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ABSTRACT 

Leukemias are a cancer type which affects the leukocytes progenitor cells. These 

malignancies are highly heterogeneous in terms of molecular mechanisms 

involved in their onset and progression. Heterogeneity can be further observed 

within the same subgroup of disease at the inter-individual level, being reflected 

by different clinical outcomes and responses to treatment in different patients. 

Unfortunately, the exact leukemia aetiology is still poorly understood and 

consequently also related prevention, diagnostic, prognostic and follow up 

methods remain mainly unidentified. Therefore, early-diagnosis, together with 

specifically tailored approaches to leukemia treatment, still represents a key point 

in determining patients’ health, life quality and estimated life. Several efforts have 

been started to improve diagnosis, treatment and disease monitoring of leukemia. 

In this regard, the work presented in my PhD thesis is part of an international 

project, named “NGS-PTL: Next Generation Sequencing platform for targeted 

Personalized Therapy of Leukemia”, whose objective is the development of 

technologies for the diagnosis and prognosis of haematological cancers. According 

to the project’s objective, my thesis work aims to identify sequence variants from 

Whole Exome Sequencing data for the acute types of leukemia, to be used as 

potential biomarkers to improve therapeutic interventions and for personalize 

treatments. The work describes the setup and application of a bioinformatic 

pipeline able to identify the somatic mutations in the leukemia patients and the 

driver carrier genes, again with the result obtained by its application on all the 

samples of the project.  

The setup of the pipeline has required the identification of a set of tools to apply 

to Cancer sequencing data. In particular, selection of dedicated software to 

perform the initial pre-processing of the data guarantees the use of sequencing 

data of high quality and ensures that the subsequent analysis will be performed 

on well-generated data. Moreover, the selection of MuTect as variant caller has 
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allowed us to overcome specific problems related to the heterogeneity of Cancer 

sample. The application of these software has led us to the identification of a large 

and reliable set of somatic variants to be evaluated for the identifications of new 

biomarkers and driver genes. Then, the interpretation of the somatic variants has 

required the use of specific database and resources to correctly interpret them 

and eventually to correlate the mutations with the driving or the development of 

the leukemia. Using the available biological knowledge, we were able to select 

likely highly damaging variants, some of which already connected with leukemia 

in cancer-related sources (COSMIC, ICGC and CIViC). At the end, the discover of 

genes that drives the development of the disease was performed using three 

statistical tools on the set of annotated mutations for each leukemia type, leading 

to the identification of a total of 32 biomarkers. In conclusion, the discovery of 

potential novel biomarkers, again with the additional biological information 

provided by the specific resources applied has demonstrated the importance of 

the application of NGS in the study of Leukemic patients. 
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INTRODUCTION 

 

 

LEUKEMIA 
 

The term “leukemia” represent a group of cancers which affects the leukocytes 

progenitor cells. This malignancy occurs when alterations in the normal regulatory 

processes leading to blood cells development causing uncontrolled proliferation 

and differentiation arrest of hematopoietic stem cells in the bone marrow. 

HEMATOPOIESIS 

Blood cells formation, also called hematopoiesis, is driven by hematopoietic stem 

cells, and occurs in the bone marrow. Hematopoietic stem cells are pluripotent 

progenitor cells with the capacity of self-renewal and differentiation. The 

formation of mature and functional blood cells occurs via several consecutive cell 

divisions and maturation stages. In particular, hematopoietic stem cell can 

produce blood cells following two main different lineages, one represented by 

myeloid stem cells and the other by lymphoid stem cells (Figure 1): 

• Myeloid cells: myeloid stem cells can generate red blood cells and 

platelets. In alternative, they differentiate to myeloblasts, immature cells 

of myeloid origin. Myeloblasts can produce several types of white blood 

cells known as granulocytes, a lineage that includes neutrophils, 

eosinophils, and basophils. 

• Lymphoid cells: lymphoid stem cells differentiate to lymphoblasts, which 

can produce several types of white blood cells that are different from 

granulocytes: B lymphocytes, T lymphocytes and Natural killer cells. 
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Figure 1. Blood cell development. Blood stem cells go through several intermediate steps to generate red 

blood cells, platelets, or white blood cells. Taken from www.cancer.gov 

Blood circulates through the arteries and veins with all blood cell types, namely 

red blood cells, white blood cells and platelets, which perform different functions 

throughout the body. Red blood cells, also called erythrocytes, make up about 40 

to 50 percent of the total blood volume. Red blood cells live for approximately 120 

days before being replaced by new cells produced in the bone marrow. These cells 

contain a protein called haemoglobin, which carries oxygen throughout the body 

and deliver carbon dioxide from tissues to the lungs to be exhaled. Platelets, also 

called thrombocytes, are cell fragments rather than whole cells. They clump 

together to form clots in case a blood vessel wall is damaged. Clots traps also red 

blood cells and act as plugs to stop bleeding and serve as a base for healing of the 

injured area and tissue renovation. White blood cells, also called leukocytes, are 

much fewer in number than red blood cells. These cells constitute the human 

immune system. The 5 different subsets of white blood cells work together to 

protect the body by attacking foreign invaders, as bacteria and viruses, and 

endogenous dysregulated cells as tumors. 

LEUKEMIA CELLS 

In leukemia, the bone marrow produces abnormal white blood cells called 

leukemic cells. Leukemic cells are characterized by an altered differentiation status 
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and a dysregulated cell cycle. As a consequence, the production of these cells 

alters the physiological composition and life-cycle of blood cells (formation, 

growth, function and death) thus impairing the ability of the bone marrow to 

produce normal blood cells. Moreover, because of their dysregulated cell cycle, 

leukemia cells do not die normally when they become old or damaged but 

accumulate abnormally and crowd out the healthy blood cells. Thus, over time, 

the continue increasing number of Leukemic cells alter the normal blood function 

including its oxygen capacity, the ability to control bleeding and fight infections.  

 TYPES OF LEUKEMIA 

Leukemias are highly heterogeneous malignancies both in terms of phenotypes 

and molecular mechanisms underlying their onset and progression. Heterogeneity 

can be further observed within the same subgroup of disease at the inter-

individual level, and reflects in different clinical outcomes and responses to 

treatment. There are several ways to categorize the leukemias based on different 

criteria. One of these is the classification of leukemias on the basis of the affected 

tissues (Figure 2): 

• Myeloid Leukemia: originates from myeloid cells and it is called myeloid, 

myelogenous, or myeloblastic leukemia. 

• Lymphoid Leukemia: originates from lymphoid cells and it is called 

lymphoid, lymphoblastic, or lymphocytic leukemia.  
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Figure 2. Leukemia types. Modified from www.cancerresearchuk.org 

Leukemias can be further classified based on how quickly the disease develops and 

worsens: 

• Acute: Acute leukemia is a fast-growing cancer that usually worsen quickly, 

if not treated. The abnormal blood cells composing the acute leukemia are 

very immature blasts (lymphoblasts) that grow rapidly and cannot carry 

out the normal functions of the white blood cells they derive from.  

• Chronic: Chronic leukemia is a slower-growing cancer that worsen slowly 

over time. The number of abnormal blasts produced is low and, in general, 

these cells composing this type of leukemia are more mature and maintain 

some of the normal functions of myeloid cells. 

According to these classifications, leukemias can be sub-grouped in four main 

types: 

• Acute lymphocytic leukemia (ALL) is a condition where the bone marrow 

produces large numbers of abnormal immature lymphocytes 

(lymphoblasts). ALL can be further subdivided in different subsets. For 

example, on the basis of the lineage that the abnormal lymphoblasts 

originate from, as immature B or T lymphocytes (B-ALL or T-ALL, 
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respectively). Typically, ALL develops quite quickly (acutely) and rapidly 

becomes worse (over a few weeks or so) unless treated. 

• Acute myeloid leukemia (AML) is a condition where the bone marrow 

produces large numbers of abnormal immature white blood cells which 

are derived from a myeloid stem cell (myeloblasts). AML can be further 

subdivided on the basis of what cell type they derive from and their 

maturation stage. There are eight main subtypes of AML: M0, M1, M2, etc, 

up to M7. Typically, AML develops quite quickly (acutely) and rapidly 

becomes worse (over a few weeks or so) unless treated. 

• Chronic lymphocytic leukemia (CLL) is a condition where a subject has an 

abnormal number of dysregulated B lymphocytes. The lymphocytes look 

phenotypically normal, e.g. features visible under a microscope, but they 

do not function properly. The main reason for the accumulation of 

abnormal lymphocytes is because they have a longer life-spam as 

compared to normal lymphocytes Typically, CLL progresses very slowly 

over months or years, even without any treatment. 

• Chronic myeloid leukemia (CML) also known as chronic granulocytic 

leukemia (CGL) develops due to the accumulation of an abnormal stem 

cell subset of myeloid origin. As a consequence, there is also an expansion 

of the cells that originate from the abnormal myeloid progenitor, i.e. 

neutrophils, basophils and eosinophils, that develop into nearly-normal 

white cells, but over-accumulate in the bloodstream. Typically, CML 

develops and progresses slowly over months or years, even without 

treatment. 

Despite a preliminary diagnosis of leukemia can be made with a simple complete 

blood count, extensive testing is required to differentiate myeloid and lymphoid 

leukemia and chronic versus acute leukemia. The treatment and prognosis of 

these malignancies are extremely different between the various types of 

leukemias. Moreover, as an early treatment provides the best opportunity for 
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cure, the fast and accurate diagnosis of the right subtype of the disease is 

essential. 

 

 

THE GENETICS OF LEUKEMIA 
 

In the last decade, leukemia, as well as other cancers, have been proven to be 

essentially a condition of aberrant genetic programming [1], where changes of the 

genomic sequence in specific cells alter the structure, function, and/or expression 

of proteins that control their homeostatic processes, including cell growth, 

proliferation, differentiation, and apoptosis. The dysregulation of these critical 

functions ultimately leads to neoplastic transformation. 

As general mechanism, cancer is the result of changes occurred in the DNA 

sequence of the genome of cancer cells [2]. Human cells normally acquire random 

mutations during the course of a person’s life, and typically the human body is 

able to correct most of them. However, the continuous acquisition of genetic 

variations in individual cells may lead to the acquisition of deleterious mutations 

that confer the capability to proliferate and survive, causing the uncontrolled 

development of cancer.  

The set of differences acquired in the DNA of a cancer cell genome are called 

somatic mutations, to distinguish them from germline variants which are inherited 

from parents and are transmitted to the progeny. Also, as not all the acquired 

abnormalities are effectively involved in the development of cancer, somatic 

mutations can be differentiated between two groups, named 'driver' and 

'passenger' mutations (Figure 3). A driver mutation is a mutation directly 

implicated with the development of cancer by conferring growth advantage to the 

cancer cell, while passenger mutations do not confer clonal growth advantage 
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and, therefore, do no contribute to cancer development. Cancer subsequently 

evolves through cycles of clonal expansion, that leads to further genetic 

diversification and clonal selection. As clones and subclones expand selective 

pressures can ultimately generate a highly variable patterns of genetic diversity 

[3]. This mechanism is also implicated in development of resistance to drugs 

through selection of resistant variants and is the primary cause of therapeutic 

failure.  

 

Figure 3. The cellular lineage between a fertilized egg and a fully malignant cancer cell. [4] 

The genetic aberrances that can be found in leukemic cells are highly diverse and 

varies between the different type of leukemia. These aberrances include 

chromosomal changes like the translocation, that are caused by chromosomes 

that swap some of their DNA, leading to a part of one chromosome becomes 

attached to part of a different chromosome. Other types of chromosome changes 

include the inversion, which means that a part of a chromosome is in reverse 

order, or a deletion that indicates a partial loss of a chromosome, or a duplication 

of a chromosome or a part of it. However, not only chromosome changes but also 

single nucleotide alteration concurs in determining the patient outcome and the 

development of the disease. 
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Among the genetic aberrances that can be found in leukemia, there are several 

that characterize the development of a specific type of leukemia. CML, for 

example, is characterized by the presence of the Philadelphia chromosome, a 

translocation between chromosomes 9 and 22 in humans, resulting in a fusion 

between the 5’ end of the BCR gene and the 3’ end of the ABL1 gene [5]. Although 

the Philadelphia chromosome may be found in other types of leukemias, presence 

of a BCR-ABL1 fusion gene is an absolute diagnostic criterion for CML. Another 

type of leukemia, the CLL, is instead characterised by a different set of genetic 

lesions that are typically the 13q deletions (55%; associated with favourable 

clinical outcome), trisomy 12 (15%; associated with intermediate prognosis), 11q 

deletions (12%; associated with poor clinical outcome), 17p deletions (8%; 

associated with poor clinical outcome), and recurrent mutations (2–11%) in 

NOTCH1, SF3B1, BIRC3, TP53, and MYD88 [6], [7].  

The acute types of leukemia is more complex in terms of the genetic mechanisms 

of their development. AML can occur with somatic changes affecting some specific 

types of cells through a “two-hit” process. In other words, for leukemogenesis to 

occur, two types of mutations, or “two hits,” are needed: 1) a mutation that 

improves hematopoietic cells’ ability to proliferate (class I, including FLT3 and KIT), 

and 2) a mutation that prevents the cells from maturing (class II, including CBFB-

MYH11, CEBPA, DEK-NUP214, MLL-MLLT3, NPM1, PML-RARA, RUNX1-RUNX1T1; 

[8], [9]). However, AML is the most clinically and biologically heterogeneous type 

of leukemia, and as study of genetic variation in AML continues, the aetiology of 

this disease is continuously being modified and integrated with new types of 

mutations, including mutations in epigenetic modifiers such as IDH1, IDH2, and 

DNMT3A. Moreover, also ALL is characterized by complex types of structural 

rearrangements, copy number alterations, and mutations in specific genes (i.e. 

gene regulating lymphoid development). Approximately 20% of B-ALL cases 

harbour genetic alterations that activate kinase signalling, including 

rearrangements of the cytokine receptor gene CRLF2; rearrangements of ABL1, 

JAK2, and PDGFRB; and mutations of JAK1 and JAK2. Other class of mutation 
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includes hematopoietic regulators (ETV6 and RUNX1), tyrosine kinases, and 

epigenetic regulators [10]. Both in AML and ALL there is a lot of knowledge still to 

uncover under the genetic variability of these condition. 

Since Nowell and Hungerford identified the t(9;22) translocation (the Philadelphia 

chromosome) associated with chronic myeloid leukemia, a wealth of data has 

accumulated showing that the karyotype and mutation status of certain genes 

provide important prognostic, and in some cases, therapeutic information for 

leukemia. There are several prognostic factors that are determined by 

cytogenetics; more specifically, by acquired mutations that, once detected, make 

it possible to define the appropriate treatment for a given patient.  

Specific aberrations are used for patient risk stratification and to guide the patient 

management, ad correlate with favourable and unfavourable outcome (Table 1). 

