
A performance, power, and energy efficiency
analysis of load balancing techniques for GPUs

Federico Busato
Dept. of Computer Science

University of Verona
Italy

Email: federico.busato@univr.it

Nicola Bombieri
Dept. of Computer Science

University of Verona
Italy

Email: nicola.bombieri@univr.it

Abstract—Load balancing is a key aspect to face when imple-
menting any parallel application for Graphic Processing Units
(GPUs). It is particularly crucial if one considers that it strongly
impacts on performance, power and energy efficiency of the whole
application. Many different partitioning techniques have been
proposed in the past to deal with either very regular workloads
(static techniques) or with irregular workloads (dynamic tech-
niques). Nevertheless, it has been proven that no one of them
provides a sound trade-off, from the performance point of view,
when applied in both cases. More recently, a dynamic multi-phase
approach has been proposed for workload partitioning and work
item-to-thread allocation. Thanks to its very low complexity and
several architecture-oriented optimizations, it can provide the
best results in terms of performance with respect to the other
approaches in the literature with both regular and irregular
datasets. Besides the performance comparison, no analysis has
been conducted to show the effect of all these techniques on
power and energy consumption on both GPUs for desktop and
GPUs for low-power embedded systems. This paper shows and
compares, in terms of performance, power, and energy efficiency,
the experimental results obtained by applying all the different
static, dynamic, and semi-dynamic techniques at the state of the
art to different datasets and over different GPU technologies (i.e.,
NVIDIA Maxwell GTX 980 device, NVIDIA Jetson Kepler TK1
low-power embedded system).

I. INTRODUCTION

Graphic Processing Units (GPUs) have become increas-
ingly used as general-purpose accelerators thanks to their
computational power and programmability. Besides providing
high peak performance, they also achieve excellent energy
efficiency [1]. This makes them well suited to a variety of
architectures, ranging from supercomputers to low-power and
mobile devices [2], [3].

Nevertheless, the current GPU programming paradigm does
not allow developers to automatically address issues like
load balancing and GPU resource utilization. A meaningful
example is the CUDA scheduler, which cannot handle the
unbalanced workload efficiently. Particularly with problems
that do not exhibit enough parallelism to fully utilize the GPU,
employing the canonical GPU programming paradigm easily
leads to underutilization of the computation power. These
issues are essentially due to fundamental limitations on the
current data parallel programming methods [4]. Indeed, the
workload decomposition and allocation strategies are let to the
application designer. How the application implements such a
mapping can have a significant impact on the overall appli-

cation performance. In addition, the load balancing strategy
implemented in the GPU application strongly affects also the
power consumption and energy efficiency, which are becoming
fundamental design constraints in addition to performance [5].

Different techniques for GPU applications have been pre-
sented in literature to decompose and map the workload to
threads [6], [7], [8], [9], [10], [11], [12]. All these techniques
differ in the complexity of their implementation and from
the overhead they introduce in the application execution to
address the most irregular workloads. In particular, the sim-
plest solutions [6], [7] apply well to very regular workloads
while they cause strong unbalancing and, as a consequence,
lost of performance in case of irregular workloads. More
complex solutions [8], [9], [10], [11], [12] best apply to irreg-
ular problems through semi-dynamic or dynamic workload-
to-thread mappings. Nevertheless, the overhead introduced
for such a mapping often worsens the overall application
performance when run on regular problems. More recently, a
partitioning and mapping technique called Multi-phase[13] has
been proposed to address the workload unbalancing problem in
both regular and irregular problems. It implements a dynamic
allocation of work-units to threads through an algorithm whose
complexity is sensibly reduced with respect to the other
dynamic approaches in the literature.

Although all these techniques have been compared in terms
of performance over very different datasets, no analysis has
been conducted to prove (i) whether the most efficient in
terms of performance can also guarantee the best power and
energy consumption (ii) the performance-power trade-off of
such techniques when applied on low-power embedded GPUs.

This paper presents an experimental analysis of all the most
efficient load balancing techniques at the state of the art ap-
plied on different benchmarks and over different GPU architec-
tures (i.e., NVIDIA Maxwell GTX 980 device, NVIDIA Jetson
Kepler TK1 low-power embedded system) to understand when
and how each technique best applies in terms of performance,
power, and energy consumption.

