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Certainty in science went out of fashion early last century following Heisenberg’s postulates.  

We now see ranges and confidence intervals around any given mode, mean, or median.  

Truth, in short, is a dependent variable. 

 

R. David G. Leslie & Eric S. Kilpatrick 

Diabetes Care, 2009 Jan;32(1):e11 
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Preface 

 

Since the earliest steps in this Doctoral Program I envisioned this journey as 

consisting of three steps: (1) to become comfortable with the state-of-the-art of 

genetic epidemiology and get organizational skills to correctly and productively 

frame ideas, manage datasets and biobanks and to deal with international research 

consortia; (2) to learn how to compellingly write research proposals and scientific 

reports, discuss and share results, critically review and support the work of other 

research groups involved in the field of diabetes, obesity and cardiovascular 

disease from a wide variety of perspectives (from wet lab to clinical 

epidemiology); (3) to finalize for publication original research papers on the 

topics outlined above. 
 

To this end, in 2013-2014 I had the opportunity to get a formal training in 

scientific methodology and writing, epidemiology, medical and population 

genetics at Harvard University in Boston. This experience led to the publication 

of several papers in high-impact scientific journals and continuing collaboration 

with the Framingham Heart Study group, MAGIC and CHARGE Consortia is still 

fruitfully ongoing. Since my arrival back in Italy in July 2014 I have continued to 

work on the projects I started in Boston, while disseminating scientific knowledge 

by actively attending to several national and international meetings.  
 

The unprecedented experience accrued while working with the Framingham 

Investigators and other international leaders in the field of (genetic) epidemiology 

led to create the overarching framework of my current activity, which aims at 

bringing together the genetic determinants of diabetes, obesity, cardiovascular 

disease and intermediate traits and to understand their relationship with the 

pathophysiology of the glucose-insulin system. 
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T2D is a complex disease characterized by a high prevalence and incidence 

worldwide, and recognizes genetic and non-genetic (environmental) risk factors 

as underlying determinants. CVD are currently one of the leading causes of death 

and are also often clinically associated to T2D. Recent large-scale genome-wide 

association studies (GWAS) have identified common genetic risk variants 

associated with a higher propensity of developing T2D, CVD and intermediate 

cardiometabolic phenotypes.  
 

The goal of the research project herein presented was three-fold: (1) to critically 

revise the available literature about the genetic determinants of type 2 diabetes 

(T2D), coronary heart disease (CHD) and intermediate phenotypes (sub-diabetic 

hyperglycemia, measures of subclinical atherosclerosis (SCA) and associated risk 

conditions), aimed at searching for potential overlapping areas of shared genetic 

background; (2) to verify whether the genetic determinants of T2D, and 

particularly those associated with insulin resistance, are also associated with 

measures of SCA; (3) to verify whether a genetic risk score comprised of the 

genetic determinants of T2D, myocardial infarction, stroke, atrial fibrillation, 

sudden cardiac death, coronary heart disease, is associated with an excess risk of 

all-cause mortality and/or CVD death.  
 

In detail, the present research exercise aimed at exploring the common genetic 

background of T2D, CVD and sub-diabetic forms of hyperglycemia by means of 

three exemplifying studies herein outlined. The first study verified whether the 

genetic risk for T2D, as represented by the aggregate burden of T2D risk loci 

(either as a whole or by distinct functional sub-groups, representative of loci with 

prior evidence of association with defective beta-cell function and/or increased 

insulin resistance), is associated with SCA traits in multi-ethnic cohorts.  

The second study verified the hypothesis that the common genetic variability at 

loci gatekeepers of the insulin signaling transduction pathway are associated with 
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insulin resistance, beta-cell dysfunction, pathologic electrocardiogram, and/or 

increased SCA in patients affect by newly-diagnosed T2D. 

The third study verified whether the composite of the genetic determinants of 

T2D and intermediate CVD risk traits is associated with a higher mortality in the 

Framingham Offspring Study. 

 

 

 

Prefazione 

 

Il presente progetto di ricerca si compone di tre parti: (1) revisione della 

letteratura relativa ai determinanti genetici di diabete mellito tipo 2, malattie 

coronariche e fenotipi intermedi (forme sub-diabetiche di iperglicemia, forme 

subcliniche di aterosclerosi e fattori di rischio associati) alla ricerca di possibili 

aree di sovrapposizione; (2) verificare se i determinanti di rischio genetico per 

diabete tipo 2, ed in particolare quelli maggiormente associati a insulino-

resistenza, sono anche associati a misure di aterosclerosi subclinica; (3) verificare 

se uno score di rischio genetico costituito dai determinanti genetici di diabete tipo 

2, infarto miocardico, stroke, fibrillazione atriale, morte cardiaca improvvisa, 

malattie coronariche è associato a mortalità per tutte le cause e/o mortalità per 

malattie cardiovascolari.  
 

Il diabete mellito di tipo 2 (T2D) è una malattia complessa ad alta prevalenza e 

incidenza che riconosce fattori genetici e non-genetici quali determinanti causali. 

Le malattie cardiovascolari (CVD) sono una delle maggiori cause di morte e sono 

spesso associate a T2D. Studi di associazione genome-wide hanno identificato 

varianti genetiche comuni associate a T2D, CVD e fenotipi cardiometabolici 

intermedi.  
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Questo percorso di ricerca si è proposto di individuare le basi genetiche comuni a 

T2D, CVD e forme sub-diabetiche di iperglicemia attraverso tre studi 

esemplificativi. Nel primo studio è stato verificato se il rischio genetico per T2D 

sia associato, in aggregato e/o in sottogruppi funzionali distinti (disfunzione beta-

cellulare o insulino-resistenza), a tratti di aterosclerosi subclinica (ATS) in coorti 

multi-etniche. Il secondo studio ha testato l’ipotesi che la variabilità genetica 

comune dei loci principalmente coinvolti nella trasduzione del segnale insulinico 

siano associati a insulino-resistenza, funzione beta-cellulare, anomalie 

elettrocardiografiche e/o aterosclerosi subclinica in soggetti affetti da T2D neo-

diagnosticato. Nel terzo studio è stato indagato se il rischio genetico per T2D e 

tratti di rischio cardiometabolico sia associato ad aumentata mortalità nel 

Framingham Offspring Study. 
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Chapter 2 

 

 

Current Insights into the Joint Genetic Basis of 

Type 2 Diabetes and Coronary Heart Disease 

Curr Cardiovasc Risk Rep (2014) 8(1):368 

Authors and affiliations are listed in Chapter 6.1 
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2.1 ABSTRACT 

 

English - The large-scale genome-wide association studies conducted so far 

identified numerous allelic variants associated with type 2 diabetes (T2D), 

coronary heart disease (CHD) and related cardiometabolic traits. Many T2D- and 

some CHD-risk loci are also linked with metabolic traits that are hallmarks of 

insulin resistance (lipid profile, abdominal adiposity). 9p21.3 and 2q36.3, are the 

most consistently replicated loci appearing to share genetic risk for both T2D and 

CHD. Although many glucose- or insulin-related trait variants are also linked with 

T2D risk, none of them is associated with CHD. Hence, while T2D and CHD are 

strongly clinically linked together, further ongoing analyses are needed to clarify 

the existence of a shared underlying genetic signature of these complex traits. The 

present review summarizes an updated picture of T2D-CHD genetics as of 2013, 

aiming to provide a platform for targeted studies dissecting the contribution of 

genetics to the phenotypic heterogeneity of T2D and CHD.  

 

Italian - Gli studi su larga scala del genoma hanno sinora identificato numerose 

varianti alleliche associate a diabete mellito tipo 2 (DMT2), malattie coronariche 

(CHD) e a fenotipi intermedi di rischio cardiometabolico. Molti loci associati a 

DMT2 ed alcuni associati a CHD sono anche associati a tratti metabolici 

caratteristici dell’insulino-resistenza (profilo lipidico, adiposità addominale). I 

loci 9p21.3 e 2q36.3 sono stati più volte identificati quali determinanti genetici di 

rischio all’intersezione tra DMT2 e CHD. Benchè tuttavia molte varianti 

genetiche associate a glicemia, insulinemia e fenotipi ad essi correlati siano anche 

associate a un aumentato rischio per DMT2, nessuna è risultata associata a CHD. 

Pertanto, benchè sia evidente che DMT2 e CHD sono fortemente associati 

clinicamente, ulteriori studi sono necessari per chiarire se questi complessi 

fenotipi riconoscano una base genetica comune. In questo riassunto viene fornito 
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un quadro aggiornato delle conoscenze relativa ai determinanti genetici di DMT2 

e CHD e si propone di fornire una base per esplorare l’eterogeneità fenotipica che 

caratterizza DMT2 e CHD. 

 

 

 

 

Abbreviations 

 

CARDIoGRAM Coronary ARtery DIsease Genome wide Replication and 

Meta-analysis Consortium 

C4D   Coronary Artery Disease Genetics Consortium 

DIAGRAMv3  DIAbetes Genetics Replication and Meta-analysis 

MAGIC Meta-Analyses of Glucose- and Insulin-related traits 

Consortium 

WTCC   Wellcome Trust Case Control Consortium 

GWAS   Genome Wide Association Study 

T2D   Type 2 Diabetes  

CHD   Coronary Heart Disease 

MI   Myocardial Infarction 

LD    Linkage Disequilibrium 

SNP   Single Nucleotide Polymorphism  

MAF   Minor Allele Frequency 

BMI   Body Mass Index 

WHR   Waist-to-Hip Ratio 

HOMA-B  Homeostatic Model Assessment of Beta-Cell Function 

HOMA-IR  Homeostatic Model Assessment of Insulin Resistance 

HUVEC  HUman Vascular Endothelial Cells 
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2.2  INTRODUCTION 

 

The global epidemic of type 2 diabetes (T2D) and associated cardiovascular 

diseases is increasing tremendously despite great efforts in prevention and 

treatment [1]. Cardiovascular diseases, especially coronary heart disease (CHD), 

represent the leading cause of death worldwide [2] and alarming projections for 

upcoming years require new and more effective strategies [3]. 

Better understanding of mechanisms underlying disease etiology and disease 

pathogenesis is the sine qua non to move forward and is a major goal of recent 

genetic studies on T2D and CHD [4]. Both T2D and CHD constitute the paradigm 

of common complex traits and have been an exciting and highly productive arena 

in the field of genetics: the last decade witnessed an impressive growth of 

available information about the genetic architecture of T2D and CHD. 

Interestingly, the growing amount of available information has revealed many 

apparently overlapping genetic signals that share association with T2D and CHD, 

especially in and near chromosome 9p21.3 [5-9] and 2q36.3 [10, 11], and at 

several other loci harboring variants associated with fasting glucose or insulin and 

other cardiometabolic traits (for instance, levels of lipids and anthropometric 

measures) that increase risk for CHD and/or T2D [12, 13].  

The present review will outline and discuss the results from large-scale 

association analyses for T2D [14], CHD [15] and glycaemic traits [12] published 

in the last year (2012-2103), and integrate the evidence on chromosomal regions 

at 9p21.3 and 2q36.3 loci to provide a plausible, though not exhaustive, 

explanation at the genetic level of the common soil underlying CHD, T2D and 

associated metabolic traits. 
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2.2.1 Recent Type 2 Diabetes Genome-Wide Association Studies (GWAS) 

 

In 2012, the DIAbetes Genetics Replication and Meta-analysis Consortium 

published the largest to date association analysis for T2D (DIAGRAMv3) [14]. 

The study, combined with the 2011 genome-wide association study (GWAS, see 

the glossary in Table 1) of Cho et al. [16] in roughly 55,000 East Asians, brought 

to 65 the number of independent T2D susceptibility loci (Table 2), thus further 

extending an effort begun a few years ago [17] to unveil the common allelic 

architecture of T2D. The strategy took advantage of the experience accumulated 

in the field of GWAS and the availability of the Metabochip custom array [18] for 

cost-effective follow-up genotyping. The case-control, two-stage DIAGRAMv3 

meta-analysis was conducted in nearly 150,000 subjects (34,840 T2D cases and 

114,981 controls) mostly of European ancestry from 38 independent cohorts. The 

study found 10 new T2D variants of modest effect size in or near ZMIZ1, ANK1, 

KLHDC5, TLE1, ANKRD55, CILP2, MC4R, BCAR1, HMG20A and GRB14. 

Linkage disequilibrium (LD) analysis and previous reports showed that the lead 

SNP at many of these loci was also associated with T2D-related metabolic traits 

that overlap CHD risk factors such as body-mass index (BMI), waist 

circumference, and insulin resistance (MC4R), triglyceride concentration (MC4R, 

CILP2), waist-to-hip ratio (WHR) (GRB14), HDL-cholesterol (GRB14, CILP2) 

and total-cholesterol (CILP2). Interestingly, as clearly shown in Figure 1 and 

thoroughly detailed in the following sections, there is also compelling evidence 

that specific T2D loci on chromosome 2q36.3 and 9p21.3 harbor allelic variants 

in close proximity to each other and marking genomic regions associated with 

increased CHD risk.  
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2.2.2  Recent Coronary Heart Disease GWAS 

 

As detailed in Table 2 the number of loci currently known to be associated with 

coronary heart disease at genome-wide significance level have reached 45, thanks 

to the joint effort undertaken by the CARDIoGRAM-C4D Consortium on a 

sample of nearly 200,000 individuals (63,746 CHD cases and 130,681 controls in 

Stage1 + Stage2) [15]. This study, published in early 2013, confirmed previous 

findings [11, 19], discovered 15 new genome-wide significant loci and tested 

them by a thorough association analysis with traditional CHD risk factors. Twelve 

loci (APOB, ABCG5-ABCG8, PCSK9, SORT1, ABO, LDLR, APOE and LPA) 

showed genome-wide significance for association with at least one lipid trait in 

the expected direction. The CHD-raising allele was also associated with abnormal 

lipid levels, the strongest association being with LDL-cholesterol; CYP17A1-

NT5C2, SH2B3, GUCY1A3, FES and ZC3HC1 were associated with blood 

pressure; CYP17A1-CNNM2-NT5C2 and RAI1-PEMT-RASD1 loci were 

associated with BMI and WHR. Notably, there was no overlap with specific T2D 

or glycaemic trait-associated variants (fasting insulin, fasting plasma glucose, 

HOMA-B and HOMA-IR) for any of the SNPs analyzed (Figure 1).  

 

Taken together, the overall spectrum of 65 T2D and 45 CHD genome-wide 

associated common variants explain only a small fraction (∼10% each) of disease 

heritability, thus leaving a large unfilled space under the umbrella of the common 

variant/common disease hypothesis [20]. Indeed, a great proportion of common 

genetic variance is predicted to occur in non-coding regions at the level of 

structural variation, such as deletions, insertions, inversions and copy number 

variants, which might be imperfectly tagged or under-represented in current 

GWAS arrays [21].  Large scale sequencing studies currently underway may help 

to fill in some of the unfilled space under the umbrella of the genetic basis of T2D 
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and CHD by identifying less common or regulatory variants underlying these 

diseases.  

 

 

2.2.3  Recent Glycaemic Quantitative Traits GWAS 

 

Valuable details concerning quantitative risk factors were added to the overall 

picture in 2012 by two large-scale association analyses from the Meta-Analyses 

of Glucose and Insulin-related traits (MAGIC) Consortium [12, 22] that further 

enlightened our understanding of the genetic determinants of overlapping risk 

factors for T2D and CHD (see Table 3). 

The joint meta-analysis by Manning et al. [22] in nearly 100,000 non-diabetic 

subjects of European ancestry investigated the genetic variability of insulin 

resistance by testing on a genome-wide basis the interaction of body mass index 

with fasting glucose and insulin. Based on previous experience from MAGIC [23] 

a new computational approach accounting for potential interactions between BMI 

and genetic variants was applied, enabling the discovery of 13 previously 

unknown SNPs associated with fasting insulin (FI) or fasting glucose (FG) at 

genome-wide significance. Among the FI-loci, the lead SNP in or near IRS1, 

COBLL1-GRB14, PDGFC or LYPLA1 was also associated with an increased risk 

for T2D (Figure 1, Table 3), the strongest signal being for the chr2q36.3-IRS1 

locus (rs2943634). Notably, as detailed in Table 3, the risk allele of most of the 

FI-SNPs identified were also associated with metabolic phenotypes related to 

insulin resistance and CHD risk (for instance, detrimental lipid profile, higher 

WHR). None of the FG-loci showed association with any insulin resistance-

cardiometabolic trait, and only ARAP1 was associated with T2D (Table 3).   

These results are complementary to the GWAS conducted by Scott et al. [12], 

which identified 41 previously undiscovered [23, 24] glycaemic associations in up 
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to 133,010 non-diabetic individuals of European descent by combining previous 

discovery MAGIC data with newly Metabochip-genotyped samples. Scott et al. 

and Manning et al. jointly raised the number of non-overlapping loci influencing 

glycaemic traits (FI, FG, post-challenge glucose concentration) to 55 (53 

confirmed loci in Scott et al. plus 2 additional and potentially independent signals 

from Manning et al., associated with FG and lying, respectively, in or near OR4S1 

and DPSYL5 genes); 34 of them are also at least nominally associated with 

increased T2D risk (Figure 1), and most of the FI-raising loci showed 

directionally consistent associations with abdominal obesity and/or higher 

triglycerides-to-HDL cholesterol ratio (Tg/HDL) (Table 3). 

 

 

2.3 THE CHROMOSOME 2q36.3-IRS1 LOCUS 

 

The evidence described above suggests that loci associated with signatures of 

insulin resistance are fairly good candidates mechanistically linking the overlap 

between T2D, CHD and glycaemic quantitative traits. As pointed out in Figure 1 

and Figure 2, one of the most promising regions is a large locus spanning ∼593 

kb located on chromosome 2q36.3 and harboring the IRS1 gene, a key mediator 

along the insulin signaling pathway. Over the past few years many large-scale 

association studies from different research groups including Manning et al. and 

Scott et al. led to the identification of a cluster of SNPs (rs2943634, rs2043640, 

rs2943641, rs2943650, rs2972146, rs2943645) in high LD with each other 

(0.75<r2<1.00; 1000 Genomes Pilot 1 CEU population) and associated with T2D, 

CHD, increased FI, higher Tg/HDL and/or low subcutaneous-to-visceral fat ratio 

[11-14, 22, 25, 26]. A recent basic science report by Li et al. [27] also clarified 

that these variants are located in two major sites ∼600 kb and ∼1 Mb downstream 

from the IRS1 gene promoter and might physically regulate IRS1 gene expression 
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by looping interactions, explaining how putative regulatory regions far from IRS1 

might regulate insulin sensitivity. The variant rs2943634 deserves a special 

mention (Figure 2A) as the only one SNP discovered so far in 2q36.3 region 

directly associated with increased CHD risk –though at slightly below genome-

wide significant (p=1.61x10-7) by the WTCC and Cardiogenics Consortium 

GWAS effort in 2007 [11]. 

That said, since insulin resistance and its associated traits have also been proposed 

as common pathophysiological background underlying CHD risk and the diabetic 

atherogenic context [28], Lim et al. [29] early in 2013 further investigated 

whether the genetic variation at 2q36.3 locus might also affect CHD risk via 

subclinical atherosclerosis in a sample of 2740 Framingham Heart Study 

participants. The study examined the cluster of SNPs described above along with 

195 additional genotyped or imputed SNPs in 2q36.3 locus, testing them for 

association with subclinical atherosclerosis traits, but failed to find any 

correlation, despite an adequate sample size and detailed phenotypic 

characterization. The only significant association between rs10167219 (r2 with 

rs2943634 = 0.07) and ankle-brachial index (ABI) was not confirmed after a 

validation step in a larger ABI meta-analysis [30].  

On the other hand, Bacci et al. [10] found that functional candidate variants of 

insulin signaling genes, including IRS1 G972R (rs1801278) (regional plot shown 

in Figure 2B), ENPP1 K121Q (rs1044498) and TRIB3 Q84R (rs229549), 

summed in a genetic risk score (GRS), jointly nominally predicted a composite 

endpoint of incident cardiovascular events in a sample of 733 type 2 diabetic 

patients, The GRS was also associated with decreased insulin sensitivity, and 

functional analysis in human vascular endothelial cells (HUVEC) showed that the 

GRS was inversely related with insulin-stimulated nitric oxide synthase activity.   

Hence, depending on the outcome measured, whether atherosclerotic plaque 

formation or coronary heart disease events, current insights on 2q36.3 locus are 
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still far from conclusive with much remaining to be understood at a mechanistic 

level.  

 

 

2.4 THE CHROMOSOME 9p21.3 LOCUS 

 

As shown in Figure 1 and Table 2, only two of the 65 T2D genome-wide 

associated loci [14, 16] but none of the common variants at these loci clearly 

overlaps any of the 45 CHD loci [15]. The example provided by 9p21.3 locus, a 

large genomic region spanning ∼53 kb, is paradigmatic in this sense, owing to its 

unique haplotype structure (Figure 2B). Notably, this locus is associated with 

both CHD and T2D in European ancestry individuals [5, 7-9] and also in Chinese 

Han individuals as shown in 2011 by Cheng et al. [6].  

The 9p21.3 locus has been extensively studied over the past years and has been 

historically primarily linked with an increased risk of CHD and myocardial 

infarction [11, 31], as confirmed by the recent GWAS conducted by 

CARDIoGRAM-C4D Consortium [15]. The numerous CHD-associated SNPs 

identified thus far in this interval are characterized by high LD with each other, 

thus representing a distinct region robustly associated with CHD. In 2013 

additional insights in the haplotype structure of this CHD-risk interval have 

become available. In a case-control study conducted in nearly 3,700 non-diabetic 

white subjects, Fan et al. [32] successfully showed that atherosclerotic plaque 

formation is determined by a set of allelic variants physically distinct from the 

haplotype that predicts MI, namely, vulnerable plaque rupture and thrombosis. 

The 9p21.3 locus does not house protein-coding genes; the closest, CDKN2ABS1, 

CDKN2A/B, and ABO, are 120 kb from the principal index SNPs at the locus. As 

well highlighted by a recent editorial by McPherson [33], a mechanistic 

explanation to unambiguously clarify the contribution of 9p21.3 CHD-associated 
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SNPs to atherosclerosis and MI is still missing. Long range regulatory interactions 

with distant coding regions, tissue-specific effects of 9p21.3 CHD susceptibility 

SNPs and interactions with inflammation have been hypothesized, [34], but 

current results are conflicting and a clear mechanistic model for the genetic 

effects at this locus remain to be identified [35, 36].  