Response Rate 
French American 

British classification 
Karyotype 

Molecular 

Change 

Low M4, M5 t(6;11)(q27;q23) AF6(6q27) 

Low M4, M5 t(10;11)(p12;p23) AF10(p12) 

Low M5 t(11;17)(q23;q21) ALL 1(11q23) 

Low M4, M5 t(11:19)(q23;p13) ELL(19p13.1) 

Low M1, M2, M4, M6 t(3;3)(q23:q26) Gene activation 

Low 
M0, M1, M4, M5, 

M6, M7 
inv(3)(q21;q26) Gene activation 

Low  5;5q-  

Low  7;7q-  

Low L1 t(1:19)(q23;p13) E2A, PBX1 

Low L3 t(8;14)(q24;q11)  

Moderate L3 t(8;14)(q24;Q32) IGH, cMYC 

High M2 t(8;21)(q22;q22) ETO (8q22) 

High L1 t(9;22)(q34;q11) cABL,BCR 

High L1 t(4;11)(q21;q23) MLL, AF4 

Table 1. Leukemia karyotypes and molecular changes associated with response rate 

Despite increasing knowledge of the effects of genetic variation on prognosis of 

leukemia, these are only just few examples of genomic alterations that are related 



16 

 

to the leukemia outcome. Many others have already been detected but the 

majority of mutations that drive the development of leukemias are still not known, 

and there are few options for tailoring treatment based on known genetic 

characteristics. Therefore, mutation discovery using genome-wide strategies 

recently became the state-of-art approach to investigate the genetic alterations 

linked to leukemia, as it provides a non-biased way to identify novel causative 

mutations underlying leukocyte dysregulation. Challenges for the future are to 

comprehensively identify and experimentally validate all genetic alterations 

driving leukemogenesis and treatment failure in leukemia and to implement 

genomic profiling into the clinical setting to guide risk stratification and targeted 

therapy.  

 

 

NEXT GENERATION SEQUENCING APPLIED TO 

LEUKEMIA DIAGNOSTICS 
 

Next-generation sequencing (NGS) provides the basis for the identification of 

novel diagnostic and therapeutic strategies as it makes the sequencing of 

individual genomes accessible at a reasonable cost. During the last decade, due to 

the continuous development of sequencing technologies, the cost for sequencing 

a human genome has decreased to only about 1000$. This means that the 

sequencing technology can be used for the discovery of medically relevant 

variations present in individual patients as well as the fast and cost-efficient 

assessment of the genetic variability within cohorts of patients affected by the 

same disease. 

NGS technology provides an unprecedented view of genome sequence and 

alterations down to the single-base resolution. NGS is also extremely flexible as it 

allows to investigate either the complete genomic sequence in whole-genome 
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sequencing (WGS) or to focus on specific genomic regions of interest, such as 

protein coding genes in whole-exome sequencing (WES). In particular, WES has 

been widely used in clinical studies as it allows to concentrate on highly 

informative exonic sequences. Even if the exome represents less than 2% of the 

human genome, it is the most crucial component as mutations in the exome can 

directly affect the protein structure and function and most likely result in clinical 

phenotypes. Not surprisingly the exome contains about the 85% of known disease-

causing variants [11]. Moreover, WES is far cheaper than the WGS, allows a higher 

number of samples to be analysed per sequencing run and is thus more suitable 

to the analysis of larger cohorts of clinical samples.  

To sequence only the exons of a genome the DNA has to be processed following 

some basic steps, as shown in Figure 4:  

1. The genomic DNA is randomly sheared to construct an in vitro shotgun 

library. The library fragments are also ligated to adaptors to allow the 

subsequent sequencing. 

2. The library is enriched for sequences corresponding to exons (dark blue 

fragments) by aqueous-phase hybridization capture: the fragments are 

hybridized to biotinylated DNA or RNA baits (orange fragments) in the 

presence of blocking oligonucleotides that are complementary to the 

adaptors. 

3. Recovery of the hybridized fragments by using streptavidin-conjugated 

beads that can bind the biotins presents on the probes. The capture 

fragments are then amplified and sequenced in an NGS instrument. 

4. Reads are mapped on a reference genome and candidate somatic variants 

are identified.  
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Figure 4. Workflow for exome sequencing 

 

 

IDENTIFICATION OF SOMATIC VARIANTS 
 

The process that goes from sequencing data to a reliable set of somatic mutations 

is complicated by the presence of confounding factors such as sequencing errors, 

misalignments or repetitive sequences. To ensure the accurate detection of 

somatic variants it is necessary to perform several pre-processing of the 

sequenced reads. The step of pre-processing includes the removal of reads derived 

from PCR duplicates, the filtering of low quality reads and the removal of adaptor 

sequences. Then, methods specifically dedicated to the identification of somatic 

mutations must be applied. These methods should implement stringent filtering 

to remove false positives due to high GC content, strand bias (reads indicating a 

possible mutation only align to one DNA strand) or from poor mapping resulting 

from repetitive or low complexity sequence in the reference genome.  
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Most tumor samples, including leukemic cells, are a heterogeneous collection of 

cells, containing both normal and cancerous cells thus further challenging the 

identification of somatic mutations. Therefore, dedicated analysis methods should 

be applied to detect low frequency variants that represent the cancer cells, within 

the high background signal due to cells with normal genome. Standard variant 

callers are based on the assumption of a diploid genome in which variants are 

either present in heterozygous or homozygous state. This model does not apply 

when only a limited portion of cells in the sample show the variant. As a result, 

most of real somatic variants are just discarded as background noise. Different 

approaches have been thus implemented [12]–[14]. Among these, MuTect 

software has been successfully used to identify somatic mutations in mixed 

samples and is a widely-recognized method for somatic variant calling in cancer 

samples. While the majority of existing methods typically miss low-allelic-fraction 

mutations that occur in only a subset of the sequenced cells owing to either tumor 

heterogeneity or contamination by normal cells, MuTect is specifically created to 

detect subpopulations of variants with very low allele fractions (10%) and only a 

few reads supporting somatic mutations. 

MuTect takes as input the sequence data from the tumor and the matched normal 

DNA after alignment of data to a reference genome and standard pre-processing 

steps. MuTect applies a statistical analysis that identifies high confidence sites that 

are likely to carry somatic mutations. The analysis predicts a somatic mutation by 

using two Bayesian classifiers: the first aims to detect whether the tumor is non-

reference at a given site; for those sites that are found as non-reference, the 

second classifier makes sure that the normal sample does not carry the variant 

allele. In practice the classification is performed by calculating a LOD score (log 

odds) and comparing it to a cutoff determined by the log ratio of prior probabilities 

of the considered events.  

 

 



20 

 

For the tumor: 
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Since the somatic mutations are expected to occur at a rate of ~1 per Mb, are 

required that LODr > log10(0.5x10-6)≈6.3 which guarantees that the false positive 

rate, due to noise in the tumor, is less than half of the somatic mutation rate.  In 

the normal tissue, since germline variants occur roughly at a rate of 100 per Mb, 

are required that LODN > log10(0.5x10-2)≈2.3. This cutoff guarantees that the false 

positive rate of the somatic call, namely due to the missing identification of the 

variant in the normal, is also less than half the somatic mutation rate. 

 

 

ANNOTATION AND PRIORITIZATION OF SOMATIC 

VARIANTS 
 

The first important step to assess the biological impact of a somatic mutation is to 

annotate it with the existing knowledge. In the context of exome sequencing, the 

annotation procedure starts with the identification of the protein-coding genes in 

which the variant is located and the assessment of their impact on the final protein 

product (Figure 5, Table 2).  
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Figure 5. A diagram showing the location of each type of variant 

Loss of Function The variant is likely to cause the transcript’s product to lose 

function. The ontologies included in this category are: 

transcript ablation, exon loss variant, stop lost, stop gained, 

initiator codon variant, frameshift variant, splice acceptor 

variant, splice donor variant  

Missense The variant will cause at least one amino acid to change or 

cause a premature start codon in the UTR5. The ontologies 

included in this category are: disruptive inframe deletion, 

disruptive inframe insertion, inframe deletion, inframe 

insertion, 5 prime UTR premature start codon gain variant, 

missense variant 

Other The variant is likely to have a low or unknown effect on the 

transcript’s functional product. These changes do not change 

the amino acid sequence of the protein. The ontologies 

included in this category are: synonymous variant, stop 

retained variant, splice region variant, 3 prime UTR variant, 

5 prime UTR variant, intron variant, non-coding exon variant, 

intergenic variant 
Table 2. The categories of effect among the variant transcript interaction and the likely effect that the 

variant will have on the protein’s product, including the ontologies that correspond to each effect category 

In particular, mutations that can affect the function of a protein are the non-

synonymous mutations. These include for example stop gain and frameshift 

mutations that by truncating the protein product may result in the inactivation of 

the protein. Also, missense mutations, which cause an aminoacidic sequence 

alteration, may also have an effect on protein function by altering its 3D structure 

or affecting its active site or regulatory sites. The assessment of the impact and 

the potential pathogenicity of these non-synonymous variants is the most crucial 

step in the annotation procedure and relies in the application of several 

computational methods. Prediction tools, such as SIFT [15], PolyPhen [16], 
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MutationTaster [17], MutationAssessor [18] and GERP [19], have been developed 

to estimate whether a given variant is likely to be deleterious for the function of 

the encoded protein and are based on different principles, like the conservation 

among species, the biochemical properties of the encoded amino acids and the 

three-dimensional calculations of the protein structure. Moreover, one of the 

most effective ways to enrich a somatic variants dataset for the most-likely 

damaging variants is to use a population frequency filter, based on the concept 

that causative variants are rare and therefore not common within a reference 

healthy population. Several databases such as ExAC (Exome Aggregation 

Consortium) [20], the 1000 Genome Project [21] and the NHLBI Exome Sequencing 

Project (ESP6500) [22] provide population-level variant frequencies thus allowing 

to discriminate between innocuous common variants and potentially dangerous 

rare variants.  

A further step for annotating and prioritizing variants is to use knowledge coming 

from previous studies. Several dedicated resources like the Catalogue Of Somatic 

Mutations In Cancer (COSMIC) [23], [24], the International Cancer Genome 

Consortium (ICGC) [25] data and the Clinical Interpretation of Variants in Cancer 

(CIViC) [26] database provide information about the recurrence of somatic 

mutations in cancer types and about known susceptibility/resistance to drugs 

associated to particular mutations. 

 

 

IDENTIFICATION OF DRIVER GENES 
 

Only a small subset of the somatic mutations found in cancer cells are responsible 

for tumorigenesis. The distinction of real driver mutations from passenger 

mutations is the most important task in cancer genome sequencing projects, and 

implies the identification of genes that exhibits signals of positive selection across 
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a cohort of tumor samples. Among all the different approaches utilized at this aim, 

the most intuitive consists in the identification of genes that are mutated more 

frequently than expected given a certain background mutation rate. A second 

approach is based on the observation that driver mutations tend to clusterize in 

particular regions of the proteins, like for example kinase domains. Also, this 

second method exploits positive selection signals over the background mutation 

rate to identify genes containing putative driver mutations. While these methods 

are useful to identify highly recurrent driver genes and mutations, both are 

intrinsically limited in detecting lowly recurrent drivers. A third complementary 

approach has been developed which evaluates the functional impact of the 

mutations on the protein. This method detects putative driver genes by identifying 

those mutations biased towards higher functional impact. This approach doesn’t 

rely on the estimation of a background mutation rate and is thus not limited to 

highly recurrent mutations. However, being based on assessment of the functional 

impact of mutations, it is generally more suited to the identification of loss of 

function events.  

Clearly, no method can provide a comprehensive identification of driver genes due 

to intrinsic limitations. Thus, the combination of several approaches should be 

exploited to obtain the most comprehensive list of driver genes.  

The next paragraphs are dedicated to the description of the three software 

selected for identification of driver genes in the present study which are based on 

the principles outlined above. They all require somatic variants data generated 

from a cohort of tumor samples. 

MUTSIGCV 

 

The first software selected, MutSigCV [27], works based on a recurrence-based 

approach to identify genes that are mutated more often than one would expect by 

chance. The method is based on the mutation frequency of an individual gene 

compared with the background mutation rate. The software corrects for possible 
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variations by employing patient-specific mutation frequencies and mutation 

spectra (e.g., the percentages of mutations that are transitions of certain types, 

transversions of certain types, and/or nonsense), and gene-specific mutation rates, 

incorporating expression levels and replication times.  Incorporating these 

covariates into the model substantially reduces the number of false positives in the 

generated list of significant genes. 

The following figure (Figure 6) shows how the software works: on the left a set of 

chromosomes, each from the tumor of a different cancer patient.  Genes are 

cartooned as coloured bands, and somatic mutations are indicated by red 

triangles. The mutations from all the tumors are aggregated together by merging 

the data from the different tumors, and the total number of mutations per gene 

can be computed.  Then such tally is converted to a score, and then to a 

significance level.  A threshold is chosen to control for the False Discovery Rate 

(FDR), and genes exceeding this threshold are reported as significantly mutated. 

 

Figure 6. MutSigCV procedure 

MutSigCV produces a report of significant genes, listed in descending order from 

the most significant to least significant ones. 
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ONCODRIVECLUST 

 

The second software selected, OncodriveCLUST [28], has an approach based on 

mutation clustering on protein domains. The method is designed to exploit the fact 

that mutations in cancer genes, especially oncogenes, often cluster in particular 

positions of the protein and therefore do not occur with equal probability on all 

the positions of a gene (Figure 7). Clustering within specific regions suggests they 

mutations are positively selected during the clonal tumor evolution, and might 

therefore alter the function of the protein conferring an adaptive advantage to the 

cancer cells. Such feature can thus be exploited to nominate novel candidate driver 

genes. 

 

Figure 7. Mutation clustering on specific position of a gene 

The method does not assume that the baseline mutation probability is 

homogeneous across all gene positions but creates a background model using 

silent mutations. Coding silent mutations are supposed to be under no positive 

selection and may reflect the baseline clustering of somatic mutations.  

The software works by performing four main steps: 

• mutations affecting proteins are clustered by gene across a cohort of tumor 

samples. Those protein residues having a number of mutations barely 

expected by chance are selected as candidate positions. 

• these positions are grouped to form mutation clusters 
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• each cluster is scored with a figure proportional to the percentage of the 

mutations that are enclosed within that cluster, and inversely related to its 

length. The gene clustering score is obtained as the sum of the scores of all 

clusters (if any) found in that gene 

• each gene clustering score is compared with the background model to 

obtain a significance value. The background model is obtained performing 

the same steps than above but assessing only coding silent mutations. 

 

 

ONCODRIVEFM 

 

The last software selected, OncodriveFM [29], is based on the identification of the  

functional impact of variants. It computes a metric of functional impact using three 

well-known methods (SIFT, PolyPhen2 and MutationAssessor) and assesses how 

much the functional impact of variants found in a gene across several tumor 

samples deviates from a null distribution. OncodriveFM is thus based on the 

assumption that any bias towards the accumulation of variants with high 

functional impact is an indication of positive selection and can thus be used to 

detect candidate driver genes or gene modules and to prioritize genes or 

pathways.  

