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Abstract. We propose a hybrid process calculus for modelling and rea-
soning on cyber-physical systems (CPSs). The dynamics of the calculus
is expressed in terms of a labelled transition system in the SOS style of
Plotkin. This is used to define a bisimulation-based behavioural seman-
tics which support compositional reasonings. Finally, we prove run-time
properties and system equalities for a non-trivial case study.
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1 Introduction

Cyber-Physical Systems (CPSs) are integrations of networking and distributed
computing systems with physical processes, where feedback loops allow physical
processes to affect computations and vice versa. For example, in real-time control
systems, a hierarchy of sensors, actuators and control processing components
are connected to control stations. Different kinds of CPSs include supervisory
control and data acquisition (SCADA), programmable logic controllers (PLC)
and distributed control systems.

The physical plant of a CPS is often represented in the literature by means
of a discrete-time state-space model1 consisting of two equations of the form

xk+1 = Axk +Buk + wk

yk = Cxk + ek

where xk ∈ Rn is the current (physical) state, uk ∈ Rm is the input (i.e., the
control actions implemented through actuators) and yk ∈ Rp is the output
(i.e., the measurements from the sensors). The uncertainty wk ∈ Rn and the
measurement error ek ∈ Rp represent perturbation and sensor noise, respectively,
and A, B, and C are matrices modelling the dynamics of the physical system.
The next state xk+1 depends on the current state xk and the corresponding
control actions uk, at the sampling instant k ∈ N. Note that, the state xk cannot
be directly observed: only its measurements yk can be observed.

The physical plant is supported by a communication network through which
the sensor measurements and actuator data are exchanged with the controller(s),
i.e., the cyber component, also called logics, of a CPS.

1 See [17] for a tassonomy of the time-scale models used to represent CPSs.
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The range of CPSs applications is rapidly increasing and already covers several
domains: automotive, avionics, energy conservation, environmental monitoring,
critical infrastructure control, etc. However, there is still a lack of research
on the modelling and validation of CPSs through formal methodologies that
might allow to model the interactions among the system components, and to
verify the correctness of a CPS, as a whole, before its practical implementation.
A straightforward utilisation of these techniques is for model-checking, i.e. to
statically assess whether the current system deployment behaves as expected.
However, they can also be an important aid for system planning, for instance to
decide whether different deployments are behavioural equivalent.

In this paper, we propose a contribution in the area of formal methods for
CPSs, by defining a hybrid process calculus, called CCPS, with a clearly-defined
behavioural semantics for specifying and reasoning on CPSs. In CCPS, systems
are represented as terms of the form EonP , where E denotes the physical plant
(also called environment) of the system, containing information on state variables,
actuators, sensors, evolution law, etc., while P represents the cyber component of
the system, i.e., the controller that governs sensor reading and actuator writing,
as well as channel-based communication with other cyber components. Thus,
channels are used for logical interactions between cyber components, whereas
sensors and actuators make possible the interaction between cyber and physical
components. Despite this conceptual similarity, messages transmitted via channels
are “consumed” upon reception, whereas actuators’ states (think of a valve)
remains unchanged until its controller modifies it.

CCPS is equipped with a labelled transition semantics (LTS) that satisfies
some standard time properties such as: time determinism, patience, maximal
progress, and well-timedness. Based on our LTS, we define a natural notion of
weak bisimilarity. As a main result, we prove that our bisimilarity is a congruence
and it is hence suitable for compositional reasoning . We are not aware of similar
results in the context of CPSs. Finally, we provide a non-trivial case study, taken
from an engineering application, and use it to illustrate our definitions and our
semantic theory for CPSs. Here, we wish to remark that while we have kept the
example simple, it is actually far from trivial and designed to show that various
CPSs can be modelled in this style.

In this extended abstract, proofs are omitted; full details can be found in [10].