With respect to T2D risk, as found by Morris et al. [14], chromosome 9p21.3 also 

encompasses variants strongly associated with T2D (Table 2) and spatially 

arranged in a very tight genomic region adjacent but distinct from that harboring 

the CHD-associated SNPs. As shown in Figure 2C-D, it is well ascertained that 

the haplotype structure of 9p21.3 locus stands on two main regions or “blocks” 

[8]: one large segment spans roughly 44 kb and hosts the CHD LD region (lead-

SNP: rs1333049); on the other side of a recombination peak lies a 4kb T2D-

associated block (lead-SNP: rs10811661). The LD between the respective lead-

SNPs of T2D and CHD blocks [15] is very low (r2<0.009; 1000 Genomes Pilot 1 

CEU population). The two regions have a low chance of mixing together during 

recombination, thus suggesting a distinct pattern of inheritance.  

However, the DIAGRAMv3 GWAS identified an additional lead SNP at a 

putative independent secondary T2D signal (rs944801; r2=0.01 with rs10811661) 

[14] within the CHD-haplotype block (Figure 3C). This T2D-associated SNP is 

in modest LD (r2=0.35) with the CHD lead-SNP (rs1333049), thus indicating a 

potential region close to the CDKN2A/B genes jointly affecting CHD and T2D.  

Functional studies to parse in depth the contribution, if any, to both T2D and 

CHD of this and other variants within 9p21.3 locus is a challenging task that is 

worth pursuing further. 
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2.5  SUMMARY 

  

Large-scale GWAS have been a powerful tool to uncover common genetic 

signatures strongly associated with common complex diseases like T2D, CHD 

and associated cardiometabolic traits. Here we reviewed the most recent findings 

in this field, highlighting the hitherto confirmed overlapping associations among 

T2D, CHD and glycaemic trait susceptibility loci.  

The papers in the last year by the DIAGRAM, Cardiogram-C4D and MAGIC 

consortia showed that a few GWAS-discovered loci overlap both T2D and CHD 

risk, and for quantitative traits, a larger fraction of glycaemic trait raising alleles 

are also associated with T2D risk and CHD quantitative risk factors. In particular, 

FI-raising alleles show a directionally consistent link with increased T2D risk and 

adverse lipid and anthropometric measures. These results suggest that many FI-

associated loci represent insulin resistance loci that potential provide a genetic 

underpinning for joint T2D-CHD risk. The 2q36.3-IRS1 locus in particular has 

emerged as a crossroad for signals associated with T2D-CHD risk. However, a 

firm and comprehensive functional explanation of the role played by 2q36.3-IRS1 

remains to be shown, especially towards CHD risk. For instance, 2q36.3 locus 

harbors variants that, taken together, seem to play heterogeneous genetic effects 

on atherosclerotic plaque formation/rupture [10, 29]. Interestingly, compelling 

evidence exists for the association between cardiovascular events and the 

candidate functional variant IRS1 G972R (rs1801278) [10]. Unfortunately, this 

variant lacks of GWAS confirmation despite being quite common (MAF 5.4%), 

probably because no proxy for rs1801278 mapping in or near other known 

variants in 2q36.3 locus is presently available in any available SNP data set. Thus, 

absence of evidence for a clear role of this variant is due to absence of evidence, 

not evidence of no role. Genotyping of this variant in large, independent samples 

is needed for firm confirmation of this coding variant’s role in CHD risk.  
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The role of the 9p21.3 locus on T2D-CHD risk needs further elucidation, as well. 

It has a peculiar haplotype structure organized in two contiguous but distinct 

blocks conferring risk, respectively, for T2D and CHD/MI. However there 

appears to be a variant, rs944801, that may be an independent secondary T2D 

signal amidst the CHD-haplotype block. Targeted confirmatory association and 

functional studies are needed to further investigate joint risk of T2D-CHD in this 

haplotype block.  

 

 

2.6  IMPLICATIONS AND FUTURE DIRECTIONS 

 

A number of possible confounding elements may explain why association results 

should be taken with, perhaps, a grain of salt [21, 37, 38]. First, as pointed out by 

Wray et al.  [38], GWAS are capable, by design, to explain only a small fraction 

(currently 10%, on average) of disease heritability and are intrinsically 

underpowered to uncover the “missing inheritance” carried by rare and low-

frequency variants; second, the nature of the association is essentially statistical 

and in most cases doesn't tell much about the functional effect, if any, of the SNPs 

identified, thus limiting the predictive power of the loci discovered so far [21]; 

third, most of the GWAS SNPs lie in non-coding DNA regions and might work as 

regulatory or chromatin-modulating variants with unknown distant cis/trans effect 

on gene expression [37]; and finally, possible limitations including imperfect 

tagging due to insufficiently dense SNP arrays cannot be excluded.  

 

Another possibility is that diabetic and non-diabetic individuals might have 

distinct mechanisms of CHD risk. For instance, an increased burden of T2D-

associated GWAS risk variants is associated with cardiovascular disease risk in 

individuals with T2D [39], but CHD risk at chromosome 9p21.3 is only raised in 
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T2D among those with elevated HbA1c levels [40], and the recently discovered 

variant on chromosome 1q25 associated with glutamic acid metabolism and CHD 

risk in T2D has not been observed in large scale non-diabetic CHD GWAS [41]. 

Further dissection of the joint genetic association of T2D and CHD versus the 

interaction of T2D on genetic risk for CHD will require additional careful 

untangling in large scale association studies and follow-up functional and 

physiological studies.  

 

Future research might also focus on pleiotropy analyses of variants with less 

stringent evidence for genome-wide significance. For instance, as detailed in 

Table 3, the link between glycaemic trait raising alleles with lipids and BMI is 

physiologically consistent and statistically convincing for “true” associations, 

though in most cases not strong enough to reach p<5x108. Whether these loci that 

appear to be associated with more than one trait are true pleiotropic loci or more a 

function of the known trait correlations (that is, greater adiposity is a well-known 

correlate of insulin resistance) remains to be elucidated. In addition, studies that 

leverage extended genealogy [42] to catch more of the “missing heritability” and 

improve polygenic risk prediction [43] combined with targeted re-sequencing and 

fine-mapping studies of confirmed loci like 2q36.3 and 9p21.3 may also help to 

untangle the joint association of T2D-CHD [44].  

Furthermore, increasing the prior probability to find “true” associations would be 

of paramount help. To this end it might be wise to focus on studies of carefully 

selected, deeply phenotyped population samples with a priori stronger genetic 

background like early-onset diabetes [45] or cohorts free of confounding factors 

like long standing (sub)diabetic hyperglycaemia [46]. The availability of detailed 

assessments of beta-cell function and insulin sensitivity (instead of surrogate 

markers) as well as the accessibility of tissue- and cell-repositories within these 

population samples will also provide the unique opportunity to mechanistically 
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unravel the genetic signature of T2D and/or CHD. 

 

Greater understanding of the genetic associations underlying T2D-CHD risk in 

the setting of a global pandemic of T2D and CHD is a timely challenge for 

improved population health and the sustainability of healthcare systems. The 

tremendous abundance of discoveries made by large-scale association studies 

published in 2012-2013 now needs further translation into mechanistic insights 

and improved clinical practice. However, this promise for discoveries achieved in 

the field of diabetes and cardiometabolic disease genetics is becoming ever closer.  
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2.7 FIGURES and TABLES 

 
 

Table 1 - Glossary of Unfamiliar Terms 
 
 

SNP: A Single Nucleotide Polymorphism (SNP) is a single base-pair change in the DNA 
sequence and is a class of common human genetic variations [47]. A genetic variant is 
usually considered as “common” if its Minor Allele Frequency (MAF) is over 5%, i.e. the 
less frequently inherited allele on one of the two DNA strands has a prevalence over 5% 
in the population of interest.  
 
 

Linkage Disequilibrium: The difference between the expected and the observed 
frequencies of two SNPs under the assumption of independence is a common way to 
determine and measure the structure of haplotypes in genetic linkage analysis. This 
probability is called linkage disequilibrium (LD) and is expressed as a correlation 
coefficient ( r2 ) between pairs of SNPs, with r2 ranging between 0 and 1) The higher the 
r2, the higher the probability that two SNPs are non-randomly inherited together during 
recombination.  
 
 

GWAS: Genome-Wide Association Study. GWAS have become global scientific efforts 
begun over 10 years ago to analyze DNA sequence variations and to identify their 
possible association with common diseases by a hypothesis-free approach. For a general 
overview of basic principles, experimental design and overall computational strategy 
underlying GWAS we recommend the recent publication of Bush et al. [48]. 
 
 

Lead SNP: is the representative variant in a genomic region (or “locus”) most 
significantly associated with the disease or trait in a GWAS. As a general agreement, the 
lead SNP “tags” (or is a “tag-SNP”) an LD region and is named as being associated with 
the nearest known gene at the locus, if any. Further mapping and function studies are also 
required to determine if the lead SNP at a locus is actually associated with the named 
gene or has any molecular functional significance related to the disease or trait being 
studied. 

 

Statistical significance in GWAS: Since currently available GWAS genotyping 
platforms allow to test millions of SNPs together against one or more traits of interest 
across thousands of individuals, the agreement of what has to be considered statistically 
significant (i.e. accepted as true association rather than happened by chance) takes into 
account the nominal Pearson’s statistical significance threshold (0.05) and the number of 
apparently independent association tests in the human genome. It is estimated that in 
individuals of European ancestry there are about 1 million uncorrelated (“independent”) 
common SNPs, hence, the resulting threshold is 5x10-8 or 0.05 divided by 1 million. 
 
 

Pleiotropy: Describes a single genetic variant or multiple variants at the same locus that 
affect one or more phenotypic traits. If such genetic variation acts as possible underlying 
cause for an observed cross-phenotype association, then pleiotropy occurs [37].  
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65 T2D associated loci1 
 

45+1 CHD associated loci2,3 

Chromosome SNP Risk allele Nearest gene  SNP Risk allele Nearest gene 
        
Chr. 1 rs10923931 T NOTCH2  rs4845625 T IL6R 
 rs2075423 G PROX1  rs11206510 T PCSK9 
     rs602633 C SORT1 
     rs17114036 A PPAP2B 
     rs17464857 T MIA3 
Chr. 2 rs243021 A BCL11A  rs6544713 T ABCG5-ABCG8 
 rs780094 C GCKR   rs515135 G APOB  
 rs13389219 C GRB14   rs1561198 A VAMP5-VAMP8-GGCX 
 rs2943640 C IRS1 (2q36.3)  rs6725887 C WDR12  
 rs7593730 C RBMS1   rs2252641 G ZEB2-AC074093.1  
 rs11899863 C THADA   rs29436343 C 2q36.3 (1.61x10-7) 
Chr. 3 rs6795735 C ADAMTS9  rs9818870 T MRAS 
 rs11717195 T ADCY5     
 rs4402960 T IGF2BP2     
 rs1801282 C PPARG     
 rs12497268 G PSMD6     
 rs17301514 A ST64GAL1     
 rs7612463 C UBE2E2     
Chr. 4 rs6819243 T MAEA  rs1878406 T EDNRA 
 rs1801214 T WFS1  rs7692387 G GUCY1A3 
Chr. 5 rs459193 G ANKRD55  rs7173743 T ADAMTS7 
 rs6878122 G ZBED3  rs273909 C SLC22A4-SLC22A5 
Chr. 6 rs10440833 A CDKAL1  rs10947789 T KCNK5 
 rs3734621 C KCNK16  rs4252120 T PLG 
 rs4299828 A ZFAND3  rs2048327 G SLC22A3-LPAL2-LPA 
     rs12190287 C TCF21 
     rs12205331 C ANKS1A 
     rs9369640 C PHACTR1 
Chr. 7 rs17168486 T DGKB  rs12539895 A 7q22 
 rs17867832 T GCC1  rs2023938 G HDAC9 
 rs4607517 A GCK  rs11556924 C ZC3HC1 
 rs849134 A JAZF1     
 rs13233731 G KLF14     
Chr. 8 rs516946 C ANK1  rs264 G LPL 
 rs3802177 G SLC30A8  rs2954029 A TRIB1 
 rs7845219 T TP53INP1     
Chr. 9 rs10965250 G CDKN2A/B (9p21.3)  rs579459 C ABO  
 rs10758593 A GLIS3   rs1333049 C CDKN2BAS1 (9p21.3)  rs16927668 T PTPRD   rs3217992 A 
 rs2796441 G TLE1     
 rs13292136 C TLE4     
Chr. 10 rs12779790 G CDC123/CAMK1D  rs2505083 C KIAA1462 
 rs5015480 C HHEX/IDE  rs501120 A CXCL12  rs7903146 T TCF7L2  rs2047009 C 
 rs12242953 G VPS26A  rs12413409 G CYP17A1, CNNM2, NT5C2 
 rs12571751 A ZMIZ1  rs11203042 T LIPA      rs2246833 T 
Chr. 11 rs1552224 A ARAP1 (CENTD2)  rs974819 A PDGFD 
 rs2334499 T DUSP8  rs9326246 C ZNF259, APOA5, APOA1 
 rs5215 C KCNJ11     
 rs163184 G KCNQ1     
 rs10830963 G MTNR1B     
Chr. 12 rs11063069 G CCND2  rs3184504 T SH2B3 
 rs1531343 C HMGA2     
 rs12427353 G HNF1A (TCF1)     
 rs10842994 C KLHDC5     
 rs4760790 A TSPAN8/LGR5     
Chr. 13 rs1359790 G SPRY2  rs9515203 T COL4A1, COL4A2      rs4773144 G 
     rs9319428 A FLT1 
Chr. 14     rs2895811 C HHIPL1 
Chr. 15 rs2028299 C AP3S2  rs17514846 A FURIN-FES 
 rs4502156 T C2CD4A     
 rs7177055 A HMG20A     
 rs12899811 G PRC1     
 rs11634397 G ZFAND6     
Chr. 16 rs7202877 T BCAR1     
 rs9936385 C FTO     
Chr. 17 rs4430796 G HNF1B (TCF2)  rs12936587 G RASD1, SMCR3, PEMT 
 rs2447090 A SRR  rs2281727 C SMG6 
     rs15563 C UBE2Z 
Chr. 18 rs11873305 A MC4R     
Chr. 19 rs10401969 C CILP2  rs1122608 G LDLR 
 rs8108269 G GIPR  rs445925 C ApoE-ApoC1 
 rs8182584 T PEPD  rs2075650 G 
Chr. 20 rs4812829 A HNF4A     
Chr. 21     rs9982601 T KCNE2 
   

Table 2 - List of currently known T2D- and CHD-associated SNPs from most recent 
GWAS1,2,3, labelled according to the nearest the index SNP. 
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Table 3 – Associations of 55 confirmed glycaemic loci with T2D and/or 
cardiometabolic traits. 
 

 
Glycaemic traits 

 
p<5x10-8 

 
T2D 

 
p<10-4 

 
Lipids  

 
p<10-4  

 
Anthropometric 

measures 
p<10-4 

 

Nearest  
gene(s) Chr FI FG 2hGlu  Tg HDL-C BMI  WHR 

          
GRB14 2 +   + + -  + 

IRS1 2 +   + + -   
PPARG 3 +   +  -   

ANKRD55-MAP3K 5 +   + +   - 
ARL15 5 +   +   -  
FTO 16 +   +  - +  

PEPD 19 +   +  -   
LYPLAL1 1 +       + 

YSK4 2 +        
TET2 4 +        

PDGFC 4 +     -   
FAM13A 4 +     -   

UHRF1BP1 6 +        
RSPO3 6 +       + 
HIP1 7 +      +  
IGF1 12 +        

PPP1R3B 8 + + +   -   
GCKR 2 + + + + +    

TCF7L2 10 + + + +     
IGF2BP2 3  + + +     
ADCY5 3  + + +     

GCK 7  + + +     
VPS13C-C2CD4A/B 15  + + +     

GIPR 19  + + +   -  
PROX1 1  +  +     
ZBED3 5  +  +     

CDKAL1 6  +  +     
DGKB-TMEM195 7  +  +     

SLC30A8 8  +  +     
CDKN2B 9  +  +     

GLIS3 9  +  +     
MTNR1B 11  +  +     
ARAP1 11  +  +     

KL 13  +  +     
TOP1 20  +  +     

DPSYL5* 2  +   -    
G6PC2 2  +       

AMT 3  +       
SLC2A2 3  +       
PCSK1 5  +       
RREB1 6  +       
GRB10 7  +       

IKBKAP 9  +       
DNLZ 9  +       

ADRA2A 10  +       
CRY2 11  +       

OR4S1* 11  +       
MADD 11  +       
FADS1 11  +   - +   
GLS2 12  +       

P2RX2 12  +       
PDX1 13  +       
WARS 14  +       

FOXA2 20  +       
ERAP2 5   +      

 
 

Adapted from Scott RA et al. Nat. Genet. 2012 – PMID: 22885924 and from *Manning AK et al. Nat. Genet. 2012 – 
PMID: 22581228. The 55 loci harboring one or more allelic variants associated with glycaemic traits are shown 
according to the nearest known gene(s). +/-, effect direction of the glycemic trait raising allele; T2D, type 2 diabetes; 
Tg, triglycerides; HDL-C, HDL-cholesterol; BMI, body mass index (Kg/m2); WHR, waist-to-hip ratio; FI, fasting 
insulin; FG, fasting glucose; 2hGlu, 2-hour post-challenge plasma glucose concentration. 
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Figure 1. Overlapping associations among currently known T2D, CHD and 

glycaemic quantitative trait susceptibility loci from recent GWAS. 

 
Loci harboring one or more common variant(s) associated with the phenotype or trait of 

interest are listed according to the nearest known gene. The diagram highlights the 

overlapping associations among A, B and C sets. Set A, coloured in yellow, comprises 65 

confirmed type 2 diabetes (T2D) susceptibility loci, from 1Morris A.P. et al. 

(DIAGRAMv3 Consortium) Nat. Genet. 2012 (PMID: 22885922) [14]. Set B (red) shows 

the 45 confirmed coronary heart disease (CHD) susceptibility loci from 2Deloukas P. et al. 

(CARDIoGRAMplusC4D Consortium) Nat. Genet. 2013 (PMID: 23202125) [15]. Set C 

(blue) shows the 55 confirmed loci associated with glucose- and insulin-related traits 

(fasting glucose, fasting insulin, 2 hour post-challenge glucose), from 3Scott R.A. et al. 

Nat. Genet. 2012 (PMID: 22885924) [12] and 4Manning A.K. et al. Nat. Genet. 2012 

(PMID: 22581228) [22]. 

The intersection between set A and set C comprises 34 loci associated with both T2D (at 

p<0.05 or lower) and glycaemic quantitative traits (p<5x10-8); loci reaching genome wide 

significance for association with both T2D and quantitative traits are marked by an 

asterisk (*).   

 

Chromosome 2q36.3- IRS1 is a starred locus also linked with detrimental levels of other 

cardiometabolic traits (for instance, higher triglycerides-to-HDL cholesterol ratio or low 

subcutaneous-to-visceral fat ratio) and harboring a variant (rs2943634) strongly 

associated with increased CHD risk (p=1.61x10-7, Samani NJ et al. NEJM 2007-PMID: 

17634449) [11]. The chromosome, 2q36.3-IRS1 locus, lying at the convergence of A, B 

and C sets, is a joint T2D_CHD locus. 

Chromosome 9p21.3 is a locus at the intersection of A and C sets characterized by two 

contiguous but distinct haplotype blocks harboring variants associated with T2D or CHD 

and separated by a recombination peak. A potential overlap of a T2D SNP lying in the 

CHD block at 9p21.3 makes this locus a promising candidate for a shared genetic risk for 

both T2D and CHD.   
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Figure 2: Linkage Disequilibrium Patterns Among Lead SNPs at Type 2 

diabetes – Coronary Heart Disease Loci on Chromosomes 2 and 9 

  
The left-hand y-axis of each panel indicates the linkage disequilibrium (LD), represented 

by the r2 value, among single nucleotide polymorphisms (SNPs) at the locus, with the 

brightness of each point proportional to the r2 value for that SNP. The right-hand y-axis 

indicates the recombination rate, plotted as the blue line, with high values indicating 

frequent recombination at that spot on the chromosomal position, plotted as the x-axis in 

each panel. LD data come from sequence-based SNP genotype data from the low-

coverage sequencing pilot (Pilot 1) of the 1000 Genomes Project. This data set uses 

phased genotypes for 179 individuals from the HapMap CEU, YRI and JPT+CHB panels. 

Inter-SNP distances are measured in hg18 coordinates. Data were plotted using SNAP 

(Johnson A.D. et al., Bioinformatics 2008-PMID: 18974171 [49]). 

  
The top panel illustrates the chromosome 2q36.3 (left hand panel) and the IRS1 (right 

hand panel) locus. At 2q36.3, the SNP rs2943634 is in high LD with SNPs rs2943641, 

rs2943650, rs2943645 and rs2972146 (associated with coronary heart disease (CHD), 

type 2 diabetes (T2D), fasting insulin, waist circumference and triglyceride/HDL 

cholesterol ratio, all r2 >0.75), but in low LD with rs10167219 (ankle brachial index, 

r2=0.05). At IRS1, SNP rs1801278 (CHD, insulin resistance) is ~593kb from rs2943634 

and not in LD with any 2q36.3 SNP. Note the low LD and scarcity of SNPs in and around 

IRS1, indicating relatively high conservation (low variation) of base pairs around this 

important gene.  

  
The bottom panel illustrates the chromosome 9p21.3-CDKN2A/B locus, with the region 

of SNPs associated with CHD (left hand panel) separated from the region of SNPs 

associated with T2D (right hand panel) by a large recombination peak (blue line). The 

lead SNP for CHD (rs1333049) is only ~8.6kb from but essentially uncorrelated with the 

lead SNP for T2D (rs10811661, r2=0.009). However, a potential additional SNP 

associated with T2D, rs944801, lies in the CHD region and is modestly correlated with 

rs1333049 (r2=0.35), indicating a potentially joint T2D – CHD genetic region upstream 

from the CDKN2A/B genes. 
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3.1 ABSTRACT 

 

English 

Background - Type 2 diabetes (T2D) and cardiovascular disease (CVD) share 

risk factors and subclinical atherosclerosis (SCA) predicts events in those with 

and without diabetes. T2D genetic risk may predict both T2D and SCA. The 

hypothesis tested in this research project was that greater T2D genetic risk is 

associated with higher extent of SCA.  

Methods and Results - In a cross-sectional analysis including up to 9,210 

European Americans, 3,773 African Americans, 1,446 Hispanic Americans and 

773 Chinese Americans without known CVD and enrolled in the FHS, CARDIA, 

MESA and GENOA studies, a 62 T2D-loci genetic risk score (GRS62) was tested 

for association with measures of SCA, including coronary artery (CACS) or 

abdominal aortic calcium score (AACS), common (CCA-IMT) and internal (ICA-

IMT) carotid artery intima-media thickness, and ankle-brachial index (ABI). 