The software starts by computing three metrics of functional impact (FI score) for 

each non-synonymous single nucleotide variants (nsSNVs) found in genes across a 

list of tumor samples (Figure 8). Stop-gain SNVs (stSNVs) and frameshift-causing 

indels (fsindels) are incorporated into the bias analysis by assigning them scores 

that are comparable to the highest-ranking tier of nsSNVs. Finally, synonymous 

SNVs (sSNVs) are taken into account with scores equal to those of bottom ranking 

nsSNVs. The second step starts by averaging the FI scores of variants per gene and 

comparing them to the distribution of scores of variants in functionally similar 
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genes. if the somatic SNVs are obtained using a whole-exome sequencing 

approach, the null distribution contains the entire set of SNVs and fsindels 

detected across all tumor samples. The mean FI of each gene across all tumor 

samples is then probed for significance employing a permutation strategy. 

  

Figure 8. OncoDriveFM procedure 

 

 

BACKGROUND OF THE PROJECT 
 

Leukemia accounts for approximately 10% of the new diagnosed cancers every 

year, with an overall incidence that is slightly higher in subjects of European 

ancestry. Unfortunately, despite the huge advances in the clinical treatment of 

some subtypes of leukemia, many still have a poor prognosis. In addition, in a 

subset of long-term surviving patients, treatment results are unsatisfactory for 

short and long-term toxicities. Reason of this picture is that the exact leukemia 
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aetiology is still poorly understood and consequently also related prevention, 

diagnostic, prognostic and follow up methods remain mainly unidentified. The 

early-diagnosis, together with specifically tailored approaches to leukemia 

treatment, still represents key points in determining patients’ health, life quality 

and estimated life.   

Several initiatives [30], thanks to collaborative groups and international projects, 

have been started to improve diagnosis, treatment and disease monitoring for 

leukemia. At this regard, my PhD project is part of a bigger international project, 

named NGS-PTL, “Next Generation Sequencing platform for targeted Personalized 

Therapy of Leukemia”, financed by the European Union through the seventh 

framework program. The project involved 10 international partners in a 

multidisciplinary approach, comprising the fields of clinical medicine, industry 

research, NGS technology, molecular biology, genomics, transcriptomics, 

biostatistics and bioinformatics. The objective of NGS-PTL project was the 

development and validation of methods for the diagnosis and prognosis of 

haematological cancers. These included quality control and analytical tools, based 

on the most innovative massive parallel DNA/RNA sequencing technologies. The 

NGS-PTL project aimed to provide the basis for a completely new knowledge of 

leukemia aetiology and of the molecular mechanisms underlying inter-individual 

variability in response to treatments. 

Uncovering the genomic variability among and within leukemia subtypes is of 

utmost importance to guide the therapeutic interventions on these diseases and 

constitutes the basis of the NGS-PTL project and of these work. In particular, the 

analysis reported here was focused on the main type of leukemia patients present 

in the project, that is the acute subtype of leukemia, the more complex in terms 

of the genetic mechanisms involved in their development. 
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AIM OF THE STUDY 
 

In agreement with the NGS-PTL project’s objectives, my work aimed to identify 

sequence variants from Whole Exome Sequencing data of two different types of 

leukemia (AML and ALL), to select potential biomarkers of the disease to be 

investigated in future studies to improve therapeutic interventions and to tailor 

personalize treatments.  

To obtain this result, the work performed during my PhD focused on the setup, 

validation and implementation of a bioinformatic pipeline to identify somatic 

mutations from WES data of leukemia patients and to select candidate driver 

carrier genes in the analysed samples.  
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MATERIALS AND 

METHODS 

 

 

SELECTED SAMPLES 
 

This work involved the analysis and interpretation of WES data derived from 

leukemia patients. The cohorts of patients selected belongs to two main types of 

Leukemia, the Acute Myeloid Leukemia (AML) and the Acute Lymphoblastic 

Leukemia (ALL).  The selected patients and samples are summarized in Table 3. 

Leukemia type # samples # patients 

AML 128 64 

ALL 77 37 
Table 3. Number of samples and patients for each leukemia type selected in the project 

To identify somatic variants characterizing the leukemia and unambiguously 

discriminate them from inherited germline variants, multiple samples 

corresponding to the control “normal” tissue (usually saliva) and the tumoral 

tissue (peripheral blood or bone marrow), collected at one or multiple timepoints 

(onset and relapse of disease), were sequenced for each patient. In particular, two 

cohorts of patients were selected for AML cases. The first cohort comprised 42 

cases which included 4 patients with a normal karyotype, 25 patients with one or 

two chromosomal abnormalities and 13 patients with a complex karyotype, i.e. 

with more than two chromosomal abnormalities. 34 tumoral samples were 

collected at diagnosis and 8 samples at relapse along with their matched healthy 

control samples. In the second cohort 22 cases were selected, which include 6 
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cases with a complex karyotype and the remaining with one or two chromosomal 

abnormalities. All the samples were collected at the diagnosis and after the 

complete remission of the disease. For ALL, patients negative for the typical 

Philadelphia chromosome (BCR-ABL) translocation, as well as for other known 

recurrent molecular rearrangements (i.e. E2A-PBX, TEL, AML1-MLL-AF4), were 

selected. The matched tumoral/normal samples were collected from adult B-ALL 

patients at the time of diagnosis in 33 cases, at relapse in one case, at both 

diagnosis and relapse in 3 cases.  

The preparation of the Whole Exome libraries was performed on all the 205 

samples included in the study with two Illumina kits: the TruSeq Exome Enrichment 

Kit and the Nextera Rapid Capture Exome that are based on almost identical 

capture designs for the selection of exome sequences. Sequencing was performed 

using an Illumina HiSeq1000, generating sequencing reads of 100 nucleotides in 

paired end, i.e. every DNA fragment is sequenced twice, on the forward and 

reverse strand. Each genome region analysed was sequenced on average 80 time, 

i.e. 80X coverage, to ensure the detection of mutations associated with the 

disease at high sensitivity.  

 

All the sequenced samples were analysed with the same workflow which can be 

divided into four parts:  

1. preprocessing of raw reads obtained from WES and alignment to the 

reference genome sequence; 

2. somatic variants calling;  

3. variants annotation;  

4. identification of driver-mutations carrier genes.  

 

 



32 

 

RAW READS PREPROCESSING AND ALIGNMENT 

TO REFERENCE GENOME 
 

The preprocessing pipeline was based on a set of open source tools including 

different modules dedicated to data filtering, quality control (QC) and reads 

alignment, and is based on a well-established workflow [31] as summarized in 

Figure 9.  

 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and 

NGSQCToolkit [32] applications were selected to perform sequencing data QC and 

filtering. The FastQC software v. 0.10.1 was chosen to determine sequencing data 

quality before proceeding with the analyses as it provides a fast overview of the 

level of error of produced reads potentially affecting subsequent alignment and 

SNP calling steps. Then, it was chosen to add a filtering step to remove low quality 

reads and contaminant adaptor sequences, thus increasing the accuracy of results 

obtainable from produced data. For this purpose, the NGSQC toolkit was 

employed.  

Figure 9. The preprocessing pipeline 
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For the alignment of the high quality paired-end reads to the hg19 reference 

genome the Burrows-Wheeler Aligner (BWA 0.6.2) was selected, a fast and 

memory-efficient read aligner widely used for WES alignment [33] that allows 

gapped alignment, thus enabling a more accurate alignment and detection also in 

correspondence of insertions and deletions (INDELs) [34]. The alignment data 

filtering was based on the Picard Tools (https://broadinstitute.github.io/picard/) 

to remove artifacts due to PCR duplicates. 

 

Then, Genome Analysis Toolkit suite (GATK ver. 2.5.2) [35] was selected to perform 

local re-alignment and quality score recalibration. In more details: GATK was used 

to perform a local realignment of reads in correspondence of insertions and 

deletions to avoid false calls due to wrong alignments in “challenging” genomic 

#FastQC (0.10.1) 

 

fastqc --nogroup -t 2 sequence_1.fastq.gz sequence_2.fastq.gz -o FastQC 

 

#ngsqctoolkit (2.3) 

 

perl NGSQCToolkit_v2.3/QC/IlluQC_PRLL.pl -c 24 -t 2 -s 20 -l 70 -pe sequence_1.fastq.gz 

sequence_2.fastq.gz 2 A -o sample_name/ 

#BWA (0.6.2) 

 

bwa-0.6.2/bwa aln -t 24 ucsc.hg19.fasta sequence_1_filtered.fastq.gz >sequence_1_filtered.sai 

bwa-0.6.2/bwa aln -t 24 ucsc.hg19.fasta sequence_2_filtered.fastq.gz >sequence_2_filtered.sai 

bwa-0.6.2/bwa sampe -r 

@RG\\tID:2\\tLB:flowcell\\tPL:illumina\\tSM:sample_name\\tPU:unk_barconde 

ucsc.hg19.fasta sample_name/sequence_1_filtered.sai sample_name/sequence_2_filtered.sai 

sample_name/sequence_1_filtered.fastq.gz sample_name/sequence_2_filtered.fastq.gz | 

samtools view -Sbh - >sample_name/alignment.bam 

 

#Picard (1.81) 

 

java -Xmx16g -jar picard-tools-1.81/SortSam.jar VALIDATION_STRINGENCY=SILENT 

TMP_DIR=sample_name/TMP MAX_RECORDS_IN_RAM=1000000 

INPUT=sample_name/alignment.bam OUTPUT=sample_name/alignment_sorted.bam 

SORT_ORDER=coordinate CREATE_INDEX=true 

java -Xmx16g -jar picard-tools-1.81/MarkDuplicates.jar VALIDATION_STRINGENCY=SILENT 

TMP_DIR=sample_name/TMP CREATE_INDEX=true REMOVE_DUPLICATES=true 

ASSUME_SORTED=true INPUT=sample_name/alignment_sorted.bam 

OUTPUT=sample_name/alignment_sorted_dedup.bam 

METRICS_FILE=sample_name/alignment_sorted_dedud_duplicates.txt 
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regions. In particular, we realigned reads around known INDELs annotated in the 

1000Genomes project dataset. GATK was also used to perform a recalibration of 

the quality of bases according to direct comparison with the reference genome, 

allowing to obtain more accurate results than simply relying on the base call 

accuracy measure provided by the sequencer. To avoid biases in the correction 

process, genomic positions corresponding to known variants annotated in dbSNP 

build 135 [36] were removed from the recalculation of base accuracy. 

 

 

 

VARIANT CALLING 
 

The variant calling pipeline was based on MuTect [14], a tool specifically created 

for the calling of somatic mutations in cancer samples. MuTect uses both dbSNP 

[36] and COSMIC [23], [24] to confidently call somatic variants by blacklisting 

#GATK (2.5-2) 

 

java -Xmx16g -jar GenomeAnalysisTK-2.5.2.jar -T IndelRealigner -R ucsc.hg19.fasta -I 

alignment_sorted_dedup.bam -targetIntervals hg19.intervals -o output_realigned.bam -known 

1000G_phase1.indels.hg19.orderchange.vcf -known dbsnp_135.hg19.orderchange.vcf --

consensusDeterminationModel KNOWNS_ONLY -LOD 0.4 

java -Xmx16g -jar GenomeAnalysisTK-2.5.2.jar -T BaseRecalibrator -R ucsc.hg19.fasta -I 

output_realigned.bam -o recalibrated.report -knownSites dbsnp_135.hg19.orderchange.vcf -

cov ReadGroupCovariate -cov QualityScoreCovariate -cov CycleCovariate 

java -Xmx16g -jar GenomeAnalysisTK-2.5.2.jar -T PrintReads -R ucsc.hg19.fasta -I 

output_realigned.bam -BQSR recalibrated.report -o recalibrated.bam 

 

#NGSrich (0.7.8) 

 

java -Xmx16g -cp NGSrich_0.7.8/bin/ NGSrich evaluate -r alignment_sorted_dedup.bam -u hg19 

-a refGene.txt -t capture.bed -T TMP -o CAPTURE -p 2 -h 200 --no-details 

 

#samtools (0.1.18)  

 

samtools mpileup -d 100000 -q 0 -Q 0 -f ucsc.hg19.fasta alignment_sorted_dedup.bam -A 

>alignment.mpileup 
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common polymorphism in the population and retaining known mutations 

identified also in other cancer cases. 

 

The tools, applied on all the patients’ normal and tumoral samples, produces lists 

of candidate somatic mutations as variant calling format (vcf) files. 

 

 

VARIANTS ANNOTATION 
 

The annotation of putative somatic mutations was based on the VarSeq 

(http://goldenhelix.com/products/VarSeq/) software, a tool that provide variant 

discovery and interpretation for Next Generation Sequencing data, starting from 

vcf files. 

VarSeq software were used to annotate and filter through the large variant data 

sets produced in the two different cohort of leukemia patients.  

The annotation was based on the following databases: 

• RefSeq Genes 105v2, NCBI [37]: defines genomic sequences to be used as 

reference standards for well-characterized genes. These sequences, 

labeled with the keyword RefSeqGene in NCBI's nucleotide database, 

serve as a stable foundation for reporting mutations, for establishing 

conventions for numbering exons and introns, and for defining the 

coordinates of other variations. Sequences of the RefSeqGene project 

#VARIANT_CALLING_MuTect 

 

java -Xmx2g -jar muTect-1.1.4.jar --analysis_type MuTect --reference_sequence 

ucsc.hg19.fasta --cosmic b37_cosmic_v54_120711.chr.reorder.vcf --dbsnp 

dbsnp_132_b37.leftAligned.chr.reorder.vcf --intervals all.intervals --input_file:normal 

ctrl.bam --input_file:tumor tumor.bam --out call_stats.out --coverage_file coverage.wig.txt --

vcf variants.vcf 
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provide stable gene-specific genomic sequence for each gene, as well as 

including upstream and downstream flanking regions. 

• dbSNP132 [36]: The Database of Short Genetic Variations (dbSNP) is a 

repository of all types of short genetic variations less than 50 bp in length. 

dbSNP accepts submissions of common as well as polymorphic variations, 

and contains both germline and somatic variations. In addition to archiving 

molecular details for each submission and calculating submitted variant 

locations on each genome assembly, dbSNP maintains information about 

population-specific allele frequencies and genotypes, reports the 

validation state of each variant and indicates if a variation call may be 

suspect because of paralogy. 

• 1000 Genomes - 1kG Phase3 [21]: this database contains variant 

frequencies from 1000 Genomes Project, and in particular minor allele 

frequency (MAF) for each subpopulation: Europeans, Asians, Africans and 

Admixed Americans, as well as a MAF field over all samples. These 

frequencies were calculated using 2,504 samples from the 1000 Genomes 

Project. 

• NHLBI ESP6500 Exomes Variant Frequencies [22]: this databases contains 

variant frequencies from the NHLBI Exome Sequencing Project for each 

subpopulation: European Americans and African Americans, as well as a 

MAF field over all samples. These frequencies were calculates using 6503 

samples from multiple ESP cohorts. 

• ExAC Variant Frequencies 0.3, BROAD [20]: this database contains variant 

frequencies across a combined data set of 60,706 exomes of unrelated 

individuals belonging to 7 populations (i.e. NFE – Non-Finnish European) 

sequenced as part of various disease-specific and population genetic 

studies. 

• CIViC - Variant Clinical Evidence [26]: a resource for Clinical Interpretation 

of Variants in Cancer. The database is a focused precision medicine 

resource for variants with published clinical evidence for the relationship 
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between given mutations and diagnosis, prognosis or response to a 

specific treatment of cancer. 