Outline. In Section 2, we give syntax and operational semantics of CCPS. In
Section 3, we provide a bisimulation equivalence for CCPS, and prove its composi-
tionality. In Sect. 4, we propose a case study, and prove for it run-time properties
as well as system equalities. In Section 5, we discuss related and future work.

2 The Calculus

In this section, we introduce our Calculus of Cyber-Physical Systems CCPS. Let
us start with some preliminary notations. We use x, xk ∈ X for state variables;
c, d ∈ C for communication channels , a, ak ∈ A for actuator devices , and s, sk ∈ S
for sensors devices. Actuator names are metavariables for actuator devices like



A Calculus of Cyber-Physical Systems 3

valve, light , etc. Similarly, sensor names are metavariables for sensor devices,
e.g., a sensor thermometer that measures, with a given precision, a state variable
called temperature. Values, ranged over by v, v′ ∈ V, are built from basic values,
such as Booleans, integers and real numbers; they also include names.

Given a generic set of names N , we write RN to denote the set of functions
assigning a real value to each name in N . For ξ ∈ RN , n ∈ N and v ∈ R, we
write ξ[n 7→ v] to denote the function ψ ∈ RN such that ψ(m) = ξ(m), for any
m 6= n, and ψ(n) = v. Given ξ1 ∈ RN1 and ξ2 ∈ RN2 such that N1 ∩ N2 = ∅,
we denote with ξ1 ] ξ2 the function in RN1∪N2 such that (ξ1 ] ξ2)(x) = ξ1(x), if
x ∈ N1, and (ξ1 ] ξ2)(x) = ξ2(x), if x ∈ N2. Finally, given ξ ∈ RN and a set of
names M⊆ N , we write ξ|M for the restriction of function ξ to the set M.

In CCPS, a cyber-physical system consists of two components: a physical
environment E that encloses all physical aspects of a system (state variables,
physical devices, evolution law, etc) and a cyber component , represented as
a concurrent process P that interacts with the physical devices (sensors and
actuators) of the system, and can communicate, via channels, with other processes
of the same CPS or with processes of other CPSs.

We write EonP to denote the resulting CPS, and use M and N to range over
CPSs. Let us formally define physical environments.

Definition 1 (Physical Environment). Let X̂ ⊆ X be a set of state variables,
Â ⊆ A be a set of actuators, and Ŝ ⊆ S be a set of sensors. A physical
environment E is 7-tuple 〈ξx, ξu, ξw, evol , ξe,meas, inv〉, where:

– ξx ∈ RX̂ is the state function,

– ξu ∈ RÂ is the actuator function,

– ξw ∈ RX̂ is the uncertainty function,

– evol : RX̂ × RÂ × RX̂ → 2R
X̂

is the evolution map,

– ξe ∈ RŜ is the sensor-error function,

– meas : RX̂ × RŜ → 2R
Ŝ

is the measurement map,

– inv : RX̂ → {true, false} is the invariant function.
All the functions defining an environment are total functions.

The state function ξx returns the current value (in R) associated to each
state variable of the system. The actuator function ξu returns the current value
associated to each actuator. The uncertainty function ξw returns the uncertainty
associated to each state variable. Thus, given a state variable x ∈ X̂ , ξw(x)
returns the maximum distance between the real value of x and its representation
in the model. Both the state function and the actuator function are supposed to
change during the evolution of the system, whereas the uncertainty function is
supposed to be constant.

Given a state function, an actuator function, and an uncertainty function,
the evolution map evol returns the set of next admissible state functions. This
function models the evolution law of the physical system, where changes made
on actuators may reflect on state variables. Since we assume an uncertainty in
our models, the evolution map does not return a single state function but a
set of possible state functions. Note that we admit evolution maps that are not
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necessarily linear. Note also that, although the uncertainty function is constant,
it can be used in the evolution map in an arbitrary way, with different weights.

The sensor-error function ξe returns the maximum error associated to each sen-
sor. Again due to the presence of the sensor-error function, the measurement map
meas returns a set of admissible measurement functions rather than a single one.