Ancestry-stratified linear regression models were used, with random effects 

accounting for family relatedness when appropriate, applying a genetic-only 

(adjusted for sex) and a full SCA risk factors adjusted model (significance = p < 

0.01 = 0.05/5, number of traits analyzed). An inverse association with CACS in 

MESA Europeans (fully adjusted p=0.004) and with CCA-IMT in FHS (p=0.009) 

was not confirmed in other study cohorts, either separately or in meta-analysis. 

Secondary analyses showed no consistent associations with β-cell and insulin 

resistance sub-GRS in FHS and CARDIA. 

Conclusions - SCA appears unlikely to have a major genetic component linked to 

a burden of 62 T2D loci identified by large genome-wide association studies. A 
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shared T2D-CVD genetic basis, if any, might become apparent from the 

functional annotation of both T2D and CVD risk loci. 

 

Italian 

Premesse - Diabete mellito tipo 2 (T2D) e malattie cardiovascolari (CVD) sono 

fortemente associati clinicamente e condividono fattori di rischio che esercitano il 

loro effetto già a livello subclinico.  Ampi studi di associazione “genome-wide” 

hanno individuato numerosi loci di rischio per T2D, molti dei quali associati in 

particolare a indici di funzione beta-cellulare o resistenza insulinica (IR). Esiste 

inoltre una certa sovrapposizione tra loci associati a iperglicemia subdiabetica e 

iperinsulinemia e fenotipi intermedi di IR che sono anche fattori di rischio per 

CVD. Non è tuttavia chiaro se la predisposizione genetica a sviluppare T2D 

agisca quale comune denominatore per lo sviluppo di T2D e aterosclerosi 

subclinica (SCA).  

Obiettivo - In questo studio è stata testata l’ipotesi che un numero incrementale di 

varianti genetiche di rischio per T2D confermate dai più recenti studi di 

associazione genome-wide sia associato con aumentati valori di alcuni indici di 

SCA. 

Disegno sperimentale - In un’analisi trasversale di 9,210 Europei Americani, 

3,773 Africani Americani, 1,446 Ispanici Americani e 773 Cinesi Americani con 

anamnesi negativa per CVD ed arruolati negli studi FHS (Framingham Heart 

Study), CARDIA (Coronary Artery Risk Development in Young Adults), MESA 

(Multi-Ethnic Study of Atherosclerosis) e GENOA (Genetic Epidemiology 

Network of Atherosclerosis), è stata verificata l’associazione tra misure di SCA 

(calcium score coronarico e in aorta addominale, spessore intima-media in 

carotide comune ed interna, indice caviglia-braccio) ed uno score di rischio 
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genetico (GRS) composto da 62 polimorfismi (tag-SNP) noti per essere associati 

ad aumentato rischio di T2D. Il livello di significatività statistica è stato posto a 

p<0.01 (p=0.05/5, il numero di indici SCA analizzati) per ciascuno dei modelli 

statistici utilizzati (modello base corretto per sesso; modello completo corretto per 

un ampio numero di fattori di rischio cardiovascolari). 

Risultati - Il GRS per T2D non è risultato significativamente associato con SCA. 

Un’associazione negativa tra GRS e calcium score coronarico in MESA (Europei 

Americani) e con spessore intima-media in carotide comune in FHS (p=0.004 e 

0.009, rispettivamente, modello completo) non ha trovato conferma nelle altre 

coorti.  

Conclusioni - Il rischio genetico per T2D rappresentato da 62 tag-SNP non è 

associato con SCA in differenti gruppi etnici, nonostante una dettagliata 

fenotipizzazione, un ampio campione ed un disegno sperimentale multicentrico. E’ 

possibile che le basi genetiche comuni del rischio di T2D e CVD possano essere 

chiarite quando saranno individuate le varianti funzionali all’interno dei loci 

marcati dai 62 tag-SNP. 
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Abbreviations 

 

FHS   The Framingham Heart Study 

CARDIA  The Coronary Artery Risk Development in Young Adults 

MESA   The Multi-Ethnic Study of Atherosclerosis 

GENOA   The Genetic Epidemiology Network of Arteriopathy 

T2D   Type 2 Diabetes 

IGT   Impaired Glucose Tolerance 

CVD   Cardiovascular Disease 

SCA   Sub-Clinical Atherosclerosis 

CACS   Coronary Artery Calcium Score 

AACS   Abdominal Aortic Calcium Score 

CCA-IMT  Common Carotid Artery Intima-Media Thickness 

ICA-IMT  Internal Carotid Artery Intima-Media Thickness 

ABI   Ankle-Brachial Index 

GWAS   Genome-Wide Association Study  

SNP   Single Nucleotide Polymorphism 

GRS   Genetic Risk Score 

IDF   International Diabetes Federation 

FG   Fasting Glucose 

FI   Fasting Insulin 

Tg   Triglycerides 

HDL-C  High Density Lipoprotein Cholesterol 

BMI   Body Mass Index 

WHR   Waist-to-Hip Ratio 
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3.2  INTRODUCTION 

3.2.1 Background 

Type 2 diabetes (T2D) and cardiovascular disease (CVD) are clinically associated 

in adults 1, 2 and are an increasing public health and economic scourge in the US 3, 

4 and worldwide5-7 (Figure 1-3). Better prevention strategies require 

comprehension of the constellation of risk factors and mediators underlying both 

T2D and CVD 8, 9.  

T2D and CVD share a common metabolic milieu (Figure 4) that triggers 

metabolic and vascular dysfunction starting at subclinical disease stages (Figure 

5) or even at birth 10 due to genetic and non-genetic risk factors. In particular, 

many recently identified common genetic variants increasing risk for T2D also 

are associated with CVD risk factors 11 (Figure 6) and so might also confer risk 

for subclinical atherosclerosis (SCA) 12.  

Recently, a set of 36 T2D single nucleotide polymorphisms (SNPs) previously 

identified in large genome-wide association studies (GWAS) as affecting T2D 

risk was found to be associated with an increased risk of cardiovascular 

complications in type 2 diabetic patients 2, 13. It has been shown that an additive 

genetic risk score (GRS62) comprised of 62 validated T2D-associated SNPs 14-17 is 

a validated predictor of incident T2D in European and African Americans18, 19. 

 

3.2.2 Objective 

The present work sought to test the hypothesis that the T2D genetic burden, as 

represented by the polygenic T2D GRS62, is also positively associated in cross-

sectional analyses with variation in measures of SCA, including coronary artery 
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(CACS) or abdominal aortic calcium score (AACS), internal (ICA-IMT) or 

common carotid artery intima-media thickness (CCA-IMT), and ankle-brachial 

index (ABI).  

To maximize the sample size a multicenter transethnic association study was 

conducted in large population samples from four studies currently ongoing across 

the US (Figure 7): the Framingham Heart Study (FHS), the Coronary Artery Risk 

Development in Young Adults (CARDIA) 20, the Multi-Ethnic Study of 

Atherosclerosis (MESA) 21, 22 and the Genetic Epidemiology Network of 

Arteriopathy (GENOA) 23, 24.  

 

 

 

3.3 METHODS 

3.3.1 Study populations  

The Offspring Cohort of the Framingham Heart Study  

Analyses were conducted for each measured SCA trait on a range of 1,111 up to 

2,822 participants of European ancestry from the Offspring Cohort of the FHS 13, 

25. Outcomes of interest and related clinical characteristics included in the present 

analyses were obtained at Offspring examination cycles 6 (for analyses of ICA-

IMT and CCA-IMT) and 7 (for CACS and AACS). ABI was measured between 

the two examinations and the covariates used in the analysis of ABI were from the 

examination with the closest date to the ABI evaluation. Details regarding clinical 

assessment of participants and technical information about imaging tests and 

indices calculations have been published previously 13, 25, 26.  
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The CARDIA Study 

Analyses were conducted for the available SCA traits on 816 African Americans 

and 1,635 European Americans enrolled in the CARDIA Study 20. Analyses were 

limited to participants whose genotype information and clinical and 

anthropometric characteristics were available for all predictors of interest. Data on 

SCA from follow-up visit at years 20 (ICA-IMT and CCA-IMT) and 25 (CACS) 

were used. 

 

The MESA Study 

The MESA Study was designed to prospectively evaluate the development and 

progression of atherosclerotic disease. The complete design and protocols of 

MESA have been published previously 22. The selection included individuals 

from the resident list of adults from the urban areas of the recruiting centers with 

emphasis on ethnic diversity. The present study included up to 2,526 participants 

of European ancestry, 1,611 African Americans, 773 Asian Americans and 1,446 

Hispanic Americans from examination year 1 (2000-2001). 

  

The GENOA Study 

The longitudinal Genetic Epidemiology Network of Arteriopathy (GENOA) 

Study is one of four networks in the NHLBI Family-Blood Pressure Program and 

aims to elucidate the genetics of target organ complications of hypertension 24. 

GENOA recruited European and African American sibships with at least 2 

individuals with clinically diagnosed essential hypertension before age 60 years. 

European Americans were recruited from the Rochester, MN Field Center and 

African Americans were recruited from the Jackson, MS Field Center. Current 

analyses were conducted on CACS measures and genotypes available for 969 

European Americans and 535 African Americans.  
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In all study cohorts, participants with a personal history of CVD defined as 

myocardial infarction, stroke, coronary angioplasty and/or amputation not due to 

injury, when applicable, were excluded from the analyses. 

 

3.3.2. Assessment of subclinical atherosclerosis (SCA) 

SCA measures were determined in a similar fashion in all studies by means of 

carotid ultrasonography intima-media thickness, subcategorized for common and 

internal carotid (CCA-IMT and ICA-IMT), computed tomography scan for CACS 

and AACS, and ABI for peripheral artery disease, as detailed elsewhere 13, 27-30. 

FHS and MESA study participants had measurements available for all five SCA 

traits. CARDIA participants had ICA-IMT, CCA-IMT 31 and CACS 32 

measurements available for analyses. Evaluation and interpretation of CACS 

measures in MESA were conducted as published elsewhere 32, 33. In GENOA, 

CACS was measured in European Americans with an Imatron C-150 electron 

beam CT (EBCT) scanner (Imatron Inc., South San Francisco, CA) using a 

previously described protocol 34. In GENOA African Americans, CACS was 

measured with standard scanning protocols developed as part of the NHLBI’s 

MESA and CARDIA studies 32.  

 

3.3.3 Genotyping 

Genotyping in FHS was conducted using the Affymetrix GeneChip Human 

Mapping 500K Array supplemented with the Affymetrix 50K array, while 

CARDIA and MESA Study participants were genotyped using the Affymetrix 

Genome-Wide Human SNP Array 6.0 (Santa Clara, California) 35. GENOA Study 

participants were genotyped on the Affymetrix Genome-Wide Human SNP Array 

6.0 (Affymetrix, 2007) or the Illumina Human 1M-Duo BeadChip (Illumina, 
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2010) at the Mayo Clinic, Rochester, MN. Quality control measures and 

imputation strategy for missing genotypes were extensively detailed in previous 

reports 19, 35-37 for both FHS and CARDIA samples, while complete information 

on genotyping and imputation quality of MESA and GENOA samples are 

available in the Appendix.  

 

 

3.4 STATISTICAL ANALYSIS  

The GRS in FHS and CARDIA European Americans was calculated as the sum of 

the number of risk alleles (0, 1, or 2) at each locus, weighted by its published 

effect size (natural log-transformed) from the DIAbetes Genetics Replication And 

Meta-analysis (DIAGRAMv3) 14. For CARDIA African Americans and for each 

MESA and GENOA ethnic group an unweighted GRS was used, calculated by 

summing the risk alleles across the loci. ICA-IMT, CCA-IMT, AACS, CACS, 

fasting insulin, triglycerides and HDL-cholesterol were log-transformed to reduce 

skewness. Descriptive data were expressed as mean ± standard error, if not 

otherwise indicated. Multivariable linear regression models were used for 

CARDIA and MESA cohorts. Multivariable linear regression models with 

random effect to account for family relatedness were used to test the association 

of an additive 62 T2D SNPs GRS (Appendix Table 1) with measures of SCA in 

FHS and GENOA. 

For each SCA trait models adjusted only for sex (genetic-only model) and for a 

comprehensive set of SCA risk factors (full model), were used as shown in 

Appendix Table 2. Principal components were also included in GENOA and 

MESA models to control for population stratification in each ethnic group. The 

fully-adjusted model included comprehensive CVD risk factors: sex, age, waist 



 
	
	
	
	
	

58 

circumference, body mass index (BMI), triglycerides, HDL-cholesterol, LDL-

cholesterol, fasting insulin, fasting glucose, systolic blood pressure (SBP), 

hypertension/diabetes and/or lipid medication, physical activity, smoking status, 

family history of T2D and/or CVD. SBP was excluded in the analysis for ankle-

brachial index (ABI) since ABI is calculated from SBPs at ankle and arm.  

Subsidiary analyses were conducted by using two subsets of the 62 T2D SNPs 

comprised of 20 tag-SNPs thought to be associated with beta-cell function (GRSβ) 

or 10 associated with insulin resistance (GRSIR) 19 in the FHS and CARDIA 

cohorts to further elucidate possible mechanistic pathways, testing the hypothesis 

that genetic risk for IR in particular would be associated with SCA.  

Post-hoc power calculations using QUANTO 1.2 software showed that for a 

sample size of 1,835 individuals, there was 80% power to detect association of 

GRS62 explaining 0.64% of the variance in SCA traits with type 1 error rate set at 

p < 0.01 (p = 0.05 divided by the number of traits (5) analyzed). There was 80% 

power to detect association of GRSβ and GRSIR each explaining 0.73% or more of 

the variance in SCA traits with type 1 error set at p < 0.005 (0.05/[5 traits x 2 

GRS]).  

In order to replicate the primary FHS analyses in European Americans and to 

verify whether they might be extended to different ancestral groups, association 

analyses of the GRS62 with CACS, ICA-IMT and CCA-IMT in CARDIA, MESA 

and GENOA cohorts were then conducted separately within each ethnicity. Then, 

association results from each cohort were meta-analyzed using a fixed effect 

approach, separately for European and African Americans, with a two-sided 

p<0.01 as threshold for significance.  

All statistical analyses were carried out with SAS 9.2 (SAS Institute Inc., Cary, 

NC, USA) and R 2.9.2 38.  
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3.5 RESULTS 

Up to 7,952 European Americans, 2,124 Africans Americans, 773 Asian 

Americans and 1,446 Hispanic Americans from four cohort studies were analyzed. 

Clinical and anthropometric features and measures of SCA traits are shown for 

each study cohort in Appendix Table 3 and Appendix Table 4.  

Overall, study participants were of a wide age and BMI range. Prevalence of 

diabetes and abdominal obesity was much higher in African Americans than in 

other ethnicities. Participant characteristics within each ethnic group were 

comparable across all cohorts with the proportion of males and females being 

equally distributed, except in GENOA African Americans where women 

comprised 74.2% of the participants. The T2D GRS62 was approximately 

normally distributed with a range from 48.3 to 83.3 in European Americans and 

from 46.8 to 83.2 in African Americans over all cohorts. African Americans in 

CARDIA had higher mean GRS than European Americans, while the opposite 

was the case in MESA and GENOA cohorts. In MESA Asian and Hispanic 

Americans the T2D GRS62 spanned, respectively, from 48.1 to 73.6 and from 48.5 

to 79.6 (Appendix Figure 1 and Appendix Figure 2). GRSβ and GRSIR were 

normally distributed and ranged from 12.2 to 31.9 and from 3.3 to 18.0 in FHS 

and CARDIA European Americans, respectively, while in CARDIA African 

Americans the GRSβ ranged from 13.2 to 28.4 and the GRSIR ranged from 5.0 and 

16.9 (Appendix Figure 2).  

The primary analyses in FHS showed a significant inverse association between 

GRS62 and CCA-IMT (p = 0.009, fully adjusted model), which was not replicated 

in CARDIA or MESA (Table 1) European Americans. In the MESA European 

Americans, there was evidence for a significant inverse association between 

GRS62 and CACS (p = 0.004, fully adjusted model), which was not replicated in 

other cohorts (Table 1). Lack of evidence for a significant association between 
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GRS62 and SCA was confirmed by meta-analyses of up to 12,983 individuals 

from four cohorts for the available SCA traits, i.e. CACS, CCA-IMT and ICA-

IMT (Figure 8). 

Supplemental analyses showed that ICA-IMT was negatively associated with 

GRSβ in FHS in the fully adjusted model (p = 0.007, Appendix Table 5), but the 

finding was not replicated in CARDIA European Americans. The GRSIR was not 

significantly associated with any of the SCA traits in any of the models in either 

the FHS cohort or in either CARDIA ethnic group (Appendix Table 6). 

 

 

3.6 DISCUSSION 

The primary finding of the present exercise was that there is no evidence of a 

statistically significant association between the genetic burden for T2D, based on 

a 62 T2D SNP GRS, and a wide set of subclinical atherosclerosis traits in a large 

US adult population sample. Results were consistent for all four ancestral groups 

studied. An inverse association of the GRS62 with CCA-IMT in FHS was not 

confirmed in two other cohorts either in replication comparisons or meta-analysis. 

A 10 SNP GRS and a 20 SNP GRS representing variants associated, respectively, 

with beta-cell function or insulin resistance also was not statistically significantly 

associated with SCA. Starting with the plausible hypothesis that T2D genetic risk 

would also be associated with SCA, a rigorous approach was applied including 

conservative correction for multiple trait tests, replication studies in separate 

cohorts (thereby reducing type 1 error) and meta-analysis of a sufficiently large 

sample size (increasing power). It can be therefore conclusively stated that this 

particular formulation of T2D genetic risk is not associated with higher indices of 

SCA in the study participating in the present study. 
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These results can be compared to other recent studies. As recently highlighted 11, 

the genetic signatures of T2D, coronary heart disease and glycemic quantitative 

traits have some elements of commonality, though limited only to 2q36.3 and 

9p21.3 chromosomal regions. Notably, a major proportion of fasting insulin-

associated loci showed a directionally consistent association with T2D risk and 

CVD quantitative risk factors (i.e. adverse lipid profile and abdominal adiposity) 

but none of the glycemic quantitative traits appears to be directly associated with 

CVD-risk. While Qi et al. 2 showed that a GRS comprised of 36 T2D genetic 

variants was associated with an increased risk of CVD complications (a 

composite endpoint including fatal or nonfatal coronary heart disease and stroke) 

in European Americans affected by T2D, other attempts failed to identify an 

etiological link between SCA traits and T2D genetic variation at candidate 

2q36.3-IRS1 locus in the Framingham Heart Study 13. Additionally, while Doria et 

al.39 showed that the effect of genotype at 9p21.3 locus on CVD events is raised 

only in persons with T2D who have poor glycemic control, Rivera et al. 40 have 

recently shown that, compared to non-T2D individuals, a higher number of 

variants at 9p21.3 locus is associated with the severity of coronary artery disease 

comorbid with T2D. These lines of evidence suggest that T2D and non-T2D 

subjects might have different mechanisms leading to CVD events and that within 

T2D cases hyperglycemia might act as permissive environment leading to the full 

expression of CVD-risk genetics. These data, together with the null results of the 

present study, both with our full T2D GRS62 and with the two sub-scores (GRSIR 

and GRSβ), collectively suggest that in the general population T2D and CVD are 

not genetically linked together through SCA, the association of T2D genetics 

being so far observed only with CVD events but not with early subclinical disease. 

Strengths of the present exercise include a validated T2D GRS aligned to the 

current level of evidence, a detailed phenotypic characterization, a comprehensive 

selection of covariates, confounders and mediators, as well as a careful control of 
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type 1 and type 2 errors by means of a large sample size from the general 

population and a multicenter replication strategy in different ethnicities, as 

discussed above. Additionally, given the strong age-calcification relationship 

across young adulthood, mid-life and older ages 41, 42, the wide range of age 

among different cohorts allowed to capture the whole spectrum from early- to 

late-onset calcification.  

However, the approach proposed here might have been weakened by multiple 

interactions among different SNPs within the GRS: several of the component 

genes in the score may be indeed associated with SCA, but the component score 

might not be significantly associated if the effect was diluted by the other variants. 

Furthermore, the 62 genome-wide significant SNPs used explained only a fraction 

(around 10%) of the total T2D phenotypic variance in other studies 43 and did not 

represent actual functional allelic variants that have yet to be discovered. It should 

be also acknowledged that, if it is assumed that T2D contributes to CVD, 

excluding individuals with a personal CVD history might have resulted in a 

population enriched for protective factors especially among those with higher 

T2D GRS, which might also explain the borderline negative association of the 

GRS62 with CCA IMT in FHS and CACS in MESA European Americans.  

However, in preliminary sensitivity analyses conducted in FHS and CARDIA the 

T2D GRS62 allele distribution resulted to be comparable between people with 

positive personal CVD history and the population actually used in the association 

analyses (data not shown), so that, for consistency with the main focus of the 

present research on subclinical atherosclerosis individuals with clinical evidence 

of incident or prevalent CVD were excluded, as defined above in the Methods 

section. Lastly, while the GRS could be confidently used to depict the T2D 

genetic risk for European and Mexican Americans, and therefore reasonably 

allow to claim robustness of the obtained results, the GRS was not best tailored to 

fit T2D genetics in African or Asian Americans, given their different haplotype 
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structure and allele frequencies 37 and given that most of GWAS hits have been 

discovered and confirmed in people of European ancestry.  

Results of this research project have several implications and point to future 

directions.  The present study provided compelling evidence that the genetic 

burden of T2D risk as represented by this GRS62 formulation was not associated 

with SCA. This suggests that either T2D is not working as reasonable foundation 

of clinical CVD through SCA, at least at the genetic level, or that more complex 

formulation of T2D genetic risk might be associated with SCA, or that no large 

common genetic soil 12 underlies both T2D and CVD. 

However, T2D and SCA are strongly linked clinically 1, 2 and the prevalence of 

CVD events and the burden of CVD risk factors are higher in people with 

diabetes. Therefore, although the last decade has shown an increasing expansion 

in the understanding of the genetic signature of complex traits, new approaches 

incorporating functional, structural and/or regulatory annotation 44, 45 into disease 

prediction is needed to untangle the missing link, if any, between T2D and CVD 

at the genetic level. Furthermore, given that screening for SCA in asymptomatic 

individuals at intermediate CVD risk improves CVD risk stratification 46 and that 

current polygenic scores slightly but not remarkably outperform clinical models 18, 

functional interrogation of T2D and CVD genetic architecture is necessary to 

further optimize polygenic risk prediction of either T2D or CVD or both.  