• COSMIC [23], [24]: the Catalogue Of Somatic Mutations In Cancer, is the 

world's largest and most comprehensive resource for exploring the impact 

of somatic mutations in human cancer. COSMIC is designed to store and 

display somatic mutation information and related details and contains 

information relating to human cancers. 

• ICGC Simple Somatic Mutations [25]: a comprehensive catalogue of 

genomic abnormalities in tumors from different cancer types and/or 

subtypes which are of clinical importance. 

• dbNSFP [38]: a database developed for functional prediction and 

annotation of all potential non-synonymous single-nucleotide variants 

(nsSNVs) in the human genome. It compiles prediction scores from 18 

prediction algorithms (SIFT, Polyphen2-HDIV, Polyphen2-HVAR, LRT, 

MutationTaster2, MutationAssessor, FATHMM, MetaSVM, MetaLR, 

CADD, VEST3, PROVEAN, FATHMM-MKL coding, fitCons, DANN, 

GenoCanyon, Eigen coding, Eigen-PC, M-CAP), 6 conservation scores 

(PhyloP x 2, phastCons x 2, GERP++ and SiPhy) and other related 

information including allele frequencies observed in the 1000 Genomes 

Project phase 3 data, UK10K cohorts data, ExAC consortium data and the 

NHLBI Exome Sequencing Project ESP6500 data, various gene IDs from 

different databases, functional descriptions of genes, gene expression and 

gene interaction information, etc. 

Using a chain of filters based on the selected annotation sources is possible to 

narrow the list of variants down to those that are most likely to be of interest 

(Figure 10).  



38 

 

 

Figure 10. Variants annotation and filtering 

With this workflow, we can select low frequency alterations to be evaluated at a 

deeper level by deciphering their biological significance. Moreover, the use of 

specific Cancer database enable the direct identification of mutations that inform 

targeted molecular therapies, drug sensitivity and prognosis for specific cancers. 

 

 

IDENTIFICATION OF DRIVER GENES 
 

The last step of the pipeline was aimed to the identification of driver carrier genes 

in the cohorts analysed based on somatic mutations identified. This step was 

performed applying a statistical analysis based on three distinct software 

(MutSigCV [27], OncodriveClust [28] and OncodriveFM [29]) using complementary 

and independent criteria aimed to detect positive selection signals. To maximize 
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the sensitivity of driver genes detection step the results from the three methods 

were combined.  

MUTSIGCV 

 

To run the MutSigCV module three files were necessary: 

• MAF mutation file: A Mutation Annotation Format (MAF) file is a tab-

delimited text file that lists mutations.   

• Coverage file: A tab-delimited file that gives the maximum number of bases 

covered to adequate depth in order to call mutations.  The file allows 

MutSigCV to operate assuming full coverage. 

• Covariates file: This file contains the genomic covariate data for each gene, 

for example, expression levels and DNA replication times, that will be used 

in MutSigCV to judge which genes are close to each other in mathematical 

"covariate space."  

The vcf files of each tumoral-normal pairs were converted to the MAF file required 

by the software using vcf2maf-master and VEP.  For the coverage and the 

covariates files were used the exome_full192.coverage.txt file and the 

gene.covariates.txt provided by the software. 

#VCF CONVERSION 

perl vcf2maf-master/vcf2maf.pl --vep-path VEP/ensembl-tools-release-

78/scripts/variant_effect_predictor/ --vep-data VEP/data/ --ref-fasta 

VEP/data/homo_sapiens/78_GRCh37/Homo_sapiens.GRCh37.75.dna.primary_assembly.fa --

input-vcf $vcf --output-maf ${vcf}.maf --tumor-id $tumor --normal-id $normal 

 

#MutSigCV 

 

MutSigCV_1.4/MutSigCV_1.4/run_MutSigCV.sh mutations.maf exome_full192.coverage.txt 

gene.covariates.txt mutsig mutation_type_dictionary_file.txt chr_files_hg19 1 
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ONCODRIVEFM 

 

To run OncodriveFM were necessary the files with the functional prediction for 

each tumoral-normal pair. The prediction uses were SIFT, Polyphen2 and 

MutationAssessor. 

These files were prepared using ANNOVAR and converted to the format required 

by the software. For the mappings between genes and pathways to be analysed 

were used the file ensg_kegg.tsv provided by the software. 

#FUNCTIONAL PREDICTION ANNOTATION 

annovar/convert2annovar.pl -format vcf4 -allsample -withfreq $file >${file}.avinput; 

annovar/annotate_variation.pl -filter -dbtype 1000g2014oct_all -buildver hg19 -maf 0.01 -out 

${file} ${file}.avinput annovar/humandb/ 

annovar/table_annovar.pl ${file}.hg19_ALL.sites.2014_10_filtered annovar/humandb/ -buildver 

hg19 -out ${file} -remove  --onetranscript -protocol ensGene,ljb26_all -operation g,f -nastring . 

 

#OncodriveFM 

oncodrivefm -e median -m ensg_kegg.tsv oncodrivefm.txt 

 

ONCODRIVECLUST 

 

To run OncodriveCLUST were necessary two separated list, one with the NON-

Synonymous mutations file and one with the Synonymous mutations.  

These files were prepared using the files produced with ANNOVAR [39] for 

OncodriveFM. Then were used several files provided by the software: 

CGC.phenotype.tsv that contains the Cancer Genome Consortium data; 

pfam_domains.txt that contains the gene domains and gene_transcrips.tsv that 

contains transcripts length for each gene. 

#OncodriveCLUST 

oncodriveclust -m 3 -c --cgc CGC_phenotype.tsv --dom pfam_domains.txt 

oncodrivecluster_nonsyn.txt oncodriveclust_syn.txt gene_transcripts.tsv  
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RESULTS 

 

 

PREPROCESSING RESULTS 
 

The pipeline for WES analysis was applied to all the 205 sequenced leukemia 

samples. Each sample generated on average 61.7 million of fragments (100 nt X 

2), and more than 93% of these data passed the QC filtering step, thus 

demonstrating the high quality of the generated data. The big majority of the 

filtered reads could then be mapped to the reference genome (80% on average). 

Moreover, aligned data showed a mean read depth of 86.5X and about 84% of the 

exome was represented at a minimum read depth of 10X, thus ensuring a highly 

comprehensive analysis of the whole exome. Detailed statistics of the total 

number of fragments reads, the total number of filtered and mapped fragments 

obtained for each sample are reported in Appendix 1. Detailed description on the 

average coverage after filtering and deduplication of the fragments and the 

percentage of target bases covered by at least 1, 10, 20 reads are reported in 

Appendix 2. 

 

 

VARIANT CALLING RESULTS 
 

The application of the variant calling pipeline enabled the identification of 8.208 

somatic variants in AML patients and 5.582 in ALL patients with a mean per patient 
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of 128 variants in AML and 151 in ALL. Of these, respectively 7.365 and 4.676 were 

unique, that means present only in a single patient. 

Table 4 reports the summary statistics of variant calling on the two different 

leukemia types. The table includes statistics on the variants located in the CDS 

(coding DNA sequence) or in regions involved in mRNA splicing that may change 

the aminoacidic composition of the mRNA and thus affect the final protein 

product. In addition, the table reports the loss of function/missense variants, i.e. 

the most important candidate in driving the development of cancer.  

 
# Total # CDS / splicing 

# Loss of function / 

missense 

AML 

64 

patients 

128 

samples 

Unique 7.365 3.273 1.314 

Per 

patient 

(mean) 

128 51 21 

ALL 

37 

patients 

77 

samples 

Unique 4.676 1.968 808 

Per 

patient 

(mean) 

151 53 22 

Table 4. Summary statistics of variant calling: total somatic variants, somatic variants located in CDS or 

splice sites, and Loss of function / missense somatic variants. The number of variants reported are either 

the total unique ones or the average per patient. 

The bar graphs in Figure 11 and 13 show the total number of the somatic variants 

detected in each patient, with AML or ALL respectively. The pie charts in Figure 12 

and 14 indicate the percentage of somatic variants divided according to their 

location in the gene or their potential effect on the encoded protein. 
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Figure 11. Distribution of somatic variants across the AML patients 

 

Figure 12. Distribution of somatic variants according to their putative functional effect in AML 

 

Figure 13. Distribution of somatic variants across the ALL patients 
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Figure 14. Distribution of somatic variants according to their putative functional effect in ALL 

 

 

ANNOTATION RESULTS 
 

The application of the variant annotation procedure enabled us to have a first 

insight into the genes that carry more mutations in the different leukemia patients 

(Figure 15-16) and to pone the basis for the application of the last and most 

important part of the pipeline, the identification of driver genes. The total number 

of mutated genes identified were 3.956 in AML and 2.821 in ALL.  

 

Figure 15. Top 50 mutated genes in AML samples 
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Figure 16. Top 50 mutated genes in ALL samples 

As expected, some genes known to be involved in pathogenesis of leukemia and 

Cancer in general (i.e. TP53 and NRAS), were frequently mutated in the analysed 

samples, both in ALL and AML cohorts. However, some genes frequently mutated 

in the samples analysed are not associated with leukemia but are rather genes 

that accumulate more mutations in respect to the normal average rate of 

mutation (i.e. MUC2). To discriminate these types of mutations and identify the 

genes associated with leukemia it is necessary to apply a statistical analysis, as 

described in the subsequent application of tools for the discovery of driver 

candidate genes. 

Moreover, to select the most-likely damaging variants a population frequency 

filter, based on the database ExAC, 1000 Genomes and NHLBI ESP6500, was used. 

A total of 5.871 variants in AML and 4.002 in ALL had a minor allele frequency 

(MAF) lower than 1% in the three selected population frequency databases, with 

1.076 AML and 750 ALL being loss of function or missense variants.  

Among the identified variants, some hundreds were previously annotated in the 

databases that contain variants identified by previous cancer studies (COSMIC, 

ICGC and CIViC), (Table 5).  
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  COSMIC ICGC CIViC 

AML 

Total 726 2.334 14 

Lof/missense 

MAF<1% 
188 178 12 

ALL 

Total 283 1.154 2 

Lof/missense 

MAF<1% 
118 118 2 

Table 5. Identified Variants annotated in Cancer related databases: total number of variants and total 

number of Loss of function / missense variants with a minor allele frequency lower than 1% in the 

population frequency databases 

The figures below report the distributions of the identified variants that were 

present in the COSMIC (Figure 17-18) and in ICGC (Figure 19-20) databases, 

grouped by the origin of cancer (organ or tissue) where they found by the original 

study. These figures show that in both AML and ALL samples a huge number of 

variants were annotated in Haematopoietic and Lymphoid tissue in COSMIC and 

in the blood tissue in ICGC. A summary of these variants is reported in Table 6. 

 COSMIC ICGC 

AML 

Total 90 655 

Lof/missense 

MAF<1% 
34 37 

ALL 

Total 28 322 

Lof/missense 

MAF<1% 
16 19 

Table 6. Somatic variants identified by the study and annotated in Haematopoietic and Lymphoid tissue in 

or in Blood tissue in the COSMIC or ICGC database, respectively. Variants reported are the total number of 

variants and the total number of Loss of function / missense variants with a minor allele frequency lower 

than 1% in the population frequency databases 
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Figure 17. AML variants reported in COSMIC, divided by cancer origin 

 

Figure 18. ALL variants reported in COSMIC, divided by cancer origin 
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Figure 19. AML variants reported in ICGC, divided by Cancer origin 

 

Figure 20. ALL variants reported in ICGC, divided by Cancer origin 

The CIViC resource was interrogated to identify variants, among those retrieved in 

our analysis, that have been previously associated with good/bad response to a 

certain therapy or with a specific cancer outcome. Table 7 and 8 report the list of 

such variant. 
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Table 7. AML variants reported in the CIViC database. Chr:Pos, chromosome and position in the genome; 

Ref/Alt, reference and alternative alleles; Gene Name, name of the gene where the variant reside; Disease, 

phenotype associated to the variant; Drugs, treatment evidence; Evidence Type, the predictive / prognostic 

/ diagnostic association between an evidence statement and a variant; Clinical significance, the sub-type of 

evidence type that the statement presents.  

 

Table 8. ALL variants reported in the CIViC database. Chr:Pos, chromosome and position in the genome; 

Ref/Alt, reference and alternative alleles; Gene Name, name of the gene where the variant reside; 

Disease, phenotype associated to the variant; Drugs, treatment evidence; Evidence Type, the predictive / 

prognostic / diagnostic association between an evidence statement and a variant; Clinical significance, the 

sub-type of evidence type that the statement presents. 

Chr:Pos Ref/Alt Identifier Gene Name Disease Drugs Evidence Type Clinical Significance

1:115256529 T/C rs11554290 NRAS Melanoma Temozolomide Predictive Sensitivity

1:115258744 C/T rs121434596 NRAS Melanoma 17-AAG Predictive Sensitivity

2:198266834 T/C SF3B1 Breast Cancer Spliceostatin A Predictive Sensitivity

2:209113112 C/T rs121913500 IDH1 Anaplastic Oligodendroglioma AG-5198 Predictive Sensitivity

2:209113113 G/A
rs121913499;

rs121913501
IDH1 Acute Myeloid Leukemia GSK321

Diagnostic,Pro

gnostic,Predicti

ve

Positive,N/A,Sensitiv

ity

4:55599321 A/T rs121913507 KIT Acute Myeloid Leukemia,Systemic Mastocytosis Midostaurin
Prognostic,Pre

dictive

Poor 

Outcome,Sensitivity,

Poor Outcome

9:21975017 C/T rs3814960 CDKN2A Esophagus Squamous Cell Carcinoma Prognostic Poor Outcome

12:25398281 C/T rs112445441 KRAS Colorectal Cancer Cetuximab Predictive

Sensitivity,Sensitivit

y,Resistance or Non-

Response,Resistance 

or Non-

Response,Resistance 

or Non-Response

12:25398284 C/G

rs121913529;

rs121913531;

rs121913534

KRAS Lung Adenocarcinoma
Gefitinib,Erloti

nib
Predictive

Resistance or Non-

Response

12:25398284 C/T

rs121913529;

rs121913531;

rs121913534

KRAS

Hairy Cell Leukemia,Lung Cancer,Non-small Cell 

Lung Carcinoma,Pancreatic Carcinoma,Colorectal 

Cancer,Pancreatic Cancer,Tumor Of Exocrine 

Pancreas,Pancreatic Ductal Carcinoma

ARRY-

142886,BEZ23

5 (NVP-

BEZ235,Dactol

isib),MK-

2206,Cetuxim

ab,Vemurafeni

b

Diagnostic,Pre

dictive,Prognos

tic

Positive,Sensitivity,S

ensitivity,Sensitivity,

Poor Outcome,Poor 

Outcome,Resistance 

or Non-

Response,Poor 

Outcome

12:25398285 C/A rs121913530 KRAS

Lung Cancer,Non-small Cell Lung 

Carcinoma,Cancer,Colorectal Cancer,Non-small Cell 

Lung Carcinoma

Selumetinib 

(AZD6244),Do

cetaxel,ARS-

853,EGFR 

Inhibitor,Gefiti

nib,Erlotinib

Diagnostic,Pre

dictive,Prognos

tic

Positive,Sensitivity,S

ensitivity,Resistance 

or Non-

Response,Poor 

Outcome

12:111884608 T/C rs3184504 SH2B3 Colorectal Cancer Predisposing Positive

15:90631838 C/T rs121913503 IDH2 Acute Myeloid Leukemia,Myelodysplastic Syndrome Prognostic Poor Outcome

17:7577538 C/T rs11540652 TP53 Breast Cancer Prognostic Poor Outcome

Chr:Pos Ref/Alt Identifier Gene Name Disease Drugs Evidence Type Clinical Significance

1:115258744 C/T rs121434596 NRAS Melanoma 17-AAG Predictive Sensitivity

12:25398284 C/T

rs121913529;rs

121913531;rs1

21913534

KRAS

Hairy Cell Leukemia,Lung 

Cancer,Non-small Cell 

Lung 

Carcinoma,Pancreatic 

Carcinoma,Colorectal 

Cancer,Pancreatic 

Cancer,Tumor Of 

Exocrine 

Pancreas,Pancreatic 

Ductal Carcinoma

ARRY-

142886,BE

Z235 (NVP-

BEZ235,D

actolisib),

MK-

2206,Cetu

ximab,Ve

murafenib

Diagnostic,Pred

ictive,Predictiv

e,Predictive,Pro

gnostic,Progno

stic,Predictive,

Prognostic

Positive,Sensitivity,S

ensitivity,Sensitivity,

Poor Outcome,Poor 

Outcome,Resistance 

or Non-

Response,Poor 

Outcome
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Among the variants identified in AML patients, three variants were already 

associated with the disease by previous studies (Table 9). These variants are 

related to the specific diagnosis and prognosis of the disease, and one of them is 

associated with the response to a specific drug, i.e. Midostaurin that in a phase II 

clinical trial shows that 60% of patients (N=89) responded to treatment. 