The paper is organized as follows. Section II presents some
background on the load balancing problem in GPUs. Section
III presents a concise survey of the load balancing techniques
for GPUs. Section IV presents the load balancing analysis,
while SectionV is devoted to the conclusions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217567118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Work-item 1

Work-item 2

Work-item 3

Work-item 4

Number of
Work-units

7

3

10

5

Exclusive
Prefix-sum

0

7

10

20

25

Tasks

Thread 
mapping

Warp 0 Warp N

GPU device

FIG. 1: Example of work-items to threads mapping

II. BACKGROUND ON LOAD BALANCING IN GPUS

Consider a workload to be partitioned and mapped to
GPU threads. The workload consists of work-units, which are
grouped into work-items (see Fig. 1). As a simple and general
example, in the parallel breadth-first search (BFS) implemen-
tation for graphs, the workload is the whole graph, the work-
units are the graph nodes, and the work-items are the node
neighbours of each node. The native mapping is implemented
over work-items through the prefix-sum procedure [14]. A
prefix-sum array, which stores the offset of each work-item,
allows the GPU threads to easily and efficiently access the
corresponding work-units. Considering the simplified example
of Fig. 1 associated to the BFS, the neighbour analysis of
four nodes is partitioned and mapped to four threads. Even
though such a native mapping is very easy to implement
and does not introduce considerable overhead in the parallel
application, it leads to load imbalance across work-items since
each work-item may have a variable number of work-units. In
the example, the first thread would analyse seven neighbour
nodes, the second three neighbour nodes, and so on.

III. A SURVEY OF LOAD BALANCING TECHNIQUES FOR
GPUS

The problem of workload partitioning and mapping to
threads (mapping in the following) in GPU applications has
been deeply investigated in the last decade. The different
mapping techniques proposed to deal with such an issue can
be organized into three classes: Static mapping [6], [7], semi-
dynamic mapping [9], [8], and dynamic mapping [11], [10],
[12], [13]. They are all based on the prefix-sum array that,
in this work, is assumed to be already generated. In general,
the prefix-sum array is generated, depending on the mapping
technique, in a preprocessing phase [15], at run-time if the
workload changes at every iteration [9], [8], or it could be
already part of the problem [16].

The simplest and more representative static technique stat-
ically assigns each work-item (or blocks of work-units) to
a corresponding GPU thread [6]. It is suited to fairly well
balanced and regular workload, since it does not involve com-
putational overhead. A step towards more irregular datasets
has been done by Hong et al. [7] with the concept of virtual
warp. The approach consists of assigning chunks of work-units
to groups of threads (i.e., virtual warps), where the virtual
warps are equally sized and the threads of a virtual warp

belong to the same warp. Virtual warps allow the workload
assigned to threads of the same group to be almost equal
and, as a consequence, it allows reducing branch divergence. It
also improves the coalescing of memory accesses since more
threads of a virtual warp access to adjacent addresses in global
memory. Nevertheless, virtual warps have several limitations.
First, the maximum size of virtual warps is limited by the
number of available threads in the device. Then, a wrong
sizing of the virtual warps (which has to be set statically)
can sensibly impact on the application performance. Finally,
the technique provides good balancing among threads of the
same warp, while it does not guarantee good balancing among
different warps nor among different blocks.

Differently from the static ones, the semi-dynamic tech-
niques include all the approaches by which different mapping
configurations are calculated statically and, at run time, the
application switches among them. Busato et al. [8] introduced
the Dynamic Virtual Warps combined to Dynamic Parallelism.
It implements a virtual warp strategy in which the virtual
warp size is calculated and set at run time depending on the
workload and work-item characteristics. The strategy switches
at run time to dynamic parallelism when the workload consists
of work-items having size greater than a threshold. It best
applies to datasets with few and strongly unbalanced work-
items that may vary at run time (e.g., applications for sparse
graph traversal). This technique guarantees load balancing
among threads of the same warps and among warps. It does
not guarantee balancing among blocks.