 

3.7     CONCLUSIONS 

In conclusion, the present exercise places an additional step in the wider 

framework of CVD prediction and it is expected that it will serve as placeholder 

for future mechanistic investigations. Given the global burden of T2D and CVD 
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in the era of precision medicine and prospective patient-oriented healthcare, it is 

timely to acquire additional knowledge about the genetic determinants of T2D, 

CVD and intermediate traits to improve risk prediction and the ability to discover 

newly targeted therapeutic molecules. 
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Figure 1 – Global projections for the diabetes epidemic 2010-2030 - IDF Diabetes Atlas 2011 

 

 
 

Figure 2 – Worldwide prospective prevalence (2010-2030) of diabetes and sub-threshold 
hyperglycemia (IGT, Impaired Glucose Tolerance) – IDF 2011 
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Figure 3 – Percent of medical condition-specific expenditures associated with diabetes in 
U.S.A. – American Diabetes Association 2013 
 

 

 
 
 
 
 
 
 
 
Figure 4 – CVD risk factors and the common T2D-CVD metabolic inflammatory milieu 

 
TRADITIONAL	CVD	RISK	FACTORS	 “NON-TRADITIONAL”	CVD	RISK	FACTORS	
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Dyslipidemia	 Inflammation	
Obesity	 Microalbuminuria	
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Physical	inactivity	 Vascular	wall	abnormalities	
	 	

 

Adapted from Lorber D. et al. Diabetes Metab. Syndr. Obes. 2014 
 
 
 



 
 
 

69 

Figure 5 – Atherosclerosis is higher in type 2 diabetes but also in intermediate, insulin 
resistant (IR) phenotypes: The Framingham Offspring Study. 
 

 

 Modified from Meigs et al. Diabetes Care 2002 

 
 
Figure 6 – Association of some glycaemic traits loci with type 2 diabetes and/or insulin 
resistance-associated metrics overlapping coronary heart disease risk factors. 
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P<-E04 
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GRB14 2       
IRS1 2       
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ANKRD55 5       
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GCKR 2       
TCF7L2 10       
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RSPO3 6       
HIP1 7       

 

Modified from Scott et al. Nat. Genet. 2012 
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Figure 6 – Meta-analysis of GRS62 association testing with CACS, CCA-IMT, ICA-IMT 
measures across all study cohorts stratified by European and African Americans. 
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Figure 6 Legend 
CACS (panel-A, Nmeta=4,780; panel-B, Nmeta=1,835), CCA-IMT (panel-C, Nmeta=6,220; panel-D, Nmeta=2,190), 
ICA-IMT (panel-E, Nmeta=5,842; panel-F, Nmeta=2,109); GRS62, genetic risk score comprised of 62 single 
nucleotide polymorphisms associated with type 2 diabetes; CACS, coronary artery calcium score; CCA-IMT 
and ICA-IMT. 
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4.1 ABSTRACT 

 

English 

Background and Aims - Insulin resistance is a hallmark of type 2 diabetes 

(T2DM), it is often accompanied by defective beta-cell function (BF) and is 

involved in the pathophysiology of cardiovascular disease (CVD). Commonalities 

among these traits may recognize a genetic background, possibly involving the 

genetic variation of insulin signaling pathway genes. We conducted an 

exploratory analysis by testing whether common genetic variability at IRS1, 

ENPP1 and TRIB3 loci is associated with cardiovascular risk traits and metabolic 

phenotypes in T2DM. 

 

Methods and Results - In 597 drug-naïve, GADA-negative, newly-diagnosed 

T2DM patients we performed: 1) genotyping of 10 independent single-nucleotide 

polymorphisms covering ~90% of common variability at IRS1, ENPP1 and 

TRIB3 loci; 2) carotid artery ultrasound; 3) standard ECG (n=450); 4) 

euglycaemic insulin clamp to assess insulin sensitivity; 5) 75g-OGTT to estimate 

BF (derivative and proportional control) by mathematical modeling. False 

discovery rate of multiple comparisons was set at 0.20. After adjustment for age, 

sex and smoking status, rs4675095-T (IRS1) and rs4897549-A (ENPP1) were 

significantly associated with carotid atherosclerosis severity, whilst rs7265169-A 

(TRIB3) was associated with ECG abnormalities. Rs858340-G (ENPP1) was 

significantly associated with decreased insulin sensitivity, independently of age, 

sex and body-mass-index. No consistent relationships were found with BF.  

 

Conclusions - Some associations were found between intermediate phenotypes of 

CVD and common genetic variation of gatekeepers along the insulin signaling 
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pathway. These results need be replicated to support the concept that in T2DM the 

CVD genetic risk clock may start ticking long before hyperglycemia appears. 

 

 

 

Italian 

Premesse e Scopo - L’insulino-resistenza (IR) è una caratteristica peculiare del 

diabete tipo 2 (DMT2), è coinvolta nella fisiopatologia delle malattie 

cardiovascolari (CVD) e spesso si accompagna ad una compromessa funzione 

beta-cellulare (BF). In questo contesto, è possibile che la variabilità genetica 

comune di alcuni geni coinvolti nella cascata del segnale insulinico possa spiegare, 

almeno in parte, la relazione esistente tra DMT2, CVD e BF. In questo studio 

abbiamo pertanto cercato di verificare se la variabilità genetica comune dei loci 

IRS1, ENPP1 e TRIB3 è associata a tratti di rischio cardiovascolare e fenotipi 

metabolici in soggetti affetti da DMT2 arruolati nel Verona Newly Diagnosed 

Type 2 Diabetes Study (VNDS).  

 

Metodi e Risultati - In 597 soggetti con DMT2 neodiagnosticato, privi di 

trattamento farmacologico e con negatività degli anticorpi anti-GAD sono stati 

effettuati: 1) genotipizzazione di 10 polimorfismi indipendenti e selezionati per 

catturare il 90% della variabilità  genetica comune dei loci IRS1, ENPP1 e TRIB3, 

noti quali principali regolatori della cascata del segnale insulinico; 2) eco-Doppler 

carotideo; 3) ECG standard (n=450); 4) clamp euglicemico iperinsulinemico, 

gold-standard per la determinazione della sensibilità insulinica; 5) stima della BF 

con modello matematico nelle sue componenti derivativa e proporzionale. Dopo 

correzione per età, sesso e abitudine tabagica i polimorfismi rs4675095-T (IRS1) 
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and rs4897549-A (ENPP1) sono risultati significativamente associati a più severa 

aterosclerosi carotidea, mentre rs7265169-A (TRIB3) era associato ad anormalità 

ischemiche dell’ECG. Dopo correzione per età, sesso e indice di massa corporea, 

rs858340-G (ENPP1) era significativamente associati a maggiore IR; non è stata 

rilevata nessuna relazione significativa tra BF ed i polimorfismi in studio.  

 

Conclusioni - La variabilità genetica comune dei principali geni regolatori della 

cascata del segnale insulinico potrebbe spiegare, almeno in parte, l’associazione 

tra IR e CVD nel DMT2. Benchè siano necessari studi di replicazione in più 

ampie coorti di soggetti, questi risultati suggeriscono che nel DMT2 il rischio 

genetico per CVD verosimilmente agisce ben prima che il fenotipo clinico 

dell’iperglicemia si manifesti ed esercita i propri effetti sul fenotipo cardio-

metabolico sin dalle fasi più precoci della malattia diabetica.  
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4.2 INTRODUCTION 

 

Insulin resistance (IR) and its associated traits may act as a common soil for both 

type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD) [1, 2]. The 

genetic annotation of hitherto confirmed allelic variants associated with the risk of 

T2DM and CVD is hoped to unveil mechanistic explanations at the genetic level 

of the strong clinical link existing between these highly prevalent complex traits 

[3]. 

Some non-synonymous allelic variants harbored in or near insulin signaling 

pathway genes, namely ENPP1 (ectonucleotide 

pyrophosphatase/phosphodiesterase 1), IRS1 (insulin receptor substrate 1) and 

TRIB3 (tribble homolog 3), have raised considerable interest [4-6] given their 

association with defective insulin action and impaired endothelial cell function.  

The very same variants have been recently confirmed as jointly increasing the 

CVD risk [5], possibly by affecting systemic and endothelial insulin sensitivity [4, 

5]. In vitro [7, 8] and in vivo studies [4, 5, 9] showed that ENPP1 K121Q 

(rs1044498), IRS1 G972R (rs1801278) and TRIB3 Q84R (rs2295490) are 

associated with an increased risk of T2DM and CVD through their effect on the 

endothelial nitric oxide synthase and the fibrinolysis system. However, other 

studies on the same loci found no significant association with T2DM or 

intermediate CVD risk traits [10, 11].  

Thus, some evidence supports the association of non-synonymous genetic variants 

of IRS1, TRIB3 and ENPP1 with overall CVD risk, but their clinical applicability 

to unambiguously identify high-risk subjects remains a still unanswered question. 

IRS1, ENPP1, TRIB3 loci have been associated with CVD and T2DM risk based 

upon findings related to non-synonymous variants entailing changes of protein 

function. Genes harboring mutations resulting in rare monogenic disorders often 

have been found to be involved in the genetic risk of common complex disorders 



 
	
	
	
	
	

84 

through common variants, a most striking example being the role played by some 

MODY genes on T2DM pathogenesis [12]. We hypothesized that something 

analogous might occur also at IRS1, ENPP1, TRIB3 loci. Indeed, their actual role 

may be wider than the one suggested by their non-synonymous variants and may 

be due also to common variability. Therefore, we conducted an exploratory 

analysis in the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) of 13 

common polymorphisms, selected to comprehensively capture the genetic 

variation at three candidate loci (ENPP1, IRS1 and TRIB3) previously reported as 

being associated with the insulin signaling cascade. We investigated whether they 

are individually associated with one or more of four (4) outcome traits, including 

ECG ischemic abnormalities and subclinical atherosclerosis readouts at common 

carotid artery as representative of the “cardiovascular” domain, and insulin 

resistance (IR) and beta cell function (BF), as representative of the “metabolic” 

domain. 

 

 

 

 

 

4.3 METHODS 

 

4.3.1 Study population 

The VNDS is an ongoing study aimed at building a biobank of patients with 

newly-diagnosed T2DM. A detailed description of the overall experimental 

approach have been previously published [13] and is available in the online 

Supplementary Material. The research was approved by the Human 

Investigation Committee of the Verona City Hospital. Each subject signed a 

written informed consent upon recruitment. 
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4.3.2 Genotyping 

Thirteen independent tag-SNPs of IRS1 (rs4675095 and rs1801278), ENPP1 

(rs6939185, rs858340, rs1044498, rs9493119, rs4897549) and TRIB3 (rs6076472, 

rs6139007, rs7265169, rs2295490, rs12626158, rs6115830) loci were selected to 

capture at least 90% of the common genetic variability (Supplementary Fig. S1) 

by GEVALT (GEnotype Visualization and ALgorithmic Tool) software. A 

peripheral blood sample was collected from each patient and DNA was extracted 

by standard salting-out method. Genotypes were assessed by Veracode technique 

(Illumina Inc, CA), applying the GoldenGate Genotyping Assay according to 

manufacturer’s instructions. The selected SNPs were in low linkage 

disequilibrium (LD), with r2 between the SNPs at each locus comprised between 

0.0 and 0.16. Further information are provided in Supplementary Figure S1 and 

Supplementary Table S3. Ten SNPs were successfully genotyped (rs4675095, 

rs1801278, rs6939185, rs858340, rs9493119, rs4897549, rs6076472, rs6139007, 

rs7265169, rs6115830) in all study participants. Genotyping of rs1044498, 

rs2295490 and rs12626158 failed due to technical issues. None of them was in 

LD with other genotyped SNPs at the same loci, as provided in Supplementary 

Table S3, so that it was not possible to replace them with other highly correlated 

SNPs in the association analyses. 

 

 

4.3.3 Cardiometabolic Phenotyping 

A standard 12-lead electrocardiogram (ECG) was performed in 450 study 

participants (CardioDirect 12 unit; Metasoft 3.9 software). Presence of ischemic 

abnormalities was recorded according to Minnesota code and categorized as 

suggestive for “definite”, “probable” or “possible” coronary heart disease (CHD) 

[14].  



 
	
	
	
	
	

86 

High-resolution B-Mode echo-color Doppler of common carotid artery was 

performed by a single operator in 597 subjects with a 10-MHz linear probe with 

axial resolution of 0.01 mm (Esaote Wall Track System, Esaote S.p.A., Genova, 

Italy). Common carotid intima-media thickness (CC-IMT) was estimated by 

scanning the posterior wall of common carotid artery at 1 cm from carotid 

bifurcation. Patients were classified in three categories: no carotid atherosclerosis; 

impaired CC-IMT and/or stenosis <40%, stenosis >40%. The cutoff of 40% was 

adopted based on previous experience [15]. 

Blood pressure was measured at the upper left arm in all subjects and classified 

according to 2013 ESH/ESC guidelines. 

Metabolic tests were carried out on two separate days in random order. On one 

day a frequently sampled, prolonged (240 or 300 min) OGTT (75 g) was 

performed and beta-cell function (BF) was reconstructed by mathematical 

modeling, as previously described [16]. By this method, BF is described by two 

parameters: 

1. Derivative (or dynamic) control (DC): the response of the beta cell to the 

rate of increase of plasma glucose; 

2. Proportional (or static) control (PC): the response of the beta cell to 

glucose concentration per se. 

On a separate day, a euglycaemic insulin clamp was performed to assess insulin 

sensitivity [13].  

Beta cell modeling and clamp derived insulin sensitivity can be considered 

reference methods to assess insulin secretion and action in vivo in man. However, 

to facilitate the comparison with widely used OGTT-derived surrogate indexes, 

we also report the insulinogenic index, the corrected insulin response and the 

Matsuda Index of insulin sensitivity (see below) in the Supplemental Material.  
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4.3.4 Analytical Methods 

Plasma glucose was measured in duplicate with a Beckman Glucose Analyzer II 

(Beckman Instruments, Fullerton, CA, USA) or with an YSI 2300 Stat Plus 

Glucose&Lactate Analyzer (YSI Inc., Yellow Springs, OH, USA), at bedside. 

Serum C-peptide and insulin were measured by chemiluminescence [13]. GAD-

antibodies were measured by immunoradiometry (CentAK, Medipan, Germany); 

glycosylated haemoglobin and serum lipids by standard in-house methods. 

 

 

4.3.5 Calculations 

The amount of glucose metabolized during the last 60 min of the clamp (M-value, 

reference insulin sensitivity; units: µmol/min/m2 BSA) was computed with 

standard formulae [16].  

Mathematical modeling of glucose and C-peptide time series following the 75-g 

oral glucose challenge were performed and DC and PC of BF were computed, as 

previously described [13]. Modeling details are found in the Supplemental 

Material. 

The following OGTT-derived indices were also computed and are reported in the 

Supplemental Material:  

1. Insulinogenic Index: (Insulin30’ – Insulin0’)/(Glucose30’ - Glucose0’); units: 

mU/mmol;  

2. Corrected Insulin Response at time 120’ of the OGTT (CIR120’): 

Insulin120’/[Glucose120’⋅(Glucose120’ - 3.89)]; units: mU⋅L/mmol2;  

3. Matsuda Index of insulin sensitivity: 10,000/[(Glucose0’⋅Insulin0’)⋅(Mean 

OGTT glucose concentration)⋅(mean OGTT insulin concentration)]1/2. 
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4.4 STATISTICAL ANALYSIS 

 

Data are presented as median and interquartile range, unless otherwise indicated. 

Hardy-Weinberg equilibrium was tested by chi-square test. For each SNP, the 

allele with the lowest occurrence in our population was considered as the effect 

allele in the analyses according to an additive model of inheritance. Statistical 

models were unadjusted (M1) or adjusted (M2) for relevant covariates (age, sex 

and smoking status for cardiovascular readouts, or age, sex and BMI for 

metabolic readouts). Logistic regression models were applied to test the 

association between genotypes and cardiovascular phenotypes (outcome traits: 

carotid artery atherosclerosis, ECG ischemic abnormalities). Only a genetic 

additive model was tested. Generalized Linear Models, as implemented in the 

SPSS software, with or without repeated measures as appropriate, were carried 

out to test the associations between genetic variability and metabolic traits (log-

transformed or square-root transformed, if needed, unless the latter displayed 

strong deviation from the Gaussian distribution which could not be corrected by 

transformation. In the latter case, which applied only to DC of BF, non-parametric 

(Kruskal-Wallis) tests were applied with no correction for covariates).  

Since the present study is an exploratory analysis, the control of the family wise 

error rate (FEW) of 50 multiple comparisons (10 SNPs by 5 outcome variables: 

ECG, carotid atherosclerosis, clamp-assessed insulin sensitivity and DC and PC 

of BF), according to Bonferroni’s correction, was deemed too conservative. Thus, 

we applied the two stage step-up linear procedure of Benjamini-Krieger-Yekutieli 

(BKY) [17], a recent evolution of the Benjamini-Hochberg’s method, to control 

the false discovery rate (FDR) (see Supplemental Material for details). 

Selections of FDRs ranging from 0.25 to 0.05 can be found in previous papers, 

the lower figure being conceptually analogous to Bonferroni’s correction in 

strongly favouring protection against false positive results vs. the risk of declaring 
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false negative findings. We selected an FDR of 0.20, the highest acceptable FDR 

according to Benjamini and Yekutieli [18] in line with the exploratory nature of 

this work. All statistical tests were performed by the SPSS 22.0 software. 

 

 

4.5 RESULTS 

In this study we report the data collected in 597 VNDS patients: anthropometric, 

clinical and metabolic features are summarized in Table I. Ten independent SNPs 

were successfully genotyped and were all in Hardy-Weinberg equilibrium (Table 

II). Rs1044498, rs2295490 and rs12626158 were not included in the statistical 

analyses due to poor quality genotyping. 

At a FDR set at 0.20, the BKY procedure [17] rejected 5 null hypotheses, i.e. 

accepted 5 results as statistically significant. These are presented herein below. 

Other findings with nominal (i.e. p<0.05) statistical significance, but not rejected 

by BKY, are not presented.  

 

Rs4897549-A (ENPP1) and rs4675095-T (IRS1) were significantly associated 

with a greater severity of carotid atherosclerosis (p=0.01 and p=0.009, 

respectively), independently of age, sex and smoking status (Table III, panel A 

and B)). In a secondary analysis, rs4897549-A and rs4675095-T were jointly 

tested for independent association with the presence of carotid atherosclerosis 

(p=0.009 and p=0.014, respectively, Table III, panel D). Their associations with 

carotid atherosclerosis were confirmed to be independent with odd ratios almost 

superimposable to the ones found in the previous analysis. Rs7265169 (TRIB3) 

was associated with ECG ischemic abnormalities (Table III, panel C). 
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The G major allele of rs858340 in ENPP1 was significantly (p=0.008) associated 

with impaired insulin sensitivity (Figure 1). Furthermore, rs6939185 (ENPP1) 

was associated with altered derivative control of BF (p=0.024, by Kruskal-

Wallis). However, the derivative control (units: pmol per square meter of BSA; 

median [I.Q. range]) was 488 [105 - 1054] in rs6939185 GG carriers, 377 [0 - 

821] in AG carriers and 565 [125 - 1187] in AA carriers. Thus, the relationship 

appeared biologically inconsistent and will not be discussed further.  

 

 

 

4.6  DISCUSSION 

 

In this study we explored the possible associations of common genetic variation in 

or near three loci harboring insulin signaling pathway genes with cardiometabolic 

phenotypes in a well-characterized sample of patients with newly-diagnosed 

T2DM. Since diabetes itself is equipotent to previous stroke or MI in determining 

mortality risk, we selected for our analysis the two metabolic phenotypes, i.e. 

insulin sensitivity and beta cell function (BF), which are at the core of the 

pathophysiology of T2DM, and two cardiovascular intermediate phenotypes 

(ECG and carotid artery ultrasound scan) which are in widespread clinical use.  

On the genetic side, given the role of insulin action in many cells involved in 

atherogenesis, we assessed the common genetic variability of three known 

gatekeepers of insulin signaling, ENPP1, IRS1 and TRIB3, previously associated 

with cardiovascular risk and/or intermediate phenotypes through their non-

synonymic variants.  

We report that rs4897549 (ENPP1) and rs4675095 (IRS1) were independently 

associated with increased carotid atherosclerosis (Table III, panel A and B and 
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D), while rs7265169 (TRIB3) was associated with ECG ischemic abnormalities 

(Table III, panel C). Interestingly, previous in vitro studies suggested that 

alterations in insulin pathway genes promote endothelial dysfunction, hence 

predisposing to CVD [19, 20]. Additionally, while previous studies showed that 

the non-synonymic ENPP1 K121Q, IRS1 G972R and TRIB3 Q84R variants were 

associated with cardiovascular events in human subjects [19-21], our findings 

support the hypothesis that the variance of subclinical CVD risk traits may be 

explained to some extent also by common genetic variation in or near these loci as 

well.  

Rs858340 at ENPP1 was associated with insulin resistance (Figure 1), thus 

extending previous observations on the detrimental effect of ENPP1 genetic 

variability on insulin action [22]. Unfortunately, failure of rs1044498 (ENPP1) 

genotyping – for which a large body of literature exists [5, 9] – did not allow to 

directly test this specific variant against the outcome traits. Owing to the selection 

criteria used to pick up the SNPs for the current study it was impossible to replace 

rs1044498 with other nearby, highly-correlated SNPs (using a r2 threshold of 0.6, 

at the minimum). However, since the genetic variants selected for our analyses 

captured a large proportion of the genetic variability at each locus, our results 

further strengthen the message that multiple IR-associated variants are harbored 

within the LD block structure of ENPP1 locus.  

None of the variants at IRS1 and TRIB3 was associated with insulin resistance. 

This is in line with some studies on IRS1 G972R (rs1801278) conducted in T2DM 

and non-T2DM humans [23, 24]. However, a more extensive documentation in 

humans and rodents [25-27], although mostly based on surrogate insulin-

sensitivity indices, supports the negative effect of some IRS1 and TRIB3 variants 

on insulin sensitivity in vitro and in vivo. 
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Inspired by the case of some MODY genes, which harbour common genetic 

variants affecting T2DM risk [12], and by the primary role played by insulin 

secretion in the pathogenesis of T2DM, we tested the genetic variation of ENPP1, 

TRIB3 and IRS1 for association with BF. One polymorphism in ENPP1 

(rs6939185) showed a significant association with decreased derivative control of 

BF. However, its relationship to BF appeared to be biologically inconsistent. 

Indeed, our FDR threshold (0.20) is compatible with one out of 5 accepted 

findings being spurious. Thus, common genetic variability of ENPP1 was 

associated with both carotid atherosclerosis (through rs4897549) and insulin 

resistance (through rs858340). 