 

Table 9. AML variants reported in CIVIC already associated with AML 

 

 

IDENTIFICATION OF DRIVER GENES 
 

To identify genes carrying driver somatic mutations, we employed three statistical 

tools, namely MutSigCV, OncodriveFM, OncodriveCLUST, on the sets of annotated 

mutations for each leukemia type. The identified genes with signals of positive 

selection were then mapped into an interaction network using Cytoscape 3 

Reactome FI plugin. Gene modules of the interaction network were identified 

through a clustering approach and the most most significant markers within such 

modules were identified by performing an enrichment analysis to identify 

pathways involved in the tumorigenesis.  

Chr:Pos Ref/Alt Identifier
Gene 

Name
Disease Drugs

Evidence 

Type

Clinical 

Significance
Evidence Statement

2:209113113G/A
rs121913499;

rs121913501
IDH1

Acute 

Myeloid 

Leukemia

GSK321

Diagnostic, 

Prognostic, 

Predictive

Positive, N/A, 

Sensitivity

IDH1 R132 mutation is associated with 

patients of older age, high platelet count 

during diagnosis, cytogenic normalcy and 

NPM1 mutation., IDH1 R132 mutation in 

patients with AML is not associated with any 

prognostic value compared to patients with 

wild-type IDH1.,Newly developed allosteric 

inhibitors (GSK321) of IDH1 led to 

granulocytic differentiation in-vitro and in-

vivo.

4:55599321A/T rs121913507 KIT

Acute 

Myeloid 

Leukemia

Midostaurin Prognostic
Poor 

Outcome

In acute myloid leukemia patients, D816 

mutation is associated with earlier relapse 

and poorer prognosis than wildtype KIT.

15:90631838C/T rs121913503 IDH2

Acute 

Myeloid 

Leukemia

Prognostic, 

Prognostic

N/A, Poor 

Outcome

AML patients with IDH2 mutations such as 

R172K have event free survival and overall 

survival similar to those with wild-type 

IDH2.,In AML, patients with an IDH2 R172K 

mutation have worse overall survival 

compared to those with wild-type IDH2.
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ACUTE MYELOID LEUKEMIA 

 

A total of 64 AML patients were analysed with the selected software and 17 genes 

with signals of positive selection were identified as potential driver carriers by at 

least one bioinformatic approach (Table 10). 

Gene non-

synonymous 

mutations 

 

patient(s) 

MutSigCV 

Recurrence 

OncodriveCLUST 

Clustering 

OncodriveFM 

Functional 

Impact 

AGGF1 3 3 
 

X 
 

CDC27 13 11 
 

X 
 

DPY19L2 5 5 
 

X 
 

FRG1 14 12 X 
  

FRG2B 3 1 
 

X 
 

H2AFV 7 6 X X 
 

IDH1 3 3 
 

X 
 

IDH2 3 3 
 

X 
 

KRAS 7 7 X X 
 

KRT8 3 2 
 

X 
 

MUC6 14 8 
 

X 
 

NRAS 4 3 
 

X 
 

PHGR1 3 2 
 

X 
 

RGPD3 14 9 
 

X 
 

SEC63 4 3 
 

X 
 

SF3B1 5 5 
 

X 
 

SMC1A 3 3 
 

X 
 

Table 10. List of potential driver carriers genes identified by the statistical methods, with the total number 

of mutations and patients carrying a mutation on the indicated gene 

Of the total 17 genes identified, 14 were mapped in the functional interaction 

network with 14 linker genes. Clustering of these genes identified six modules in 

the network (Table 11, Figure 21). 
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Module Nodes in Module Node List 

0 7 GRB2,KRAS,KRT8,NRAS,PPP2CA,SOCS3,YWHAQ 

1 6 CDC27,H2AFV,HIST1H2BA,RPS27A,SEC61A2,SEC63 

2 4 CWC22,FRG1,SF3B1,SMC1A 

3 4 IDH1,IDH2,PC,PSMD12 

4 3 AGGF1,FOS,RBPJ 

5 2 MUC6,TFF1 

Table 11. The six modules identified in the interaction network of the potential driver carriers genes in the 

AML patients 

 

 
Figure 21. Interaction network of the potential driver carriers genes in the AML patients and the six modules 

identified (each indicated with a different colour). 

The methods applied have identified known leukemia pathways, like the 

NRAS/KRAS (Table 12) and IDH1/IDH2 (Table 13) interaction modules, as 

significantly enriched (FDR-adjusted p-value < 0.05) in the network, thus 

demonstrating the validity of the approach. 
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Module GeneSet FDR Nodes 

 

1 RAF/MAP 

kinase 

cascade(R) 

1.00E-03 NRAS,KRAS 

1 Ras 

signaling in 

the CD4+ 

TCR 

pathway(N) 

1.00E-03 NRAS,KRAS 

1 Signaling 

by 

Leptin(R) 

1.33E-03 NRAS,KRAS 

1 p53 

pathway 

feedback 

loops 2(P) 

1.25E-03 NRAS,KRAS 

1 EGF 

receptor 

(ErbB1) 

signaling 

pathway(N) 

1.00E-03 NRAS,KRAS 

Table 12. NRAS/KRAS module enriched in the AML patient 

Module GeneSet FDR Nodes 

 

4 2-

Oxocarboxylic 

acid 

metabolism(K) 

<1.000e-03 IDH2,IDH1 

4 Citrate cycle 

(TCA cycle)(K) 

<5.000e-04 IDH2,IDH1 

4 Glutathione 

metabolism(K) 

6.67E-04 IDH2,IDH1 

4 Biosynthesis of 

amino acids(K) 

7.50E-04 IDH2,IDH1 

4 Peroxisome(K) 1.20E-03 IDH2,IDH1 

4 Carbon 

metabolism(K) 

1.33E-03 IDH2,IDH1 

4 TCA cycle(P) 9.71E-03 IDH2 

4 Peroxisomal 

lipid 

metabolism(R) 

6.99E-02 IDH1 

Table 13. IDH1/IDH2 module enriched in the AML patient. 
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ACUTE LYMPHOBLASTIC LEUKEMIA 

 

Statistical analysis of the 38 patients affected by ALL identified 29 genes with 

signals of positive selection as potential carriers of driver mutations (Table 14). 

Gene # non-

synonymous 

mutations 

# 

patient(s) 

MUTSIG 

Recurrence 

ONCODRIVECLUST 

Clustering 

ONCODRIVEFM 

Functional 

Impact 

AGAP10 3 3 
 

X 
 

ANK3 4 4 
 

X 
 

ANKS1B 5 3 
 

X 
 

CCDC83 4 4 
 

X 
 

CFHR1 4 2 
 

X 
 

CS 6 3 X 
  

DDN 4 4 
 

X 
 

DSPP 3 2 
 

X 
 

EBPL 3 2 
 

X 
 

H2AFV 4 2 
 

X 
 

JAK2 3 2 
 

X 
 

KIF9 1 1  
X 

 

KRAS 4 4 
 

X 
 

LRP1B 3 3 
 

X 
 

MUC20 9 2 
 

X 
 

MYH7 3 3 
 

X X 

NRAS 13 12 X X X 

PAX5 6 6 X X X 

PDIA4 3 3 
 

X 
 

PGM1 4 2 
 

X 
 

PHKG1 3 2 
 

X 
 

PRKRIR 6 3 X X 
 

RGPD3 9 5 
 

X 
 

SEC63 3 3 
 

X 
 

SIRT4 2 2 
  

X 

TMEM147 1 1 
 

X 
 

TP53 4 4 
  

X 

TTC7B 3 3 
 

X 
 

ZP3 4 4 
 

X 
 

Table 14. List of potential driver carriers genes selected by the statistical methods, with the total number 

of mutations and patients involved 
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Of the 29 genes identified, 20 were mapped in the functional interaction network 

with 21 linker genes. Clustering identified seven enriched modules in the network 

(Table15, Figure 22). 

Module Nodes in 

Module 

Node List 

0 11 B4GALT1,EP300,H2AFV,HDAC2,KIF9,PAX5,PRKRIR,SIN3A,STK

4,TP53,ZP3 

1 11 ANK3,EGFR,GRB2,IL2RG,JAK2,KRAS,MUC20,NRAS,SFN,SOS1,

SPTB 

2 8 C1R,CALM1,CFHR1,JUN,MYH7,PAFAH1B1,PDIA4,PHKG1 

3 4 CS,FDPS,MDH2,PGM1 

4 3 RPS27A,SEC61A2,SEC63 

5 2 APBB2,LRP1B 

6 2 DSPP,ITGB1 

Table 15. The seven modules identified in the interaction network of the potential driver carriers genes in 

the ALL patients 

 

Figure 22. Interaction network of the potential driver carriers genes in the ALL patients and the seven 

modules identified 
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Also in the case of ALL patients, the methods applied identified two known 

leukemia pathways as significantly enriched: the TP53 (table 16) and 

NRAS/KRAS/JAK2 (Table 17) interaction modules. 

Mod

ule 
GeneSet FDR Nodes 

1 Factors 

involved in 

megakaryocyte 

development 

and platelet 

production(R) 

2.30E-01 TP53,KIF9 

1 PLK3 signaling 

events(N) 
2.16E-01 TP53 

1 P53 pathway 

feedback loops 

1(P) 

1.75E-01 TP53 

1 Transcriptional 

misregulation 

in cancer(K) 

1.38E-01 TP53,PAX5 

Table 16. TP53 module enriched in the ALL patient 

 

Module GeneSet FDR Nodes 

 

2 Signaling by 

Leptin(R) 
<1.000e-

03 
NRAS,KRAS,JAK2 

2 GMCSF-

mediated 

signaling 

events(N) 

<3.333e-

04 
NRAS,KRAS,JAK2 

2 ErbB2/ErbB3 

signaling 

events(N) 

<3.333e-

04 
NRAS,KRAS,JAK2 

2 Interleukin-2 

signaling(R) 
<2.500e-

04 
NRAS,KRAS,JAK2 

2 SHP2 

signaling(N) 
<2.000e-

04 
NRAS,KRAS,JAK2 

2 Prolactin 

signaling 

pathway(K) 

<1.667e-

04 
NRAS,KRAS,JAK2 
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2 RAF/MAP 

kinase 

cascade(R) 

<1.429e-

04 
NRAS,KRAS 

2 Cholinergic 

synapse(K) 
<1.250e-

04 
NRAS,KRAS,JAK2 

2 PDGFR-beta 

signaling 

pathway(N) 

<1.111e-

04 
NRAS,KRAS,JAK2 

2 Ras signaling 

in the CD4+ 

TCR 

pathway(N) 

<1.000e-

04 
NRAS,KRAS 

Table 17. NRAS/KRAS/JAK2 module enriched in the ALL patient 

The statistical analysis led to the identification of a total of 32 markers (including 

globally 19 novel and 9 established ones) across these leukemia types as reported 

in Table 18. 

Leukemia 

type 

Genes identified 

Novel genes Established genes 

AML H2AFV, SEC63, SMC1A, AGGF1, 

CDC27, FRG1 

IDH1, IDH2, KRAS, NRAS, 

SF3B1, 

ALL TMEM147, TTC7B, ANK3, CFHR1, 

CS, H2AFV, KIF9, PHKG1, PRKRIR, 

SEC63, SIRT4, PGM1, RGPD3, 

DDN, LRP1B 

TP53, JAK2, KRAS, NRAS, 

PAX5, ANKS1B 

Table 18. Gene markers selected on statistical and network-based analysis. 
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DISCUSSION 

In the last 10 years, NGS technology became a trustworthy method to study 

diseases with a genetic basis. By enabling the discovery of disease-associated 

mutations, NGS provides the foundation for a wide range of applications in 

translational research (i.e. Cancer studies). 

The aim of the project presented was the application of WES analysis to patients 

affected by leukemia, either AML or ALL, to uncover their genetic variability and 

to find new markers to help the diagnosis and identify the prognosis of these 

malignancies. In this context, the work conducted focused on the setup and 

application of a bioinformatic pipeline that allows the identification of the somatic 

variants carried by each patient, their correlation with the available knowledge in 

the Cancer Genomics area and the identification of markers for AML and ALL 

leukemia. Given that the distinction between “driver” mutations, responsible for 

leukemia development, and “passenger” mutations is one of the greatest 

challenges in the field, one main goal of the present project was the application of 

dedicated statistics and bioinformatics strategies for the selection of the most 

relevant mutations. 

The setup of a bioinformatic pipeline that enables the identification of a reliable 

set of somatic mutations has required the selection of tools suitable for the 

analysis of NGS data derived from cancer samples. The selection of dedicated 

software to perform the initial pre-processing of the data, like removing some 

known errors due to technological bias, guarantees the use of sequencing data of 

high quality and ensures that the subsequent analysis will be performed on well-

generated data. This is of utmost importance when considering that the majority 

of variants identified occurred in only a subset of the fragments analysed, 

therefore the starting data must be as clean as possible from additional 

confounding variables. Similarly, the selection of a variant caller suitable to detect 
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low frequency variants, that represent the cancer sample, has been crucial to 

overcome specific problems related to the heterogeneity nature of cancer 

samples. Thus, the application of MuTect allowed the identification of a large and 

reliable set of somatic variants to be evaluated for the identification of new 

biomarkers and driver genes. Overall, the selection of the most suitable 

bioinformatic pipeline and its application on all the sequenced leukemia samples 

has required a substantial amount of time but has assured the generation of high 

quality data, as demonstrated by the big number of sequenced fragments that 

passed the QC filtering step and the good exome coverage obtained. 