Merrill et al. [9] proposed an alternative approach based on
three steps (CTA+Warp+Scan). It provides a perfect balancing
among threads and warps. Nevertheless, the first step (also
called strip-mined gathering) run at each iteration introduces
a sensible overhead, which slows down the application perfor-
mance in case of quite regular workloads. The strategy well
applies only in case of very irregular workloads.

Finally, the class of the dynamic techniques allow achieving
perfect workload partition and balancing among threads even
with particularly irregular workloads at the cost of additional
computation at run time. The core of such a computation is
the binary search over the prefix-sum array, which aims at
mapping work-units to the corresponding threads. To reduce
the binary search computation and the scattered accesses to
the global memory, the technique in [8] first loads chunks of
the prefix-sum array from the global to the GPU registers.
Each chunk consists of 32 elements and is loaded by 32 warp
threads through a coalesced memory access. Then, each thread
of the warp performs a lightweight binary search over the
corresponding chunk by using Kepler warp-shuffle instructions
[17]. A similar dynamic approach has been proposed by
Davidson et al. [10], who introduced the block search strategy
through cooperative blocks. Instead of warps performing 32-
element loads, in this strategy each block of threads loads a
maxi chunk of prefix-sum elements from the global to the
shared memory. Nevertheless, these dynamic strategies do
not guarantee balancing among different blocks nor memory
coalescing among threads when they access the assigned work-
units.



Green et al [11] and Baxter [12] proposed equivalent meth-
ods to deal with the inter-block load unbalancing. The methods
rely on two phases: partitioning and expansion. First, the
whole prefix-sum array is partitioned into balanced chunks,
i.e., chunks that point to the same amount of work-units. Such
an amount is fixed as the biggest multiple of the block size
that fits in the shared memory. In the expansion phase, all the
threads load the corresponding chunks into the shared memory.
Then, each thread of each block runs a binary search in such a
local partition to get the (first) assigned work-unit. Each thread
sequentially accesses all the assigned work units in global
memory. The two-phase search strategy allows the workload
among threads, warps, and blocks to be perfectly balanced at
the cost of two series of binary searches. Nevertheless, the
main problem of such a dynamic mapping technique is that
the partitioning phase leads to very scattered memory accesses
of the threads to the corresponding work-units.

Differently from the approaches in the literature, the more
recent Multi-phase approach implements a dynamic mapping
of work-units to threads through an algorithm whose com-
plexity is sensibly reduced with respect to the other dynamic
approaches in literature. This allows Multi-phase to provide
the best performance when handling irregular as well as
regular and balanced workloads.

A. The Multi-phase technique
Multi-phase aims at exploiting the balancing advantages of

the two-phase algorithms while overcoming the limitations
of the scattered memory accesses. It consists of a hybrid
partitioning phase and an iterative coalesced expansion.

1) Hybrid partitioning: Differently from all the other dy-
namic techniques in literature, which strongly rely on the
binary search, Multi-phase relies on a hybrid partitioning
strategy by which each thread searches the own work-items.
Such a hybrid strategy dynamically switches between an
optimized binary search and an interpolation search depending
on the benchmark characteristics.

Optimized binary search: In the standard implementation of
the binary search, each thread finds the searched element, on a
prefix-sum array of N elements, through one memory access
in the best case or through 2 logN memory accesses in the
worst case. Indeed, at each iteration, each thread performs
two memory accesses, to check the lower bound (value at the
left of the index) and the upper bound (value at the right of
the index) to correctly update the index for the next iteration.
Nevertheless, in the context of binary search on prefix-sum,
since all threads must be synchronized by a barrier before
moving to the next iteration, and since at least one thread
executes all iterations involving 2 logN memory accesses,
each binary search actually has a time complexity equal to
2 logN memory accesses. In Multi-phase, each thread checks,
at each iteration, only the lower bound, thus involving only
one memory access per iteration. On the other hand, this
approach requires all threads to perform all iterations (logN )
indistinctly. Overall, such an optimization halves the binary
search complexity to logN memory accesses.

