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Abstract—Qualitative modelling in systems biology is increas-
ingly adopted as it allows predicting important properties of
biological systems even when quantitative information of such
systems are unknown. Even though different tools for qualitative
modelling have been recently proposed, their lack of automatism
and their unstructured simulation core limit their applicability to
non-complex biological networks. This paper presents SyQUAL,
a platform for qualitative modelling and simulation of biological
systems. It consists of two main layers: a Web-based framework
that allows users to (i) import models described in the standard
Systems Biology Markup Language (SBML), (ii) easily define
properties to observe, and (iii) run simulations by hiding the
underlying layer, that is, a SystemC-based core simulator that al-
lows simulating the systems through a discrete event-based model
of computation at different levels of details. The paper shows
how SyQUAL has been applied to identify the attractors and to
analyse the system robustness/sensitivity under perturbations of
the Colitis-associated Colon Cancer (CAC) network.

I. INTRODUCTION

Modelling and simulation of biological systems is a key
requirement for integrating in-vitro and in-vivo experimental
data. In-silico simulation allows testing different experimental
conditions, thus helping in the discovery of the dynamics
that regulate the system. These dynamics include errors in
the cellular information processing that are responsible for
diseases such as cancer, autoimmunity, and diabetes as well
as drug effects to the system [1].

In this context, modelling approaches can be classified into
two categories: quantitative and qualitative models. Quantita-
tive modelling allows for a natural representation of molecular
and gene networks and provides the most precise prediction.
Nevertheless, the lack of kinetic data (and of quantitative data
in general) hampers its use in many situations [2]. In contrast,
qualitative models simplifies the biological reality and are
often able to reproduce the system behaviour. They cannot
describe actual concentration levels nor realistic time scales.
As a consequence, they cannot be used to explain and predict
the outcome of biological experiments that yield quantitative
data. However, given a biological network consisting of input
(e.g., receptors), intermediate, and output (e.g., transcription
factors) signals, they allow studying the input-output relation-
ships through discrete simulations [3].

In the last decade, different qualitative approaches have been
successfully used to extrapolate insights of system networks.

Nevertheless, they have shown having two main limitations:
(i) they do not support the simulation complexity of large net-
works, and (ii) they lack of automation in analysing biological
properties such as complex attractors, molecule vulnerability,
and dose response [2].

This paper presents SyQUAL, a platform for qualitative
modelling and simulation of biological systems. Differently
from all the tools in literature, SyQUAL allows performing
both automatic and efficient system simulation. Being based on
languages and design tools well-established in the Electronic
Design Automation (EDA) field, it allows addressing high
computational costs normally associated to the modelling
and simulation of biological systems [4], [5]. The simulation
core relies on a discrete event-based framework developed in
SystemC, which is the de-facto reference standard language
in EDA for efficient and accurate simulations of systems at
different levels of abstraction.

The platform provides both synchronous and asynchronous
updating methods for simulation, where the asynchronous
method relies on a time-delayed updating scheme controlled
by topology-based constraints. A different time delay τi is as-
signed to each link between two nodes, and each node is eval-
uated according to a specific timescale. Biological events are
characterized by different timescales. For example, expression
of genes is not an instantaneous process; infact, a hypothetical
biochemical reaction can take from milliseconds up to few sec-
onds.This allows providing more realistic network simulations
by avoiding unrealistic node updates. SyQUAL fully supports
both Systems Biology Markup Language (SBML) level 2 and
SBML level 3-qual network descriptions, thus extending its
portability to all the system networks described in such a
standard language.

The paper shows and compares the results obtained by
applying SyQUAL and the most representative qualitative tools
at the state of the art to identify the attractors and to analyse
the system robustness/sensitivity under perturbations of the
Colitis-associated Colon Cancer (CAC) network.

The paper is organized as follows. Section II presents some
background and the state of the art. Section III presents the
SyQUAL platform in detail. Section IV presents the experi-
mental results, while Section V is devoted to the concluding
remarks.



II. BACKGROUND AND STATE OF THE ART

Proposed by Kauffman [6] and Thomas [7], the discrete
logic-based dynamical models have been successfully applied
for modeling biological systems, such as the cell cycle [8], the
gene regulatory system [9], and signalling networks [10].

Several software and tools have been developed to address
the logic modelling of biological systems. BoolNet [11], Sim-
BoolNet [12], GINsim [13], ADAM [14], The Cell Collective
[15], and CellNetAnalyzer [16] are representative modelling
environments, many of them extended with the concept of
multi-valued boolean dynamic modelling.

