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Cystine-knot miniproteins are a class of 30–50 amino acid long peptides widespread in eukaryotic organisms. Due to their very
peculiar three-dimensional structure, they exhibit high resistance to heat and peptidase attack. The cystine-knot peptides are well
represented in several plant species including medicinal herbs and crops. The pharmacological interest in plant cystine-knot
peptides derives from their broad biological activities, mainly cytotoxic, antimicrobial and peptidase inhibitory and in the
possibility to engineer them to incorporate pharmacophoric information for oral delivery or disease biomonitoring. The
mechanisms of action of plant cystine-knot peptides are still largely unknown, although the capacity to interfere with plasma
membranes seems a feature common to several cystine-knot peptides. In some cases, such as potato carboxypetidase inhibitor
(PCI) and tomato cystine-knot miniproteins (TCMPs), the cystine-knot peptides target human growth factor receptors either
by acting as growth factor antagonist or by altering their signal transduction pathway. The possibility to identify specific
molecular targets of plant cystine-knot peptides in human cells opens novel possibilities for the pharmacological use of these
peptides besides their use as scaffold to develop stable disease molecular markers and therapeutic agents.
Introduction
The analysis of the genomic sequences of several model
plants has evidenced the abundance of genes coding for
cysteine-rich peptides (CRPs) [1]. In some species, CRPs can
represent around 2% of the expressed genes [1, 2]. Plant CRPs
share some common features including a small size (around
100–160 amino acids or less), the presence of an N-terminal
signal peptide, and a conserved cysteine-rich domain in the
C-terminal region. They are grouped in several categories
based on the conserved cysteine pattern and 3D structural
characteristics, which are largely dependent on the arrange-
ment of the disulfide bridges. Experimental evidence indi-
cates that members of CRPs can play a variety of functions
in plant cells, ranging from defence against biotic stress,
symbiotic interactions, root growth and reproductive devel-
opment, often acting as signalling molecules [3]. Several
plant CRPs have been classified as antimicrobial peptides
© 2016 The British Pharmacological Society
(AMPs) for their cytotoxic activity against bacteria and fungi
[4]. Their antimicrobial activity has been related to their ca-
pacity to affect the plasma membrane functionality either
by interacting with the lipid component or altering ion fluxes
[4]. Some plant AMPs have also been assayed for their cyto-
toxicity against different types of cancer cells [4], although
the selectivity of these peptides towards cancer cells deserve
further investigation to determine for each individual plant
cysteine-rich AMP the clinical potential.

Amongst the plant CRPs, the class of cystine-knot
peptides, that are characterized by a very peculiar three-
dimensional structure, displays interesting features for phar-
maceutical applications. The cystine-knot peptides, also re-
ferred to as knottins or inihibitor cystine- knot peptides or
cystine-knot miniproteins, are small proteins (less than 50
amino acids in the mature form) which contain in the
C-terminal region six conserved cysteine forming three disul-
fide bonds that are intertwined giving rise to a unique
DOI:10.1111/bcp.12932
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structural scaffold. This structure confers exceptional stabil-
ity and resistance to high temperatures, proteolysis as well
as chemical chaotropic agents. Cystine-knot peptides are
not restricted to plant organisms, but are present in other
eukaryotes such as insects, arthropods, molluscs and arach-
nids [5]. Plant cystine-knot peptides exist as linear and cyclic
molecules. In both types, the disulfide bridges connect the
I–IV, II–V and III–VI cysteine residues forming a ring where
the penetrating disulfide bridge is Cys (III–VI). The cystine-
knot motif is also present in several human growth factors,
including transforming growth factor-β (TGF-β), nerve
growth factor (NGF), glycoprotein hormones (GPHs) and
vascular endothelial growth factors (VEGF) [6]. The cystine-
knot motif of these growth factors has the same disulfide
connectivity as the linear and cyclic molecules, but differs
for the penetrating disulfide bridge [6].
Table 1
The different groups of linear and cyclic cystine-knot peptides identified in p
cbs.cnrs.fr/) and Cybase (http://www.cybase.org.au/) databases

Type of cystine-knot peptides Species Biolo

α-Amylase inhibitor Amaranthus hypochondriacus
Allamanda cathartica
Wrightia religiosa