Interpolation search: In case of uniformly distributed inputs
(i.e., low standard deviation of work-item size) and a low

average number of work-units, Multi-phase implements an
interpolation search [18] in alternative to the optimized binary
search. The interpolation search has a very low complexity
(O(log logN)) at the cost of additional computation. The
algorithm pseudocode is the following:

INTERPOLATION SEARCH (Array, left, right, S)

1: while S ≥ Array[left] and S ≤ Array[right] do

2:
K = left + (S −Array [left]) ·

right−left
Array[right]−Array[left]

3: if Array [K] < S then
4: left = K + 1

5: else if Array [K] > S then
6: right = K − 1

7: else
8: return K
9: end

10: end

The idea is to use information about the underlying distri-
bution of data to be searched in a human-like fashion when
searching a word in a dictionary. Given a chunk of prefix-
sum elements (Array) and the item to be searched (S), the
procedure iteratively calculates the next search position K
(row 2 of the algorithm) by mapping S in the distribution
Array[left],Array[right]. The algorithm shows an average
number of comparisons equal to O(log log n) that increase to
O(N) in the worst case, differently to the binary search that
shows complexity O(logN) in all cases.

The main drawback is the higher computational cost to
calculate the next index of the search (row 2), which in-
volves double precision floating-point operations (division,
multiplication, and casting). Such operations present a very
low arithmetic throughput in GPU devices compared with
single precision operations. To limit such a cost, Multi-phase
implements the computation by minimizing the expensive
double precision operations and by replacing them with 64-bit
integer operations when possible.

Multi-phase switches between interpolation and binary
search depending on the benchmark characteristics. In par-
ticular, the interpolation search runs if both the following
conditions hold:

Std Dev WIsize ≤ ThresholdSD

and

Average WIsize ≤ ThresholdAVG

where the standard deviation of the work-item size and
the average work-item size of the benchmark are calculated
runtime. The switching between the two search methods is
parametrized through the two thresholds that have been heuris-
tically set to ThresholdSD = 5 and ThresholdAVG = 3 for
all the analyzed benchmarks.



Workload Source Avg. work-item
size

Std. Dev.
work-item size

Max work-item
size

great-britain osm 2.1 0.5 8

web-Notredame 5.2 21.4 3,445

cit-Patents 4.8 7.5 770

circuit5M 10.7 1,356.6 1,290,501

as-Skitter 13.1 136.9 35,455

TABLE I: Benchmark Characteristics

2) Iterative Coalesced Expansion: In the expansion phase,
all threads of each block load the corresponding chunks into
the shared memory. Then, each thread performs a binary
search (optimized as in the partitioning phase presented in
Section III-A1) in such a local partition to get the assigned
work-unit. Then, the expansion phase consists of three iterative
sub-phases, by which the scattered accesses of threads to the
global memory are reorganized into coalesced transactions.
This is done in shared memory and by taking advantage of
local registers:

1) Writing on registers. Instead of sequentially writing on
the work-units in global memory, each thread sequentially
writes a small amount of work-units in the local registers.

2) Shared mem. flushing and data reorganization. After a
thread block synchronization, the local shared memory is
flushed and the threads move and reorder the work-unit
array from the registers to the shared memory.

3) Coalesced memory accesses. The whole warp of threads
cooperate for a coalesced transaction of the reordered data
into the global memory. This step does not require any
synchronization since each warp executes independently
on the own slot of shared memory.

Steps two and three iterate until all the work-units assigned
to the threads are processed. Even though these steps involve
some extra computation with respect to the direct writings, the
achieved coalesced accesses in global memory significantly
improve the overall performance.