Piecewise linear differential equations-based frameworks,
such as BooleanNet [17], represent an alternative way to model
the boolean network response in a continuous manner, by
converting boolean functions to their continuous counterparts.
In ChemChains [18], modelling of discete models relies on
discrete active/inactive ratio-based simulations, which allow
users to interact with the model in a continuous domain. In
contrast, logic-based ordinary differential equations (ODEs)
frameworks, such as Odefy [19] and SQUAD [20], transform
a boolean model in a corresponding network topology-derived
system of continues differential equations, without requiring
detailed kinetic information.

All these software and tools can be categorised on the basis
of their supported updating methods. The asynchronous up-
dating method is the distinguishing key, since the synchronous
one adopts the same global updating strategy. Random Order
Asynchronous (ROA) [21], General Asynchronous (GA) [21],
[22], [23], Priority Class [24], [8], and Ranked Asynchronous
(RA) [22] are the most common asynchronous methods.
Considering a network of N nodes:

1) Random Order Asynchronous (ROA): All nodes are
updated at the same time step, but in a random order, such that
no node is updated twice in the same time step. In the updating
step, a random permutation Q = Q1, . . . , QN is generated
from the ordered set {1, . . . , N}. Then, the state of node i,
the Qith element of Q, at time t+ 1 is calculated as follows:

Xi(t+ 1) = Fi(X1(t1,i), . . . , XN (tN,i)) ∀ i = 1, .., N

where Fi is the boolean function that describes the state of
node i at time t+1, Xi is the state of the node i at a specific
time, and

tj,i =

{
t if Qj > Qi

t+ 1 if Qj < Qi

.

This means that if the input node j has been updated at the
(t + 1)th time step, then Xj(t + 1) should be used in the
right hand side of the equation. If an input node has not been
updated (e.g., the last update was in the tth time step), then
Xj(t) should be used in the right hand side of the equation.

2) General Asynchronous (GA): In this method, a randomly
selected node is updated at each time step. In the updating step,
a random element of the ordered set {1, . . . , N}, i is selected.
Then, the state of node i, at time t+1 is calculated as follows:

Xi(t+ 1) = Fi(X1(t), . . . , XN (t))

where Fi is the boolean function describing the state of node
i at time t+1, Xj is the state of a node at a given time step.
Note that only node (i) is updated at a given time (i.e., this
could lead to update the same node multiple times in a row).

3) Priority Class (PA): The nodes are updated either syn-
chronously or asynchronously (see GA) in a specific order.
Each node belongs to one of the different priority classes
C1, C2, ..., Cp, with p ≤ N . Each class Ci has both a rank and
a chosen updating method (synchronous or asynchronous). In
the updating class, nodes with the highest ranked priority class
are updated first, and are updated with the updating method
choosen for the class. Classes of the same rank are updated
independently and asynchronously and classes of lower rank
occur after the highest ranked classes.

4) Ranked Asynchronous (RA): It shares the same ap-
proach of the Priority Class. However, a Ranked Asynchronous
method adopts only the asynchronous updating method.

Each of the asynchronous method listed above has some
limitation. Methods such as GA and ROA, can lead to the in-
discriminate enumeration of all possible sequences of the node
updating, which includes many incompatible or unrealistic
pathways. This leads to biologically implausible simulations
of the qualitative networks. In contrast, methods of the PA or
RA classes are more realistic but, on the other hand, they rely
on an a-priori knowledge (which is not always available) to
categorise the network nodes in classes.

Less precise but easier to adopt are the methods with
synchronous updating scheme like The Cell Collective [15] or
CellNetAnalyzer [16]. This last has been extended to the semi-
quantitative domain through the integration of Odefy [19].

Another important limitation of some of the analysed tools
is the input data format. The Cell Collective, ChemChains, and
CellNetAnalyser require proprietary formats, without provid-
ing any support to biological systems described in SBML.

III. THE SyQUAL PLATFORM

SyQUAL provides a whole serie of facilities (i) to model
and simulate a given biological system described through an
SBML model, and (ii) to perform automatised experiments
under specific and controlled conditions. Since SyQUAL is
a web-oriented platform, it does not require any particular
library or adjustment to be used, thus allowing the user to
focus only on experiment setting and execution.
The platform is organised into two main blocks (see Figure
1): The front-end, which implements the web-user interface
(UI), and the back-end, which implements a SBML validator
and a SBML-to-SystemC translator.