– α-Am

– Toxi

Antimicrobial Panax ginseng
Panax quinquefolius
Mesembryanthemum crystallinum
Mirabilis jalapa
Populus trichocarpa
Phytolacca americana

– Anti

– Anti

Defensin Petunia hybrida – Anti

Metallo
carboxypeptidase
inhibitor

Solanum lycopersicum
Solanum tuberosum
Nicotiana tabacum
Hyoscyamus niger

– Exop

– Anti

– Inhib

– Anti

Serine protease
inhibitor 1

Cucumis melo
Momordica charantia
Cyclanthera pedata
Lagenaria siceraria
Citrullus lanatus
Cucurbita maxima
Luffa cylindrical
Cucumis sativus

– Serin
activit

Serine protease
inhibitor 2

Spinacia oleracea
Mirabilis jalapa

– Serin
activit

Toxins Several leguminous
plants (Fabaceae family)

– Inse

– Cellu
(legin

Cyclotides Several species belonging
to Violaceae, Rubiaceae,
Apocynaceae, Cucurbitaceae,
Fabaceae, and Solanaceae
families

– Pest

– Anti

– Cyto

– Anti

– Inhib
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The linear cystine-knot peptides
The linear cystine-knot peptides identified in plants have
been grouped into several categories based on their sequence
similarity and biological activity (Table 1) (http://knottin.
cbs.cnrs.fr) [7, 8]. Most of them display inhibitory activity
against exo- and endoproteases, namely metallocarboxy-
peptidases and serine proteases. The potato carboxypetidase
inhibitor (PCI) was the first cystine-knot protease inhibitor
characterized in plants [9]. Successively, other members of
this cystine-knot class were discovered in Solanum tuberosum
and Solanum lycopersicum [10–12] and in other Solanaceae
species (http://knottin.cbs.cnrs.fr). Two groups of cystine-
knot serine protease inhibitors have been described; the
first includes peptides common in seeds of the Cucurbitaceae
family with many members in plants belonging to the
lant. The data have been obtained from the Knottin (http://knottin.

gical activity Organ Ref.

ylase inhibitory activity Seed [15, 16]

c to insect larvae

fungal activity Seed [7, 8]

microbial activity

fungal activity Flower [7, 8]

eptidases inhibitory activity Fruit [9–12, 17, 19, 20]

fungal activity Flower

ition of cancer cell growth Tuber

angiogenic activity

e-type protease inhibitory
y

Seed [13, 14]

e-type protease inhibitory
y

Seed [7, 8]

cticidal activity Seed [7, 8]

lar signal transduction
sulin, albumin1)

Root Nodules Leaf

icidal activity Stem [4, 21–28]

microbial activity Seed

toxic effects Leaf

-HIV Root

ition of cancer cell growth Bark

http://knottin.cbs.cnrs.fr
http://knottin.cbs.cnrs.fr
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Figure 1
Representative sequences of cyclotides from the three subfamilies.
The sequences are exported from the Cybase database (http://
www.cybase.org.au/). The six cysteine residues and the three di-
sulphide bonds are highlighted in yellow and blue, respectively.
Möbius and bracelet families are distinguished by the presence in
the loop 5 of a cis-Pro (P marked in green) peptide bond that gener-
ates in the Möbius family member a twist in the tertiary structure