Subsequently, the application of the variant calling pipeline has enabled the 

identification of a huge number of somatic variants, and the further selection of 

meaningful variants, e.g. with a potential impact on the gene product, previously 

associated to cancer development or enriched in driver genes. Moreover, among 

all the variants identified, 4291 variants in AML and 3237 in ALL were never 

associated to cancer previously, thus representing a good starting point for the 

discovery of novel biomarker. 

The correlation of the identified somatic variants with the biological knowledge 

present in different databases allowed to identify the variants most-likely 

responsible of leukemia development (driver mutations).  

The first database utilized at this aim was RefSeqGene that enabled us to correctly 

identify the protein-coding genes in which the variant resides and to assess its 

functional consequence on the protein product, i.e. location within the CDS or on 

splice regions, and among these the loss of function/missense variants. In addition, 

RefSeqGene allowed us to have a first insight into the genes most frequently 

mutated in the different leukemia patients and to pone the basis for the 

identification of driver genes. The results obtained were reliable as demonstrated 

by the identification of genes that have been already associated to cancer 

pathogenesis (i.e. TP53, NRAS). Most importantly, our results also highlighted 

other genes that are frequently mutated in leukemia and that were never 
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associated to this type of cancer before, these were 19 in total and included for 

example CDC27 and LRP1B. 

To further narrow down the list of relevant somatic variants, we selected those 

that: (i) were rare, i.e. had a low frequency in healthy reference populations, (ii) 

were annotated in databases collecting variants associated to cancer by previous 

studies, (iii) were enriched in driver genes as identified by selected statistical 

methods.  

Selection for frequency allowed to filter out innocuous common variants, thus 

decreasing the total number of potentially dangerous variants from 8.208 to 5.871 

and from 5.582 to 4.002, respectively for AML and ALL.  Further merging of these 

data with resources that contain variants coming from previous cancer studies, 

highlighted that a big number of variants were already associated to cancer of 

Haematopoietic and Lymphoid tissue (90 in AML and 28 in ALL) and blood (655 in 

AML and 322 in ALL), indicating that the selected somatic mutations can have an 

impact on the tissues involved in leukemia development. Moreover, interrogating 

the CIViC resource, among the variants identified in AML patients, three were 

already associated with the disease by previous studies, two of these already 

related to a poor prognosis and one of them was associated with the good 

response to a specific drug (i.e. Midostaurin). 

Overall, only with the application of the right biological knowledge we can obtain 

information of fundamental importance in the analysis of single leukemic patients, 

enabling the application of a specific tailored therapy selected on the basis of 

mutations carried by each patient. However, resources connecting mutations to 

good/bad response or prognosis are still not complete. Still, they can take great 

vantage of large sequencing project like the one presented here to obtain novel 

biomarkers that can be further validated and then used for addressing the most 

appropriate therapy on newly diagnosed patients. Therefore, the last part of the 

project was dedicated to the identification of genes that are most likely implicated 

in the development of the disease. In fact, as in the cancer genome only a small 
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subset of the somatic mutations found in the cells are responsible for 

tumorigenesis we discriminated between real driver mutations from passenger 

mutations, by identifying the genes that exhibits signals of positive selection 

across our cohort of tumour samples. To perform this task, we employed three 

statistical tools that together allowed us to obtain the most comprehensive list of 

driver genes, overcoming the intrinsic limitation of each software taken 

individually.  This analysis led to the identification of a total of 32 potential 

biomarkers (including 19 novel and 9 established ones) across all the samples. 

Subsequent enrichment analysis highlighted the genes involved in the 

tumorigenesis and demonstrated the significance of the markers identified. We 

identified pathways known to be implicated in leukemia development, like the 

NRAS/KRAS and IDH1/IDH2 modules in AML, and the TP53 and NRAS/KRAS/JAK2 

modules in ALL.  Beside these, the analysis found enriched pathways that are not 

connected with leukemia in an established manner. These include interesting 

relevant candidates that can be involved in leukemia pathogenesis:  CDC27 or Cell 

division cycle 27, is a protein involved in the regulation of the cell cycle, interesting 

in our condition because the dysregulated cell cycle progression has a critical role 

in tumorigenesis/leukemia. Indeed, in colorectal cancer CDC27 expression is 

significantly correlated with tumor progression and poor patient survival [40]; 

LRP1B or LDL receptor related protein 1B is a gene that encodes a member of the 

low density lipoprotein (LDL) receptor family. These receptors play a wide variety 

of roles in normal cell function and development due to their interactions with 

multiple ligands. LRP1B point mutations have been reported in a significant 

percentages of lung cancer [41] as well as in melanoma [42] and triple negative 

breast cancer [43]. One of the novel gene identified has a specific role in the 

activation of the immune system: PRKRIR is a protein-kinase that enhances the 

antiviral response, a crucial activity of lymphocytes [44]; even if its role in cancer 

is not well established, PRKRIR constitutes a promising candidate linking leukocyte 

dysregulation with cancer development. ANK3, ankyrin 3, is significantly mutated 

in endometrial cancer and in melanoma; it encodes for a membrane protein that 
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play key roles in activities such as cell motility, activation, proliferation, contact 

and the maintenance of specialized membrane domains; these are important 

aspects in leukocyte biology, however the role of this gene is still not well 

established in the immune system yet (http://www.tumorportal.org/ANK3).  Even 

if potentially relevant, the function of other genes identified has not been clearly 

connected with leukocyte biology or cancer development yet. Additional 

validation and functional studies will be necessary to investigate the implication 

of all the driver genes identified with leukemia pathogenesis and to define their 

role as potential biomarkers for disease prognosis and therapy response.  

In conclusion, the study demonstrated that the application of NGS, in combination 

with an appropriate analysis pipeline and integration of a-priori biological 

knowledge can lead to the discovery of novel candidate biomarkers associated 

with leukemia development. This Proof-Of-Concept study demonstrated that the 

NGS approach has the potential to be applied routinely in the clinic to obtain 

crucial unprecedented information for an accurate and quick diagnosis and to 

guide tailored interventions on these malignancies, thus leading to great 

successful improvements in this field. 
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APPENDIX 

APPENDIX 1 
Detailed statistics on the total number of fragments, the total number of filtered 

and mapped fragments. 

SAMPLE 
Type of 

Leukemia 
Phase 

# sequenced 

fragments 

# filtered 

fragments 

% filtered 

fragments 

# mapped 

fragments 

(dedup) 

% mapped 

fragments 

(dedup) 

Sample_187 AML diagnosis 86029887 80836959 93,96% 47000322 58,14% 

Sample_197 AML germline 78469088 73800314 94,05% 42710753,5 57,87% 

Sample_195 AML diagnosis 78449806 74032573 94,37% 41817760 56,49% 

Sample_198 AML germline 93325767 87708025 93,98% 48686117 55,51% 

Sample_63640 AML diagnosis 87484829 82236643 94,00% 50358970,5 61,24% 

Sample_199 AML germline 33193541 31281332 94,24% 18075269,5 57,78% 

Sample_A1010D  AML diagnosis 69086706 65314721 94,54% 56729435,5 86,86% 

Sample_A1010S  AML germline 86645093 82100017 94,75% 71832845,5 87,49% 

Sample_A1015Dbis AML diagnosis 53118847 49264808 92,74% 43714933 88,73% 

Sample_A1015S AML germline 22498594 21336279 94,83% 19535567,5 91,56% 

Sample_A1024D AML diagnosis 83830187 77226104 92,12% 68442084,5 88,63% 

Sample_A1024S AML germline 29505251 27385046 92,81% 24930547,5 91,04% 

Sample_A1025D AML diagnosis 82814040 77031343 93,02% 67315045 87,39% 

Sample_A1025S AML germline 37050554 34810659 93,95% 31681783 91,01% 

Sample_B1001D  AML diagnosis 93440778 88440204 94,65% 78646235,5 88,93% 

Sample_B1001S  AML germline 69010621 65256891 94,56% 56095424 85,96% 

Sample_B1006D  AML diagnosis 57177046 53442497 93,47% 49119093,5 91,91% 

Sample_B1006S  AML germline 52609965 48698395 92,56% 44955797 92,31% 

Sample_B1014D AML diagnosis 60160493 56320811 93,62% 47388697,5 84,14% 

Sample_B1014S AML germline 23647544 22551048 95,36% 20222256,5 89,67% 

Sample_B1026D AML diagnosis 53242686 49223059 92,45% 44783359,5 90,98% 

Sample_B1026S AML germline 30701851 28937816 94,25% 26493257 91,55% 

Sample_B1028D AML diagnosis 67679596 62679188 92,61% 57695404,5 92,05% 

Sample_B1028S AML germline 32019454 29889207 93,35% 26978421 90,26% 

Sample_B1034D AML diagnosis 46850219 44093577 94,12% 39288379 89,10% 

Sample_B1034S AML germline 33523945 31590080 94,23% 28797169,5 91,16% 

Sample_B1041D AML diagnosis 71839118 67324385 93,72% 45118157,5 67,02% 

Sample_B1041S AML germline 32848233 31187890 94,95% 21765124 69,79% 

Sample_B2002D  AML diagnosis 61134067 56784815 92,89% 49584603 87,32% 

Sample_B2002S  AML germline 19738373 18729571 94,89% 17008451,5 90,81% 

Sample_B2004D  AML diagnosis 56088744 52917970 94,35% 49167606 92,91% 

Sample_B2004S  AML germline 28111907 26946179 95,85% 24873949,5 92,31% 

Sample_B2005D  AML diagnosis 57235519 53642391 93,72% 49972322,5 93,16% 
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Sample_B2005S  AML germline 63612873 59342554 93,29% 55303446 93,19% 

Sample_B2007D  AML diagnosis 69080771 64543316 93,43% 57582479 89,22% 

Sample_B2007S  AML germline 48599102 45844183 94,33% 42235665 92,13% 

Sample_B2008D  AML diagnosis 105032896 99333952 94,57% 87617743,5 88,21% 

Sample_B2008S  AML germline 73277132 69388497 94,69% 58717822 84,62% 

Sample_B2009D AML diagnosis 58801391 54970978 93,49% 51158965,5 93,07% 

Sample_B2009S AML germline 25494454 24389015 95,66% 21772026,5 89,27% 

Sample_B2023D AML diagnosis 54544548 49510634 90,77% 43662810,5 88,19% 

Sample_B2023S AML germline 38761333 36047420 93,00% 33041307 91,66% 

Sample_B2030D AML diagnosis 75680896 71876934 94,97% 65051977,5 90,50% 

Sample_B2030S AML germline 30758899 28874272 93,87% 26602684 92,13% 

Sample_B2031D AML diagnosis 45091853 42613721 94,50% 34516637,5 81,00% 

Sample_B2031S AML germline 33463869 31214478 93,28% 28633463,5 91,73% 

Sample_B2033D AML diagnosis 58109645 55018734 94,68% 48513546 88,18% 

Sample_B2033S AML germline 29706329 27859919 93,78% 25190052,5 90,42% 

Sample_B2035D AML diagnosis 58664146 53482322 91,17% 25901922 48,43% 

Sample_B2035S AML germline 26572499 22463899 84,54% 14537532,5 64,72% 

Sample_B2036D AML diagnosis 64726704 61053550 94,33% 42338692,5 69,35% 

Sample_B2036S AML germline 33778194 32086004 94,99% 22891144,5 71,34% 

Sample_B2038D AML diagnosis 65972137 59428959 90,08% 28658873,5 48,22% 

Sample_B2038S AML germline 26921438 22798648 84,69% 16305353 71,52% 

Sample_B2039D AML diagnosis 97163254 90112792 92,74% 61035349,5 67,73% 

Sample_B2039S AML germline 21081975 19998906 94,86% 14794843 73,98% 

Sample_B2040D AML diagnosis 64843281 57775681 89,10% 27236564 47,14% 

Sample_B2040S AML germline 20273825 17307126 85,37% 12479748,5 72,11% 

Sample_B2042D AML diagnosis 74978250 67526872 90,06% 29543655,5 43,75% 

Sample_B2042S AML germline 25967438 21220480 81,72% 14405588,5 67,89% 

Sample_B2043D AML diagnosis 69855875 66050017 94,55% 47102706,5 71,31% 

Sample_B2043S AML germline 37540729 35563218 94,73% 26371940 74,16% 

Sample_B2045D AML diagnosis 92623304 86980410 93,91% 58169849,5 66,88% 

Sample_B2045S AML germline 30542265 24238776 79,36% 16686825 68,84% 

Sample_BO_1_NO

RM AML germline 89619176 82202942 91,72% 60051521 73,05% 

Sample_BO_1_TU

M AML diagnosis 98477692 90428863 91,83% 62565696 69,19% 

Sample_BO_2_NO

RM AML germline 97607743 89080151 91,26% 76282649,5 85,63% 

Sample_BO_2_TU

M AML diagnosis 75960151 71594138 94,25% 54179288,5 75,68% 

Sample_BO_3_NO

RM AML germline 72222284 66890991 92,62% 52344413 78,25% 

Sample_BO_3_TU

M AML diagnosis 109099258 101171451 92,73% 68545995,5 67,75% 

Sample_BO_4_NO

RM AML germline 92515480 84090264 90,89% 66530818 79,12% 

Sample_BO_4_TU

M AML diagnosis 78920647 72710447 92,13% 61073425 84,00% 

Sample_C0017D  AML diagnosis 50319837 47517598 94,43% 40631993 85,51% 

Sample_C0017S  AML germline 48194946 45866613 95,17% 37570701,5 81,91% 

Sample_C0018D AML diagnosis 58984143 55366459 93,87% 49748583,5 89,85% 

Sample_C0018S AML germline 39221812 37000622 94,34% 33555072 90,69% 

Sample_C0022D  AML diagnosis 35259151 33397766 94,72% 23259070 69,64% 
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Sample_C0022S  AML germline 63912405 60340302 94,41% 51156387,5 84,78% 