A. Front-end block

The SyQUAL interface relies on open source languages,
such as Javascript and HTML5, and on free libraries, such
as JQuery, Vis.js, and Bootstrap 3, in order to create a fully-
responsive cross-browser application. The main modules are:
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Fig. 1. Overview of the SyQUAL platform.

1) SBML importer module: It represents the starting point
for any new user-defined project. It has been designed to
facilitate the uploading of SBML-based biological models,
such as those provided by the Reactome database [25]. This
module also provides an additional way to increase the amount
of information to be associated to the imported SBML descrip-
tion. As an exmaple, the user can specify a list of elements
and their corresponding Uniprot IDs, in order to identify
potential drug targets for the robustness/sensitivity analysis.
This represents a useful features, especially when the SBML
description lacks of these details.

2) Pathway detail module: Through this module, part of
the information extracted during the SBML importing process
is shown to the user for a check. SyQUAL reports the com-
plete list of biological system elements (e.g., genes, proteins,
miRNAs) supplied by their Uniprot IDs if described in the
SBML model, and a list of DrugBank drugs associated to each
biological element if a correspondence between the UniprotID
and one or more drugs exists. DrugBank drugs are provided
into seven different drug categories, which include approved
drugs (according to the “Food and Drug Administration” -
FDA [26]), small molecular drugs, experimental drugs, inves-
tigation drugs, illicit drugs, withdraw drugs, and biotech drugs.

Each drug reports, if available, a comprehensive set of
information, such as, the pharmacological actions (i.e., yes,
no, unknown), the action (i.e., inhibitor, activator, etc.), and
the drug ID/name.

Information about drugs can be used to identify potential
targets. Depending on the drug biological action, SyQUAL
alters the system behaviour for the sensitivity analysis. More-
over, since drugs are divided into categories, SyQUAL helps
the user to perform drug-dependent experiments.

3) Pathway tuning module: It provides a set of facilities to
customise the simulation environment. For a given simulation
to be performed, it is possible to:

• Select a set of stimuli to be activated. Stimuli are system
elements that act as starting points for the simulation.
Each stimulus can be (i) activated only during the initial
part of a simulation, or (ii) kept always activated during
the whole simulation.

• Select a set of drugs to be used, distinguishing them by
their pharmacological action and effect.

• Select a set of system elements to be knocked down. In
this case, the user can force the suppression of one or
more elements, thus simulating the presence of hypothet-
ical drugs, even if no drug is provided by SyQUAL.

In addition, SyQUAL provides a graphical network represen-
tation of the biological system to show the network topology.

4) Simulation module: This module applies the specified
customisation to settle and perform specific simulations. This
allows SyQUAL to simulate the system network by altering
the system behaviour in different ways:

• Unsupervised mode: SyQUAL automatically performs the
simulations according to the following options:
-) Systematic knocking down of each system element
(SyK). It performs |N | distinct simulations (where N
represents the number of system elements) in which each
system element is knocked down at a time.
-) Drug-driven knocking down of system element targets
(DDK). It performs |K| ≤ |N | distinct simulations,
where K represents the number of distinct set of system
elements knocked down at a time as an effect of a specific
drug. SyQUAL allows distinguishing two main cases: A
single drug that targets more than one system elements (in
this case, a single simulation knocks down all drug target
system elements), and multiple drugs that target a single
system element (i.e., a single simulation knocks downs
only the targeted system element). This allows SyQUAL
to avoid repeating the same simulations, thus reducing
the computational time.
-) Drug-driven knocking down of system element target
pair combination (DDKp). It applies the concept of
synthetic lethality [27], which appears when a combi-
nation of mutations in two or more genes leads to cell
death, whereas a mutation in only one of these genes
does not, and by itself is said to be viable. Synthetic
lethality indicates functional relationships between genes.
SyQUAL allows knocking down a set of system elements
according to a list of drug targets or to a list of system
elements manually selected.

• Supervised mode: SyQUAL performs a single simulation
according to one of the following options:
-) User-driven knocking down of system elements (UDK).
It allows knocking down a set of system elements by
manually selecting a list of drugs to be used or a list of
system elements to be knocked down. With this option,
many system elements at a time can be knocked down in



a single simulation.
-) User-driven knocking down of system elements under
multiple stimuli (UDKm). Similarly to UDK, it performs
multiple simulations based on the same set of system
elements knocked down. However, by specifying a list of
stimuli, the UDKm option combines all selected stimuli,
performing M simulations with the same stimuli combi-
nations:

M =

h=n∑
k=1

Ck
n (1)

where n represents the number of selected stimuli.
5) Result module: It shows the simulation results according

to a specific selected option and updating method. Since an
experiment is a collection of distinct simulations, SyQUAL
provides:

• A heatmap reporting the activity levels (i.e., the time
frame in which a specific system element is active) over
the time of all system elements under normal conditions.