Plant cystine-knot proteins in pharmacology
Momordica genus, used as food and in Chinese traditional
medicine [13, 14], and the second contains members from
Spinacia oleracea and Mirabilis jalapa. Another group of linear
cystine-knot peptides is represented by inhibitors of α-
amylase; the first member of this group was identified in the
medicinal herb Amaranthus hypochondriacus, and more re-
cently other cystine-knot α-amylase inhibitors were isolated
from the medicinal plants Allamanda cathartica and Wrightia
religiosa [15, 16]. The other linear cystine-knot protein
groups, ‘antimicrobial’, ‘defensins’ and ‘toxins’, have been
distinguished for their antimicrobial and/or insecticidal ca-
pacity. Antimicrobial cystine-knot proteins were identified
in several plants including ginseng and poplar, whereas those
belonging to ‘toxins’ have been described in some legumi-
nous plants [7, 8]. The different biological activities amongst
different plant families are likely due mainly to the diverse
amino acid composition of the loops (Table 1). The biological
properties displayed by the linear cystine-knot peptides can
be indicative of a natural function in plant defence against
microorganisms and pests [4, 17, 18].
Cyclotides
The cyclotides are a family of globular plant miniproteins
characterized by a head-to-tail cyclized backbone and the
cystine-knot motif (http://www.cyclotide.com/knots.html/)
[29–33]. Apart from the conserved cystine-knot motif,
cyclotides are highly variable in both amino acid composition
and size of their backbone loops [34, 35]. The cystine-knot
occupies the core of the structure, while the majority of the
other amino acids are exposed on the surface. Cyclotides are
synthesized as precursor proteins; the processing of the precur-
sor involves oxidative folding to form three disulfide bonds,
excision of the mature sequence and head-to-tail cyclization
[21]. The mature proteins are typically 28–37 amino acids in
length [29]. To date, more than 280 cyclotides are catalogued
in the Cybase database (http://www.cybase.org.au/) [22, 36]
covering 55 plant species. The vast majority of cyclotides have
been found in the Violaceae and Rubiaceae families, but
members have also been discovered within the Fabaceae,
Cucurbitaceae and Solanaceae families (Table 1) [21, 37–39].
Naturally occurring cyclotides have been divided into three
subfamilies: bracelet, Möbius and trypsin inhibitor (Figure 1)
[30, 40]. The two major families are the Möbius (e.g. Kalata
B1 peptide from Viola odorata) and bracelet (e.g. cycloviolacin
O1 from Viola odorata and Oldenlandia affinis), that differ in
size and sequence of individual loops [40]. In addition,Möbius
present a Proline (P) residue in the loop 5 that is responsible for
a twist in the circular backbone, that is absent in the bracelet
[40]. Trypsin inhibitor subfamily (e.g. trypsin inhibitor I,
MCoTI-I, from Momordica cochinchinensis) shows very little
sequence similarities with the other two subfamilies, but
maintains the characteristic cyclic cystine-knot motif [40].
The high number of different cyclotides within an individual
plant species and the high variability of the amino acid se-
quences suggest that cyclotides could target a wide range of
potential sites. Numerous cyclotides have been demonstrated
to possess pesticidal activity against insects [23], such as
Helicoverpa punctigera larvae, the major cotton pest [24, 25],
parasitic helminths [41, 42] and molluscs, such as Pomacea
canaliculata, a rice pest [26].
Biological activities and molecular
targets of cystine-knot peptides in
cultured human cells
Many cystine-knot peptides have antimicrobial properties
showing inhibitory effects on microbial cell growth. Several
linear and cyclic cystine-knot peptides also displayed toxicity
against a range of cell lines derived from different cancer
types [4, 43]. However, the cytotoxic activity against cancer
cells is not specific, as some cystine-knot peptides can also tar-
get healthy cells [43, 44]. Various cyclotides from both the
bracelet and Möbius subfamilies displayed anti-HIV activity
[22, 27, 28] and uterotonic activity [45]. Besides this, some
cyclotides also have an undesired haemolytic activity against
human red blood cells [22, 46, 47].

The mechanism of action underlying the cytotoxic activ-
ities of cystine-knot peptides remains largely unknown. Ex-
perimental evidence suggests that it is associated with the
capacity of the cystine-knot peptides to interact with plasma
membranes [40]. For instance, the majority of cyclotides pos-
sess a surface-exposed cluster of hydrophobic residues as well
as electrostatic patches that promote their adsorption to the
lipid components of target cell membranes. After reaching a
threshold concentration, cyclotides form multimeric struc-
tures, leading to pores, which could cause membrane damage
and changes in ion fluxes [33, 48]. In this regard, several
cystine-knot toxins produced by spiders, scorpions and sea
anemone act as selective blockers of K, Na and acid-sensing
channels [49–53].