No significant relationships between common genetic variability of IRS1, or 

ENPP1 or TRIB3 and beta cell function could be claimed, in spite of some 

nominal statistical significance (data not shown). Previous in vitro and in vivo 

studies showed that ENPP1 and TRIB3 affect beta-cell survival [28, 29], thereby 

being potentially able to affect beta-cell mass. Indeed, the gain-of-function 

variants ENPP1 K121Q (rs1044498) and TRIB3 Q84R (rs2295490) increase beta 

cell apoptosis [20, 28]. However, no associations between changes in beta cell 

function and common genetic variability of these loci can be declared on the basis 

of our findings.  

Taken together, our exploratory analysis suggests that common genetic variability 

of ENPP1 may play a pivotal role in cardiometabolic phenotypes, in that it may 

be implicated in carotid atherosclerosis and insulin resistance. Genetic variability 

at IRS1 and TRIB3 may play independent roles in carotid atherosclerosis and 

ischemia-related alterations in ECG, respectively.  

The most important strength of our study is the use of state-of-art methods to 

assess insulin sensitivity and BF, instead of surrogate markers, in a large sample 

of patients with newly-diagnosed T2DM. Furthermore, study participants were 60 
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years old on average (enough to convey the effect, if any, of low-penetrance 

genetic determinants) and presumably not yet influenced by long-standing 

hyperglycemia or pharmacological glucose-lowering treatment, which could 

modify phenotype-genotype interaction.  

However, our study has some limitations: i- it is not a population based study, 

although the VNDS cohort is fairly representative of Italian patients with T2DM 

[14]; ii- the cohort includes a large number of men, possibly reflecting a gender-

related referral bias; iii- the relatively low number of patients may have limited 

the statistical power; iv- the absence of a replication cohort cautions against the 

generalizability of our findings. Therefore, we have consulted the publicly 

available MAGIC Consortium database looking for association results relative to 

surrogate indexes of insulin sensitivity (HOMA-IR, IR-Homeostatic Model 

Assessment and ISI, Insulin Sensitivity Index) and BF (HOMA-B, BF- 

Homeostatic Model Assessment and CIR30’, Corrected Insulin Response) [30, 31]. 

As a result, among the four relevant SNPs, rs4675095-A (IRS1) was negatively 

associated with HOMA-IR and HOMA-B (at p=1.17xE-04 and p=4.2x10E-3, 

respectively), while there was no robust association with ISI (p=0.08) or CIR30’ 

(p=0.94); rs858340-T (ENPP1) was nominally associated with lower HOMA-IR 

(p=0.031) but not with ISI (p=0.079) (Supplementary Table S6-S9). Among the 

other SNPs considered, it is worth to mention the positive association of 

rs6139007-T (TRIB3) with HOMA-IR (p=0.029) and the negative association of 

rs9493119-A (ENPP1) with CIR30’ (0.003). Hence, none of the results from our 

analysis was robustly replicated in the MAGIC database, which, once again, 

highlights both the intrinsic limitations of surrogate indexes and the relatively 

limited statistical power of our database.  
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4.7 CONCLUSIONS 

In summary, in this exploratory analysis, IRS1, ENNP1 and TRIB3, known to be 

associated with T2DM and harboring genes playing a prominent role in mediating 

insulin signaling, may modulate a number of cardiometabolic phenotypes in 

patients of Italian ancestry with newly-diagnosed T2DM. Although replication 

studies in separate deeply-phenotyped cohorts are needed to corroborate our 

results, our findings suggest that ENPP1 may be a genetic locus potentially 

implicated in the association both with insulin resistance in diabetes and with 

cardiovascular disease. Other gatekeepers of the insulin signaling pathway, 

specifically IRS1 and TRIB3, might play additive roles in the pathogenesis of 

cardiovascular complications in patients with T2DM. Finally, since our study was 

conducted in patients with newly diagnosed T2DM, our findings are compatible 

with the hypothesis that the genetic clock of CVD in T2DM may start ticking long 

before the onset of overt diabetic hyperglycemia. 
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4.8 FIGURES and TABLES 

 

Table I. Clinical and metabolic features of the VNDS population. 
 

Variable ALL 
N (M/F) 597 (415/182) 
Age (years) 59 [52-66] 
BMI (Kg·m-2) 29.3 [26.5-32.8] 
Waist (cm) 100 [93-108] 
Smokers (%)* 47.9 [44.8-50.9] 
HbA1c DCCT (%) 6.7 [6.2-7.5] 
HbA1c IFCC (mmol/mol) 49.7 [44.3-58.5] 
Common carotid artery atherosclerosis 
(N=597)  
 absent (%)*  34.7 [31.8-37.6] 
 impaired IMT or stenosis <40% 59.8 [56.8-62.8] 
 stenosis ≥40% 5.5 [4.1-6.9] 
ECG ischemic abnormalities§ (N=489)  
 absent (%)* 70.6 [67.8-73.4] 
 possible 20.9 [18.4-23.4] 
 probable 2.2 [1.3-3.1] 
 definite 6.3 [4.8-7.8] 
Insulin Sensitivity (N=597)  
         M-clamp (µmol/min/m2 BSA) 607 [380-865] 
         Matsuda Index 3.0 [2.1-4.7] 
Beta-cell Function (N=595)  
         Derivative Control  
         (pmol/m2 BSA)·(mmol·L−1·min−1)−1 444 [68-938] 

         Proportional Control 
         (pmol·min−1·m−2 
BSA) 

ISR5.5 151 [110-191] 
ISR8 206 [149-282] 
ISR11 326 [228-473] 
ISR15 510 [331-764] 
ISR20 750 [461-1143] 

 

Data expressed as median and interquartile range [IQR]. *Percentage is given as point 
estimate at 95% confidence. §ECG abnormalities are classified according to the 
Minnesota code. BMI, Body Mass Index; SBP, Systolic Blood Pressure; DBP, Diastolic 
Blood Pressure; HbA1c DCCT, Diabetes Control and Complication Trial-Aligned 
Hemoglobin A1c; HbA1c IFCC, International Federation of Clinical Chemistry-Aligned 
Hemoglobin A1c; IMT, Intima-Media Thickness. ISRn, Insulin Secretion Rate at any 
given (n) mM of plasma glucose. 
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  Table II. Properties of the 10 genetic variants included in the VNDS 
association analyses. 

Locus Chr SNP	 MAF*	
Alleles	 H-W	

Equlibrium		
Y/N,	(p)	Minor§/Other	

IRS1 2 rs4675095	 0.09	 A/T	 Y,	(0.66)	
IRS1 2 rs1801278	 0.07	 A/G	 Y,	(0.57)	
ENPP
1 6 rs858340	 0.27	 A/G	 Y,	(0.40)	

ENPP
1 6 rs6939185	 0.37	 A/G	 Y,	(0.84)	

ENPP
1 6 rs9493119	 0.06	 G/A	 Y,	(0.051)	

ENPP
1 6 rs4897549	 0.28	 A/G	 Y,	(0.51)	

TRIB3 20 rs6139007	 0.28	 G/A	 Y,	(0.11)	
TRIB3 20 rs7265169	 0.09	 A/C	 Y,	(0.87)	
TRIB3 20 rs6115830	 0.47	 A/G	 Y,	(0.17)	
TRIB3 20 rs6076472	 0.31	 C/A	 Y,	(0.15)	
 

* MAF, Minor Allele Frequency in the VNDS study population. § Minor allele (considered as 
effect allele, in bold) defined according to the MAF in our population. H-W, Hardy Weinberg 
equilibrium; Y, yes; N, no. 
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Table III. Effects of rs4897549-A (ENPP1), rs4675095-T (IRS1) and rs7265169-A 

(TRIB3) alleles on measured CVD risk traits in the VNDS study participants.  

A - Odds ratio of carotid atherosclerosis in carriers of rs4897549-A allele (ENPP1). B- 

Odds ratio of carotid atherosclerosis in carriers of rs4675095-T allele (IRS1). C- Odds 

ratio of abnormal ECG in carriers of rs7265169-A allele (TRIB3). D- Simultaneous, 

independent association of rs4897549-A (ENPP1) and rs4675095-T (IRS1) alleles with 

carotid atherosclerosis. ECG abnormalities were classified as suggestive for “probable” 

or “definite” coronary heart disease (CHD) according to the Minnesota code [14]. All 

analyses were adjusted for age, sex and smoking status. 

 

 

A. rs4897549-A (ENPP1) 
Phenotype adjusted OR 95% C.I. P-value 

Impaired CC-IMT and/or 
stenosis <40% 1.26 0.92 – 1.72 0.15 

Stenosis > 40% 2.64 1.40 – 4.96 0.003 
 0.01 (Poverall) 

 

B. rs4675095-T (IRS1) 
Phenotype adjusted OR 95% C.I. P-value 

Impaired CC-IMT and/or 
stenosis <40% 2.05 1.27 – 3.32 0.003 

Stenosis > 40% 2.69 0.86 – 8.47 0.09 
 0.009 

(Poverall) 

  C. rs7265169-A (TRIB3) 
Phenotype 

 adjusted OR 95% C.I. P-value 

  “Probable” CHD  1.79 1.05 – 3.04 0.033 
  “Definite” CHD 2.9 1.29 – 6.56 0.01 

 0.014 (Poverall) 
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D. rs4897549-A (ENPP1) rs4675095-T (IRS1) 

Phenotype adj 
OR 95% C.I. P-

value 
adj 
OR 95% C.I. P-

value 

Impaired CC-IMT 
and/or stenosis 
<40% 

1.23 0.89 – 1.69 0.21 2.08 1.28 – 3.39 0.003 

Stenosis > 40% 2.55 1.36 – 4.81 0.004 2.59 0.81 – 8.27 0.11 

 0.014 
(Poverall) 

 0.009 
(Poverall) 
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Figure 1 – Association between clamp-assessed insulin sensitivity and rs858340-G 

(ENPP1). 

The G allele of rs858340 (ENPP1) is significantly associated with impaired insulin 

sensitivity in patients with newly diagnosed type 2 diabetes (p=0.008, after correction for 

age, sex and BMI). Data are presented as median and interquartile range. BSA, body 

surface area. 
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Figure 2 – Relationships of intermediate cardiovascular disease traits and insulin 

resistance with genetic variants at insulin signalling pathway loci. 

The figure highlights the role of insulin resistance (IR, light grey set) as a well-

established predictor of cardiovascular disease (CVD, dark grey set). In this context, our 

study suggests that the common genetic variability of ENPP1 is associated with IR and 

intermediate CVD phenotypes, while TRIB3 is associated with ECG ischemic 

abnormalities and IRS1 with carotid atherosclerosis. 
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5.1 ABSTRACT 

 

English 

Background and Aims - Cardiovascular diseases (CVD) are a major cause of 

death and are often associated with type 2 diabetes (T2D). Genome-wide studies 

(GWAS) identified loci associated with T2D, CVD and traits leading to early 

death. We investigated whether these loci in aggregate carry a higher risk of all-

cause and CVD mortality in the FHS.  

Methods - We computed an unweighted genetic risk score (GRS) of 96 variants 

selected by effect-size within respective GWAS to represent the top 25% of 

GWAS variants for the following traits: T2D, coronary artery disease, myocardial 

infarction (MI), stroke, sudden cardiac death, heart rate, long QT-interval, heavy 

smoking and 15-years all-cause mortality. We used pooled logistic regressions 

with genetic-only (GRS adjusted for sex) and full CVD risk factors adjusted 

models (sex, age, smoking, prevalent non-fatal CVD) to test the association of 96-

GRS with all-cause and MI/stroke mortality in 3,426 FHS participants across 29 

years follow-up (p<0.025 (p=0.05/2) for significance).  

Results - Prevalence of non-fatal CVD, T2D and smoking was 7.5, 6.1 and 26.4% 

at baseline and 18.5, 15.9 and 13.2%, respectively, at the beginning of the last 

period considered. Cumulative incidence of fatal MI/stroke and all-cause 

mortality was 5.1 and 22.5%, respectively. The 96-GRS was associated with 

MI/stroke mortality in both genetic-only (OR[95%CI]: 1.04[1.0-1.1], p=0.006) 

and fully adjusted model (1.04[1-1.1], p=0.009). Association with all-cause 

mortality did not reach our statistical significance criteria (1.01[1-1.03], p=0.029, 

genetic-only; 1.02[1-1.03], p=0.034, fully adjusted).  
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Conclusions - An aggregate burden of 96 GWAS variants with the largest effect 

size on cardiometabolic traits is predictor of MI/stroke death in longitudinal 

analysis of a large population of European ancestry. Further studies need to 

specify the impact of cardiometabolic disease genetics on current mortality 

prediction models. 

 

 

Italian 

Premesse e Scopo - Il diabete tipo 2 (T2D) è una malattia complessa ad alta 

prevalenza e incidenza che riconosce fattori genetici e non-genetici quali 

determinanti causali. Le malattie cardiovascolari (CVD) sono una delle maggiori 

cause di morte e sono spesso associate a T2D. Studi di associazione genome-wide 

hanno identificato varianti genetiche comuni associate a T2D, CVD e fenotipi 

cardiometabolici intermedi. Questo studio verifica l’ipotesi se il rischio genetico 

per T2D e tratti di rischio cardiometabolico si associno ad aumentata mortalità 

nello studio Framingham. 

 

Metodi e Risultati - Popolazione: 3,426 soggetti arruolati nello studio FHS e 

seguiti con follow-up massimo di 29 anni. E’ stato calcolato un GRS96 composto 

da 96 tag-SNPs selezionati, in base al rispettivo effect-size, per essere 

rappresentativi del quartile più alto per ciascuno dei seguenti tratti all’interno dei 

rispettivi GWAS: T2D, malattie coronariche, infarto miocardico (MI), stroke, 

morte cardiaca improvvisa, frequenza cardiaca, QT-lungo, abitudine tabagica, 

mortalità per tutte le cause a 15 anni. Analisi: regressione logistica “pooled”. 

Modelli: M1=GRS+sex; M2: M1+età, fumo, storia personale di CVD non fatale. 
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Endpoints: (1) mortalità per tutte le cause; (2) mortalità per MI/stroke. 

Significatività: p<0.025 (=0.05/2). 

 

Conclusioni - La prevalenza di CVD non fatali, T2D e tabagismo era pari a 7.5, 

6.1 e 26.4% al baseline (Pool I) e 18.5, 15.9 e 13.2%, rispettivamente, all’inizio 

dell’ultimo periodo considerato (Pool IV). L’incidenza cumulativa di MI/stroke 

fatali e mortalità per tutte le cause era 5.1 e 22.5%, rispettivamente. Il GRS96 era 

associato a mortalità per MI/stroke sia nel modello M1 (OR [95%CI]: 1.04 [1-1.1], 

p=0.006), sia nel modello M2 (1.04 [1-1.1], p=0.009). L’associazione con 

mortalità per tutte le cause non raggiungeva la significatività statistica (1.01 [1.0-

1.03], p=0.029, modello M1; 1.02 [1.0-1.03], p=0.034, modello M2).  
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5.2 INTRODUCTION 

 

Gauging how various diseases and injuries are affecting the living is a way to 

measure the effectiveness of a country’s health system and to better (re)direct 

human and economic resources to effectively improve the public health.  

Type 2 diabetes (T2D) and cardiovascular diseases (CVD) are well known to be 

clinically associated in adults [1, 2] and are becoming an increasing public health 

and economic scourge in US [3] and worldwide [4-6]. Moreover, cardiometabolic 

diseases are presently the major cause of death, according to a WHO 2013 report 

[7], and multiple large genome-wide association studies (GWAS) have thus far 

identified numerous loci associated with cardiometabolic diseases and conditions 

that often lead to early death. It can be reasonably hypothesized that if index SNPs 

at these loci are marking genes or regions with important functional significance 

for health, then the aggregate burden of these variants should be associated with 

an increased risk of mortality. 

 

This project sought to investigate in the FHS SHARe Study sample a “mortality” 

genetic risk score comprised of up to 96 candidate single nucleotide 

polymorphisms (SNPs) identified from published GWAS. The principle behind 

the selection of relevant SNPs was built upon a thorough literature review of 

currently available evidence (as of late 2014) from GWAS on mortality associated 

traits or phenotypes, including a spectrum of cardiometabolic diseases spanning 

from cardiovascular disease risk factors, particularly T2D, to overt cardiovascular 

diseases [8-17]. 

We hypothesized that a genetic risk score summed from up to 96 mortality 

phenotype-associated SNPs identified from published large scale GWAS would 

be associated with all-cause and cardiovascular disease mortality in the FHS 

mortality follow-up data.  
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This project was initiated with the expectation to provide orthogonal information 

to usual all-cause and CVD mortality risk prediction rules, which are commonly 

based on clinical measures and information. This approach would be of valuable 

practical utility to link the available genetic knowledge on cardiometabolic risk 

and all-cause mortality with the clinical tools currently in use to stratify the 

cardiometabolic risk and to manage disease care and prevention at the level of 

single individual and on larger population scale. 

 

 

5.3 METHODS 

 

Multiple GWAS have identified loci associated with diseases and conditions that 

often lead to early death. Our literature review identified about 96 SNPs 

potentially associated with mortality. To test this hypothesis we have used 

SHARe genotypes for 96 index SNPs from 96 loci reported in large-scale 

cardiometabolic disease / cardiovascular disease GWAS to be associated with 

myocardial infarction or coronary heart disease (CHD) death, stroke or stroke 

death, ECG-measured high heart rate or prolonged QRS interval or sudden 

cardiac death, T2D, heavy cigarette smoking behavior, or all-cause mortality. 

SNPs were selected by an exhaustive literature review of current GWAS and a 

subsequent assembly of a master list of about 96 top potentially mortality-related 

SNPs. The SNPs are shown in Table 1. 

For the 96 mortality SNPs, we have generated a genetic burden risk score by 

summing the presence of 0, 1 or 2 risk loci across the 96 SNPs of interest, where a 

higher score indicates a greater burden of potentially mortality-associated loci. 

The genetic risk score was un-weighted (simple allele counting). The genetic risk 

score was tested for association with mortality in the FHS SHARe mortality-
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linked follow-up data in linear additive genetic models. The primary analysis was 

focused on all-cause mortality and secondary analysis was focused on 

cardiovascular disease mortality. Other considerations explored in the analysis 

included testing mortality from participant entry to the study until death versus 

from the date of genotyping until death, to try and account for survival biases 

inherent in mid-life, mid-cohort study collection of genetic information.  Models 

were designed to control versus stratify by prevalent cardiovascular disease and 

T2D to account for confounding by diseases linked both to the genetic exposure 

and elevated risk for early mortality.  

 

 

Statistical analysis 

We used pooled logistic regressions with genetic-only (Model 1: GRS adjusted 

for sex) and full CVD risk factors adjusted models (Model 2: GRS adjusted for 

sex, age, smoking, prevalent CVD) to test the association of the 96-GRS with all-

cause and MI/stroke mortality in 3,426 FHS participants over a 29-years follow-

up period. Threshold for significance was declared at p<0.025 (p=0.05/2, the 

number of endpoints).  
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In summary: 

• Study design: longitudinal, population-based. 

• Study participants: 3,426 subjects of European Ancestry enrolled in the 

Framingham Heart Study 

• Exclusion criteria: none. 

• Exposure: We computed an un-weighted genetic risk score (GRS) of 96 

variants selected by effect-size within respective GWAS to represent the 

top 25% of GWAS variants for the traits listed in Table 1.  

• Endpoints: (1) All-cause Mortality; (2) Myocardial infarction/Stroke 

Mortality 

 

 

 

 

Composition of the genetic risk score* 

Phenotype SNP# PMID 

Type 2 Diabetes 36 22885922 

Coronary Artery Disease 31 23202125 

Smoking/cigarettes per day 7 20418890 

Myocardial Infarction 7 22397355 

Stroke 5 23041239 

Sudden Cardiac Death 4 23583979 

Heart Rate 3 23593153 

Long QT-Interval 3 19305408 

*More details are provided in Table 2 
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5.4 RESULTS 

 

Highlights (full descriptives are available in Table 2) 

 

Genetic Risk Score distribution at study entry 
 Pool 1 

(1983-1991) 
GRS96 (whole population) 88.2 (5.6) 
GRS96 (in people dead by stroke or MI) 89.9 (6.0) 
GRS96 (in people dead by all- causes) 88.8 (6.5) 
 
 

 

Cumulative incidence of deaths over 29-years of follow-up 
Stroke + MI (% of all population) 5.1 % 
All-cause (% of all population) 22.5 % 
 

 

The 96-GRS was significantly associated with Myocardial Infarction/stroke 
mortality  
 OR [95% C.I.] P-value 
Model 1 1.04 [1.0-1.1] 0.006 
Model 2 1.04 [1.0-1.1] 0.009 
 
 

 

Association with all-cause mortality did NOT reach statistical significance (p<0.025)  
 OR [95% C.I.] P-value 
Model 1 1.01[1-1.03] 0.029 
Model 2 1.02[1-1.03] 0.034 
 
-Model 1:  Mortality outcome (either ALL-cause or MI/stroke)= 96-GRS+Sex 
-Model 2: Mortality outcome = 96-GRS + sex, age, smoking, prevalent CVD (defined as defined as history of 
myocardial infarction, angina pectoris, and/or coronary insufficiency) 
 

 

 



 
	
	
	
	
	

115 

5.5 DISCUSSION 

Type 2 diabetes, prediabetic hyperglycemia and related CVD complications are 

becoming a dramatically increasing burden for the healthcare system in the U.S. 

[18]. The genetic knowledge in the field of these complex cardiometabolic 

diseases is expected to substantially contribute in the refinement of future 

healthcare strategies and to improve the clinical prediction tools currently 

available to assess diabetes risk development and related CVD complications 

and/or mortality. Large-scale genetic studies (GWAS) have successfully outlined 

the common variants genetic architecture of T2D and many other cardiometabolic 

diseases in people of European ancestry [17]. Some genetic insights also exist on 

the common allelic variation of genetic loci found to be associated with mortality-

related phenotypes or all-cause mortality [8-17]. 

Further population-based studies are still needed to specify how the allelic 

spectrum of cardiometabolic disease and mortality phenotype-associated SNPs 

can contribute to better define mortality prediction for population and 

personalized prevention strategies. Study of these questions in FHS SHARe 

permits analyses and interpretations in a large population sample followed-up 

over a time frame long enough to detect possible associations, if any, between 

genetics and mortality. 

The growing number of cardiometabolic disease risk loci (especially associated 

with type 2 diabetes) and mortality phenotype-associated SNPs discovered since 

the beginning of GWAS era might be a valuable tool requiring further testing to 

verify the ability to predict mortality. The availability of the FHS SHARe 

mortality-linked follow-up data affords the unique opportunity to test hypotheses 

about the ultimate population impact of modern genetic discoveries and variation 

on the cardiometabolic risk and all-cause mortality in the US population. 
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In this exercise we successfully tested the association of MI/stroke mortality with 

a genetic risk score summed from up to 96 mortality phenotype-associated SNPs 

identified from published large scale GWAS for association with mortality in the 

FHS SHARe mortality follow-up data. 