• For each simulation, a heatmap reporting the activity
levels over the time regarding only system elements that
have not been knocked down.

• The set of identified attractors.
• A comprehensive expression profile heatmap of the ele-

ments, which is created by merging all activity levels and
clustered according to the Pearsons correlation.

6) Analysis module: It provides a way to examine the
activity levels of the system elements by using a normalised
(in the range [0,1]) numerical representation. The activity
levels can be analysed by specifying the performed option
and updating method as well as the set of system elements
of interest. This allows, without any graphical representation,
investigating and quantifying how the the activity level of
elements level influence each other.

B. Back-end block

It consists of three main modules.
1) SBML Validator: This module plays a key role to

retrieve information from a given biological system described
in SBML. SyQUAL supports the SBML level 2 (e.g., models
provided by the Reactome database), and the SBML level 3
qual. By supporting the SBML level 2, SyQUAL generates
a fully-comprehensive qualitative reaction boolean network,
keeping important details related to the molecular interaction
nature, such as inhibition, stimulation, catalysis. In contrast,
the SBML qual preserves a subset of these details, thus
limiting the number and the quality of observable behaviours
for a faster simulation. As a de-facto reference database of
biological systems, Reactome provides SBML level 2 models
with an SBML annotation that describes all involved elements,
reactions, and reactants, and sometimes provides an SBGN
(Systems Biology Graphical Notation [28]) annotation describ-
ing the system through a graphical representation.

SyQUAL creates a fully-comprehensive network generated
by merging the SBML and SBGN annotations, when the last
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Fig. 2. The Finite State Machine representation of the system elements.

is available. To accomplish with this task, SyQUAL relies on
the LibSBML API (the Python Library version) to acquire and
manipulate the SBML model.

2) SBML-to-SystemC Mapper: Biological elements and in-
teractions are translated into SystemC processes and signals.
Processes are the central building blocks in a SystemC de-
scription. A SystemC system description can be seen as a set
of concurrent processes that communicate each other using
clock-dependent signals.

SyQUAL maps each aspect of the SBML-based biological
element as follow:

• The element behaviour is modelled through a Finite State
Machine (FSM) [29]. The FSM is used to formally model
the system element through a boolean representation to
manage the element state (e.g. activated, deactivated), the
state transitions, and the guard conditions.
Figure 2 shows the template defined to represent each
element through a FSM. It consists of the following input
and output signals:
-) Parameters (P): these inputs values are unknown at
modelling time, and depend on the environment charac-
teristics. Examples are the delay time (i.e., the time spent
by a biological element to encounter its target), and the
lifetime (i.e., the maximum time after activation, in which
the biological element carries out its biological function).
SyQUAL performs the parametrization (i.e., assignment
of parameter values) during simulation.
-) Upstream inputs (Us): these topologically-depended
input are generated at simulation time, as the result of
the interaction with their upstream biological elements.
The TF function represents the element transfer function,
a boolean function that depends on the current values of
Us, and it is used to evaluate the element activation/de-
activation.
-) Downstream outputs (Ds): the output values are gen-
erated at simulation time and depend on the role of the
biological element (i.e., the element can acts as activator
and/or inhibitor for its downstream elements).



SyQUAL implements the FSM model of each biological ele-
ment (i.e., genes, proteins) through a SystemC process, which
is sensible to events coming as input signals. Any new event
(i.e., signal value variation) that occurs on a specific element
input, leads to a new evaluation of its guard conditions, and
to a corresponding updating of its state and output signals.
The SyQUAL simulation core relies on the discrete event-based
kernel of the SystemC simulator, which is optimized to provide
efficient simulations of complex networks.

The system simulation can be performed by selecting one
of the following updating methods:

• Synchronous updating method. It represents the sim-
plest and most computational efficient method. Given
a boolean representation of a biological network, each
element is evaluated by using a global clock. The time
step (which we call delaytime) is equal for all system
elements. All interactions between system elements are
performed in a synchronous way. For each time step, all
nodes status are evaluated, according to their own boolean
rules (logic input combination). This method provides
the best way to investigate at high-level of abstraction
some basic behaviours, such as feedback loops, particular
signals paths, and attractors.