However, although a membrane-based mechanism might
explain many biological activities (e.g. anti-HIV and cyto-
toxic activities), the current model cannot be extended for
all the cystine-knot peptides’ actions, and other mechanisms
could be taken into account. For instance, cyclotides belong-
ing to the trypsin inhibitor subfamily are characterized by
unrelated and distinct bioactivities. MCoTI cyclotides lack
membrane binding properties and have been shown to be
able to cross membranes of human macrophages, breast and
ovarian cancer cell lines through various endocytic pathways
[54, 55].
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Several subfamilies of cystine-knot proteins possess inhib-
itory capacity against different types of proteases, but there is
no clear evidence how this capacity is related to their biolog-
ical activities on human cells. One example is the cystine-
knot potato carboxypeptidase inhibitor (PCI). Biochemical
and structural studies elucidated the inhibitory mechanism
of PCI against metallocarboxypeptidase A [56], but this activ-
ity seemed unrelated to the PCI capacity to inhibit the growth
of several lines of human pancreatic adenocarcinoma cells
[57, 58].

In any case, the demonstration that cystine-knot peptides
can selectively target human proteases can be very interesting
for pharmacological applications. In this regard, a recent
study [59] reported that a cyclotide from Psychotria
solitudinum acts as an inhibitor of the human prolyl
oligopeptidase, which represents a promising target for the
treatment of cognitive deficits associated with schizophrenia
and Parkinson’s disease.

In addition, cystine-knot peptides with α-amylase inhibi-
tory capacity have been described in some medicinal plants.
These proteins inhibit α-amylases from the yellow mealworm
(Tenebrio molitor), and did not show appreciable cytotoxic
and haemolytic effects at concentrations up to100 μM. How-
ever, in the non-toxic range of concentrations, they did not
inhibit α-amylases from mammals [15, 16]. As the use of
α-amylase inhibitors could be beneficial for the control of
starch intake in type 2 diabetes and obesity, these peptides
could represent a scaffold for engineering metabolically
stable human α-amylase inhibitors [15].

The existence of multiple mechanisms of action for
cystine-knot peptides is corroborated by recent evidence
demonstrating that some of these proteins can either target
membrane receptors or affect components of growth factor-
related signalling pathways. Koehbach and collaborators
[60] demonstrated that the molecular targets for the cyclotide
kalata B7, found to induce contractility on human uterine
smoothmuscle cells, are the oxytocin and vasopressin V1a re-
ceptors, members of the G protein-coupled receptor family.
Another example came from the elucidation of the mecha-
nism of action of PCI against tumour cells. Indeed, the capac-
ity of PCI to restrict the growth of pancreatic adenocarcinoma
cells was attributed to its action as antagonist of the human
epidermal growth factor (EGF) [58]. The PCI inhibits both
the EGF-induced dimerization and transphosphorylation of
EGFR in pancreatic adenocarcinoma cells [58].

Recent studies carried out on two tomatometallocarboxy-
peptidase inhibitors [19, 20] demonstrated that these pro-
teins exert antiangiogenic effects on human endothelial
cells by targeting the vascular endothelial growth factor
(VEGFA) signalling pathway.
Pharmacological applications
Until now, although displaying pharmaceutically relevant
potential, none of the natural plant cystine-knot peptides
has reached the stage of clinical trial. One reason is the pres-
ence of contrasting activities in some members, such as a
desired inhibitory activity against cancer cell growth often
associated with undesired toxicity against normal cells. The
66 Br J Clin Pharmacol (2017) 83 63–70
unique example of a drug based on a cystine-knot protein is
the molecule developed from the venom of a marine core
snail [5]. A synthetic peptide derived from the conotoxin of
Conus magus was approved by the US FDA for the treatment
of chronic pain [61].

These molecules have attracted attention primarily for
their possible use as scaffold for drug development due to
the high flexibility of the structure, which combines an ex-
ceptional stability with the high tolerance to sequence mod-
ifications of the backbone portions [62]. One of the most
promising approaches to generate modified cystine-knot pep-
tides with new biological activities is molecular grafting [62,
63], where novel sequences – mainly small peptides – are
substituted into the native loops of the natural molecule. An-
other widely used approach to produce variants of cystine-
knot peptides possessing novel or optimized molecular prop-
erties is the application of directed evolution-based methods
[64, 65]. For instance, the use of knowledge-based combina-
torial miniprotein libraries has permitted the selection of var-
iants of the cystine-knot trypsin inhibitors from Momordica
cochinchinensis and Spinacia oleracea with high-affinity inhib-
itory activity against human matrypase-1 [66].