Although our results are far from being conclusive, as they need to be replicated 

in independent cohorts, the encouraging results obtained in this pilot study with a 

restricted set of around 100 SNPs encourage further studies exploring the impact 

of the entire spectrum of cardiometabolic disease genetic variants on current 

mortality prediction models, in order to properly represent the most updated 

GWAS landscape on cardiometabolic risk traits or phenotypes.  

As stated above, T2D and CVD are common diseases that often clinically occur 

together. They carry a high risk of death (either all-cause or due to MI/stroke) and 

share common risk factors. Both T2D and CVD have a strong genetic background 

and it is therefore possible that they lead to early (CVD) death through common 

genetic pathways. Recent evidences have shown that the genetic predisposition to 

T2D, as modeled by a composite genetic risk score, is associated with increased 

all-cause mortality risk (Leong A et al., 2016) and with non-fatal and fatal CVD 

(Borglykke A et al., 2012). It is however currently unknown whether the higher 

all-cause and MI/stroke death rates carried by the genetic burden of T2D risk 

occur independently of the individual genetic predisposition to CVD. It might also 

be possible that the genetic risk for T2D represents a permissive (genetic) 

environment that paves the way to the overt manifestation of CVD genetic risk. 

All these questions, therefore, require specific study designs; as such, starting 

from the pilot analyses of the project herein presented, future studies are 

advocated to untangle, at a genetic level, the common soil underlying the strong 

clinical link existing between T2D and CVD.   
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5.6 TABLES 

 

Table 1 – 96 SNPs included in the “mortality” genetic risk score 
# Nearest gene SNP Chr Risk 

allele Disease/Trait PMID # 

1. TCF7L2 rs7903146 10 T T2D 22885922 

2. CDKN2A/B rs10811661 9 T T2D 22885922 

3. CDKAL1 rs7756992 6 G T2D 22885922 

4. SLC30A8 rs3802177 8 G T2D 22885922 

5. THADA rs10203174 2 C T2D 22885922 

6. FTO rs9936385 16 C T2D 22885922 

7. IGF2BP2 rs4402960 3 T T2D 22885922 

8. PPARG rs1801282 3 C T2D 22885922 

9. HMGA2 rs2261181 12 T T2D 22885922 

10. HHEX/IDE rs1111875 10 C T2D 22885922 

11. ADCY5 rs11717195 3 T T2D 22885922 

12. JAZF1 rs849135 7 G T2D 22885922 

13. ARAP1 
(CENTD2) rs1552224 11 A T2D 22885922 

14. DGKB rs17168486 7 T T2D 22885922 

15. HNF1B (TCF2) rs11651052 17 A T2D 22885922 

16. MTNR1B rs10830963 11 G T2D 22885922 

17. ZBED3 rs6878122 5 G T2D 22885922 

18. IRS1 rs2943640 2 C T2D 22885922 

19. WFS1 rs4458523 4 G T2D 22885922 

20. KHLDC5 rs10842994 12 C T2D 22885922 

21. ANK1 rs516946 8 C T2D 22885922 

22. KCNQ1 rs163184 11 G T2D 22885922 

23. ADAMTS9 rs6795735 3 C T2D 22885922 

24. ZMIZ1 rs12571751 10 A T2D 22885922 

25. CILP2 rs10401969 19 C T2D 22885922 

26. BCAR1 rs7202877 16 T T2D 22885922 

27. UBE2E2 rs1496653 3 A T2D 22885922 

28. HNF1A (TCF1) rs12427353 12 G T2D 22885922 

29. ANKRD55 rs459193 5 G T2D 22885922 

30. CCND2 rs11063069 12 G T2D 22885922 

31. MC4R rs12970134 18 A T2D 22885922 

32. HMG20A rs7177055 15 A T2D 22885922 

33. PRC1 rs12899811 15 G T2D 22885922 



 
	
	
	
	
	

118 

34. SPRY2 rs1359790 13 G T2D 22885922 

35. NOTCH2 rs10923931 1 T T2D 22885922 

36. GCK rs4607517 7 A T2D 22885922 

37. ZNF365 rs2077316 10 C Sudden Cardiac Death 
(SCD) 23593153 

38. BAZ2B rs4665058 2 A Sudden Cardiac Death 
(SCD) 21738491 

39. RAB3GAP1 rs6730157 2 G Sudden Cardiac Death 
(SCD) 23593153 

40. HDAC9 rs2107595 7p21.1 A STROKE (ischemic) 23041239 

41. ZFHX3 rs879324 16q22.3 A STROKE (ischemic) 23041239 

42. Intergenic rs13407662 2p16.2 T STROKE (ischemic) 23041239 

43. NINJ2 rs12425791 12p13.3
3 A STROKE (ischemic) 19369658 

44. PITX2 rs6843082 4q25 G STROKE (ischemic) 23041239 

45. BDNF rs6265 11p14.1 C Smoking initiation 20418890 

46. DBH rs3025343 9q34.2 G Smoking cessation 20418890 

47. CDKN2BAS1 rs3217992 9p21 A Coronary artery disease 23202125 

48. CDKN2BAS1 rs1333049 9p21 C Coronary artery disease 23202125 

49. KCNE2 rs9982601 21q22.1
1 T Coronary artery disease 23202125 

50. SORT1 rs602633 1 C Coronary artery disease 23202125 

51. WDR12 rs6725887 2 C Coronary artery disease 23202125 

52. ApoE-ApoC1 rs2075650 19 G Coronary artery disease 23202125 

53. PPAP2B rs17114036 1p32.2 A Coronary artery disease 23202125 

54. LDLR rs1122608 19p13.2 G Coronary artery disease 23202125 

55. PHACTR1 rs9369640 6p24.1 C Coronary artery disease 23202125 

56. ZC3HC1 rs11556924 7 C Coronary artery disease 23202125 

57. COL4A1, 
COL4A2 rs9515203 13 T Coronary artery disease 23202125 

58. ADAMTS7 rs7173743 5 T Coronary artery disease 23202125 

59. ABO rs579459 9 C Coronary artery disease 23202125 

60. PDGFD rs974819 11 A Coronary artery disease 23202125 

61. SH2B3 rs3184504 12 T Coronary artery disease 23202125 

62. TCF21 rs12190287 6 C Coronary artery disease 23202125 

63. HHIPL1 rs2895811 14q32 C Coronary artery disease 23202125 

64. KIAA1462 rs2505083 10 C Coronary artery disease 23202125 

65. PCSK9 rs11206510 1 T Coronary artery disease 23202125 

66. RASD1, SMCR3, 
PEMT rs12936587 17p11.2 G Coronary artery disease 23202125 

67. SLC22A3-
LPAL2-LPA rs2048327 6 G Coronary artery disease 23202125 

68. SLC22A4-
SLC22A5 rs273909 5 C Coronary artery disease 23202125 

69. ZNF259, 
APOA5, APOA1 rs9326246 11 C Coronary artery disease 23202125 
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70. APOB rs515135 2 G Coronary artery disease 23202125 

71. CXCL12 rs501120 10q11 A Coronary artery disease 23202125 

72. MRAS rs9818870 3 T Coronary artery disease 23202125 

73. ABCG5-ABCG8 rs6544713 2 T Coronary artery disease 23202125 

74. GUCY1A3 rs7692387 4 G Coronary artery disease 23202125 

75. KCNK5 rs10947789 6 T Coronary artery disease 23202125 

76. PLG rs4252120 6 T Coronary artery disease 23202125 

77. MIA3 rs17464857 1q41 T Coronary artery disease 23202125 

78. CHRNA3 rs1051730 15q25.1 G Cigarettes per day (CPD) 20418890 

79. LOC100188947 rs1329650 10q23.3
2 T Cigarettes per day (CPD) 20418890 

80. CYP2A6,EGLN2 rs3733829 19q13.2 G Cigarettes per day (CPD) 20418890 

81. CYP2A6,RAB4D rs4105144 19q13.2 C Cigarettes per day (CPD) 20418888 

82. CHRNB3,CHRN
A6 rs6474412 8p11.21 T Cigarettes per day (CPD) 20418888 

83. WRN rs6997892 8 G 15-year all-cause mortality 22397355 

84. IGF1R rs2684766 15 T 15-year all-cause mortality 22397355 

85. TRIM32 rs10817931 9 A 15-year all-cause mortality 22397355 

86. MAT2B rs1421783 5 C 15-year all-cause mortality 22397355 

87. IGF1R rs11630259 15 T 15-year all-cause mortality 22397355 

88. APOE rs7412 19 C 15-year all-cause mortality 22397355 

89. APOE rs429358 19 C 15-year all-cause mortality 22397355 

90. NOS1AP rs12143842 1q T QT-interval 19305408 

91. 
CNOT1 ,GINS3, 
NDRG4, 
SLC38A7, GOT2 

rs37062 16q G QT-interval 19305408 

92. SLC35F1, PLN, 
ASF1A rs11756438 6q A QT-interval 19305408 

93. CCDC141 rs17362588 2 A Heart Rate 23583979 

94. GJA1 rs1015451 6 C Heart Rate 23583979 

95. CD46 rs11118555 1 A Heart Rate 23583979 

96. MYH6 rs365990 14 G Heart Rate 23583979 



   
 

Table 1 – Baseline anthropom
etric and clinical characteristics of Fram

ingham
 O

ffspring C
ohort participants in 4 pooled study exam

ination. 

 
Pool 1 

(1983-1991)  
Pool 2  

(1991-1998) 
Pool 3  

(1998-2005) 
Pool 4  

(2005-2011) 
 

 
 

 
 

N
 

3,426 
3,337 

3,209  
2,723  

N
 (%

) “H
ealthy” (i.e., non-C

V
D

 and subjects not taking m
eds for D

M
/hypertension/lipids) 

2,716 (79.3) 
2,314 (69.2) 

1,709 (53.3) 
936 (34.4) 

N
 (m

ales, %
) A

ll 
1,617 (47.2) 

1,511 (45.2) 
1,480 (46.1) 

1,227 (45.1) 
A

ge, years 
48.0 (9.9) 

54.6 (9.8) 
61.3 (9.6) 

66.8 (9.2) 
B

M
I, K

g/m
-2 

26.3 (4.7) 
27.4 (4.9) 

28.2 (5.3) 
28.2 (5.3) 

Systolic blood pressure, m
m

H
g 

123.3 (16.9) 
125.8 (18.6) 

127.0 (18.7) 
128.5 (17.3) 

Lipids, m
g/dL 

 
 

 
 

 
Total C

holesterol 
210.2 (41.0) 

205.0 (37.1) 
200.3 (36.7) 

185.9 (37.3) 
 

LD
L-C

 
133.4 (36.2) 

126.6 (33.1) 
119.8 (32.8) 

105.2 (31.2) 
 

H
D

L-C
 

51.3 (14.8) 
50.11 (15.1) 

53.8 (17.0) 
57.4 (18.1) 

 
Triglycerides 

120.5 (115.2) 
147.6 (115.7) 

137.2 (89.6) 
118.1 (69.5) 

Lipid low
ering m

edication, N
 (%

) 
34 (1.0) 

232 (6.9) 
676 (21.1) 

1,1,51 (42.3) 
D

iabetics, N
 (%

) 
209 (6.1) 

377 (11.3) 
421 (13.1) 

433 (15.9) 
D

iabetes m
edication, N

 (%
 of diabetics) 

54 (25.8) 
104 (27.6) 

221 (52.5) 
253 (58.4) 

Fasting plasm
a glucose, m

g/dL 
94.0 (20.4) 

100.5 (27.6) 
104.1 (26.5) 

106.6 (23.6) 
H

ypertension, N
 (%

)  
1,012 (29.5) 

1,064 (31.8) 
1,468 (45.8) 

1,594 (58.6) 
A

ntihypertensive m
edication, N

 (%
 of hypertensive subjects) 

519 (51.3) 
578 (54.3) 

1,090 (74.3) 
1,354 (84.9) 

Sm
oking status, N

 (%
) 

 
 

 
 

 
C

urrent sm
oker 

903 (26.4) 
643 (19.2) 

507 (15.8) 
359 (13.2) 

 
Previous sm

oker 
1,387 (40.5) 

1,583 (47.4) 
1,627 (50.7) 

1,417 (52.0) 
 

N
ever sm

oker 
1,136 (33.2) 

1,117 (33.4) 
1,075 (33.5) 

947 (34.8) 
Personal C

V
D

* history, N
 (%

)  
257 (7.5) 

367 (11.0) 
379 (11.8) 

505 (18.5) 
G

R
S

96  (w
hole population) 

88.2 (5.6) 
88.2 (5.6) 

88.1 (5.6) 
88.1 (5.6) 

G
R

S
96  (in people dead by stroke or M

I) 
89.9 (6.0) 

90.8 (6.0) 
89.0 (5.6) 

89.4 (6.1) 
G

R
S

96  (in people dead by all- causes) 
88.8 (6.5) 

90.1 (6.1) 
88.2 (5.7) 

88.4 (5.5) 
C

V
D

 events (fatal + non-fatal) **, N
 (%

) 
278 (8.1) 

386 (11.5) 
459 (14.3) 

560 (20.6) 
D

eaths, N
 (%

) 
 

 
 

 
 

Stroke + m
yocardial infarction (%

 of all population) 
21 (0.6) 

18 (0.5) 
80 (2.5) 

55 (2.0) 
 

Stroke + m
yocardial infarction in H

ealthy, N
 (%

 of healthy) 
6 (0.2) 

10 (0.4) 
17 (1.0) 

4 (0.4) 
 

C
ancer (%

 of all deaths) 
34 (39.5) 

55 (48.3) 
107 (33.3) 

95 (38.2) 
 

N
on-cancer deaths (%

 of all population) 
52 (1.5) 

60 (1.8) 
214 (6.7) 

154 (5.7) 
 

A
ll-cause (%

 of all population) 
86 (2.5) 

115 (3.5) 
321 (10.0) 

249 (9.1) 
*C

V
D

, cardiovascular disease, defined as history of m
yocardial infarction, angina pectoris, coronary insufficiency. A

F, atrial fibrillation. LV
H

-EC
G

, left ventricular hypertrophy as evaluated 
by electrocardiogram

. G
R

S, genetic risk score. 
**C

V
D

 events (fatal + non-fatal), com
posite endpoint com

prising fatal m
yocardial infarction, fatal stroke,	non-fatal M

I, non-fatal stroke, coronary artery disease (angina pectoris, coronary 
insufficiency). 
D

ata expressed as m
ean ± standard deviation (SD

) unless otherw
ise indicated. 
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Experimental design 

A multivariable linear regression model with random effects to account for family 

relatedness was applied, where appropriate, to test the association of subclinical 

atherosclerosis (SCA) measures with an additive genetic risk score (GRS62) 

comprised of 62 single nucleotide polymorphisms (SNPs) known to be linked 

with type 2 diabetes (T2D) risk (Appendix Table 1) [1]. Many of them are 

associated with either beta-cell function or insulin resistance (IR) physiology. 

Therefore, as described in [2], we used prior genetic and physiologic evidence [1, 

3-6] to define a sub-GRS comprised of 20 T2D SNPs mainly associated with 

beta-cell function (GRSβ) and a sub-GRS comprised of 10 T2D SNPs associated 

with peripheral insulin resistance (GRSIR), with each locus weighted in European 

Americans by the same effect size as in the GRS62. 

For each SCA trait a genetic-only model (adjusted for sex) and a full 

atherosclerosis risk factors adjusted model (Appendix Table 2) were applied. 

Clinical and anthropometric characteristics of study cohorts are shown in 

Appendix Table 3 and Appendix Table 4. The GRSβ and GRSIR were tested only 

in FHS and CARDIA study samples (Appendix Table 5-6).  

Many of the 62 tag-SNPs associated with T2D (Appendix Table 1) are also 

known to be associated with SCA risk factors/confounders. Genome.gov 

(http://www.genome.gov/), a catalog of published GWAS, and PheGenI 

(http://www.ncbi.nlm.nih.gov/gap/phegeni), a phenotype-oriented resource 

housed at the National Center for Biotechnology Information, were interrogated. 

Risk factors listed in the catalogs as being associated with one or more of the 

known 62 T2D loci were included, among others, in the full model (BMI, waist 

circumference, systolic blood pressure, fasting insulin, fasting glucose, 

triglycerides, HDL-cholesterol and LDL-cholesterol). Therefore, the basic model 

could be described as “purely” genetic, as it tested the association of a T2D GRS 
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alone with SCA traits, after adjustment for sex, while the full model accounted for 

the overall spectrum of confounders, mediators and/or risk factors for SCA 

available in the dataset, by adjusting for a comprehensive list of atherosclerosis 

risk factors. 

 

Genotyping 

MESA: Caucasian, Hispanic, and Chinese American participants were genotyped 

on the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, 

CA, USA) at the Affymetrix Research Services Lab. 6,880 samples passed initial 

genotyping QC. African American samples were genotyped at the Broad Institute 

of Harvard and MIT as part of the CARe project [7]. Affymetrix performed wet 

lab hybridization assay, and plate-based genotype calling using Birdseed v2. 

Sample QC was based on call rates and contrast QC (cQC) statistics. Broad 

performed similar QC for CARe sample. Additional sample and SNP QC were 

carried out at University of Virginia, including sample call rate, sample cQC, and 

sample heterozygosity by ethnicity at the sample level; outlier plates checking by 

call rate, median cQC or heterozygosity at plate level.  Four samples were 

removed due to low call rate (<95%). Cryptic sample duplicates or unresolved 

cryptic duplicates were dropped. Unresolved gender mismatches were also 

dropped. At the SNP level, we excluded monomorphic SNPs across all samples; 

SNPs with missing rate was > 5% or observed heterozygosity > 53% were also 

excluded. Additional genotypes were imputed to the 1000 Genomes Phase I 

integrated variant set (NCBI build 37 / hg19) separately in each ethnic group 

using the program IMPUTEv2. We used data freezes from 23 Nov 2010 (low-

coverage whole-genome) and 21st May 2011 (high-coverage exome), phased 

haplotypes released March 2012 (v3), and phased haplotypes for 1,092 

individuals and over 39 million variants. All imputed and genotyped SNPs were 
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aligned to the '+' strand of the human genome reference sequence (NCBI Build 

37). The Affymetrix annotation file "GenomeWideSNP_6.na31.annot.csv" was 

used for all matching of probe set IDs with RS IDs. 

GENOA: GENOA Study participants were genotyped on the Affymetrix 

Genome-Wide Human SNP Array 6.0 (Affymetrix, 2007) or the Illumina Human 

1M-Duo BeadChip (Illumina, 2010) at the Mayo Clinic, Rochester, MN. African 

American sibships for the GENOA study were identified using hypertensive 

participants from the Atherosclerosis Risk in Communities Study (ARIC) as 

probands. Genotypes were obtained for 92 additional GENOA participants who 

were also in the ARIC Study and who could not be genotyped on either platform 

using the GENOA blood sample. Genotyping for the ARIC study was done at the 

Broad Institute on the Affymetrix 6.0 platform. For all genotyping platforms used, 

samples and SNPs with a call rate <95% were removed. Samples demonstrating 

sex mismatch, duplicate samples, and samples with low identity-by-state with all 

other samples were also removed. Imputation was performed with the single-step 

approach implemented in Markov Chain Haplotyper (MaCH) 1.0.16 [8]. The 

reference panel was composed of the HapMap phased haplotypes (release 22). 

Imputation was performed separately for participants genotyped on the 

Affymetrix 6.0 as part of the GENOA study, participants genotyped on the 

Illumina Human 1M-Duo BeadChip, and participants genotyped on the 

Affymetrix 6.0 as part of the ARIC Study. Since only a small number of directly 

genotyped SNPs overlap on the Affymetrix and Illumina platforms, imputed 

dosages were used for all. 

In GENOA African Americans the GRS was limited to 55 SNPs due to poor 

imputation quality for 7 SNPs. FHS and CARDIA genotyping and imputation 

strategy have been previously detailed elsewhere[2, 7, 9, 10]. 
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Appendix Table 1 - 62 independent loci and relative tag-SNPs associated with Type 2 
Diabetes from DIAGRAMv3 [1] 
 
 

 

Chr SNP-risk allele Locus OR Chr SNP-risk allele Locus OR 

1 rs2075423-G PROX1 or PPP2R5A 1.07 9 rs10758593-A GLIS3 1.06 

1 rs10923931-T NOTCH2 1.08 9 rs17791513-A TLE4 1.12 

2 rs10203174-C THADA 1.14 9 rs2796441-G TLE1 1.07 

2 rs243088-T BCL11A 1.07 9 rs16927668-T PTPRD 1.04 

2 rs13389219-C GRB14 1.07 10 rs11257655-T CDC123/CAMK1D 1.07 

2 rs2943640-C IRS1 1.10 10 rs7903146-T TCF7L2 1.39 

2 rs7569522-A RBMS1 1.05 10 rs1111875-C HHEX/IDE 1.11 

2 rs780094-C GCKR 1.06 10 rs12571751-A ZMIZ1 or PPIF 1.08 

3 rs11717195-T ADCY5 1.11 10 rs12242953-G VPS26A 1.07 

3 rs1496653-A UBE2E2 1.09 11 rs10830963-G MTNR1B 1.10 

3 rs4402960-T IGF2BP2 1.13 11 rs1552224-A ARAP1 (CENTD2) 1.11 

3 rs1801282-C PPARG 1.13 11 rs163184-G KCNQ1 1.09 

3 rs6795735-C ADAMTS9 1.08 11 rs5215-C KCNJ11 1.07 

3 rs12497268-G PSMD6 1.03 11 rs2334499-T DUSP8 or HCCA2 (YY1AP1) 1.04 

3 rs17301514-A ST64GAL1 1.05 12 rs7955901-C TSPAN8/LGR5 1.07 

4 rs6819243-T MAEA 1.07 12 rs12427353-G HNF1A (TCF1) 1.08 

4 rs4458523-G WFS1 1.10 12 rs2261181-T HMGA2 1.13 

5 rs6878122-G ZBED3 or PDE8B 1.10 12 rs10842994-C KLHDC5 or PPFIBP1 1.10 

5 rs459193-G ANKRD55 1.08 13 rs1359790-G SPRY2 1.08 

6 rs7756992-G CDKAL1 1.17 15 rs4502156-T C2CD4A or VPS13C 1.06 

6 rs3734621-C KCNK16 1.07 15 rs11634397-G ZFAND6 1.05 

6 rs4299828-A ZFAND3 1.04 15 rs12899811-G PRC1 1.08 

7 rs17168486-T DGKB 1.11 15 rs2007084-G AP3S2 1.02 

7 rs10278336-A GCK  1.07 15 rs7177055-A HMG20A 1.08 

7 rs849135-G JAZF1 1.11 16 rs9936385-C FTO 1.13 

7 rs17867832-T GCC1 or PAX-4 1.09 16 rs7202877-T BCAR1 1.12 

7 rs13233731-G KLF14 1.05 17 rs2447090-A SRR 1.04 

8 rs3802177-G SLC30A8 1.14 18 rs12970134-A MC4R 1.08 

8 rs7845219-T TP53INP1 1.06 19 rs10401969-C CILP2 1.13 

8 rs516946-C ANK1 1.09 19 rs8182584-T PEPD 1.04 

9 rs10811661-T CDKN2A/B 1.18 20 rs4812829-A HNF4A 1.06 
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Appendix Table 2 – Outline of models applied in the association analysis of Genetic 
Risk Scores (GRS) with subclinical atherosclerosis traits, plus covariates. 

