# Efficiency of plasmapheresis: a comparison of three Italian Centres

Mario Eandi<sup>1</sup>, Stefano Marasca<sup>2</sup>, Massimiliano Povero<sup>3</sup>, Alessia D'Andrea<sup>2</sup>, Andrea Tieghi<sup>4</sup>, Vanda Randi<sup>5</sup>, Francesco Picardi<sup>6</sup>, Giorgio Gandini<sup>7</sup>, Giuseppe Aprili<sup>8</sup>, Mario Piani<sup>9</sup>, Claudio Velati<sup>10</sup>

<sup>1</sup>Department of Drug Sciences and Technologies, University of Turin, Turin; <sup>2</sup>Department of Management, Marche Polytechnic University, Ancona; <sup>3</sup>AdRes HE&OR, Turin; <sup>4</sup>AVIS Emilia Romagna, Bologna; <sup>5</sup>Transfusion Medicine and Immunohaematology Department of Bologna Metropolitan Area, Bologna; <sup>6</sup>Marche Regional Blood Centre, Pesaro; <sup>7</sup>Transfusional Medicine Unit, University Hospital of Verona ,Verona; <sup>8</sup>Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) Past President, Verona; <sup>9</sup>Marche Regional Inter-Hospital, Department of Transfusional Medicine, Ancona, Italy; <sup>10</sup>Emilia Romagna Regional Blood Centre, Bologna, Italy

**Background**. In order to support the economic and financial sustainability of the Italian health system, there is a need to define technically and economically efficient strategies that assure the self-sufficient apheretic production of plasma.

**Material and methods.** Process and product costs at the *Casa del Donatore* (CD) in Bologna were determined on the basis of costing models used at Verona's Inter-hospital Department of Transfusional Medicine (IDTM) by academics from the University of Turin and those used at the Marche Regional IDTM by academics from Marche Polytechnic University. During the first phase, data was collected concerning donors, biological screening tests, the number of units produced/discarded, the materials used (individual pharmacy codes and related final expenditure), human resources (number, professional status, time involved, the number of activities per day, percentage productivity), equipment, and general costs. During the second phase, direct costs were verified and the costs common to the units produced were attributed using the functional principle.

**Results**: The overall cost of a litre of plasma collected by means of apherisis (about  $\in$  280) was similar at the three centres, but there were differences in their cost structures that could be attributed to organisational choices, economic factors and/or structural variables. Plasmapheresis accounts for 24% of the plasma collected in Marche and the CD, but 17% of that collected in Verona, whereas the donation index is lower in the CD (1.8) than in the other two centres (2.2). The annual donor screening tests are substantially similar, but there are some differences in their timing (at the time of screening candidate donors or at the time of first donation). There are also some differences in the use of tests that are not required by law but are carried out in order to protect donors and recipients. The working times in three centres are similar, but personnel costs vary because of their different retribution policies.

**Discussion.** Comparing the cost determinants at each centre made it possible to highlight changes that each can make in order to improve efficiency, and may lay the basis for doing the same in other organisational contexts.

Keywords: plasma collection, plasma-apheresis, efficiency.

# Introduction

In order to support the economic and financial sustainability of the Italian health system, there is a need to define technically and economically efficient strategies that assure the self-sufficient apheretic production of plasma. Furthermore, the use of such collection and production standards could be extended throughout the transfusion system.

The aim of this analysis was to compare the strategies used at three Italian plasma collection centres of excellence and the related production costs in an attempt to find a common front of efficiency.

# Material and methods

Two research teams from the University of Turin and Marche Polytechnic University independently developed two models for analysing the cost of collecting plasma by means of apheresis:

- a cost accounting model based on an empirical analysis of the 12 operating units belonging to the Marche Regional IDTM<sup>1</sup>;
- a cost analysis based on a simulation model that integrates observational data provided by the IDTM in Verona<sup>2</sup>.