• Asynchronous updating method. It provides a different
delay time for each system element. All interactions be-
tween system elements are performed in an asynchronous
way. It relies on the concept of lifetime, which represents
the maximum time in which an element can execute
its biological function. This method allows investigating
more accurately (i.e., at low level of abstraction) the
system behaviours.

IV. EXPERIMENTAL RESULTS

In order to better explain how SyQUAL can be applied
for modelling and simulation of biological systems, we anal-
ysed, as case study, the Colitis-associated Colon Cancer
(CAC) [30]. CAC is a complex enough network studied
both in-silico and in-vitro to understand dynamics behind
inflammation-associated tumourigenesis and to identify poten-
tial novel therapies. We refer to the work in [30] to compare
our simulation results with the in-vitro experimental results.
The work provides insights to understand how molecular
mechanisms lead to Colitis-associated Colon Cancer and a
refined Boolean Network model related to the growth and
survival of preneoplastic epithelial cells. According to [30],
the system network can be decomposed in two main parts: The
IEC part, which contains elements related to the intracellular
signalling, and a second part associated to the immune micro-
environment, which contains elements such as immune cells,
cytokines and chemokines. The analysis and the experimental
observations have been conducted according to four main
micro-environments (conditions), a given set of input stimuli,
and a list of nodes that have been systematically knocked
down as reported in Table I. A distinct micro-environment
is associated to:

TABLE I
LIST OF MAIN MICROENVIRONMENTS.

Condition Initially On Initially Off Fixed On Fixed Off

Non-inflammatory
microenvironment

Prolifetation,
Apoptosis APC

IL6, IL12,
IL4, TH1,
TH2, IL10,

TREG, IFNG,
MAC, CCL2,
TGFB, CTL,
TNFA, PGE2,

DC

Normal inflammation
response DC Prolifetation,

Apoptosis APC

IL6, IL12,
IL4, TH1,
TH2, IL10,

TREG, IFNG,
MAC, CCL2,
TGFB, CTL,
TNFA, PGE2

Pro-tumor
microenvironment

Prolifetation,
Apoptosis DC

Pro-tumor
microenvironment and

P53 inactivation

Prolifetation,
Apoptosis DC P53

• A set of activated nodes (stimuli) at the beginning of the
simulation (Initially On).

• A set of deactivated nodes at the beginning of the
simulation (Initially Off ).

• A set of nodes (stimuli) always kept active during the
whole simulation (Fixed On).

• A set of nodes always kept deactivated during the whole
simulation (Fixed Off ).

We investigated attractors dynamics, both fixed-point (stable
state) and cyclic (with regularly recurring states), to under-
stand whether SyQUAL was able to reproduce experimental
observations associated to each specific micro-environment.

The attractor analysis plays an important role to identify
system dynamics, since they are the corresponding phenotypes
for a biological system. As a direct consequence of such an
analysis, we tested the correlation among the network nodes
to identity potential inaccurate behaviours. An example is
given by the Th1 and Th2 responses. The immune micro-
environment influences the epithelial cell growth and survival
through (i) the releasing of cytokines or (ii) the direct interac-
tions between epithelial cells and immune cells. In this context,
Th1 and Th2 responses counteract each other as follows:

• Th1. Cellular immune system. Maximizes the killing
efficacy of the macrophages.

• Th2. Humoral immune system. Stimulates B-cells into
proliferation, and increases the neutralisation of antibody
production.

We performed the attractor analysis of the case study with
SyQUAL and with the most representative tools for qualitative
modelling and simulation of biological systems in literature.
We selected BoolNet, SimpleBool, BooleanNet, and GINsim
since they share common features, such as, the support for
SBML qual input models and the support of both synchronous
and asynchronous updating scheme during simulation. More-
over, relying on the GA and ROA updating methods, these tools
do not require any prior information, in contrast with the PA
and RA updating methods. The comparison has been executed
on different machines. BoolNet, SimpleBool, BooleanNet, and



GINsim can be installed standalone, while SyQUAL requires
a specific environment because of its web-based nature.
However, all machines are characterized by similar technical
features.

We run the system analysis through synchronous and asyn-
chronous simulations, by testing all the conditions reported in
Table I, that is, non-inflammatory microenvironment (1), nor-
mal inflammation response (2), pro-tumor microenvironment
(3), pro-tumor microenvironment and P53 inactivation (4).

