b) can be handled analytically in Fourier space, whereas
the potential step (18a) is easily performed in physical space. For the advection
step (18c) we will present three modifications of a semi-Lagrangian method in
section 5 below.

An important feature of (1) and (17) is the conservation of mass m =
‖u(t, ·)‖2L2 , i.e., ∂

∂t‖u(t, ·)‖2L2 = 0. The split step solution based on (18) is
mass conserving as well. Indeed, the kinetic step preserves the L2 norm due
to Parseval’s identity. The modulus of the solution of the potential step is pre-
served, and we are also able to show that the advection step conserves the mass.
This is seen by multiplying (18c) by u

u ∂tu− uA · ∇u = 0

and adding this equation to its complex conjugate, which results in

∂t|u|2 = A · ∇|u|2.

Integrating this last equation by parts shows

∂t‖u‖2L2 =

∫

∂t|u|2 dx =

∫

A · ∇|u|2 dx = −
∫

|u|2∇ ·Adx = 0,

where the last identity follows from the Coulomb gauge.
Henceforth, we consider (17) and (18) on the hyperrectangle Ω = Πd

i=1[ai, bi),
subject to periodic boundary conditions. In particular, the potentials V and A
are assumed to be periodic functions on Ω. Then, all what has been said in this
section remains valid.

We finally remark that our splitting approach also works ifA is not divergence-
free. In this case the potential operator is given by

B = − i

ε

(
1

2
|A|2 + V

)

+
1

2
∇ ·A,

whereas the other two operators stay the same. However, in this case, we will
lose the conservation of mass for the potential step.
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4. Space discretization, potential and kinetic step

We discretize the hyperrectangle Ω =
∏d

i=1[ai, bi) by a regular grid. For
1 ≤ i ≤ d, let Ni ≥ 2 be an even integer and let

IN = Z
d ∩

d∏

i=1

[
−Ni

2 ,
Ni

2

)
. (19)

For j = (j1, . . . , jd) ∈ IN we consider the grid points xj with components

xji =
ai + bi

2
+

ji
Ni

(bi − ai), 1 ≤ i ≤ d.

For performing the potential step, we solve the ordinary differential equation (18a)
at each grid point xj . More precisely, starting with an initial value v at time
tn, we solve

ẇ(s) = − i

ε

(
1

2

∣
∣A(tn + s, xj)

∣
∣
2
+ V (tn + s, xj)

)

w(s), w(0) = v(xj)

to obtain
(
eτBv

)
(xj) = w(τ).

If the potentials A and V are time-independent, the analytic solution is readily
available. Otherwise, a quadrature method (up to machine precision) can be
employed.

The kinetic step is approximated in Fourier space. For a given function

v :
d∏

i=1

[ai, bi) → C,

let v̂k denote its Fourier coefficients, i.e.

v(x) =
∑

k∈IN

v̂kEk(x), Ek(x) =

d∏

i=1

e2πiki(xi−ai)/(bi−ai)

√
bi − ai

,

where x = (x1, . . . , xd). Further, let

λi =
iε

2

(
2πki
bi − ai

)2

.

The Fourier coefficients of eτAv are then given by eτλi v̂ki
. The transformation

between physical and Fourier space is usually carried out with the fast Fourier
transform.
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5. Advection step

In this section we describe the solution of the advection step

{

∂tv(t, x) = A(x) · ∇v(t, x), t ∈ [0, τ ],

v(0, x) = v0(x).
(20)

Our approach is based on the method of characteristics, i.e., we make use of the
curves s 7→ x(s) ∈ R

d satisfying the d-dimensional system of ordinary differential
equations

ẋ(s) = −A(x(s)).
Since the solution of the advection equation (20) is constant along characteris-
tics, we have v(τ, xj) = v(0, xj(0)) for each grid point xj , j ∈ IN , where xj(0)
denotes the solution of

{

ẋj(s) = −A(xj(s)), s ∈ [0, τ ],

xj(τ) = xj
(21)

at s = 0. This system can be solved once and for all for each grid point with an
explicit method at high precision, if the time step τ is kept constant. However,
since xj(0) is not a grid point, in general, the value v(0, xj(0)) = v0(x

j(0)) has
to be recovered. We describe here three different procedures for achieving the
evaluation of v0(x

j(0)) at the set of
∏

iNi points {xj(0)}j . For the sake of
simplicity, we only describe the one-dimensional case in detail. However, we
also report the overall computational cost for the general d-dimensional case.