IV. LOAD BALANCING ANALYSIS

A. Characteristics of datasets, GPU devices, and equipment
for performance, power, energy efficiency measurement

We tested the load balancing efficiency in terms of perfor-
mance, power consumption and energy efficiency of all the
more representative techniques in the literature (presented in
Section III) over a dataset of different benchmarks (see Table
I). The dataset, consists of five representative benchmarks
selected from The University of Florida Sparse Matrix Collec-
tion [19], which consists of a huge set of data representation
from different contexts (e.g., circuit simulation, molecular
dynamic, road networks, linear programming, vibroacoustic,
web-crawl). The five benchmarks have been selected among
the collection to cover very different data characteristics in
terms of maximum work-item size, average, and standard
deviation from the item size. As summarized in the table, they
span from very regular to strongly irregular workloads. The
great-britain osm benchmark represents a road network with

very uniform distribution and low average. web-NotreDame
is a web-crawl with a slightly higher average and middle-
sized standard deviation. Cit-patent represents the U.S. patent
dataset, which has moderate average and not-uniform distribu-
tion. Circuit5M represents a circuit simulation instance, while
as-skitter is an autonomous system. The last two benchmarks
are characterized both by highly not-uniform distribution and
middle-sized average.

All the analyzed balancing techniques have been integrated
in a reference application, in which the threads access and
update, in parallel, each work-unit of the benchmark workload.
We run the experiments on two different GPU devices. The
first is an NVIDIA Maxwell GeForce GTX 980 with CUDA
Toolkit 7.5, AMD Phenom II X6 1055T (3GHz) host proces-
sor, and Ubuntu 14.04 OS. The second is a Tegra K1 SoC
(Kepler architecture) on an NVIDIA Jetson TK1 embedded
system, with CUDA Toolkit 6.5, 4-Plus-1 NVIDIA-ARM host
multi processor and Ubuntu 14.04 OS.

Performance information has been collected through the
CUDA runtime API to measure the execution time and through
the clock64() device instruction for throughput values to
ensure clock-cycle accuracy of time measurements.

Power and energy consumption information have been col-
lected through the Powermon2 power monitoring device [20].
It allows measuring the voltage and the current values from
different sources at the same time with a frequency of 3,072
Hz multiplexed across a subset of the 8 channels. We used
a interposer/riser card to isolate the GPU pci-express power
connector from the motherboard, while we directly connected
the Powermon2 device to the ATX power connectors. For each
power supply source, we measured the instantaneous current
and voltage to compute the power values. The analysis has
been performed at a constant 21.0◦C temperature to avoid
temperature-related current leakage variations. The analysis
has been performed with the default GPU frequency setting
and by disabling any PCI/GPU adaptive frequency or thermal
throttling mechanisms (i.e., GPUBoost). The measurement
protocol consists of executing each run several times to vali-
date the corresponding results. The procedures ensure the mea-
suring of the first voltage/current sample at the same instant
the GPU kernel starts. We forced five seconds delay across
different runs to avoid RLC effects and the corresponding
interference with the subsequent experiment.

B. Performance, power, energy efficiency analysis and com-
parison

Figures 2, 3, 4, 5, and 6 report the obtained experimental
results in terms of execution time, peak power, and energy
consumption. In particular, the reported values are the best
results of each technique we obtained by tuning the kernel
configuration in terms of number of threads per block. For
the two GPU devices used in this analysis, the best results
have been reached with 128-256 threads per block for all
the techniques, which provide the maximum occupancy of the
device and the lowest synchronization overhead.

Work-item to threads [6] and Virtual warps [7] repre-
sent the static techniques (Virtual warp has been evaluated



(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time
(d) Jetson TK1 - Power and energy consumption

FIG. 2: Comparison of execution time, power and energy consumption on great-britain osm.

(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

FIG. 3: Comparison of execution time, power and energy consumption on web-Notredame.



(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

FIG. 4: Comparison of execution time, power and energy consumption on Cit-Patents.

with different warp sizes). Dyn.VW+Dyn.Parallelism [8] and
CTA+Warp+Scan [9] represent the semi-dynamic techniques,
while Local Warp Search [10], Two-Phase, and Multi-phase
represent the dynamic ones. For the Two-Phase algorithm, we
used the well-know ModernGPU library [12], which is based
on the GPU algorithm proposed by Green [11].

In the first benchmark, great-britain osm, as expected,
Work-items to threads and Virtual Warps(2) are the approaches,
among those in the literature, with the best performance in
both the GPU architectures (see Figs. 2a and 2c). This is due
to the fairly regular workload and the small average work-item
size. In this benchmark, the overhead for the dynamic item-
to-thread mapping compromises the overall algorithm per-
formance. However, Multi-phase outperforms all the existing
techniques, including the static ones. This is due to the reduced
amount of overhead introduced by such a dynamic technique,
which well applies also in case of very regular workloads.