Finally, the invariant function inv represents the conditions that the state
variables must satisfy to allow for the evolution of the system. A CPS whose
state variables don’t satisfy the invariant is in deadlock.

Let us now formalise in CCPS the cyber components of CPSs. We extend the
timed process algebra TPL [8] with two constructs: one to read values detected at
sensors, and one to write values on actuators.

Definition 2 (Processes). Processes are defined by the grammar:

P,Q ::= nil
∣∣ idle.P

∣∣ P ‖ Q ∣∣ bπ.P cQ ∣∣ [b]{P}, {Q}
∣∣ P\c ∣∣ X ∣∣ recX.P.

We write nil for the terminated process. The process idle.P sleeps for one
time unit and then continues as P . We write P ‖ Q to denote the paral-
lel composition of concurrent processes P and Q. The process bπ.P cQ, with
π ∈ {snd c〈v〉, rcv c(x), read s(x),write a〈v〉}, denotes prefixing with timeout. Thus,
bsnd c〈v〉.P cQ sends the value v on channel c and, after that, it continues as
P ; otherwise, if no communication partner is available within one time unit, it
evolves into Q. The process brcv c(x).P cQ is the obvious counterpart for channel
reception. The process bread s(x).P cQ reads the value v detected by the sensor s,
whereas bwrite a〈v〉.P cQ writes the value v on the actuator a. The process P\c is
the channel restriction operator of CCS. The process [b]{P}, {Q} is the standard
conditional, where b is a decidable guard. For simplicity, as in CCS, we identify
[b]{P}, {Q} with P , if b evaluates to true, and [b]{P}, {Q} with Q, if b evaluates
to false. In processes of the form idle.Q and bπ.P cQ, the occurrence of Q is said
to be time-guarded. The process recX.P denotes time-guarded recursion as all
occurrences of the process variable X may only occur time-guarded in P .

In the two constructs brcv c(x).P cQ and bread s(x).P cQ, the variable x is said
to be bound . Similarly, the process variable X is bound in recX.P . This gives rise
to the standard notions of free/bound (process) variables and α-conversion. We
identify processes up to α-conversion (similarly, we identify CPSs up to renaming
of state variables, sensor names, and actuator names). A term is closed if it
does not contain free (process) variables, and we assume to always work with
closed processes: the absence of free variables is preserved at run-time. As further
notation, we write T{v/x} for the substitution of the variable x with the value v
in any expression T of our language. Similarly, T{P/X} is the substitution of the
process variable X with the process P in T .

The syntax of our CPSs is slightly too permissive as a process might use
sensors and/or actuators which are not defined in the physical environment.

Definition 3 (Well-formedness). Given a process P and an environment
E = 〈ξx, ξu, ξw, evol , ξe,meas, inv〉, the CPS EonP is well-formed if: (i) for any
sensor s mentioned in P , the function ξe is defined in s; (ii) for any actuator a
mentioned in P , the function ξu is defined in a.

Hereafter, we will always work with well-formed networks.
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(Outp)
−

bsnd c〈v〉.PcQ cv−−−→ P
(Inpp)

−

brcv c(x).PcQ cv−−−→ P{v/x}

(Write)
−

bwrite a〈v〉.PcQ a!v−−−−→ P
(Read)

−

bread s(x).PcQ s?v−−−−→ P{v/x}

(Com)
P

cv−−−→ P ′ Q
cv−−−→ Q′

P ‖ Q τ−−→ P ′ ‖ Q′
(Par)

P
λ−−→ P ′ λ 6= idle

P ‖ Q λ−−→ P ′ ‖ Q

(ChnRes)
P

λ−−→ P ′ λ 6∈ {cv, cv}

P\c λ−−→ P ′\c
(Rec)

P{recX.P/X}
λ−−→ Q

recX.P
λ−−→ Q

(TimeNil)
−

nil
idle−−−→ nil

(Delay)
−

idle.P
idle−−−→ P

(Timeout)
−

bπ.PcQ idle−−−→ Q
(TimePar)