The synergistic convergence of these two experiences

| Phase 1: Data collection                 |                                                                                                                       |                         |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|--|
|                                          | Phase 2: Processing                                                                                                   |                         |  |
| Donors                                   |                                                                                                                       | Phase 3: Analysis       |  |
| Biological screening tests               | Verification of direct costs<br>Attribution of costs<br>common to units produced<br>using the functional<br>principle |                         |  |
| No. of units produced/discarded          |                                                                                                                       | Application of CD model |  |
| Materials used (individual pharmacy      |                                                                                                                       | to Verona and Marche    |  |
| Codes and related final costs)           |                                                                                                                       | IDTMs                   |  |
| Human resources (number,                 |                                                                                                                       | Comparison of results   |  |
| protessional status, times, number of    |                                                                                                                       |                         |  |
| activities/day, percentage productivity) |                                                                                                                       | stratogios              |  |

Figure 1 - Study design.

led to the creation of a combined model for determining process and product costs that was first applied to the CD in Bologna<sup>3</sup>, and subsequently used to re-analyse the other two centres in order to update the data and compare specific aspects. Figure 1 shows the study design.

# Results

Table I and Figure 2 show the flow of donors and the distribution of the donations. Plasmapheresis accounts for 24% of the plasma collected in the Marche region and at the CD, and 17% of that collected in Verona (p<0.001); the donation index at the CD (1.8) is lower than in the other two centres (both 2.2; p<0.001).

There are also differences in donor testing at the three centres (Table II):

- they use the same tests but there are differences in whether they are used at the time of screen or at the time of the first donation;
- there are also some differences in the use of tests that are not required by law but are carried out in order to protect donors and recipients.

| Table I Daman/dam   | ation flow | in the three   | a a m t m a a i m 2012 |
|---------------------|------------|----------------|------------------------|
| rable I - Donor/dor | ation now  | / in the three | centres in 2015.       |

|                             | Bologna<br>CD | Verona<br>IDTM | Marche<br>Regional<br>IDTM |
|-----------------------------|---------------|----------------|----------------------------|
| Total donations             | 31,728        | 66,532         | 103,083                    |
| WB                          | 23,899        | 53,560         | 74,954                     |
| PA                          | 7,520         | 11,397         | 24,078                     |
| PPA                         | 309           | 1,381          | 2,041                      |
| Plasma per donation (mL)    |               |                |                            |
| WB (plasma yield)           | 270           | 268            | 266                        |
| PA (mean volume)            | 598           | 600            | 525                        |
| PPA (plasma yield)          | 398           | 400            | 398                        |
| Total active donors         | 17,474        | 30,246         | 45,922                     |
| Subject to annual controls  | 15,217        | 26,000         | NA                         |
| Making first donation       | 1,282         | 3,606          | 4,924                      |
| Candidate donors            | 2,097         | 5,797          | 9,169                      |
| Donors recalled for control | NA            | 3,100          | NA                         |

WB: whole blood; PA: plasmapheresis; PPA: plasma platelet apheresis; NA: not available.



Figure 2 - Collection and donation index mix in the three centres.