We remark that the same approach can be used for time dependent potentials
A(t, x). Instead of (21) one has to solve the non-autonomous problem

{

ẋj(s) = −A(tn + s, xj(s)), s ∈ [0, τ ],

xj(τ) = xj .
(22)

Its numerical solution at s = 0 is again used to define the sought-after approxi-
mation v(τ, xj) = v(0, xj(0)).

5.1. Direct Fourier series evaluation

Since the initial value v0(x) of the advection step is the result of the solution
of the kinetic step, the function v0 is known through its Fourier coefficients
{v̂k}k. It is therefore possible to directly evaluate

v0(x
j(0)) =

∑

k∈IN

v̂kEk(x
j(0)). (23)

In the d-dimensional case, the
∏

iN
2
i values Ek(x

j(0)) can be precomputed once
and for all, if the time step τ is constant. The evaluation cost of (23) at the
point set {xj(0)}j is then O(

∏

iN
2
i ) at each time step.
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5.2. Local polynomial interpolation

Another possibility (see, for instance, [13, 9, 3]) is local polynomial interpo-
lation. It is possible to evaluate v0(x) at the grid points {xj}j with an inverse
fast Fourier transform of cost O (N1 · . . . ·Nd · (logN1 + . . .+ logNd)). An ap-
proximation of the values v0(x

j(0)) can then be obtained by local polynomial
interpolation

v0(x
j(0)) ≈

∑

k∈Ip

v0(x
j+k)Lj+k(x

j(0)). (24)

Here {xj+k}k is the set of the p grid points, p even, satisfying

xj−p/2 < . . . < xj−1 ≤ xj(0) < xj < . . . < xj+p/2−1,

and Lj+k denotes the elementary Lagrange polynomial of degree p−1 that takes
the value one at xj+k and zero at all the other p−1 points. Of course, the points
xj+k and the corresponding values v0(x

j+k) have to be taken by periodicity if
necessary.

In the d-dimensional case, for a constant time step τ it is possible to pre-
compute once and for all the elementary Lagrange polynomials at the points
{xj(0)}j (for a total amount of pd

∏

iNi values). Then, the evaluation of (24)
at each time step requires O(pd

∏

iNi) operations.

5.3. Fourier series evaluation by NFFT

The third explored possibility is the evaluation of (23) by means of an ap-
proximate fast Fourier transform. Among others, we tested the nonequispaced
fast Fourier transform (NFFT) by Keiner, Kunis and Potts [10]. The computa-
tional cost of such an approach is O

(
N1 · . . . ·Nd ·(logN1+ . . .+logNd+log |ǫ|)

)
,

where ǫ is the desired accuracy.
For the readers’ convenience, we briefly sketch the NFFT algorithm in one

dimension, using the original notation of [10]. Given some coefficients {f̂k}k∈IN ,
N even, and a set of arbitrary points {xj}j ⊂

[
− 1

2 ,
1
2

)
, the aim is a fast evalu-

ation of the one-periodic trigonometric polynomial

f(x) =
∑

k∈IN

f̂ke
−2πikx (25)

at the points {xj}j . In the first step, f(x) is replaced with the ansatz

s1(x) =
∑

ℓ∈In

gℓ ϕ̃
(
x− ℓ

n

)
, σ ≥ 2, n = σN even,

where {gℓ}ℓ are some coefficients to be defined later and

ϕ̃(x) =
∑

r∈Z

ϕ(x+ r)
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is the one-periodic version of a window function ϕ : R → R. The window func-
tion ϕ is chosen in such a way that ϕ̃ has a uniformly convergent Fourier series

ϕ̃(x) =
∑

k∈Z

ck(ϕ̃)e
−2πikx.

The default window function used by NFFT is the so called Keiser–Bessel func-

tion

ϕ(x) =
1

π







sinh(β
√
m2 − n2x2)√

m2 − n2x2
for |x| < m

n
,

sin(β
√
n2x2 −m2)√

n2x2 −m2
for |x| > m

n
,

β for |x| = m

n

with the shape parameter β = π(2 − 1/σ). The value of m depends on the
desired accuracy ǫ and is chosen m = 8 for double precision. The oversampling

factor σ is defined by

σ =
2⌈log2

2N⌉

N
.