 

BASIC MODEL 
 

GRS, sex 
 

 

FULL MODEL GRS, sex 

 
Age 
BMI 
Waist circumference 
Systolic blood pressure (SBP)* 
 
Fasting insulin 
Fasting glucose 
Triglycerides 
HDL-Cholesterol 
LDL-Cholesterol 
 
Family history of T2D 
Family history of CVD 
 
Smoking status 
Physical activity 
 
Diabetes medication 
Hypertension medication 
Lipid-lowering medication 
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A
ppendix T

able 3 – Subclinical atherosclerosis m
easures, anthropom

etric and clinical characteristics in FH
S and C

A
R

D
IA

 cohorts. 
 

 
 

 
FH

S 
C

A
R

D
IA

 
 

 
 

 
 

 
Exam

 6 
Exam

 7 
Exam

 year 20 
Exam

 year 25 
 

 
 

 
 

Ethnicity 
E

uropean A
m

ericans 
A

frican A
m

ericans 
E

uropean A
m

ericans 
A

frican A
m

ericans 
E

uropean A
m

ericans 
N

 (m
ale %

) 
2459 (44.8%

) 
1111 (44.8%

) 
816 (38.6%

) 
1635 (45.9 %

) 
811 (38.8%

) 
1621 (45.9 %

) 
A

ge (yr) 
57.9 ± 9.6 

58.9 ± 8.9 
44.4 ± 3.8 

45.5 ± 3.3 
49.4 ± 3.8 

50.6 ± 3.3 
B

M
I (kg/m

2) 
27.6 ± 4.9 

28.1 ± 4.9 
31.7 ± 7.6 

27.9 ± 6.7 
32.2 ± 7.8 

28.2 ± 6.2 
W

aist circum
ference (cm

) 
96.5 ± 12.7 

96.5 ± 12.7 
94.7 ± 15.7 

89.8 ± 15.1 
97.1 ± 15.8 

91.6 ± 15.6 
Systolic blood pressure (m

m
H

g) 
127.1 ± 18.3 

124.9 ± 17.7 
119.1 ± 15.5 

112.2 ± 12.5 
122.2 ± 14.5 

114.5 ± 13.7 
Fasting glucose (m

g/dL) 
101.3 ± 22.9 

99.9 ± 18.2 
102.3 ± 30.2 

97.8 ± 21.2 
102.1 ± 34.6 

96.7 ± 20.4 
Fasting insulin (pm

ol/L) 
- 

14.3 ± 8.6 
17.1 ± 12.2 

13.5 ± 9.1 
13.39 ± 14.1 

9.6 ± 7.3 
Triglycerides (m

g/dL) 
136.1 ± 88.2 

132.6 ± 86.5 
96.4 ± 58.4 

116.9 ± 82.4 
101.4 ± 67.1 

120.0 ± 86.3 
H

D
L-cholesterol (m

g/dL) 
51.9 ± 16.1 

53.9 ± 15.9 
54.1 ± 16.3 

54.4 ± 17.2 
57.7 ± 17.3 

58.7 ± 18.5 
LD

L-cholesterol (m
g/dL) 

127.4 ± 32.9 
121.4 ± 31.3 

110.4 ± 33.6 
110.3 ± 30.5 

109.2 ± 33.9 
113.4 ± 30.9 

Parental history of diabetes (%
) 

19.8 
19.8 

17.9 
9.5 

17.6 
9.4 

Parental history of C
V

D
 (%

) 
43.2 

41.9 
39.8 

41.3 
39.9 

41.2 
D

iabetes (%
) 

7.1 
6.3 

10.9 
3.4 

13.3 
6.5 

Sm
okers (never/form

er/current - %
) 

35.8/48.9/15.2
* 

39.5/50.7/9.8
* 

59.9/40.1
** 

46.1/53.9
** 

62.2/37.9
** 

50.7/49.3
** 

Physical activity  
- 

- 
287.5±285.4

§ 
370.3±260.8

§ 
264.4±257.5

§ 
388.0±280.9

§ 
G

enetic R
isk Score 

66.7 ± 5.3 
66.7 ± 5.2 

69.2 ± 4.5 
66.4 ± 5.2 

69.2 ± 4.5 
66.4 ± 5.2 

 
 

 
 

 

C
om

orbidity status 
 

 
 

 
 

 
 

 
 

D
iabetes m

edication (%
) 

3.3 
2.9 

7.9 
3.4 

10.7 
4.6 

H
ypertension m

edication (%
) 

23.4 
24.8 

23.1 
10.2 

41.8 
31.8 

Lipid-low
ering m

edication (%
) 

9.8 
13.9 

- 
- 

- 
- 

 
 

 
 

 

Subclinical atherosclerosis traits 
 

 
 

 
 

 
 

 
 

A
A

C
S (A

gatston unit) 
- 

1458.6 ± 2332.3 
- 

- 
- 

- 
C

A
C

S (A
gatston unit) 

- 
229.8 ± 550.8 

- 
- 

31.7 ± 154.6 (n=586) 
49.2 ± 252.1 (n=1267) 

C
C

A
-IM

T (m
m

)  
0.5 ± 0.4 (n=2340) 

- 
0.7 ± 0.1 (n=617) 

0.7 ± 0.1 (n=1379) 
- 

- 
IC

A
-IM

T (m
m

)  
0.8 ± 1.9 (n=2035) 

- 
0.6 ± 0.2 (n=562) 

0.6 ± 0.2 (n=1332) 
- 

- 
A

B
I 

1.1 ± 0.1 (n=2822) 
- 

- 
- 

- 
 

 
 

 
 

 D
ata expressed as m

ean±standard deviation, if not otherw
ise indicated. A

A
C

S, abdom
inal aorta calcium

 score; C
A

C
S, coronary artery calcium

 score; C
C

A
, com

m
on carotid artery; IC

A
, internal 

carotid artery; IM
T, intim

a-m
edia thickness; A

B
I, ankle-brachial index. *Sm

oking status categorized as never/form
er/current in FH

S. **Sm
oking status categorized as never/ever in C

A
R

D
IA

. §Physical 
activity is expressed as Total Intensity Score, according to the C

A
R

D
IA

 Physical A
ctivity H

istory Q
uestionnaire (Pereira M

A
 et al.; PM

ID
: 9243481).  
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A

ppendix T
able 4 – Subclinical atherosclerosis m

easures, anthropom
etric and clinical characteristics in M

E
SA

 and G
E

N
O

A
 cohorts. 

 
 

 

 
M

E
SA

 
G

E
N

O
A

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Ethnicity 
E

uropean A
m

ericans 
A

sian A
m

ericans 
A

frican A
m

ericans 
H

ispanic A
m

ericans 
E

uropean A
m

ericans 
A

frican A
m

ericans §§ 
N

 (m
ale %

) 
2526 (47.7%

) 
773 (49.2%

) 
1611 (46.1%

) 
1446 (48.3%

) 
969 (40.9%

) 
535 (25.8%

) 
A

ge (yr) 
62.7 ± 10.2 

62.4 ± 10.4 
62.3 ± 10.1 

61.4 ± 10.3 
58.9 ± 9.5 

68.5 ± 7.7 
B

M
I (kg/m

2) 
27.7 ± 5.1 

23.9 ± 3.3 
30.2 ± 5.9 

29.5 ± 5.2 
30.7 ± 6.3 

32.7 ± 7.2 
W

aist circum
ference (cm

) 
97.9 ± 14.5 

87.1 ± 9.8 
101.3 ± 14.7 

100.7 ± 13.1 
100.3 ± 16.2 

101.1 ± 15.4 
Systolic blood pressure (m

m
H

g) 
123.5 ± 20.5 

124.6 ± 21.7 
131.8 ± 21.8 

126.8 ± 21.9 
131.4 ± 16.8 

137.5 ± 21.0 
Fasting glucose (m

g/dL) 
91.3 ± 21.6 

99.2 ± 28.6 
100.3 ± 32.7 

103.9 ± 39.4 
104.6 ± 24.5 

111.6 ± 37.7 
Fasting insulin (pm

ol/L) 
9.1 ± 5.6 

9.6 ± 12.5 
11.5 ± 27.5 

11.8 ± 15.7 
54.2 ± 40.3 

80.6 ± 87.5 
Triglycerides (m

g/dL) 
133 ± 90.1 

143.1 ± 85.7 
105.2 ± 70.5 

158.4 ± 101.8 
159.0 ± 96.9 

101.0 ± 63.3 
H

D
L-cholesterol (m

g/dL) 
52.4 ± 15.8 

49.3 ± 12.4 
52.3 ± 15.2 

47.5 ± 13.1 
52.4 ± 15.6 

57.1 ± 16.5 
LD

L-cholesterol (m
g/dL) 

117.1 ± 30.3 
115.1 ± 28.8 

116.7 ± 33.3 
119.9 ± 32.9 

122.7 ± 32.1 
114.6 ± 35.3 

Parental history of diabetes (%
) 

- 
- 

- 
- 

29.4 
40.9 

Parental history of C
V

D
 (%

) 
44.6/33.2/2.8

†  
14.5/23.3/1.2

† 
31.9/31/7

† 
31.2/23.8/3.2

† 
57.5

††  
56.1

†† 
D

iabetes (%
) 

5.9 
13.5 

17.4 
17.8 

13.5 
35.5 

Sm
okers (never/form

er/current - %
) 

33.1/66.9 
69.6/30.4 

26.6/73.4 
40.7/59.3 

52.5/37.3/10.2 
 60.4/31.4/8.2 

R
egular physical activity (daily hours) 

12.8 ± 4.9 
9.9 ± 4.4 

14.4 ± 7.1 
11.6 ± 5.9 

3.7 ± 2.5
§ 

1.0 ± 1.8
§ 

G
enetic R

isk Score 
63.9 ± 4.7 

61.5 ± 4.2 
56.5 ± 4.7 

62.7 ± 4.8 
64.2 ± 4.9 

57.0 ± 3.9 
 

 
 

 
 

 
 

C
om

orbidity status 
 

 
 

 
 

 
 

 
 

 
 

 
 

D
iabetes m

edication (%
) 

4.6 
9.2 

13.6 
15.8 

8.9 
32.0 

H
ypertension m

edication (%
) 

33.3 
29.1 

50.3 
32.9 

68.4 
80.8 

Lipid-low
ering m

edication (%
) 

18.3 
14.1 

15.8 
13.3 

27.0 
40.9 

 
 

 
 

 
 

 

Subclinical atherosclerosis traits 
 

 
 

 
 

 
 

 
 

 
 

 
 

A
A

C
S (A

gatston unit) 
1668.4 ± 2581.4 (n=760) 

1044.7 ± 2015.4 (n=247) 
887.2 ± 1737.7 (n=343) 

1044.6 ± 1898.4 (n=496) 
- 

- 
C

A
C

S (A
gatston unit) 

338.6 ± 577.2 (n=1433) 
205.8 ± 374.3 (n=392) 

294.0 ± 582.8 (n=714) 
281.4 ± 567.2 (n=659) 

201.6 ± 467.2 
236.3 ± 583.0 

C
C

A
-IM

T (m
m

)  
0.9 ± 0.2 (n=2501) 

0.8 ± 0.2 (n=770) 
0.9 ± 0.2 (n=1573) 

0.9 ± 0.2 (n=1431) 
- 

- 
IC

A
-IM

T (m
m

)  
1.1 ± 0.6 (n=2475) 

0.9 ± 0.5 (n=766) 
1.1 ± 0.6 (n=1547) 

1.0 ± 0.6 (n=1399) 
- 

- 
A

B
I 

1.1 ± 0.1 (n=2494) 
1.1 ± 0.1 (n=768) 

1.1 ± 0.1 (n=1432) 
1.3 ± 0.1 (n=1430) 

- 
- 

 
 

 
 

 
 

 
 D

ata expressed as m
ean±standard error, if not otherw

ise indicated. A
A

C
S, abdom

inal aorta calcium
 score; C

A
C

S, coronary artery calcium
 score; C

C
A

, com
m

on carotid artery; IC
A

, internal carotid artery; IM
T, intim

a-m
edia 

thickness; A
B

I, ankle-brachial index. †C
V

D
 is categorized in M

ESA
 as m

yocardial infarction/stroke/am
putation not due to injury. ††Expressed as parental history of coronary heart disease in G

EN
O

A
. *Sm

oking status categorized as 
never/ever in M

ESA
. **Sm

oking status categorized as never/form
er/current in G

EN
O

A
. §Physical activity categorized as m

oderate or heavy. §§A
frican A

m
ericans in G

EN
O

A
 had an available genetic risk score lim

ited to 55 of 62 
T2D

 SN
Ps. 
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Appendix Table 5 – Association between prevalent subclinical atherosclerosis measures and a T2D 
genotype risk score (GRS) comprised of 20 tag SNPs mostly linked with beta-cell function (GRSβ) 
in linear regression models of FHS and CARDIA cohorts. 

   

 FHS CARDIA 
 

 

 European Americans African Americans European Americans 
     

Basic Model Beta±SE P Beta±SE P Beta±SE P 
     

CACS -0.023±0.05 0.64 -0.011±0.03 0.71 0.005±0.02 0.76 
AACS -0.072±0.06 0.23 - - - - 

ICA-IMT -0.016±0.01 0.01 -0.001±0.00 0.55 0.001±0.00 0.31 
CCA-IMT -0.002±0.00 0.41 -0.001±0.00 0.60 0.000±0.00 0.69 

ABI -9.33E+08±0.00 0.94 - - - - 
     

Full Model       
     

CACS -0.021±0.05 0.69 -0.027±0.03 0.36 0.001±0.02 0.95 
AACS -0.012±0.06 0.85 - - - - 

ICA-IMT -0.018±0.01 0.007 -0.001±0.00 0.68 0.001±0.00 0.15 
CCA-IMT -0.004±0.00 0.15 -0.001±0.00 0.49 0.001±0.00 0.21 

ABI 0.001±0.00 0.46 - - - - 
     

 
AACS, abdominal aorta calcium score; CACS, coronary artery calcium score; CCA, common carotid artery; ICA, internal carotid artery; IMT, 
intima-media thickness; ABI, ankle-brachial index. Data expressed as mean±standard error. 

Appendix Table 6 – Association between prevalent subclinical atherosclerosis measures and a T2D 
genotype risk score (GRS) comprised of 10 tag SNPs mostly linked with insulin resistance (GRSIR) 
in linear regression models of FHS and CARDIA cohorts. 

   

 FHS CARDIA 
 

 

 European Americans African Americans European Americans 
     

Basic Model Beta±SE P Beta±SE P Beta±SE P 
     

CACS -0.004±0.07 0.95 -0.011±0.04 0.98 0.041±0.03 0.11 
AACS 0.112±0.08 0.17 - - - - 

ICA-IMT -0.003±0.01 0.77 0.000±0.00 0.93 -0.001±0.00 0.71 
CCA-IMT -0.004±0.00 0.29 0.001±0.00 0.46 -0.000±0.00 0.77 

ABI -7.74-06±0.00 0.99 - - - - 
     

Full Model       
     

CACS 0.036±0.08 0.65 0.005±0.04 0.89 0.025±0.03 0.32 
AACS 0.056±0.09 0.57 - - - - 

ICA-IMT -0.005±0.01 0.65 0.001±0.00 0.84 -0.000±0.00 0.83 
CCA-IMT -0.009±0.00 0.01 0.001±0.00 0.58 -0.001±0.00 0.63 

ABI 0.001±0.00 0.56 - - - - 
     

AACS, abdominal aorta calcium score; CACS, coronary artery calcium score; CCA, common carotid artery; ICA, internal carotid artery; IMT, 
intima-media thickness; ABI, ankle-brachial index. Data expressed as mean±standard error. 
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A
ppendix Figure 1 – D

istribution of the total sum
 of risk alleles com

prised in the T
2D

 G
R

S
62  in G

E
N

O
A

 (panel A
 and B

) and M
E

SA
 

cohorts (panels C
 to F), stratified by ethnicity. 
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A
ppendix Figure 2 – D

istribution of the total sum
 of risk alleles com

prised in the T
2D

 G
R

S
62 , G

R
S
β  and G

R
S

IR  in FH
S 

(panel A
, B

, C
, respectively) and in C

A
R

D
IA

 cohorts (panel D
 to I), stratified by ethnicity. 
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7.3 

 

 

 

Supplemental material Chapter 4 
 

Is common genetic variation at IRS1, ENPP1 and TRIB3 loci associated with 

cardiometabolic phenotypes in type 2 diabetes? An exploratory analysis of 

the Verona Newly Diagnosed Type 2 Diabetes Study 

Experimental Design  

 

The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) is an ongoing 

study aiming at building a biobank of patients with newly diagnosed Type 2 

diabetes. As of Jan 1 2002, all patients referred to the Division of Endocrinology 

and Metabolic Diseases of University of Verona School of Medicine, whose 

diabetes has been diagnosed in the last six months, are asked to participate in this 

research. The clinical evidence on which the diagnosis of Type 2 diabetes has 

been made is reviewed and the diagnosis confirmed [1]. Patients are drug-naïve 

or, if already treated with antidiabetic drugs, undergo a treatment washout of at 

least one week before metabolic tests are performed. Among the exclusion criteria 

are age>75 years, non-Italian ancestry, insulin treatment, presence of anti-GAD 

antibodies, malignancies, and any condition severely impairing liver and/or 

kidney function. In this study, we report the data collected in 509 patients, whose 

characteristics are summarized in Table 1. 
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All subjects consumed a weight-maintaining diet containing 200-250 g of 

carbohydrate/day for at least three days before studies. Body weight was stable in 

all subjects for at least 1 month before studies. No subject participated in any 

heavy exercise. Each subject gave informed written consent before participating 

in the research, which was approved by the Human Investigation Committee of 

the Verona City Hospital. Measurements of standard clinical phenotypes were 

collected in all patients. Metabolic tests were carried out on two separate days in 

random order. On both days, patients were admitted to the Metabolic Clinic 

Research Center at 07:30 after an overnight fast. All studies were carried out in a 

quiet, temperature controlled (22° C) room. 

On one day an OGTT (75 g) was performed to assess beta cell function. For 

ethical reasons, the OGTT was not performed in patients presenting with FPG 

greater than 15 mmol/l. During the entire test patients were sitting in a 

comfortable cardiac chair. One teflon (21 g) venous catheter was inserted into an 

antecubital vein for blood sampling and kept patent with heparinized normal 

saline solution. After a 30’ rest to establish baseline and after collecting a 20 cc 

blood sample for leukocyte DNA extraction, at time = 0’ subjects ingested 75 g of 

glucose in 300 ml of water over 5 min. Blood samples to measure glucose, C-

peptide and insulin concentrations were collected at times -10’, 0’, +15’, +30’, 

+45’, +60’, +90’, +120’, +150’, +180’, +210’ and +240’. In some patients further 

blood samples were collected at +270’ and +300’. Urines were collected to 

measure glycosuria.  

On a separate day, a euglycemic insulin clamp was performed to assess insulin 

sensitivity [2]. During the entire test patients were lying in bed. One teflon 

catheter was introduced into an antecubital vein for the infusion of test 

substances. Another teflon catheter was placed retrogradely into a wrist vein for 

sampling arterialized venous blood, according to the “hot box” technique. After a 

30’ rest in bed to establish baseline, indirect calorimetry (at least 40’) was 
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performed as previously described, for a companion study [1]. At the end of 

calorimetric measures, baseline blood samples were collected and a standard 

euglycemic insulin (intravenous prime: 4.8 nmol.m-2 BSA; continuous infusion: 

240 pmol.min-1.m-2 BSA) clamp was performed [1]. Plasma glucose was allowed 

to decline until it reached 5.5 mmol/l, after which glucose clamping started with a 

glucose concentration goal of 5 mmol/l. The duration of the glucose clamp was at 

least of 120’, but it was prolonged, if and as needed, to ensure at least 60’ of 

insulin clamp at euglycemia in each patient. Timed blood samples were collected 

to measure hormone and substrate levels. In the last 45’ of the clamp indirect 

calorimetry was repeated to assess substrate oxidation and energy production rates 

for a companion study. Urines were collected to measure urea excretion rate. 

In both metabolic tests, all blood samples were collected in pre-chilled tubes and 

readily spun at 1,500 g. Plasma and serum specimens were stored at –80° C. 

 

Mathematical Modelling of Beta Cell Function 

 

The analysis of the glucose and C-peptide curves during the OGTT follows the 

general strategy described in previous publications [3, 4] with some modifications 

and builds upon previous works from other laboratories [5, 6]. The kinetics of C-

peptide is described with a two-compartment model, in which the two pools (1 

and 2) exchange with each other and the irreversible loss of the hormone is from 

pool 1, the same where C-peptide concentration is measured. C-peptide kinetic 

parameters are computed according to the equations by Van Cauter et al. [7]. 

Herein are the equations describing the model of glucose induced insulin 

secretion during an OGTT: 

dcp1(t)/dt = ISR(t) + cp2
. k12 – (k01 + k21) . cp1   (Eq.1) 

 where ISR = insulin secretion rate, cp1 = C-peptide mass in the sampling 

(accessible) compartment, cp2 = C-peptide mass in the remote compartment, k12 
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and k21 = rate constants of the exchange between the two C-peptide 

compartments, and k01 = rate constant of the irreversible loss of C-peptide from 

the accessible compartment. Note that the values of the volume of distribution of 

C-peptide pool 1 (accessible compartment), k12, k21, and k01 are computed 

according to the equations by Van Cauter et al. [7]. 

 

ISR(t) = BSR + DSR(t) + PSR(t) (Eq.2) 

 

where BSR = basal insulin secretion rate, DSR = insulin secretion rate due to the 

derivative (or dynamic) component, and PSR = insulin secretion rate due the 

proportional (or static) component. 