Sample_C0037D AML diagnosis 94488008 88275405 93,42% 59374776,5 67,26% 

Sample_C0037S AML germline 28720805 27268897 94,94% 18412924 67,52% 

Sample_C0046D AML diagnosis 54449789 49042273 90,07% 23639070,5 48,20% 

Sample_C0046S AML germline 36549800 28613665 78,29% 20414772 71,35% 

Sample_D0027D AML diagnosis 97188808 89872158 92,47% 81422047,5 90,60% 

Sample_D0027S AML germline 27921833 26188675 93,79% 23071968 88,10% 

Sample_NGS-41 AML diagnosis 35044972 33438164 95,42% 30424452 86,82% 

Sample_NGS-42 AML remission 52747850 50362403 95,48% 45318691 85,92% 

Sample_NGS-43 AML diagnosis 62002729 58778197 94,80% 51409926,5 82,92% 

Sample_NGS-44 AML remission 66544386 63623193 95,61% 57161486 85,90% 

Sample_NGS-45 AML diagnosis 60105835 57189266 95,15% 50944690,5 84,76% 

Sample_NGS-46 AML remission 46377420 44352327 95,63% 40157512,5 86,59% 

Sample_NGS-47 AML diagnosis 44710686 42465206 94,98% 38007728,5 85,01% 

Sample_NGS-72 AML remission 56113798 53350952 95,08% 46862905,5 83,51% 

Sample_NGS-48 AML diagnosis 70239377 66932617 95,29% 60072819,5 85,53% 

Sample_NGS-50 AML remission 51133755 48923829 95,68% 43012183,5 84,12% 

Sample_NGS-49 AML diagnosis 45664875 43335085 94,90% 38784926 84,93% 

Sample_NGS-51 AML remission 52551694 50227084 95,58% 44256613 84,22% 

Sample_NGS-52 AML diagnosis 52960850 49843970 94,11% 44606270 84,22% 

Sample_NGS-75 AML remission 49718554 47531547 95,60% 39199407,5 78,84% 

Sample_NGS-53 AML diagnosis 69720610 66279985 95,07% 56391625,5 80,88% 

Sample_NGS-58 AML remission 63391140 60221429 95,00% 52632599,5 83,03% 

Sample_NGS-55 AML diagnosis 51290687 48375549 94,32% 42652115 83,16% 

Sample_NGS-62 AML remission 56043901 52949091 94,48% 46686880 83,30% 

Sample_NGS-56 AML diagnosis 46943999 44496964 94,79% 38372700 81,74% 

Sample_NGS-63 AML remission 54464063 51293141 94,18% 44498496,5 81,70% 

Sample_NGS-57 AML diagnosis 47857451 45511606 95,10% 39548136 82,64% 

Sample_NGS-68 AML remission 46173460 43859468 94,99% 38564247,5 83,52% 

Sample_NGS-60 AML diagnosis 57006627 54066986 94,84% 46294535,5 81,21% 

Sample_NGS-64 AML remission 48716621 46025953 94,48% 40787029 83,72% 

Sample_NGS-61 AML diagnosis 50078379 47566467 94,98% 42000454 83,87% 

Sample_NGS-66 AML remission 46311032 43938076 94,88% 37348548 80,65% 

Sample_NGS-65 AML diagnosis 52686498 49943465 94,79% 44494707,5 84,45% 

Sample_NGS-69 AML remission 57206279 54138645 94,64% 46751609 81,72% 

Sample_NGS-67 AML diagnosis 78211897 73906870 94,50% 61188349 78,23% 

Sample_NGS-71 AML remission 49070392 46753791 95,28% 41374940 84,32% 

Sample_NGS-70 AML diagnosis 54161344 51721877 95,50% 45165111,5 83,39% 

Sample_NGS-76 AML remission 49044273 46051349 93,90% 40146693 81,86% 

Sample_NGS-73 AML diagnosis 46723571 44456325 95,15% 39157963,5 83,81% 

Sample_NGS-78 AML remission 51779282 49243850 95,10% 42487234,5 82,05% 

Sample_NGS-74 AML diagnosis 43731754 41819716 95,63% 36505232,5 83,48% 

Sample_NGS-77 AML remission 58431356 55362472 94,75% 48568769,5 83,12% 

Sample_NGS-79 AML diagnosis 52543744 49838707 94,85% 43896050 83,54% 

Sample_NGS-86 AML remission 58501849 55233848 94,41% 47461781,5 81,13% 

Sample_NGS-80 AML diagnosis 54283878 51514772 94,90% 44637854,5 82,23% 

Sample_NGS-84 AML remission 47408554 44922686 94,76% 37966851,5 80,08% 
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Sample_NGS-81 AML diagnosis 47142236 44761008 94,95% 38091263 80,80% 

Sample_NGS-83 AML remission 61827641 58288808 94,28% 49732448 80,44% 

Sample_NGS-82 AML diagnosis 53496665 50819253 95,00% 43817174 81,91% 

Sample_NGS-87 AML remission 57795915 54589073 94,45% 47068972 81,44% 

Sample_3FK_3D 
ALL diagnosis 69102695 63510395 91,91% 56638083,5 81,96% 

Sample_3FK_3n-

DNA ALL germline 71168290 68044617 95,61% 44299504,5 65,10% 

Sample_3FK_3R 
ALL relapse 74056049 68897070 93,03% 60441971,5 81,62% 

Sample_4PJ_4D 
ALL diagnosis 82005678 75615433 92,21% 66561836,5 81,17% 

Sample_4PJ_4n-

DNA ALL germline 83522059 78570586 94,07% 67061889 85,35% 

Sample_4PJ_4R 
ALL relapse 56120187 52157901 92,94% 47677698,5 84,96% 

Sample_6MJ_6D 
ALL diagnosis 93796558 88726039 94,59% 63424179 67,62% 

Sample_6MJ_6n-

DNA ALL germline 74594066 70517430 94,53% 55372132,5 74,23% 

Sample_7TK_7D 
ALL diagnosis 115546871 110698372 95,80% 87264041 75,52% 

Sample_7TK_7n-

DNA ALL germline 31508710 30317788 96,22% 22355056,5 70,95% 

Sample_8PB_8D 
ALL diagnosis 144493912 138250366 95,68% 103439036,5 71,59% 

Sample_8PB_8n-

DNA ALL germline 33950946 32565043 95,92% 24250220 71,43% 

Sample_10JN_10D 
ALL diagnosis 78282405 73476504 93,86% 63715601 81,39% 

Sample_10JN_10n-

DNA ALL germline 52395970 50581368 96,54% 41205248 78,64% 

Sample_10JN_10R 
ALL relapse 52179625 50251503 96,30% 41490644,5 79,52% 

Sample_11LT_11D 
ALL diagnosis 68171713 63343797 92,92% 56070575,5 82,25% 

Sample_11LT_11n-

DNA ALL germline 107990339 102501545 94,92% 84247953,5 82,19% 

Sample_554 
ALL diagnosis 76073023 70944161 93,26% 59082843,5 77,67% 

Sample_1629 
ALL remission 66743298 62140898 93,10% 52466472 78,61% 

Sample_616 
ALL diagnosis 65266981 62255759 95,39% 53505595 81,98% 

Sample_1630 
ALL remission 86137139 80646257 93,63% 67370410 78,21% 

Sample_757 
ALL diagnosis 58174042 54864088 94,31% 46323110,5 79,63% 

Sample_751 
ALL germline 79226798 74952067 94,60% 61823282 78,03% 

Sample_961 
ALL relapse 67814593 64151051 94,60% 53359211,5 78,68% 

Sample_1009 
ALL germline 64266221 59803150 93,06% 50539030,5 78,64% 

Sample_960 
ALL diagnosis 50432072 48064597 95,31% 41167518,5 81,63% 

Sample_1011 
ALL germline 43915140 40851423 93,02% 34663238,5 78,93% 

Sample_1258 
ALL diagnosis 37795346 35867488 94,90% 31457757,5 83,23% 

Sample_1341 
ALL germline 47589113 44131119 92,73% 36882800 77,50% 

Sample_1430 
ALL diagnosis 69212642 65038346 93,97% 57472172 83,04% 

Sample_1612 
ALL germline 39806959 36424628 91,50% 30022563 75,42% 

Sample_1731 ALL diagnosis 78217014 73709543 94,24% 40469026,5 54,90% 

Sample_1764 ALL germline 71775242 67464261 93,99% 40067253,5 59,39% 

Sample_30846 
ALL diagnosis 22842232 21120132 92,46% 16758299,5 73,37% 

Sample_37839 
ALL remission 73833615 69290082 93,85% 59096982,5 80,04% 

Sample_43873 
ALL diagnosis 47264247 44218792 93,56% 38736814,5 81,96% 

Sample_44365 
ALL remission 55070575 51881778 94,21% 44949302 81,62% 

Sample_65420 
ALL diagnosis 61844155 58419603 94,46% 50899102,5 82,30% 

Sample_80535 
ALL remission 33797942 32296904 95,56% 28963946,5 85,70% 

Sample_74413 
ALL diagnosis 61456436 56896952 92,58% 50473434,5 82,13% 
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Sample_75147 
ALL remission 66498953 62801775 94,44% 54186091,5 81,48% 

Sample_78540 
ALL diagnosis 70630741 66556740 94,23% 56945706,5 80,62% 

Sample_79323 
ALL remission 61267898 57987996 94,65% 50937543 83,14% 

Sample_85112_85

11 ALL diagnosis 56200834 52238366 92,95% 46670675,5 83,04% 

Sample_295012_2

950 ALL remission 84045875 79493727 94,58% 61526410 77,40% 

Sample_106013_1

060 ALL diagnosis 72166868 67908483 94,10% 57157813,5 79,20% 

Sample_125613_1

256 ALL remission 78404359 74799886 95,40% 62075663 79,17% 

Sample_108612_1

086 ALL diagnosis 61520145 56346898 91,59% 41570830,5 67,57% 

Sample_163213_1

632 ALL remission 73814210 70038317 94,88% 58797903,5 83,95% 

Sample_139213_1

392 ALL diagnosis 72104183 68514893 95,02% 57841350,5 84,42% 

Sample_206613_2

066 ALL remission 82033667 74887273 91,29% 63856239 77,84% 

Sample_246313_2

463 ALL diagnosis 65220624 59933071 91,89% 45285724 69,43% 

Sample_222313_2

223 ALL remission 72936583 68546854 93,98% 57605101 84,04% 

Sample_331212_3

312 ALL diagnosis 83285708 78051144 93,71% 65988252,5 84,54% 

Sample_9813_98 
ALL remission 82262913 75133585 91,33% 63471828,5 77,16% 

Sample_417612_4

176 ALL diagnosis 99577757 90801235 91,19% 76855088,5 77,18% 

Sample_220313_2

203 ALL remission 73721238 69197354 93,86% 58648002,5 84,75% 

Sample_NGS-163 
ALL diagnosis 61600192 57851857 93,92% 50864258 82,57% 

Sample_NGS-164 
ALL remission 75096097 71175145 94,78% 61436921,5 81,81% 

Sample_NGS-165 
ALL diagnosis 76933888 72402718 94,11% 61987837 80,57% 

Sample_NGS-166 
ALL remission 84328301 79798479 94,63% 68830342 81,62% 

Sample_NGS-167 
ALL diagnosis 75085497 70816928 94,32% 61954525 82,51% 

Sample_NGS-168 
ALL remission 73798144 69516131 94,20% 60531899,5 82,02% 

Sample_NGS-169 
ALL diagnosis 80236416 75162117 93,68% 66265720 82,59% 

Sample_NGS-170 
ALL remission 81078668 76072642 93,83% 65590191,5 80,90% 

Sample_NGS-171 
ALL diagnosis 82945032 77645159 93,61% 67768557 81,70% 

Sample_NGS-172 
ALL remission 77979291 73287041 93,98% 62700968 80,41% 

Sample_NGS-173 
ALL diagnosis 69375244 64936228 93,60% 54730042 78,89% 

Sample_NGS-174 
ALL remission 71649494 67329539 93,97% 57425696,5 80,15% 

Sample_NGS-175 
ALL diagnosis 74944867 69980509 93,38% 61626636,5 82,23% 

Sample_NGS-176 
ALL remission 84447221 78745042 93,25% 68133005,5 80,68% 

Sample_NGS-177 
ALL diagnosis 75834804 70670030 93,19% 60997932 80,44% 

Sample_NGS-178 
ALL remission 98919493 92024101 93,03% 81883933 82,78% 

Sample_NGS-179 
ALL diagnosis 72307302 67221669 92,97% 58799351,5 81,32% 

Sample_NGS-180 
ALL remission 64732993 60461248 93,40% 53127906 82,07% 

Sample_NGS-183 
ALL diagnosis 85964106 79844085 92,88% 69671995,5 87,26% 

Sample_NGS-185 
ALL germline 74741371 69352722 92,79% 60146480 86,73% 

  MEAN 61672249,64 57795861,64 93,64% 47478769,62 80,01% 
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APPENDIX 2 
Detailed description on average coverage after filtering and deduplication of the 

fragments and the percentage of target bases covered by at least 1, 10, 20 reads. 

SAMPLE 
Type of 

Leukemia 
Phase Coverage Mean Covered 1x Covered 10x Covered 20x 

Sample_187 AML diagnosis 94,91 95,05% 87,70% 81,82% 

Sample_197 AML germline 83,6 95,09% 87,67% 81,59% 

Sample_195 AML diagnosis 84,39 94,70% 86,22% 78,83% 

Sample_198 AML germline 95,49 95,61% 88,76% 83,47% 

Sample_63640 AML diagnosis 98,95 95,32% 88,59% 83,61% 

Sample_199 AML germline 37,64 92,67% 76,16% 59,54% 

Sample_A1010D  AML diagnosis 94,35 94,31% 87,64% 83,37% 

Sample_A1010S  AML germline 120,94 95,00% 89,03% 85,71% 

Sample_A1015Dbis AML diagnosis 73,51 97,11% 93,08% 89,12% 

Sample_A1015S AML germline 33,65 96,10% 85,55% 65,10% 

Sample_A1024D AML diagnosis 112,66 97,76% 94,46% 91,94% 

Sample_A1024S AML germline 42,39 96,54% 88,14% 72,30% 

Sample_A1025D AML diagnosis 112,47 97,66% 94,41% 91,92% 

Sample_A1025S AML germline 49,97 96,98% 90,61% 79,26% 

Sample_B1001D  AML diagnosis 133,16 95,44% 89,68% 86,55% 

Sample_B1001S  AML germline 95,53 94,75% 88,21% 84,18% 

Sample_B1006D  AML diagnosis 82,19 97,15% 93,48% 89,94% 

Sample_B1006S  AML germline 69,05 97,50% 93,03% 87,91% 

Sample_B1014D AML diagnosis 72,94 97,54% 93,17% 89,34% 

Sample_B1014S AML germline 34,14 96,46% 87,99% 72,72% 

Sample_B1026D AML diagnosis 74,57 97,14% 93,10% 88,99% 

Sample_B1026S AML germline 45,15 96,47% 89,37% 76,53% 

Sample_B1028D AML diagnosis 98,69 97,21% 93,77% 90,75% 

Sample_B1028S AML germline 44,54 96,41% 89,52% 77,16% 

Sample_B1034D AML diagnosis 67,45 96,88% 92,78% 88,19% 

Sample_B1034S AML germline 48,91 96,59% 89,88% 78,20% 

Sample_B1041D AML diagnosis 78,94 97,17% 89,52% 81,58% 

Sample_B1041S AML germline 44,51 94,57% 76,91% 61,52% 

Sample_B2002D  AML diagnosis 82,46 97,25% 93,48% 89,78% 

Sample_B2002S  AML germline 29,89 95,99% 82,64% 58,92% 

Sample_B2004D  AML diagnosis 81,72 96,04% 90,67% 85,98% 

Sample_B2004S  AML germline 42,1 96,69% 89,94% 79,30% 

Sample_B2005D  AML diagnosis 83,34 97,18% 93,05% 89,24% 

Sample_B2005S  AML germline 85,2 97,66% 93,47% 89,84% 

Sample_B2007D  AML diagnosis 95,64 97,56% 94,19% 91,10% 

Sample_B2007S  AML germline 70,33 96,14% 90,30% 85,16% 

Sample_B2008D  AML diagnosis 145,33 94,19% 88,58% 85,60% 

Sample_B2008S  AML germline 98,77 94,23% 87,58% 83,45% 

Sample_B2009D AML diagnosis 85,45 97,27% 93,29% 89,30% 

Sample_B2009S AML germline 36,81 96,74% 88,77% 74,72% 
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Sample_B2023D AML diagnosis 73,05 97,17% 93,13% 89,08% 