That is, n = σN is the smallest power of two with 2 ≤ σ < 4. Now we plug the
Fourier series expansion of ϕ̃(x) into s1(x) in order to get

s1(x) =
∑

ℓ∈In

gℓ ϕ̃
(
x− ℓ

n

)

=
∑

ℓ∈In

gℓ
∑

k∈Z

ck(ϕ̃)e
−2πik(x− ℓ

n )

=
∑

k∈Z

(
∑

ℓ∈In

gℓe
2πik ℓ

n

)

ck(ϕ̃)e
−2πikx

and apply a cutoff in the frequency domain

s1(x) ≈
∑

k∈In

(
∑

ℓ∈In

gℓe
2πik ℓ

n

)

ck(ϕ̃)e
−2πikx =

∑

k∈In

ĝkck(ϕ̃)e
−2πikx. (26)

Comparing now equations (25) and (26), we see that the coefficients {ĝk}k are
simply given by

ĝk =







f̂k
ck(ϕ̃)

, k ∈ IN ,

0, k ∈ In \ IN ,
and the values {gℓ}ℓ can be recovered by a fast Fourier transform of length n.
The parameterm is then used as a cutoff to approximate in practice the window
function ϕ(x) with

ψ(x) = ϕ(x)χ[−m
n ,mn ]

(x).
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In this way, s1(x) is further approximated by

s1(x) ≈ s(x) =
∑

ℓ∈In

gℓ ψ̃
(
x− ℓ

n

)
.

Now we use that ψ̃ vanishes outside of −m
n ≤ x − ℓ

n ≤ m
n . Thus, for fixed xj ,

the above sum contains at most 2m+ 1 terms different from zero. Finally, s(x)
is evaluated at the set {xj}j , providing the desired approximation of {f(xj)}j .

6. Application to the magnetic Schrödinger equation

In this section we exemplify the assumptions of Theorem 3 for the magnetic
Schrödinger equation (17). For this purpose, we choose X = L2(Ω) with Ω =
∏d

i=1[ai, bi) and assume that the potentials A and V are sufficiently smooth.
Note that the potential operator B is bounded, whereas the kinetic operator A
and the advection operator C are both unbounded. We start with the verification
of Assumption 1.

⋄ Condition (4a): Since etAw is the exact solution of the problem ∂tu = Au,
u(0) = w, it preserves the smoothness of the initial data. Further, the
commutator [A, C] is a second-order differential operator

[A, C]u =
iε

2
[∆, A · ∇]u

=
iε

2

(

∆(A · ∇u)−A · ∇(∆u)
)

.

So, we need to assume that the initial data are twice differentiable.

⋄ Conditions (4b), (4c), and (4d): As C is a first-order differential operator,
it is again sufficient to require that the initial data are twice differentiable.

⋄ Condition (4e): The commutator is a second-order differential operator

[A+ C,B]u =

[
iε

2
∆ +A · ∇,− i

ε

(
1

2
|A|2 + V

)]

u,

so the same smoothness as before is required.

Stability is easily verified. From the conservation of mass discussed at the
end of section 3, we get ‖eτA‖L2 = 1 and ‖eτC‖L2 = 1.

Note that the above bound for the advection semigroup only holds in the
Coulomb gauge setting. However, by the method of characteristics, the solution
of the advection step is of the form u(t, x(t)) = u0(x(0)), where x(t) = x(0) +
tA(x(0)) +O(t2). Setting ξ = x(0), we have

‖u‖2L2 =

∫

Ω

|u(x)|2dx =

∫

Ω

|u0(ξ)|2dx =

∫

Ω

|u0(ξ)|2
∣
∣det

(
I + tA′(ξ) +O(t2)

)∣
∣ dξ.

Under the assumption that the partial derivatives of A are bounded, we have

‖u‖2L2 ≤ ‖u0‖2L2 + Ct‖u0‖2L2 ≤ (1 + Ct)‖u0‖2L2 ≤ e2tωC‖u0‖2L2 ,

which is exactly the weaker bound required in Assumption 2.
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Figure 1: Temporal errors (stars, circles) for the Lie and Strang splitting methods and refer-
ence orders (lines) for the one-dimensional example.