P
idle−−−→ P ′ Q

idle−−−→ Q′ P ‖ Q 6 τ−−→

P ‖ Q idle−−−→ P ′ ‖ Q′

Table 1. LTS for processes

Finally, we assume a number of notational conventions. We write π.P instead
of recX.bπ.P cX, when X does not occur in P . We write snd c (resp. rcv c)
when channel c is used for pure synchronisation. For k ≥ 0, we write idlek.P as a
shorthand for idle.idle. . . . idle.P , where the prefix idle appears k consecutive times.
Given M = EonP , we write M ‖ Q for Eon (P ‖ Q), and M\c for EonP\c.

2.1 Labelled Transition Semantics

In this section, we provide the dynamics of CCPS in terms of a labelled transition
system (LTS) in the SOS style of Plotkin. In Definition 4, for convenience, we
define some auxiliary operators on environments.

Definition 4. Let E = 〈ξx, ξu, ξw, evol , ξe,meas, inv〉 be a physical environment.
– read sensor(E, s) = {ξ(s) : ξ ∈ meas(ξx, ξe)}
– update act(E, a, v) = 〈ξx, ξu[a7→v], ξw, evol , ξe,meas, inv〉
– next(E) =

⋃
ξ∈evol(ξx,ξu,ξw){〈ξ, ξu, ξw, evol , ξe,meas, inv〉}

– inv(E) = inv(ξx).

The operator read sensor(E, s) returns the set of possible measurements detected
by sensor s in the environment E; it returns a set of possible values rather than
a single value due to the error ξe(s) of sensor s. update act(E, a, v) returns the
new environment in which the actuator function is updated in such a manner to
associate the actuator a with the value v. next(E) returns the set of the next
admissible environments reachable from E, by an application of the evolution
map. inv(E) checks whether the state variables satisfy the invariant (here, with
an abuse of notation, we overload the meaning of the function inv).

In Table 1, we provide standard transition rules for processes. Here, the meta-
variable λ ranges over labels in the set {idle, τ, cv, cv, a!v, s?v}. The symmetric
counterparts of rules (Com) and (Par) are omitted.
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(Out)
P

cv−−−→ P ′ inv(E)

EonP
cv−−−→ EonP ′

(Inp)
P

cv−−−→ P ′ inv(E)

EonP
cv−−−→ EonP ′

(SensRead)
P

s?v−−−−→ P ′ inv(E) v ∈ read sensor(E, s)

EonP
τ−−→ EonP ′

(ActWrite)
P

a!v−−−−→ P ′ inv(E) E′ = update act(E, a, v)

EonP
τ−−→ E′ onP ′

(Tau)
P

τ−−→ P ′ inv(E)

EonP
τ−−→ EonP ′

(Time)
P

idle−−−→ P ′ EonP 6 τ−−→ inv(E) E′ ∈ next(E)

EonP
idle−−−→ E′ onP ′

Table 2. LTS for CPSs

In Table 2, we lift the transition rules from processes to systems. All rules
have a common premise inv(E): a CPS can evolve only if the invariant is
satisfied, otherwise it is deadlocked. Here, actions, ranged over by α, are in the set
{τ, cv, cv, idle}. These actions denote: non-observable activities (τ); observable
logical activities, i.e., channel transmission (cv and cv); the passage of time (idle).
Rules (Out) and (Inp) model transmission and reception, with an external system,
on a channel c. Rule (SensRead) models the reading of the current data detected
at sensor s. Rule (ActWrite) models the writing of a value v on an actuator a.
Rule (Tau) lifts non-observable actions from processes to systems. A similar lifting
occurs in rule (Time) for timed actions, where next(E) returns the set of possible
environments for the next time slot. Thus, by an application of rule (Time) a
CPS moves to the next physical state, in the next time slot.

Below, we report a few desirable time properties which hold in our calculus:
(a) time determinism, (b) maximal progress, (c) patience, and (d) well-timedness
(symbol ≡ denotes standard structural congruence for timed processes [8, 13]).