Peptides are potentially great drug leads, but their appli-
cation as therapeutics is often ineffective because of their
low oral bioavailability and instability in vivo. Grafting bio-
active peptides into the backbone of cyclotides can over-
come these limitations [67, 68]. Most grafting studies have
focused on cyclotide scaffolds from the Möbius (e.g. kalata
B1) and trypsin inhibitor (e.g. MCoTI-I or MCoTI-II)
subfamilies, but also on linear cystine-knot peptides such
as EET-II from Ecballium elaterium [5]. Furthermore, the in-
creased interest in the cyclic trypsin inhibitors derived from
the demonstration of their capability to penetrate the cells
and therefore interact with intracellular targets [54, 55].
Many different peptides have been inserted into cystine-
knot backbones with the aim to develop molecular probes
for disease diagnosis and therapy [62, 63].

For instance, cystine-knot proteins have been used as
scaffolds to create new compounds that may be ligands for
integrins and other receptors. A cystine-knot peptide,
which is a trypsin inhibitor obtained from Momordica
cochinchinensis, was engineered to bind to cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), a target in the
treatment of metastatic melanoma [69]. The potential of
engineered proteins as antiplatelet agents was also tested.
The fibrinogen-recognition sequence in αIIbβ3 was grafted
into cystine-knot microproteins from Ecballium elaterium by
incorporating in the scaffold RGD- and KGD-containing pep-
tides. The engineered proteins inhibited in vitro the binding
of fibrinogen to αIIbβ3, similarly to eptifibatide, but showed
antiaggregatory activity only at high doses [70]. A partially
different approach was used to generate inhibitors of the
fibrinogen receptors in platelets: engineered agouti-related
cystine-knot protein containing an Arg-Gly-Asp integrin
recognition motif sequence with high affinity and specificity
for the integrins αIIbβ3 or αIIβb3 and αvβ3 expressed on plate-
let. The tested knottins proved to be potent inhibitors of
platelet aggregation [71].

New molecular imaging probes including small mole-
cules, peptides, proteins and nanoparticles are the object of
investigation as diagnostic tools for the detection of cancer
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and the diagnosis of different diseases [72]. Cystine-knot
miniproteins from plants, fungi, porifera as well as spiders,
may act as ligands for the adhesion receptor integrins αvβ3,
αvβ5, αvβ6 and α5β1, which are expressed on different cancer
cells and activated endothelial cells in the tumour [73].
Peptides derived from plants, in particular the Kalata B1
uterotonic peptide from Oldenlandia and trypsin inhibitors
from Ecballium elaterium have been engineered to increase
their affinity and specificity for integrins, usually by grafting
a peptide sequence that allows effective interaction with the
target molecule to become scaffolds for radioactive imaging
probes to be used in positron emission tomography (PET),
single photon emission computed tomography (SPECT) [73,
74] and also when combined with non-radioactive probes,
for fluorescence and ultrasound imaging.

Several studies have so far been performed in animal
models, including human xenograft tumour, to evaluate the
effectiveness of radio-labelled cystine-knot proteins as a
diagnostic agent to be tested in glio- and medulloblastoma,
melanoma, breast and pancreatic cancer and tumour
neoangiogenesis. For instance, an 111In-labelled agouti-
related protein (AgRP) with affinity for the integrin αvβ3
expressed in human glioblastoma xenograft [75] or
64Cu-DOTA-S02 that binds integrin αvβ6 with high affinity
for pancreatic [76] and lung cancer [74]. The knottin
99-Tc-SAAC-S02 was tested for SPECT imaging of integrin
αvβ6 positive tumours [77] and 8F-FP-3-4-A, an engineered
peptide [78] that binds to integrin αvβ3, to obtain imaging
of tumour angiogenesis.