7. Numerical experiments

The first numerical example is a variation of [9, Example 2]. The vector
potential is chosen as A(x) = sin(2πx)/5 + 1/5 and the scalar potential as
V (x) = cos(2πx)/5 + 4/5. The initial value is u0(x) =

√

ρ0(x) exp(iS0(x)/ε),
where

ρ0(x) = e−50(x− 1

2 )
2

, S0(x) = − log
(
e5(x−

1

2
) + e−5(x− 1

2
)
)

5
, ε =

1

128
.

Note that this initial value is not periodic. However, due to the exponential
decay of ρ0(x), the problem can be solved numerically up to time T = 0.42 in the
space interval [0, 1] by assuming periodic boundary conditions. The Coulomb
gauge transformation yields

λ(x) =
cos(2πx)

10πε
.

In Figure 1 we plot the global errors of Lie splitting at the final time T = 0.42
for various time steps and N = 2048 spatial discretization points. The reference
solution was obtained with 512 time steps. We include in this figure the error
behavior of Strang splitting, defined by

un+1 = e
τ
2
Be

τ
2
AeτCe

τ
2
Ae

τ
2
Bun. (27)

In this double logarithmic diagram, the errors of a method lie on a straight
line of slope q, where q denotes the order of the method. Both, Lie and Strang
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splitting show their expected orders of convergence. Lie splitting has order one,
as proved in Theorem 3, whereas Strang splitting converges with order two.

Note that the computationally most expensive task in the employed splitting
approach is the advection step. Therefore, we order the steps in (27) in such a
way that the advection equation is solved only once in each time step. In this
way, Strang splitting provides much more accuracy without being significantly
more expensive than Lie splitting.

Next, we compare the three different numerical realizations of the advection
step, namely by local interpolation, by direct Fourier series evaluation (DFT)
and by NFFT. In Table 1 we report the error in mass conservation and the
required CPU time for various values of N . The number of time steps is fixed to
n = 128. The error in mass conservation is measured as the maximum deviation
from the initial mass on the discrete level (l2 in space and l∞ in time).

interpolation Fourier

N p = 2 p = 4 p = 6 p = 8 DFT NFFT

128 mass 1.4e-01 1.8e-02 2.1e-03 2.8e-04 2.8e-15 8.6e-14

CPU 0.13 0.12 0.12 0.12 0.10 0.16

256 mass 9.4e-02 2.7e-03 7.2e-05 2.5e-06 2.0e-15 1.0e-14

CPU 0.13 0.13 0.13 0.14 0.19 0.17

512 mass 5.2e-02 2.9e-04 2.0e-06 1.8e-08 3.6e-15 1.7e-14

CPU 0.16 0.19 0.17 0.16 0.27 0.19

1024 mass 1.6e-02 1.8e-05 3.0e-08 9.6e-11 4.0e-15 5.5e-14

CPU 0.22 0.23 0.23 0.24 0.56 0.23

2048 mass 4.2e-03 1.1e-06 4.9e-10 3.8e-12 3.3e-15 1.3e-14

CPU 0.36 0.37 0.37 0.37 1.42 0.33

Table 1: Error in mass conservation and CPU time (in seconds) for the one-dimensional
numerical example.

Due to the compressive behavior of S′
0(x), which acts as an initial velocity,

the evolution develops caustics and the numerical solution requires a sufficiently
large numberN of Fourier modes in order to reproduce accurate physical observ-
ables. While DFT and NFFT always preserve the mass almost up to machine
precision, the polynomial methods become comparable only with the largest
tested value of N and at polynomial degree 7. For this degree, they are slightly
more expensive than the NFFT approach.

The second numerical experiment is set in the two-dimensional domain
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[−5, 5]2 with

A1(x, y) = −3 sin
(

2π(y+5)
10

)

,

A2(x, y) = 3 sin
(

2π(x+5)
10

)

,

V (x, y) = 20 cos
(

2π(x+5)
10

)

+ 20 cos
(

2π(y+5)
10

)

+ 40,

and initial value

u0(x, y) =

√√
10
π exp

(

−
√
10
2

(
(x− 1)2 + y2

))

.

The semi-classical parameter is chosen ε = 1, the final time T = 50 and the
number of time steps n = 1000. In Table 2 we compare the three methods that
only differ in the treatment of the advection step. In particular, we compare
the behavior of tensor interpolation at 4×4 and 6×6 points with direct Fourier
series evaluation and NFFT with the default value m = 8 and the smaller values
m = 6 and m = 4, respectively.