# Table II - Tests in 2013 (significant differences highlighted in grey).

|                                                          | Bologna CD | Verona IDTM         | Marche Regional IDTM |
|----------------------------------------------------------|------------|---------------------|----------------------|
| Immunohematology                                         |            |                     |                      |
| ABO (direct and indirect) and Rh D                       | CD/FD      | CD/FD               | CD/FD                |
| ABO group control (direct test) and Rh D                 | ALL        | RD/FD/CD            | RD/FD                |
| Kell antigens                                            | CD/FD      | CD/FD               | CD/FD                |
| Direct Coombs test                                       |            |                     |                      |
| Determination of complete Rh phenotype                   | CD/FD      | CD/FD               | CD/FD                |
| Serovirology and molecular biology                       |            |                     |                      |
| HBs Ag                                                   | ALL        | ALL                 | ALL                  |
| HCV Ab                                                   | ALL        | ALL                 | ALL                  |
| HCV RNA                                                  | ALL        | ALL                 | ALL                  |
| HBV DNA                                                  | ALL        | ALL                 | ALL                  |
| HIV-1 RNA                                                | ALL        | ALL                 | ALL                  |
| Syphilis serodiagnosis                                   | ALL        | ALL                 | ALL                  |
| HIV 1-2 Ab                                               | ALL        | ALL                 | ALL                  |
| ALT determination                                        | ALL        | ALL                 | ALL                  |
| Routine tests per donation                               |            |                     |                      |
| Complete hemochromocytometry                             | ALL        | ALL                 | ALL                  |
| PT and aPTT - PLASMA                                     | AC         | NO                  | AC                   |
| PT and aPTT - PLT                                        | RD/AC      | ANNUAL <sup>1</sup> | AC                   |
| Search for anomalous anti-erythrocytic antibodies        | CD/AC      | CD/FD <sup>2</sup>  | CD/AC <sup>3</sup>   |
| Creatininemia                                            | CD/AC      | FD/AC               | CD/AC                |
| Glycemia                                                 | CD/AC      | FD/AC               | CD/AC                |
| Proteinemia and serum protein electrophoresis            | FD/AC      | FD/AC               | CD/AC                |
| Cholesterolemia                                          | FD/AC      | FD/AC               | CD/AC                |
| Triglyceridemia                                          | FD/AC      | FD/AC               | CD/AC                |
| Ferritinemia                                             | FD/AC      | FD/AC               | CD/AC/IID            |
| Anti-HBc                                                 |            |                     | ALL                  |
| Anti-HBs                                                 |            |                     | Upon request         |
| AST (when ALT altered)                                   | FD         | DD                  | DD                   |
| Azotemia                                                 | CD/AC      | FD/AC               | CD/AC                |
| Total and fractionated bilirubin                         | FD         |                     | CD/CA                |
| HDL cholesterol                                          |            |                     | DD                   |
| Gamma GT (when ALT altered)                              | FD         |                     | DD                   |
| Sideremia                                                | FD/AC      | FD/AC               | DD                   |
| Hemoglobin electrophoresis                               |            |                     | DD                   |
| Ericemia                                                 | FD/AC      |                     | DD                   |
| ESR                                                      |            | FD/AC               | CD/AC                |
| Urine test                                               | FD/AC      |                     | CD/AC                |
| ECG (at time of first donation and then every two years) | FD         | CD/RD <sup>4</sup>  | RD <sup>5</sup>      |
| Sodium potassium chlorine                                | FD         |                     | DD                   |
| Alkaline phosphatase                                     | FD         |                     | DD                   |
| Calcium                                                  | FD         |                     | CD/AC                |
| Fibrinogen                                               | AC         |                     | DD                   |

RD: regular donor; CD: candidate donor; FD: first donation; AC: annual control; DD: diagnostic detail.<sup>1</sup>platelet donor; <sup>2</sup>also in the case of an immunising event; <sup>3</sup>if Coombs' test positive; 4 only when indicated; <sup>4</sup><45 years: once every two years; <sup>5</sup>>45 years: every year.

The three centres are absolutely similar in terms of the composition of their personnel (p=0.65, Figure 3) and working times, but there are differences in personnel costs due to differences in retribution policies (data not shown).

The composition of the cost of a litre of plasma obtained by means of apheresis is not the same in the three centres (p<0.001, Figure 4): the weight of material costs is least at the CD (38%), whereas that of personnel costs is least at the IDTM in Verona (24%).

# Discussion

The differences in the individual cost items are attributable to organisational choices, economic factors and/or structural variables: for example, the cost of a bag for collecting whole blood varies from  $\in 8.70$  to  $\in 13.80$ 

(a difference due to differences in the characteristics of the device used, and therefore in their purchase price), and the cost of a plasmapheresis kit ranges from  $\notin 21.17$  to  $\notin 35.60$  (due to differences in the number of cell separators included in the centralised call for tenders). However, the estimated final cost is similar (Table III):  $\notin 278$  at the Marche Regional IDTM;  $\notin 280$  at the CD in Bologna, both of which are in line with results of the model developed for the IDTM in Verona ( $\notin 284, 95\%$  CI 251-329).

### Conclusions

Given the differences in their cost determinants, the comparison made it possible to draw attention to the modifications that could be made at each centre in order to establish a common threshold of efficiency,



Figure 3 - Personnel involved in annual plasma collection in the three centres.