Theorem 5 (Time Properties). Let M = EonP an arbitrary CPS.

(a) If M
idle−−−→ ÊonQ and M

idle−−−→ ẼonR, then {Ê, Ẽ} ⊆ next(E) and Q ≡ R.

(b) If M
τ−−→M ′ then there is no M ′′ such that M

idle−−−→M ′′.

(c) If M
idle−−−→ M ′ for no M ′ then either next(E) = ∅ or inv(M) = false or

there is N such that M
τ−−→ N .

(d) There is k such that whenever M
α1−−−→ ..

αn−−−→ N , with αi 6= idle, then n≤k.

Well-timedness [13, 4] ensures the absence of infinite instantaneous traces which
would prevent the passage of time, and hence the physical evolution of a CPS.
The proof of this property relies on time-guardedness of recursive processes.

3 Bisimulation

Once defined the labelled transition semantics, we are ready to define our
bisimulation-based behavioural equality for CPSs. We recall that the only ob-
servable activities in CCPS are: time passing and channel communication. As a
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consequence, the capability to observe physical events depends on the capability
of the cyber components to recognise those events by acting on sensors and
actuators, and then signalling them using (unrestricted) channels.

We adopt a standard notation for weak transitions: we write =⇒ for the

reflexive and transitive closure of τ -actions, namely (
τ−−→)∗, whereas

α
==⇒ means

=⇒ α−−→=⇒, and finally
α̂

=⇒ denotes =⇒ if α = τ and
α

=⇒ otherwise.

Definition 6 (Bisimulation). A binary symmetric relation R over CPSs is a

bisimulation if M R N and M
α−−→ M ′ implies that there exists N ′ such that

N
α̂

==⇒ N ′ and M ′ R N ′. We say that M and N are bisimilar, written M ≈ N ,
if M R N for some bisimulation R.

A main result of the paper is that our bisimilarity can be used to compare
CPSs in a compositional manner. In particular, our bisimilarity is preserved
by parallel composition of (non-interfering) CPSs, by parallel composition of
(non-interfering) processes, and by channel restriction.

Two CPSs do not interfere with each other if they have a disjoint physical plant.
Thus, let Ei = 〈ξix, ξiu, ξiw, evol i, ξie,measi, inv i〉 with sensors in Ŝi, actuators in
Âi, and state variables in X̂i, for i ∈ {1, 2}. If Ŝ1 ∩ Ŝ2 = ∅ and Â1 ∩ Â2 = ∅ and
X̂1 ∩ X̂2 = ∅, then we define the disjoint union of the environments E1 and E2,
written E1 ] E2, to be the environment 〈ξx, ξu, ξw, evol , ξe,meas, inv〉 such that:
ξx = ξ1x ] ξ2x, ξu = ξ1u ] ξ2u, ξw = ξ1w ] ξ2w, ξe = ξ1e ] ξ2e , and

evol(ξ, ψ, φ) = {ξ′ = ξ1 ] ξ2 : ξi ∈ evol i(ξ|X̂i , ψ|Âi , φ|X̂i), for i ∈ {1, 2}}
meas(ξ, ψ) = {ξ′ = ξ1 ] ξ2 : ξi ∈ measi(ξ|X̂i , ψ|Ŝi), for i ∈ {1, 2}}

inv(ξ) = inv1(ξ|X̂1
) ∧ inv2(ξ|X̂2

).

Definition 7. Let Mi = EionPi, for i ∈ {1, 2}. We say that M1 and M2 do
not interfere with each other if E1 and E2 have disjoint sets of state variables,
sensors and actuators. In this case, we write M1 ]M2 to denote the CPS defined
as (E1 ] E2)on (P1 ‖ P2).