Fourier

interpolation NFFT

N1 = N2 p = 4 p = 6 DFT m = 8 m = 6 m = 4

128 mass 1.0e-01 2.5e-03 9.9e-11 1.0e-10 2.4e-10 2.2e-07

CPU 25.2 33.5 174.3 23.7 22.8 20.6

256 mass 6.9e-03 3.9e-05 1.3e-08 1.3e-08 2.0e-08 2.5e-02

CPU 101.7 117.9 2254 99.6 85.6 87.7

512 mass 4.3e-04 6.2e-07 * 9.7e-11 2.5e-10 2.0e-07

CPU 412.7 506.8 * 435.7 401.4 400.4

1024 mass 2.7e-05 9.6e-09 * 9.7e-11 2.5e-10 1.9e-07

CPU 1796 2139 * 1948 1840 1709

Table 2: Error in mass conservation and CPU time (in seconds) for the two-dimensional
numerical example.

We observe that, for this long-term simulation, the mass is always well con-
served by the direct Fourier series evaluation and by NFFT with the default
value m = 8. On the other hand, if m is halved, there is a significant degra-
dation, especially with N1 = N2 = 256. The direct Fourier series evalua-
tion is much more expensive than the other methods, being impracticable for
N1 = N2 ≥ 512. The interpolation methods roughly cost as much as the NFFT
approach, but their mass preservation is by far worse.

The final numerical example is a three-dimensional variation of the previous
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one. In the domain [−5, 5]3, with ε = 1, we chose

A1(x, y, z) = sin
(

2π(y+5)
10

)

+ sin
(

2π(z+5)
10

)

A2(x, y, z) = sin
(

2π(x+5)
10

)

+ sin
(

2π(z+5)
10

)

A3(x, y, z) = sin
(

2π(x+5)
10

)

+ sin
(

2π(y+5)
10

)

V (x, y, z) = 20 cos
(

2π(x+5)
10

)

+ 20 cos
(

2π(y+5)
10

)

+ 20 cos
(

2π(z+5)
10

)

+ 60,

and the initial value

u0(x, y, z) =
23/8

π3/2 exp
(

−
√
2
2

(
(x− 1)2 + y2 + z2

))

.

With this example, we also tested the option PRE_FULL_PSI of NFFT (see [10]).

NFFT

N1 = N2 = N3 PRE_PSI PRE_FULL_PSI

16 mass 6.1e-13 6.1e-13

CPU 5.6 6.5

32 mass 8.2e-14 8.2e-14

CPU 37.7 51.7

64 mass 7.1e-13 *

CPU 396.5 *

128 mass 7.9e-09 *

CPU 2976 *

Table 3: Error in mass conservation and CPU time (in seconds) for the three-dimensional
example.

At the price of a full precomputation of the window functions, which requires a
storage of (2m + 1)3

∏

iNi double precision numbers, this option should allow
an overall faster execution. In Table 3 we display the error of mass conserva-
tion and the CPU time for simulations up to T = 5 with 100 time steps. As
expected, there is no difference in the mass conservation property between the
two schemes. However, we never succeeded in getting the PRE_FULL_PSI ver-
sion faster than the default one (named PRE_PSI). For N1 = N2 = N3 ≥ 64,
it was even not possible to store the precomputed values in the RAM (8 GB).
Nevertheless, the default implementation of NFFT, which requires a storage of
3(2m+ 1)

∏

iNi, works without any problem.

8. Conclusions

In this paper we considered the numerical solution of the linear Schrödinger
equation with a vector potential. The structure of the problem suggested to
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use a splitting method involving three different parts, namely a multiplicative
term coming from scalar potentials, the Laplacian, and the advective term due
to the vector potential. After establishing convergence of Lie splitting for an
abstract problem, we analysed the required assumptions in the specific case of
the magnetic Schrödinger equation. For the advection step, the solution along
the characteristic curves was approximated by a nonequispaced fast Fourier
transform. It turned out to be as fast as local polynomial interpolation and as
accurate as direct Fourier series evaluation in the mass conservation at discrete
level. Therefore, it can be considered as a competitive tool in the solution of
advection equations with the method of characteristics.
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