Table II reports the results obtained with the synchronous
updating scheme in terms of simulation time, the correspond-
ing standard deviation (for a batch of one hundred executions),
and the number of identified attractors.

The table underlines that all the tools (except for GINsim
that does not support the complexity of the case study) led to
the identification of the same number and type of attractors.
This was expected since the tools are all based on the same
simple synchronous updating method. However, differently
from the other tools and correctly (according to the results
in [30]), SyQUAL identified that the attractor associated to the
normal inflammation response also includes the dendritic cell
(DC) activation. This result is motivated by the fact that DC
depends on CCL2, TNFA, and IL10. Since the normal inflam-
mation response micro-environment requires CCL2, TNFA,
and IL10 to be knocked down, a hypothetical activation of
DC must keep it active during the whole simulation.

TABLE II
EXPERIMENTAL RESULTS WITH SYNCHRONOUS SIMULATIONS

Tool Cond. Timing in ms #attract.
exec. time sd

BoolNet

1 1.16 0.51 1
2 1.02 0.47 1
3 1.10 0.56 6
4 1.22 0.66 6

SimpleBool

1 424.15 30.03 1
2 399.47 12.48 1
3 392.75 17.04 6
4 428.49 48.40 6

GINsim

1 3,000.00 1,000.00 1
2 3,000.00 1,000.00 1
3 Out of memory
4 Out of memory

BooleanNet

1 11.59 1.64 1
2 11.58 1.64 1
3 15.07 0.23 6
4 16.340 4.79 6

SyQUAL

1 11.46 1.69 1
2 10.97 1.56 1
3 13.03 2.04 6
4 12.21 1.87 6

Table III shows the results obtained with the system simula-
tion based on asynchronous updating schemes. The results un-
derline that such an accurate simulation leads to an increasing
of the execution time from one to three orders of magnitude
with the tools in literature. With this simulation accuracy, also
SimpleBool does not support the case study complexity by
leading to no attractors found (in [30], the network has been
simplified from 70 to 28 nodes for the attractor analysis). Table
III underlines that only BooleanNet and SyQUAL can correctly

lead to a greater number of attractors, thus underlying the
sensitivity of the network to the element parametrization. Nev-
ertheless, BooleanNet pays such an accuracy with a prohibitive
price in terms of execution time.

Finally, we underline that we conducted the comparison of
the tools by adopting only the user-driven knocking down
of system elements (UDK) since it is the only modality
implemented by the tools in literature to alter the system.
Such a supervised mode, when adopting the tools in literature,
required a strong intervention by the user in the code to knock
down the system elements. In contrast, thanks to the front-end
block, SyQUAL allowed setting the simulations and reporting
the results instantly with the Web UI support.

TABLE III
EXPERIMENTAL RESULTS WITH ASYNCHRONOUS SIMULATIONS

Tool Cond. Updating Timing in ms #attract.
exec. time sd

BoolNet

1 GA 5.45 1.37 1
2 GA 5.02 0.80 1
3 GA 15.41 31.73 6
4 GA 4.67 0.95 6

SimpleBool

1 GA 10,424.99 559.21 -
2 GA 10,160.82 190.80 -
3 GA 10,135.45 99.81 -
4 GA 10,138.06 139.48 -
1 ROA 37,867.58 325.07 -
2 ROA 43,864.31 1,489.34 -
3 ROA 46,682.54 732.65 -
4 ROA 46,016.95 1,119.86 -

GINsim

1 GA 3,000.00 1,000.00 1
2 GA 3,000.00 1,000.00 1
3 GA Out of memory
4 GA Out of memory

BooleanNet

1 GA 11,499.89 493.73 1
2 GA 10,560.72 207.89 1
3 GA 12,023.21 227.93 6
4 GA 11,957.15 216.84 6

SyQUAL

1 Time-delayed 10.43 1.87 3
2 Time-delayed 11.60 1.92 2
3 Time-delayed 12.38 1.49 5
4 Time-delayed 13.82 1.71 5

V. CONCLUSIONS

This work proposed SyQUAL, a platform for qualitative
modelling and simulation of biological systems. The pa-
per showed and compared the results obtained by applying
SyQUAL and the most representative qualitative tools at the
state of the art to identify the attractors and to analyse
the system robustness/sensitivity under perturbations of the
Colitis-associated Colon Cancer (CAC) network. The results
underlined the best trade-off between accuracy of results and
simulation performance with regard to the tools in literature.
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