A similar but simpler definition can be given for processes. Let M = EonP ,
a non-interfering process Q is a process which does not interfere with the plant
E as it never accesses its sensors and/or actuators. Thus, in the system M ‖ Q
the process Q cannot interfere with the physical evolution of M . However,
process Q can definitely affect the observable behaviour of the whole system by
communicating on channels. Notice that, as we only consider well-formed CPSs
(Definition 3), a non-interfering processes is basically a (pure) TPL process [8].

Definition 8. A non-interfering process never acts on sensors and/or actuators.

Now, everything is in place to prove the compositionality of our bisimilarity.

Theorem 9 (Congruence). Let M and N be two CPSs.
1. M ≈ N implies M ]O ≈ N ]O, for any non-interfering CPS O;
2. M ≈ N implies M ‖ P ≈ N ‖ P , for any non-interfering process P ;
3. M ≈ N implies M\c ≈ M\c, for any channel c.

As we will see in the next section, these compositional properties will be very
useful when reasoning about complex systems.
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4 Case Study

In this section, we model in CCPS an engine, called Eng , whose temperature is
maintained within a specific range by means of a cooling system. The physical
environment Env of the engine is constituted by: (i) a state variable temp contain-
ing the current temperature of the engine; (ii) an actuator cool to turn on/off the
cooling system; (iii) a sensor st (such as a thermometer or a thermocouple) mea-
suring the temperature of the engine; (iv) an uncertainty δ = 0.4 associated to the
only variable temp; (v) a simple evolution law that increases (resp., decreases) the
value of temp of one degree per time unit if the cooling system is inactive (resp.,
active) — the evolution law is obviously affected by the uncertainty δ; (vi) an
error ε = 0.1 associated to the only sensor st; (vii) a measurement map to get the
values detected by sensor st, up to its error ε; (viii) an invariant function saying
that the system gets faulty when the temperature gets out of the range [0, 30].

Formally, Env = 〈ξx, ξu, ξw, evol , ξe,meas, inv〉 with:
– ξx ∈ R{temp} and ξx(temp) = 0;
– ξu ∈ R{cool} and ξu(cool) = off; for the sake of simplicity, we can assume ξu

to be a mapping {cool} → {on, off} such that ξu(cool) = off if ξu(cool) ≥ 0,
and ξu(cool) = on if ξu(cool) < 0;

– ξw ∈ R{temp} and ξw(temp) = 0.4 = δ;
– evol(ξix, ξ

i
u, ξw) =

{
ξ : ξ(temp) = ξix(temp) + heat(ξiu, cool) + γ ∧ γ ∈

[−δ,+δ]
}

, where heat(ξiu, cool) = −1 if ξiu(cool) = on (active cooling), and
heat(ξiu, cool) = +1 if ξiu(cool) = off (inactive cooling);

– ξe ∈ R{st} and ξe(st) = 0.1 = ε;
– meas(ξix, ξe) =

{
ξ : ξ(st) ∈ [ξix(temp)−ε , ξix(temp)+ε]

}
;

– inv(ξx) = true if 0 ≤ ξx(temp) ≤ 30; inv(ξx) = false, otherwise.
The cyber component of Eng consists of a process Ctrl which models the

controller activity. Intuitively, process Ctrl senses the temperature of the engine
at each time interval. When the sensed temperature is above 10, the controller
activates the coolant. The cooling activity is maintained for 5 consecutive time
units. After that time, if the temperature does not drop below 10 then the
controller transmits its ID on a specific channel for signalling a warning , it keeps
cooling for another 5 time units, and then checks again the sensed temperature;
otherwise, if the sensed temperature is not above the threshold 10, the controller
turns off the cooling and moves to the next time interval. Formally,2

Ctrl = recX.read st(x).[x > 10]{Cooling}, {idle.X}
Cooling = write cool〈on〉.recY.idle5.read st(x).

[x > 10]{snd warning〈ID〉.Y }, {write cool〈off〉.idle.X} .

The whole engine is defined as: Eng = Env onCtrl , where Env is the physical
environment defined before.

Our operational semantics allows us to formally prove a number of run-time
properties of our engine. For instance, the following proposition says that our
engine never reaches a warning state and never deadlocks.