 

BSR = CPss . V1 . k01 (Eq. 3) 

 

where CPss is basal C-peptide concentration and V1 is the volume of the 

accessible compartment of C-peptide. 

From the modeling viewpoint, DSR(t) and PSR(t) are the components which in 

intravenous glucose tolerance tests or hyperglycemic clamps describe classical 

first phase insulin secretion and second phase insulin secretion, respectively. 

Furthermore, from a physiological viewpoint, the sum of BSR and PSR(t) 

describes the relationship linking glucose concentration and insulin secretion rate, 

in the absence of the derivative component (DSR). 

 

DSR(t) and PSR(t) are mathematically defined as follows: 

DSR (t) = X1(t) . t-1  (Eq. 4) 

dX1(t) / dt = s1 . [dG(t)/dt]/[log(1.1+ t)] - X1(t) . t-1  if dG(t)/dt > 0 (Eq. 5) 

      dX1(t) / dt = - X1(t) . t-1        if dG(t)/dt ≤ 0 (Eq. 6)  
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, where s1 = glucose sensitivity of derivative control of insulin secretion, G = 

plasma glucose concentration, X1 = C-peptide (insulin) mass made available for 

the derivative component of insulin secretion, t = time constant of the derivative 

component of insulin secretion, and the term log(1.1 + t) accomodates the time-

associated decline of s1 documented in humans during a hyperglycemic stimulus 

[8].  

PSR(t) = X2(t) . d-1 
  (Eq. 7)  

dX2(t) / dt = s2 . [G(t) – q] - X2 (t) . d-1  (Eq. 8)  

 

where  s2 = glucose sensitivity of the proportional component of insulin secretion, 

X2 = C-peptide (insulin) mass made available for the proportional component of 

insulin secretion, d = time constant of the proportional component of insulin 

secretion, q = glucose threshold above which the beta-cell responds with the 

proportional component of insulin secretion to plasma glucose concentration.  

This model was implemented in the SAAM 1.2 software (SAAM Institute, 

Seattle, WA) [9] to estimate its unknown parameters. Numerical values of the 

unknown parameters were estimated by using nonlinear least squares. Weights 

were chosen optimally, i.e., equal to the inverse of the variance of the 

measurement errors, which were assumed to be additive, uncorrelated, with zero 

mean, and a coefficient of variation (CV) of 6-8%. The unknown parameters of 

the model are: CPss, s1, t, s2, d, and q. They were estimated with good precision, 

as shown by their CVs (Supplementary Table S1). 

A good fit of the model to data was obtained as shown by the table of the 

weighted residuals (Supplementary Table S2).  
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There are two main physiological outputs of the model: 

1. derivative control (units: [pmol.m-2 BSA] . [mmol.l-1.min-1] –1): it is the 

amount of insulin secreted in response to a rate of glucose increase of 1 

mmol/l per min which lasts for 1 minute;  

 

2. stimulus-response curve linking glucose concentration (x axis) to insulin 

secretion rate (y axis): as explained above, it is the sum of BSR and PSR. 

With the purpose of avoiding artefactual increases in the power of 

statistical analyses, we used the stimulus-response curve at the pre-

determined glucose concentrations of 5.5, 8.0, 11.0, 15.0 and 20.0 mmol/l.  

 

 

 

Statistical analysis 

 

In this paper there are 5 outcome variables of interest (carotid atherosclerosis, 

ECG, insulin sensitivity, derivative control and proportional controls of beta cell 

function) and 10 SNPs of interest, giving rise to 50 comparisons and to the issue 

of correcting for false positive findings. We applied the two stage step-up linear 

procedure of Benjamini-Krieger-Yekutieli (BKY) [10] to control the false 

discovery rate (FDR) in our findings. The BKY procedure is a refinement of an 

earlier attempt [11] to improve the classical Benjamini-Hochberg method to 

control FDR [12]. It is based on the idea that in many sets of multiple 

comparisons the number of true null hypotheses is less than the number of 

hypotheses tested, and that this bit of information is relevant to compute FDR in 

multiple comparisons. 

Briefly, the BKY procedure tries to exploit the information content of the 

distribution of the p values of multiple comparisons. In Supplementary Figure 
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S2, the p values of the 50 comparisons performed in this study (y-axis) are plotted 

against their rank (x-axis), from the smallest to the largest. If all 50 null 

hypotheses tested were true, the p values should follow the straight line of 

Supplementary Figure S2. The observed p values at some point deviate from the 

expected distribution. The BKY procedure uses the data to estimate the number of 

true null hypotheses, which by definition in our case can be only ≤ 50. With an 

iterative process of linear regression analyses, in our case the number of true null 

hypotheses was found to be 41, not 50. With a FDR set at 0.20, which is the 

highest acceptable FDR according to Benjamini and Yekutieli [13], this led us to 

reject 5 null hypotheses, i.e. to accept 5 results as statistically significant at a FDR 

of 0.20.  
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Figure S1 - Genomic position and LD values of the ENPP1, IRS1 and TRIB3 

genotyped variants, as selected by GEVALT (GEnotype Visualization and 

ALgorithmic Tool) software in the VNDS study sample.  

 

The upper portion of each figure shows the gene and the genomic position of the 

genotyped polymorphisms. The lower portion of the figure shows the LD value, 

calculated as r2, among the SNPs. The dotted lines connect each SNP name and 

position with the corresponding cell in the LD matrix. Increasing level of LD is 

shown by darker grayscale. Each number enclosed in the grey diamonds below 

each locus should be divided by 100 to obtain the actual r2 value (i.e. 6 means r2 = 

6/100 = 0.06 etc …). 
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Figure S2 - P values of the 50 comparisons of the main outcome variables (y-

axis) vs. the rank of the same p values from the lowest to the highest (x-axis).  

 

The straight line indicates the expected distribution of the p values if all the null 

hypotheses were true, and, therefore, to be accepted, i.e. if no “true” associations 

between SNPs and cardiometabolic phenotypes existed. 
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 Table S1. Coefficients of variation of the beta cell model parameters. CPss= basal C-

peptide concentration; s1 = parameter regulating glucose sensitivity of derivative control 

of insulin secretion, t = time constant of derivative control of insulin secretion, s2 = 

glucose sensitivity of proportional control of insulin secretion, δ = time constant of 

proportional control of insulin secretion, θ: glycemic threshold of proportional control of 

insulin secretion. 

	

	
	
	
	
	
	
	
	

Model	Parameter	 Coefficients	of	Variation	(%)	
Median	 I.Q.	Range	

CPss	 10.8	 6.9-18.3	
s1	 40.7	 24.2-83.4	
τ  60.3	 58.2-61.2	
s2	 16.2	 11.9-22.4	
δ  33.0	 21.4-66.7	
θ  13.4	 8.5-22.0	
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Table S2. Weighted residuals of the model fit to the C-peptide data of the OGTT. 

Data are presented as means±SD. The weighted residuals are a quantitative point-by-

point assessment of the goodness-of-fit of the model to the data: a theoretically perfect fit 

should generate weighted residuals with mean 0 and SD of 1. 

	

	

	
	
	
	
	

	

	
	
	
	
	
	
	
	

	

	

	

	 	

 	

 C-Peptide	weighted	residuals	

 Time	 15’	 30’	 45’	 60’	 90’	 120’	 150’	 180’	 210’	 240’	

														Mean	 -
0.397	

+0.118	 +0.199	 +0.267	 +0.115	 -
0.026	

+0.142	 +0.015	 +0.026	 +0.107	

													SD	 1.03	 1.14	 1.197	 1.263	 1.302	 1.213	 1.319	 1.268	 1.277	 1.164	
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Table S3. Pairwise Linkage Disequilibrium among the 13 SNPs of IRS1, ENNP1 and TRIB3 

loci in 1000Genomes Pilot1, panel CEU.* 

	
		

SNP	 Proxy	 Distance	 RSquared	 DPrime	 Chr	 Coordinate_HG18	 Locus	
rs6076472	 rs12626158	 9540	 0.104	 0.68	 20	 318150	 TRIB3	
rs6076472	 rs7265169	 4137	 0.098	 0.757	 20	 312747	 TRIB3	
rs6076472	 rs6139007	 179	 0.082	 1	 20	 308789	 TRIB3	
rs6076472	 rs6115830	 16616	 0.069	 0.524	 20	 325226	 TRIB3	
rs6076472	 rs2295490	 8295	 0.005	 0.095	 20	 316905	 TRIB3	
rs6139007	 rs12626158	 9361	 0.134	 0.608	 20	 318150	 TRIB3	
rs6139007	 rs6115830	 16437	 0.098	 0.55	 20	 325226	 TRIB3	
rs6139007	 rs2295490	 8116	 0.042	 1	 20	 316905	 TRIB3	
rs6139007	 rs7265169	 3958	 0.014	 1	 20	 312747	 TRIB3	
rs7265169	 rs2295490	 4158	 0.027	 0.287	 20	 316905	 TRIB3	
rs7265169	 rs6115830	 12479	 0.014	 0.572	 20	 325226	 TRIB3	
rs7265169	 rs12626158	 5403	 0.011	 0.535	 20	 318150	 TRIB3	
rs2295490	 rs12626158	 1245	 0.055	 0.426	 20	 318150	 TRIB3	
rs2295490	 rs6115830	 8321	 0	 0.061	 20	 325226	 TRIB3	
rs12626158	 rs6115830	 7076	 0.292	 0.569	 20	 325226	 TRIB3	
rs6939185	 rs9493119	 72231	 0.033	 0.522	 6	 132253111	 ENPP1	
rs6939185	 rs858340	 20007	 0.02	 0.198	 6	 132200887	 ENPP1	
rs6939185	 rs1044498	 33181	 0.005	 0.149	 6	 132214061	 ENPP1	
rs6939185	 rs4897549	 80303	 0	 0.012	 6	 132261183	 ENPP1	
rs858340	 rs9493119	 52224	 0.051	 0.459	 6	 132253111	 ENPP1	
rs858340	 rs4897549	 60296	 0.051	 0.247	 6	 132261183	 ENPP1	
rs858340	 rs1044498	 13174	 0.003	 0.259	 6	 132214061	 ENPP1	
rs1044498	 rs9493119	 39050	 0.278	 0.726	 6	 132253111	 ENPP1	
rs1044498	 rs4897549	 47122	 0.119	 0.463	 6	 132261183	 ENPP1	
rs9493119	 rs4897549	 8072	 0.019	 0.254	 6	 132261183	 ENPP1	
rs4675095	 rs1801278	 n/a n/a n/a n/a n/a IRS1	
rs1801278	 rs4675095	 n/a n/a n/a n/a n/a IRS1	
*	As	provided	by	the	SNAP	software	v.	2.2	housed	at	http://www.broadinstitute.org,	Broad	Institute	(Boston,	MA,	USA).	
n/a,	not	available.	
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Supplementary	 Table	 S4.	 Clinical	 and	 metabolic	 features	 of	 the	
VNDS	study	population.	
Variable	 All	
N	(M/F)	 597	(415/182)	
Age	(years)	 59	[52-66]	
BMI	(Kg/m2)	 29.3	[26.5-32.8]	
Waist	circumference	(cm)	 100	[93-108]	
Smokers	(%)	 47.9	
Fasting	plasma	glucose	(mmol/l)	 7.0	[6.1-7.9]	
2hr	plasma	glucose	(mmol/l)		 13.0	[10.5-16.1]	
HbA1cDCCT	(%)	 6.7	[6.2-7.5]	
HbA1cIFCC	(mmol/mol)	 49.7	[44.3-58.5]	
Triglycerides	(mmol/l)		 1.4	[1.0-2.0]	
HDL-cholesterol	(mmol/l)		 1.1	[1.0-1.3]	
Total	cholesterol	(mmol/l)	 4.9	[4.3-5.6]	
SBP	(mmHg)	 138	[124-150]	
DBP	(mmHg)	 82	[80-90]	
Insulin	Sensitivity	(µmol/min/m2	BSA)	 607	[380-865]	
Insulinogenic	Index	(mU/mmol)	 4.1	[2.2-7.3]	
CIR120’	(mU⋅L/mmol2)	 0.5	[0.2-1.3]	
Data	 are	 presented	 as	median	 [I.Q.	 range];	 BMI,	 Body	Mass	 Index;	 SBP,	
Systolic	Blood	Pressure;	DBP,	Diastolic	Blood	Pressure;	HbA1cDCCT,	Diabetes	
Control	 and	 Complication	 Trial-Aligned	 Hemoglobin	 A1c;	 HbA1cIFCC,	
International	 Federation	 of	 Clinical	 Chemistry-Aligned	 Hemoglobin	 A1c;	
CIR120’,	Corrected	Insulin	Response120’	
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Supplementary	Table	 S5.	Association	of	 IRS1,	 ENPP1	and	 TRIB3	genotypes	
with	 insulin	 sensitivity	 as	 assessed	 by	 euglycemic	 hyperinsulinemic	 clamp	
and	Matsuda	Index.	

SNP	(locus)	 Effect	
allele†	

Genotype	 P-value	

rs858340	(ENPP1)	 A	 AA	 AG	 GG	 	
	 Matsuda	Index	 	 3.1±0.3	 3.4±0.1	 3.3±0.1	 0.82	
	 M	clamp*	 	 820±69.1	 664±23.3	 623±19.9	 0.008	
rs6939185	(ENPP1)	 A	 AA	 AG	 GG	 	
	 Matsuda	Index	 	 3.7±0.3	 3.3±0.1	 3.2±0.1	 0.01	
	 M	clamp	 	 727±44.1	 653±20.8	 638±25.6	 0.05	
rs9493119	(ENPP1)	 G	 GG	 AG	 AA	 	
	 Matsuda	Index	 	 2.7±0.6	 3.9±0.4	 3.3±0.1	 0.21	
	 M	clamp	 	 623±19.9	 664±23.3	 820±69.1	 0.24	
rs4897549	(ENPP1)	 A	 AA	 AG	 GG	 	
	 Matsuda	Index	 	 3.2±0.3	 3.4±0.2	 3.4±0.1	 0.45	
	 M	clamp	 	 662±60.7	 679±24.8	 634±20.1	 0.45	
rs6115830	(TRIB3)	 A	 AA	 AG	 GG	 	
	 Matsuda	Index	 	 3.3±0.2	 3.4±0.1	 3.2±0.2	 0.64	
	 M	clamp	 	 667±27.9	 655±22.3	 639±30.8	 0.23	
rs6139007	(TRIB3)	 G	 GG	 AG	 AA	 	
	 Matsuda	Index	 	 2.8±0.3	 3.5±0.2	 3.3±0.1	 0.68	
	 M	clamp	 	 668±53.3	 677±23.9	 638±21.0	 0.14	
rs6076472	(TRIB3)	 C	 CC	 AC	 AA	 	
	 Matsuda	Index	 	 3.4±0.3	 3.3±0.1	 3.3±0.1	 0.76	
	 M	clamp	 	 667±53.2	 651±23.7	 663±21.3	 0.10	
rs7265169	(TRIB3)	 A	 AA	 AC	 CC	 	
	 Matsuda	Index	 	 3.07±0.62	 3.21±0.24	 3.36±0.09	 0.74	
	 M	clamp	 	 384±112.1	 594±32.7	 668.8±17.0	 0.24	
rs1801278	(IRS1)	 A	 AA	 AG	 GG	 	
	 Matsuda	Index	 	 3.9±2.6	 3.4±0.2	 3.3±0.1	 0.85	
	 M	clamp	 	 829±356.3	 655±40.7	 653±16.1	 0.74	
rs4675095	(IRS1)	 A	 AA	 AT	 TT	 	
	 Matsuda	Index	 	 2.3±0.3	 3.7±0.3	 3.3±0.1	 0.23	
	 M	clamp	 	 672±43.0	 674±39.7	 651±16.2	 0.59	

	

Generalized	Linear	Model,	additive	genetic	model	 (outcome	trait:	 insulin	sensitivity,	
expressed	 as	 Matsuda	 Index	 or	 M-clamp;	 covariates:	 age,	 sex,	 BMI).	 †	 The	 minor	
allele,	 defined	 according	 to	 the	 MAF	 in	 our	 population,	 was	 considered	 as	 effect	
allele.	*	M	clamp	unit:	µmol/min/m2	Body	Surface	Area.	Matsuda	Index	and	M-clamp	
were	expressed	as	mean±SE.	
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Supplementary	Table	S6.	MAGIC	lookup:	Ln(HOMA-IR)	

SNP	 Effect	
allele†	

Other	
allele	 MAF	 Effect	 SE	 P-value	

rs4675095	(IRS1)	 A	 T	 0.067	 -3.40E-02	 8.80E-03	 0.0001171	
rs1801278	(IRS1)	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	
rs858340	(ENPP1)	 T	 C	 0.246	 -9.50E-03	 4.40E-03	 0.03142	
rs6939185	(ENPP1)	 A	 G	 0.396	 -3.40E-03	 4.10E-03	 0.4157	
rs9493119	(ENPP1)	 A	 G	 0.062	 9.00E-04	 1.10E-02	 0.9295	
rs4897549	(ENPP1)	 T	 C	 0.178	 -3.60E-03	 4.50E-03	 0.4319	
rs6139007	(TRIB3)	 T	 C	 0.195	 1.30E-02	 6.10E-03	 0.02906	
rs7265169	(TRIB3)	 A	 C	 0.106	 -9.50E-03	 1.40E-02	 0.4873	
rs6115830	(TRIB3)	 T	 C	 0.379	 1.50E-03	 4.30E-03	 0.72	
rs6076472	(TRIB3)	 T	 G	 0.274	 -1.60E-03	 6.90E-03	 0.8129	
†According	to	the	MAGIC	database.	n/a,	not	available;	Ln,	natural	logarithm.	HOMA-IR,	IR-Homeostatic	Model	
Assessment;	MAF,	Minor	Allele	Frequency;	SE,	Standard	Error.	
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Supplementary	Table	S7.	MAGIC	lookup:	Ln(HOMA-B)	

SNP	 Effect	
allele†	

Other	
allele	 MAF	 Effect	 SE	 P-value	

rs4675095	(IRS1)	 A	 T	 0.067	 -2.10E-02	 7.50E-03	 0.004202	
rs1801278	(IRS1)	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	
rs858340	(ENPP1)	 T	 C	 0.246	 -4.20E-03	 3.60E-03	 0.2396	
rs6939185	(ENPP1)	 A	 G	 0.396	 -1.90E-03	 3.40E-03	 0.569	
rs9493119	(ENPP1)	 A	 G	 0.062	 -4.90E-03	 9.40E-03	 0.6041	
rs4897549	(ENPP1)	 T	 C	 0.178	 2.20E-03	 3.70E-03	 0.5512	
rs6139007	(TRIB3)	 T	 C	 0.195	 9.00E-03	 5.00E-03	 0.07133	
rs7265169	(TRIB3)	 A	 C	 0.106	 -9.50E-03	 1.40E-02	 0.4873	
rs6115830	(TRIB3)	 T	 C	 0.379	 8.00E-04	 3.60E-03	 0.8275	
rs6076472	(TRIB3)	 T	 G	 0.274	 4.00E-04	 6.40E-03	 0.9553	
†According	 to	 the	MAGIC	 database.	 n/a,	 not	 available;	 Ln,	 natural	 logarithm.	 HOMA-B,	 Beta-cell	 function	 -	
Homeostatic	Model	Assessment;	MAF,	Minor	Allele	Frequency;	SE,	Standard	Error.	
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Supplementary	Table	S8.	MAGIC	lookup:	Insulin	Sensitivity	Index	(ISI)*	

SNP	 Effect	
allele†	

Other	
allele	 MAF	 Effect	 SE	 P-value	

rs4675095	(IRS1)	 A	 T	 0.067	 9.70E-02	 5.50E-02	 0.076463	
rs1801278	(IRS1)	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	
rs858340	(ENPP1)	 C	 T	 0.246	 7.00E-03	 2.70E-02	 0.792024	
rs6939185	(ENPP1)	 G	 A	 0.396	 -2.40E-02	 2.40E-02	 0.327156	
rs9493119	(ENPP1)	 A	 G	 0.062	 -8.90E-03	 6.70E-02	 0.894582	
rs4897549	(ENPP1)	 C	 T	 0.178	 -1.80E-02	 2.40E-02	 0.451828	
rs6139007	(TRIB3)	 T	 C	 0.195	 -9.90E-04	 3.80E-02	 0.979483	
rs7265169	(TRIB3)	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	
rs6115830	(TRIB3)	 C	 T	 0.379	 -1.70E-02	 2.50E-02	 0.500486	
rs6076472	(TRIB3)	 T	 G	 0.274	 2.00E-02	 2.90E-02	 0.503135	
†According	 to	 the	MAGIC	database.	 n/a,	 not	 available;	 Ln,	 natural	 logarithm.	MAF,	Minor	Allele	 Frequency;	 SE,	
Standard	 Error.	 *	 Calculated	 as	 Matsuda	 Index,	 as	 follows:	 10,000/[(Glucose0’⋅Insulin0’)⋅(Mean	 OGTT	 glucose	
concentration)⋅(mean	OGTT	insulin	concentration)]1/2	
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Supplementary	Table	S9.	MAGIC	lookup:	CIR30’	

	
SNP	 Effect	

allele†	
Other	
allele	 MAF	 Effect	 SE	 P-value	

rs4675095	(IRS1)	 A	 T	 0.067	 -3.70E-03	 5.00E-02	 0.940667	
rs1801278	(IRS1)	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	
rs858340	(ENPP1)	 C	 T	 0.246	 4.10E-02	 2.30E-02	 0.079624	
rs6939185	(ENPP1)	 G	 A	 0.396	 3.50E-02	 2.10E-02	 0.095807	
rs9493119	(ENPP1)	 A	 G	 0.062	 -1.60E-01	 5.50E-02	 0.002835	
rs4897549	(ENPP1)	 C	 T	 0.178	 1.80E-03	 2.20E-02	 0.935155	
rs6139007	(TRIB3)	 T	 C	 0.195	 -3.00E-02	 3.20E-02	 0.351976	
rs7265169	(TRIB3)	 C	 A	 0.106	 -6.90E-04	 3.50E-02	 0.984125	
rs6115830	(TRIB3)	 C	 T	 0.379	 -1.80E-02	 2.10E-02	 0.399347	
rs6076472	(TRIB3)	 T	 G	 0.274	 -3.50E-02	 2.60E-02	 0.172351	
†According	to	the	MAGIC	database.	n/a,	not	available;	Ln,	natural	 logarithm.	CIR30’,	Corrected	Insulin	Response	at	
30’	after	a	75g-OGTT;	MAF,	Minor	Allele	Frequency;	SE,	Standard	Error.	

 
	

	

	

	

	

	

	

	

		
 

 