Sample_B2023S AML germline 55,79 96,78% 90,99% 81,51% 

Sample_B2030D AML diagnosis 111,22 97,33% 94,11% 91,47% 

Sample_B2030S AML germline 44,95 96,52% 89,04% 75,07% 

Sample_B2031D AML diagnosis 58,48 96,84% 92,16% 86,85% 

Sample_B2031S AML germline 45,93 96,78% 90,01% 78,23% 

Sample_B2033D AML diagnosis 81,08 97,15% 93,41% 89,73% 

Sample_B2033S AML germline 42,91 96,44% 88,58% 73,98% 

Sample_B2035D AML diagnosis 50,41 96,69% 85,36% 69,42% 

Sample_B2035S AML germline 29,93 94,41% 69,95% 47,53% 

Sample_B2036D AML diagnosis 75,14 97,37% 89,70% 81,55% 

Sample_B2036S AML germline 47,5 94,56% 77,85% 63,01% 

Sample_B2038D AML diagnosis 55,5 96,80% 87,09% 73,14% 

Sample_B2038S AML germline 32,88 95,35% 76,24% 53,29% 

Sample_B2039D AML diagnosis 108,58 97,96% 92,24% 87,44% 

Sample_B2039S AML germline 30,64 94,48% 72,38% 52,39% 

Sample_B2040D AML diagnosis 52,88 96,89% 86,57% 71,24% 

Sample_B2040S AML germline 25,18 94,56% 68,19% 42,91% 

Sample_B2042D AML diagnosis 58,38 96,75% 86,86% 72,82% 

Sample_B2042S AML germline 29,33 95,08% 71,46% 47,59% 

Sample_B2043D AML diagnosis 81,73 97,51% 90,48% 83,44% 

Sample_B2043S AML germline 52,59 96,22% 84,86% 70,47% 

Sample_B2045D AML diagnosis 101,18 97,64% 91,29% 85,91% 

Sample_B2045S AML germline 34,05 95,61% 77,40% 54,06% 

Sample_BO_1_NORM AML germline 165,58 99,62% 98,75% 96,97% 

Sample_BO_1_TUM AML diagnosis 172,8 99,59% 98,60% 96,71% 

Sample_BO_2_NORM AML germline 218,14 99,61% 99,12% 98,46% 

Sample_BO_2_TUM AML diagnosis 147,06 99,59% 98,44% 96,08% 

Sample_BO_3_NORM AML germline 143,78 99,52% 98,42% 96,16% 

Sample_BO_3_TUM AML diagnosis 187,36 99,52% 98,69% 97,14% 

Sample_BO_4_NORM AML germline 140,32 99,50% 98,32% 95,85% 

Sample_BO_4_TUM AML diagnosis 166,12 99,52% 98,47% 96,52% 

Sample_C0017D  AML diagnosis 68,72 93,59% 85,82% 80,12% 

Sample_C0017S  AML germline 67,59 93,66% 85,96% 80,67% 

Sample_C0018D AML diagnosis 81,1 97,39% 93,39% 89,83% 

Sample_C0018S AML germline 56,6 96,71% 91,40% 83,29% 

Sample_C0022D  AML diagnosis 39,66 92,92% 82,71% 73,31% 

Sample_C0022S  AML germline 79,37 94,21% 86,59% 81,57% 

Sample_C0037D AML diagnosis 102,52 97,88% 91,88% 87,09% 

Sample_C0037S AML germline 38,51 92,91% 70,39% 55,72% 

Sample_C0046D AML diagnosis 46,33 96,24% 82,91% 64,54% 

Sample_C0046S AML germline 40,75 96,54% 82,43% 62,12% 

Sample_D0027D AML diagnosis 133,84 97,77% 94,47% 92,36% 

Sample_D0027S AML germline 38,46 96,27% 88,22% 74,06% 

Sample_NGS-41 AML diagnosis 51.96 96,19% 88,81% 78,60% 

Sample_NGS-42 AML remission 80.28 96,60% 91,49% 86,87% 

Sample_NGS-43 AML diagnosis 87.66 97,05% 92,19% 88,08% 
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Sample_NGS-44 AML remission 99.82 96,94% 92,48% 88,90% 

Sample_NGS-45 AML diagnosis 87.99 96,85% 92,01% 87,86% 

Sample_NGS-46 AML remission 67.97 96,63% 90,79% 84,77% 

Sample_NGS-47 AML diagnosis 64.64 96,90% 90,98% 84,53% 

Sample_NGS-72 AML remission 73.79 97,28% 91,77% 86,54% 

Sample_NGS-48 AML diagnosis 93.29 97,71% 92,50% 88,52% 

Sample_NGS-50 AML remission 73.55 96,79% 91,46% 86,19% 

Sample_NGS-49 AML diagnosis 61.47 96,96% 90,96% 84,35% 

Sample_NGS-51 AML remission 73.72 96,83% 91,53% 86,53% 

Sample_NGS-52 AML diagnosis 76.74 96,86% 91,56% 86,58% 

Sample_NGS-75 AML remission 65.45 96,85% 91,06% 85,35% 

Sample_NGS-53 AML diagnosis 97.43 96,92% 92,52% 89,19% 

Sample_NGS-58 AML remission 89.76 96,95% 92,20% 88,49% 

Sample_NGS-55 AML diagnosis 75.76 96,58% 91,36% 86,57% 

Sample_NGS-62 AML remission 80.99 96,80% 91,77% 87,39% 

Sample_NGS-56 AML diagnosis 67.36 96,46% 90,75% 84,63% 

Sample_NGS-63 AML remission 77.82 96,47% 91,30% 86,55% 

Sample_NGS-57 AML diagnosis 68.47 96,87% 91,31% 85,52% 

Sample_NGS-68 AML remission 66.97 96,62% 91,14% 85,38% 

Sample_NGS-60 AML diagnosis 81.18 96,63% 91,60% 86,91% 

Sample_NGS-64 AML remission 71.2 96,49% 91,29% 86,09% 

Sample_NGS-61 AML diagnosis 72.1 96,71% 91,40% 86,10% 

Sample_NGS-66 AML remission 65.31 96,65% 90,81% 84,87% 

Sample_NGS-65 AML diagnosis 76.65 96,71% 91,35% 86,25% 

Sample_NGS-69 AML remission 81.39 96,72% 91,61% 86,90% 

Sample_NGS-67 AML diagnosis 104.59 97,11% 92,88% 89,79% 

Sample_NGS-71 AML remission 71.57 96,75% 91,23% 85,62% 

Sample_NGS-70 AML diagnosis 75.87 96,84% 91,59% 86,74% 

Sample_NGS-76 AML remission 64.91 97,10% 91,70% 85,74% 

Sample_NGS-73 AML diagnosis 62.81 96,98% 90,78% 83,69% 

Sample_NGS-78 AML remission 72.45 96,93% 91,43% 85,96% 

Sample_NGS-74 AML diagnosis 60.37 96,89% 90,72% 83,30% 

Sample_NGS-77 AML remission 82.65 97,08% 91,86% 86,93% 

Sample_NGS-79 AML diagnosis 76.59 96,78% 91,55% 86,55% 

Sample_NGS-86 AML remission 82.14 96,99% 92,07% 87,56% 

Sample_NGS-80 AML diagnosis 77.79 96,84% 91,56% 86,72% 

Sample_NGS-84 AML remission 65.29 96,82% 91,05% 84,95% 

Sample_NGS-81 AML diagnosis 65.52 96,76% 90,91% 84,75% 

Sample_NGS-83 AML remission 83.64 97,18% 92,57% 88,48% 

Sample_NGS-82 AML diagnosis 74.9 96,84% 91,59% 86,66% 

Sample_NGS-87 AML remission 80.89 96,85% 91,88% 87,51% 

Sample_3FK_3D 
ALL diagnosis 97,23 97,28% 92,88% 89,44% 

Sample_3FK_3n-DNA 
ALL germline 79,52 96,56% 91,54% 84,87% 

Sample_3FK_3R 
ALL relapse 104,01 97,14% 92,98% 89,58% 

Sample_4PJ_4D 
ALL diagnosis 106,45 97,76% 93,18% 90,15% 

Sample_4PJ_4n-DNA 
ALL germline 118,41 97,12% 93,28% 90,37% 

Sample_4PJ_4R 
ALL relapse 76,45 97,34% 92,77% 87,51% 
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Sample_6MJ_6D 
ALL diagnosis 111,26 97,09% 93,60% 91,13% 

Sample_6MJ_6n-DNA 
ALL germline 97,89 97,11% 93,07% 89,82% 

Sample_7TK_7D 
ALL diagnosis 148,81 97,74% 94,68% 92,57% 

Sample_7TK_7n-DNA 
ALL germline 40,71 95,68% 87,20% 72,64% 

Sample_8PB_8D 
ALL diagnosis 171,94 98,16% 95,16% 93,28% 

Sample_8PB_8n-DNA 
ALL germline 44,61 95,35% 82,91% 66,91% 

Sample_10JN_10D 
ALL diagnosis 106,68 97,40% 92,79% 89,52% 

Sample_10JN_10n-

DNA ALL germline 75,12 96,46% 91,37% 86,35% 

Sample_10JN_10R 
ALL relapse 74,53 96,68% 91,66% 86,73% 

Sample_11LT_11D 
ALL diagnosis 96,88 96,86% 92,47% 88,93% 

Sample_11LT_11n-

DNA ALL germline 147,17 97,14% 92,38% 87,33% 

Sample_554 
ALL diagnosis 101,94 97,06% 92,67% 89,54% 

Sample_1629 
ALL remission 93,51 96,88% 92,23% 88,59% 

Sample_616 
ALL diagnosis 92,17 96,98% 92,27% 88,59% 

Sample_1630 
ALL remission 118,89 97,24% 93,14% 90,40% 

Sample_757 
ALL diagnosis 80,27 96,77% 91,68% 87,24% 

Sample_751 
ALL germline 113,37 96,62% 91,88% 88,69% 

Sample_961 
ALL relapse 91,90 97,11% 92,42% 88,72% 

Sample_1009 
ALL germline 90,52 96,63% 91,82% 87,90% 

Sample_960 
ALL diagnosis 71,34 96,56% 91,20% 85,99% 

Sample_1011 
ALL germline 60,94 96,25% 89,94% 82,41% 

Sample_1258 
ALL diagnosis 54,47 96,07% 89,67% 81,60% 

Sample_1341 
ALL germline 64,50 96,52% 90,67% 84,43% 

Sample_1430 
ALL diagnosis 100,66 97,00% 92,43% 88,85% 

Sample_1612 
ALL germline 52,95 96,20% 89,98% 82,35% 

Sample_1731 ALL diagnosis 80,81 95,02% 86,82% 79,29% 

Sample_1764 ALL germline 80,27 95,28% 87,57% 80,39% 

Sample_30846 
ALL diagnosis 28,32 96,00% 78,22% 52,40% 

Sample_37839 
ALL remission 105,28 96,87% 92,53% 89,43% 

Sample_43873 
ALL diagnosis 62,19 97,32% 90,72% 82,83% 

Sample_44365 
ALL remission 75,22 97,05% 91,63% 86,52% 

Sample_65420 
ALL diagnosis 89,17 96,76% 91,92% 87,91% 

Sample_80535 
ALL remission 49,95 96,27% 89,17% 79,30% 

Sample_74413 
ALL diagnosis 89,47 96,71% 92,01% 88,14% 

Sample_75147 
ALL remission 96,55 96,85% 92,29% 88,86% 

Sample_78540 
ALL diagnosis 99,56 97,12% 92,50% 88,90% 

Sample_79323 
ALL remission 85,59 97,24% 92,07% 87,54% 

Sample_85112_8511 
ALL diagnosis 80,83 96,81% 91,97% 87,70% 

Sample_295012_2950 
ALL remission 108,78 97,13% 93,28% 90,47% 

Sample_106013_1060 
ALL diagnosis 96,33 97,12% 92,95% 89,31% 

Sample_125613_1256 
ALL remission 107,96 97,03% 93,19% 90,19% 

Sample_108612_1086 
ALL diagnosis 71,70 96,88% 92,07% 87,69% 

Sample_163213_1632 
ALL remission 102,49 97,04% 93,11% 89,92% 

Sample_139213_1392 
ALL diagnosis 98,17 97,21% 93,11% 89,49% 

Sample_206613_2066 
ALL remission 108,11 97,34% 93,48% 90,56% 

Sample_246313_2463 
ALL diagnosis 78,73 96,87% 92,03% 87,67% 
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Sample_222313_2223 
ALL remission 98,54 97,19% 93,26% 89,91% 

Sample_331212_3312 
ALL diagnosis 112,34 97,26% 93,42% 90,41% 

Sample_9813_98 
ALL remission 109,34 97,24% 93,29% 90,51% 

Sample_417612_4176 
ALL diagnosis 133,53 97,39% 93,66% 91,36% 

Sample_220313_2203 
ALL remission 100,09 97,17% 93,27% 90,07% 

Sample_NGS-163 
ALL diagnosis 86,93 96,97% 92,66% 88,61% 

Sample_NGS-164 
ALL remission 105,63 97,12% 93,09% 89,98% 

Sample_NGS-165 
ALL diagnosis 105,30 97,12% 93,16% 89,88% 

Sample_NGS-166 
ALL remission 118,13 97,21% 93,49% 90,70% 

Sample_NGS-167 
ALL diagnosis 106,96 96,96% 92,98% 89,89% 

Sample_NGS-168 
ALL remission 104,68 96,96% 93,01% 89,98% 

Sample_NGS-169 
ALL diagnosis 113,20 97,20% 93,23% 90,28% 

Sample_NGS-170 
ALL remission 113,99 97,01% 93,08% 90,07% 

Sample_NGS-171 
ALL diagnosis 114,53 97,21% 93,39% 90,43% 

Sample_NGS-172 
ALL remission 107,10 97,25% 93,40% 90,39% 

Sample_NGS-173 
ALL diagnosis 91,97 97,14% 92,91% 89,22% 

Sample_NGS-174 
ALL remission 99,24 97,12% 93,11% 89,80% 

Sample_NGS-175 
ALL diagnosis 105,56 97,20% 93,20% 89,99% 

Sample_NGS-176 
ALL remission 114,65 97,42% 93,52% 90,65% 

Sample_NGS-177 
ALL diagnosis 105,37 97,09% 93,11% 90,09% 

Sample_NGS-178 
ALL remission 125,59 97,97% 93,67% 91,10% 

Sample_NGS-179 
ALL diagnosis 92,72 97,55% 92,81% 89,15% 

Sample_NGS-180 
ALL remission 89,02 97,36% 92,78% 88,77% 

Sample_NGS-183 
ALL diagnosis 118,25 97,40% 93,63% 90,80% 

Sample_NGS-185 
ALL germline 105,03 97,02% 93,07% 89,94% 

  MEAN 86,54608696 96,73% 90,55% 84,09% 
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