2 We recall that π.P is a shorthand for recX.bπ.P cX, when X does not occur in P .
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Fig. 1. Simulations in MATLAB of the engine Eng

Proposition 10. Let Eng be the CPS defined before. If Eng
α1−−−→ . . .

αn−−−→
Eng ′, for some Eng ′, then αi ∈ {τ, idle}, for 1 ≤ i ≤ n, and there is Eng ′′ such

that Eng ′
α−−→ Eng ′′, for some αi ∈ {τ, idle}.

Actually, we can be quite precise on the temperature reached by the engine
before and after the cooling activity: in each of the 5 time slots of cooling, the
temperature will drop of a value laying in the interval [1−δ, 1+δ], where δ is the
uncertainty of the model. Formally,

Proposition 11. For any execution of Eng, we have:
– when Eng turns on the cooling, the value of the state variable temp ranges

over (10− ε , 11 + ε+ δ];
– when Eng turns off the cooling, the value of the variable temp ranges over

(10− ε− 5∗(1+δ) , 11 + ε+ δ − 5∗(1−δ)].

In Figure 1, the left graphic collects a campaign of 100 simulations, lasting
250 time units each, showing that the value of the state variable temp when
the cooling system is turned on (resp., off) lays in the interval (9.9, 11.5] (resp.,
(2.9, 8.5]); these bounds are represented by the dashed horizontal lines. Since
δ = 0.4, these results are in line with those of Proposition 11. The right graphic
shows three examples of possible evolutions of the state variable temp.

Now, the reader may wonder whether it is possible to design a variant of
our engine which meets the same specifications with better performances. For
instance, an engine consuming less coolant. Let us consider the variant: of the
engine described before:

Eng = Env onCtrl

where Env is the same as Env except for the evolution map, as we set heat(ξiu, cool)
= −0.8 if ξiu(cool) = on. This means that in Eng we reduce the power of the
cooling system by 20%. In Figure 2, we report the results of our simulations over
10000 runs lasting 10000 time units each. From this graph, Eng saves in average
more than 10% of coolant with respect to Eng . So, the new question is: are these
two engines behavioural equivalent? Do they meet the same specifications?

Our bisimilarity provides us with a precise answer to these questions.
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Fig. 2. Simulations in MATLAB of coolant consumption

Proposition 12. The two variants of the engine are bisimilar: Eng ≈ Eng.

At this point, one may wonder whether it is possible to improve the perfor-
mances of our engine even further. For instance, by reducing the power of the
cooling system by a further 10%, by setting heat(ξiu, cool) = −0.7 if ξiu(cool) = on.
We can formally prove that this is not the case.

Proposition 13. Let Êng be the same as Eng, except for the evolution map, in
which heat(ξiu, cool) = −0.7 if ξiu(cool) = on. Then, Eng 6≈ Êng.

This is because the CPS Êng may experience a warning, while Eng may not.
Finally, we show how we can use the compositionality of our behavioural

semantics (Theorem 9) to deal with bigger CPSs. Suppose that Eng denotes
the modelisation of an airplane engine. We could define in CCPS a very simple
airplane control system that checks whether the left engine (EngL) and the right
engine (EngR) are signalling warnings. The whole CPS is defined as follows:

Airplane =
(
(EngL ] EngR) ‖ Check

)
\warning

where EngL = Eng{L/ID}{temp l/temp}{cool l/cool}{st l/st}, and, similarly, EngR =
Eng{R/ID}{temp r/temp}{cool r/cool}{st r/st}, and process Check is defined as:

Check = recX.brcvwarning(x).[x = L]{CheckL
1}, {CheckR

1 }cX
Check id

i = brcvwarning(y).[y 6= id ]{snd alarm.idle.X}, {idle.Check id
i+1}cCheck id

i+1

Check id
5 = brcvwarning(z).[z 6= id ]{snd alarm.idle.X}, {snd failure〈id〉.idle.X}c

snd failure〈id〉.X

for 1 ≤ i ≤ 5. Intuitively, if one of the two engines is in a warning state then the
process Check id

i , for id ∈ {L,R}, checks whether also the second engine moves
into a warning state, in the following 5 time intervals (i.e. during the cooling
cycle). If both engines gets in a warning state then an alarm is sent, otherwise,
if only one engine is facing a warning then the airplane control system yields a
failure signalling which engine is not working properly.