Figs. 2b and 2d report the average, maximum power and
energy consumption of the load balancing applications for the
same first benchmark. The static techniques show low average
and maximum power on the GTX 980 device, while the semi-
dynamic and dynamic techniques present the highest values,
which are proportional to the technique complexity. The same
characteristics show low variability on the Jetson TK1 device,

except for CTA+Warp+Scan, due to the regular workload. On
the other hand, Multi-phase presents, on both devices, the
lowest energy consumption, which is two times lower than the
other dynamic techniques in most cases, at the cost of higher
peak power in devices with multiple SMs like the Maxwell
GTX980.

In the web-NotreDame benchmark, Multi-phase is the most
efficient technique and provides almost twice the performance
with respect to the second best technique (Virtual Warps and
three times faster than Two-Phase on GTX 980), while it
shows performance comparable with Virtual Warps(16) on the
Jetson TK1 (see Figs. 3a, 3c). It is important to note that
Virtual Warps provides good performance if the virtual warp
size is properly set, while it sensibly worsens with wrongly-
sized sizes. The virtual warp size has to be set statically.
For the obtained results in these two benchmarks, we noticed
that the optimal virtual warp size is proportional and follows
approximately the average of work-item sizes. In these first
two benchmarks, CTA+Warp+Scan, which is one of the most
advanced and sophisticated balancing technique at the state of
the art, provides low performance. This is due to the fact that
the CTA and the Warp phases are never or rarely activated,
while the activation controls involve strong overhead.

The power and energy consumption (Fig. 3b, 3d) follows



(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

FIG. 5: Comparison of execution time, power and energy consumption on Circuit5M.

(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

FIG. 6: Comparison of execution time, power and energy consumption on Skitter.



the behaviour of the first benchmark, but with lower values
due to a lower number of benchmark work-units.

The efficiency of Multi-phase becomes sharply evident
as soon as the benchmark becomes more irregular, as
for Cit-Patents and Circuit5M (see Figs. 4 and 5). In
these benchmarks, we observed that the dynamic techniques
(CTA+Warp+Scan, Two-Phase Search, and Multi-phase) are
one order of magnitude faster than the static approaches in
most cases. In these benchmarks, Multi-phase shows the best
results due to the low average (less than warp size) and high
standard deviation.

In the Cit-Patents (Fig. 4b, 4d) and circuit5M benchmarks
(Fig. 5b, 5d), Multi-phase shows good values of average and
maximum power consumption, which are comparable with the
static-mapping techniques. On the other hand, Two-Phase and
Multi-Phase techniques present the best power consumption
on both the devices, which are three times lower on GTX 980
and two times lower on Jetson TK1 compared to the static
techniques.

In the last benchmark, as-skitter (Fig. 6a, 6c), Multi-
Phase and CTA+Warp+Scan provide the best results.
CTA+Warp+Scan shows low execution time since the CTA
and Warp phases are frequently activated and exploited. Virtual
Warps 16 and Dynamic parallelism techniques present quite
good performance on GTX 980, while the overhead involved
by the dynamic kernels heavily decreases the execution time
on Jetson TK1 device.

As for Great-Britain osm and Web-Notredame, the average
and maximum power (Fig. 6b, 6d) of the dynamic techniques
are higher than the static mapping ones. However, all the
dynamic techniques, except for Local-Warp Search, show
almost half energy consumption of the static techniques on
GTX 980 and slightly lower on the Jetson TK1 device.
This underlines the suitability of the dynamic approaches for
application running on energy bounded environment.

Finally, we observed that the Dynamic Parallelism feature
provided by the NVIDIA Kepler and Maxwell architectures,
implemented in the corresponding semi-dynamic technique,
finds the best application only when the work-item sizes and
their average are very large. In any case, all the dynamic load
balancing techniques, and in particular Multi-phase perform
better without such a feature in all the analyzed benchmarks.