Figure 4 - Cost of a litre of plasma collected by means of apheresis in the three centres.

|                                | Bologna CD | Verona IDTM*             | Marche Regional IDTM** |
|--------------------------------|------------|--------------------------|------------------------|
| Material costs                 | 60.21      | 82.47                    | 75.36                  |
| Per donation                   | 49.31      | 54.47                    | 71.56                  |
| Per donor test                 | 10.90      | 28.01                    | 3.81                   |
| Personnel costs                | 71.73      | 40.57                    | 47.25                  |
| Collection                     | 66.56      | 35.07                    | 39.46                  |
| Production                     | 4.60       | 1.55                     | 7.07                   |
| Laboratory tests               | 0.47       | 1.74                     | 0.21                   |
| Assigned to industry           | 0.09       | 1.72                     | 0.51                   |
| Associative reimbursement      | 25.03      | 26.29                    | 24.04                  |
| Indemnities                    | 1.85       | 2.52                     | 3.11                   |
| General expenses               | 8.10       | 18.46                    | 10.25                  |
| AD of structural resources     | 0.05       |                          | 1.93                   |
| Medical Manager                | 2.08       |                          | 0.75                   |
| Other                          | 5.96       | (                        | 7.56                   |
| Total per donation             | 166.91     | 170.32                   | 160.02                 |
| Plasma yield per bag (mL)      | <u>596</u> | 600                      | 575                    |
| Total cost per litre of plasma | 280        | 284<br>(95% CI: 251-329) | 278                    |

**Table III** - Annual activities in the three centres  $(\epsilon)$ .

\*Figures from Eandi M, Gandini G, Povero M, Zaniolo O, Pradelli L, Aprili G. Industrial plasma: cost analysis from the third payer perspective. Blood Transfus 2015; 13: 37-45 DOI 10.2450/2014.0066-14. \*\*Calculated using a pooled model but in phase of consolidation (awaiting balance sheet closure) AD: annual depreciation.

but the model could also be easily applied in other organisational contexts.

The analysis revealed the following key points:

- The flow of donors/donations was comparable in three centres albeit with main differences in the percentage of plasmapheresis (24% in Marche and the CD vs 17% in Verona) and the index of donation (2.2 in Marche and Verona vs 1.8 in the CD).
- Test profiles:
  - similarity in annual controls, and serovirology and molecular biology tests;
  - similarity in the testing of "new" donors, albeit with differences in the timing of the various tests (at the time of screening candidate donors or at the time of the first donation);
  - differences in the use of tests of donations that are not required by law but are carried out in order to protect donors and recipients.
- The working times recorded/estimated at the three centres were similar, whereas personnel costs were different because of differences in retribution policies.
- The differences in the individual cost items seem to be attributable to organisational choices, economic factors and/or structural variables.
- The final cost of a unit of plasma is similar: € 280 at the CD with slight differences at the other centres.

# **Disclosure of conflicts of interest**

Massimiliano Povero is an employee of AdRes, which has received project funding from Kedrion Biopharma. Giorgio Gandini is an employee of Azienda Ospedaliera Universitaria Integrata di Verona (AOUI VR), which has received project funding from Kedrion Biopharma. Alessia D'Andrea is an employee of L.I.V.E. srl, which has received project funding from Kedrion Biopharma. Mario Eandi, Stefano Marasca, Andrea Tieghi, Vanda Randi, Francesco Picardi, Giuseppe Aprili, Mario Piani and Claudio Velati have no competing interests to declare.

#### References

- Marasca S, D'Andrea A, Piani M. I costi congiunti degli emocomponenti: il caso della Regione Marche. Mecosan 2013, 88: 61-74.
- Eandi M, Gandini G, Povero M, Zaniolo O, Pradelli L, Aprili G. Industrial plasma: cost analysis from the third payer perspective. Blood Transfus 2015; 13: 37-45.
- Marasca S, Eandi M, D'Andrea A, et al. Un modello condiviso di gestione della plasmaferesi: i primi passi verso l'efficienza. Blood Transfus 2015; 13 Suppl 2: ABS 131 [in Italian].

**Correspondence:** Massimiliano Povero AdRes Health Economics & Outcomes Research Piazza Carlo Emanuele II, 19 10123 Torino, Italy e-mail: m.povero@adreshe.com