So, since we know that Eng ≈ Eng , the final question becomes the following:
can we safely equip our airplane with the more performant engines, EngL and
EngR, in which heat(ξiu, cool) = −0.8 if ξiu(cool) = on, without affecting the
whole observable behaviour of the airplane? The answer is “yes”, and this result
can be formally proved by applying Proposition 12 and Theorem 9.
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Proposition 14. Let Airplane =
(
(EngL ] EngR) ‖ Check

)
\warning. Then,

Airplane ≈ Airplane.

5 Related and Future Work

A number of approaches have been proposed for modelling CPSs using formal
methods. For instance, hybrid automata [1] combine finite state transition systems
with discrete variables (whose values capture the state of the modelled discrete
or cyber components) and continuous variables (whose values capture the state
of the modelled continuous or physical components).

Hybrid process algebras [5, 2, 15, 7] are a powerful tool for reasoning about
physical systems, and provide techniques for analysing and verifying protocols for
hybrid automata. CCPS shares some similarities with the φ-calculus [15], a hybrid
extension of the π-calculus. In the φ-calculus, a hybrid system is represented as
a pair (E,P ), where E is the environment and P is the process interacting with
the environment. Unlike CCPS, in φ-calculus, given a system (E,P ) the process P
can dynamically change both the evolution law and the invariant of the system.
However, the φ-calculus does not have a representation of physical devices and
measurement law. Concerning behavioural semantics, the φ-calculus is equipped
with a weak bisimilarity between systems that is not compositional.

In the HYPE process algebra [7], the continuous part of the system is repre-
sented by appropriate variables whose changes are determined by active influences
(i.e., commands on actuators). The authors defines a strong bisimulation that
extends the ic-bisimulation of [2]. Unlike ic-bisimulation, the bisimulation in
HYPE is preserved by a notion of parallel composition that is slightly more
permissive than ours. However, bisimilar systems in HYPE must always have
the same influence. Thus, in HYPE we cannot compare CPSs sending different
commands on actuators, as we do in Proposition 12.

Vigo et al. [16] proposed a calculus for wireless-based cyber-physical systems
endowed with a theory to study cryptographic primitives, together with explicit
notions of communication failure and unwanted communication. The calculus
does not provide any notion of behavioural equivalence.

Lanese et al. [9] proposed an untimed calculus of IoT devices. The calculus
does not contain any representation of the physical environment, and the bisimi-
larity is not preserved by parallel composition (compositionality is recovered by
significantly strengthening the discriminating power of the bisimilarity).

Lanotte and Merro [11] extended and generalised the work of [9] in a timed
setting by providing a bisimulation-based semantic theory that is suitable for
compositional reasoning. As in [9], the physical environment is not represented.

Bodei et al. [3] proposed an untimed process calculus for IoT systems support-
ing a control flow analysis to track how data spread from sensors to the logics of
the network, and how physical data are manipulated. Sensors and actuators are
modelled as value-passing CCS channels. No behavioural equivalence is defined.

As regards future works, we believe that our paper can lay and streamline
theoretical foundations for the development of formal and automated tools to
verify CPSs before their practical implementation. To that end, we will consider
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applying, possibly after proper enhancements, existing tools and frameworks
for automated verification, such as Maude [14] and SMC UPPAAL [6]. Finally,
in [12], we developed an extended version of CCPS to provide a formal study of a
variety of cyber-physical attacks targeting physical devices. Again, the final goal
is to develop formal and automated tools to analyse security properties of CPSs.
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