In general, we found that Multi-phase provides the best
trade-off between performance and power/energy consumption
in all the benchmarks. This is due to the fact that such
a dynamic technique implements a high-throughput energy-
efficient workload balancing by minimizing the data move-
ment throughout the memory space hierarchy1, by exploiting
fine-grained memory locality, and by organizing the compu-
tation at different memory hierarchy levels (shared memory,
registers, caches).

V. CONCLUSIONS

This paper presented a survey of the most important and
widely used load balancing techniques for GPUs. It summa-

1In GPU architectures, the off-chip global memory accesses consume a
large amount energy, while on-chip memory accesses show lower latencies,
higher bandwidth, and lower energy consumption.

rized the main important aspects that characterize the overall
complexity of each technique. This allows better understand-
ing which one of them provides the best performance on
different dataset characteristics. More importantly, the paper
presented an analysis of average, peak power and energy
consumption of each single technique over such a dataset.
This allows considering additional dimensions in the technique
evaluation, by providing a comprehensive trade-off between
performance and power/energy consumption of each technique
when applied on the different benchmarks and over different
GPU architectures (i.e., NVIDIA Maxwell GTX 980 device,
NVIDIA Jetson Kepler TK1 low-power embedded system).

REFERENCES

[1] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and
improving GPU energy efficiency,” ACM Comput. Surv., vol. 47, no. 2,
pp. 19:1–19:23, Aug. 2014.

[2] “NVIDIA Tegra X1,” http://www.nvidia.com/object/tegra.html.
[3] “Qualcomm Snapdragon,” http://www.qualcomm.com/products/

snapdragon.
[4] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao, “Dynamic load

balancing on single- and multi-gpu systems,” 2010, pp. 1–12.
[5] S. Hong and H. Kim, “An integrated gpu power and performance

model,” in Proceedings of the 37th Annual International Symposium
on Computer Architecture, ser. ISCA ’10, 2010, pp. 280–289.

[6] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms
on the GPU using CUDA,” in Proceedings of the 14th International
Conference on High Performance Computing, ser. HiPC’07, 2007, pp.
197–208.

[7] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’11, 2011, pp. 267–276.

[8] F. Busato and N. Bombieri, “BFS-4K: an efficient implementation of
BFS for kepler GPU architectures,” IEEE Transactions on Parallel
Distributed Systems, vol. 26, no. 7, pp. 1826–1838, 2015.

[9] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” in Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’12, 2012,
pp. 117–128.

[10] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel gpu methods for single-source shortest paths,” in Parallel
and Distributed Processing Symposium, 2014 IEEE 28th International.
IEEE, 2014, pp. 349–359.

[11] O. Green, R. McColl, and D. A. Bader, “Gpu merge path: a gpu merging
algorithm,” in Proceedings of the 26th ACM international conference on
Supercomputing. ACM, 2012, pp. 331–340.

[12] “Modern gpu library.” [Online]. Available: http://nvlabs.github.io/
moderngpu/

[13] F. Busato and N. Bombieri, “A dynamic approach for workload parti-
tioning on gpu architectures,” IEEE Transactions on Parallel Distributed
Systems, vol. preprint, no. 99, pp. 1–15, 2016.

[14] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. MIT press, 2009.

[15] K. Xu, Y. Wang, F. Wang, Y. Liao, Q. Zhang, H. Li, and X. Zheng,
“Neural decoding using a parallel sequential monte carlo method on
point processes with ensemble effect,” BioMed research international,
vol. 2014, 2014.

[16] C. Yang, Y. Wang, and J. D. Owens, “Fast sparse matrix and sparse
vector multiplication algorithm on the gpu,” IPDPSW, 2015.

[17] NVIDIA, “Kepler GK110,” www.nvidia.com/content/PDF/kepler/NV
DS Tesla KCompute Arch May 2012 LR.pdf.

[18] Y. Perl, A. Itai, and H. Avni, “Interpolation search—a log log n search,”
Communications of the ACM, vol. 21, no. 7, pp. 550–553, 1978.

[19] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[20] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “Powermon:
Fine-grained and integrated power monitoring for commodity computer
systems,” in Proc. of IEEE SoutheastCon, 2010, pp. 479–484.