Non-radioactive derivatives of cystine-knot proteins were
developed for diagnostic purposes; an example is the protein
EETI 2.5F, derived from Ecballium elaterium and conjugated to
a near-infrared imaging dye that specifically binds αvβ1
integrin receptor expressed in the brain tumour and in vivo il-
luminated mouse medulloblastoma tissue [79]. A plant-
derived cystine-knot peptide engineered for αvβ3 integrin
binding, conjugated to the lipid shell of perfluorocarbon-
filled microbubbles was tested as a probe for contrast-
enhanced ultrasound imaging of tumour angiogenesis [80].

Different applications have been explored in the field of
cardiovascular disease. A recent study evaluated a 64Cu-la-
belled divalent cystine-knot peptide as a probe for the identi-
fication of carotid atherosclerotic vulnerable plaques with
PET. The knottin targeted the integrin αvβ3 which is highly
expressed on activated endothelial cells and macrophages
and may represent a specific biomarker of inflamed, vulnera-
ble plaque. High and specific accumulation of the knottin
was observed, suggesting a potential application as a diagnos-
tic tool [81].

These studies demonstrated that engineered cystine-knot
proteins display enhanced knot stability and have stable
pharmacokinetics with a fast renal clearance. When com-
bined with high specificity and high affinity of the knottin
for the molecular target [73], this results in low nonspecific
accumulation in tissues and high tumour to normal tissue
signal ratio. In the cited studies, compared with the tradi-
tional probes used in PET imaging, the cystine-knot peptides
did not accumulate in normal brain, myocardium and also in
normal tissues [82].

A novel biological activity never documented before
amongst plant cystine-knot miniproteins was described for
two metallocarboxypeptidase inhibitors from tomato,
TCMP-1 and TCMP-2 [19]. These miniproteins are expressed
in flowers and mature fruits. TCMPs have the capacity to in-
hibit angiogenesis at low concentrations (i.e. nanomolar
range) without affecting endothelial cell proliferation and vi-
ability [19]. The antiangiogenic properties of TCMPs were
tested in vitro in human umbilical vascular cells (HUVEC)
and in vivo in zebrafish [20]. Using the Matrigel assay, a
dose-dependent inhibition of HUVEC tube formation was ob-
served at TCMP concentrations in the range 20–100 nM,
reaching a 64% reduction at the highest concentration [19].
Furthermore, TCMPs were able to reduce by 50% the increase
in cell migration induced by VEGFA [20]. The effects of
TCMPs were assayed in vivo using a transgenic line of
zebrafish TG (kdr:eGFP) that allows the formation of the vas-
culature to be visualized. The treatment of the zebrafish em-
bryos with 500 nM TCMPs impaired the formation of
subintestinal vessels, a process controlled by VEGF and
highly susceptible to the activity of compounds possessing
antiangiogenic activity [20].

At themolecular level, the antiangiogenic effect of TCMPs
is associated with the downregulation of integrin-αV and β-2-
microglobulin and the reduction in both VEGFA-induced
vascular endothelial growth factor receptor (VEGFR) phos-
phorylation and endothelial nitric oxide (NO) generation.
This indicates that TCMPs target endothelial cell migration
by acting on the VEGFA-mediated signalling pathway. The
mechanism that leads to the inhibition of NO release in
TCMP-treated endothelial cells is still unclear; experimental
evidence demonstrates that it is associated with ERK1 inacti-
vation, but is independent from Akt phosphorylation [19,
20]. The structural similarity between TCMPs and VEGFA,
which is a member of the cystine-knot growth factor family
[6], could lead to the hypothesis that TCMPs interfere with
the binding of VEGFA to its receptor.

The cystine-knot proteins have also been exploited as
scaffold to develop antiangiogenic agents for cancer therapy
[67, 68]. A promising antiangiogenic agent has been obtained
by grafting into kalata B1 a 6-residue antiangiogenic se-
quence (an Arg-rich sequence, RRKRRR) [67, 83]. This Arg-
rich peptide is an antagonist for the interaction of VEGFA
and its receptor. The grafted cyclotides showed biological ac-
tivity in an in vitro VEGFA antagonism assay at low micromo-
lar concentration [67]. A similar approach was used to
develop proangiogenic stable peptides [68] by grafting three
different proangiogenic sequences into the plant-derived
MCoTI-II trypsin inhibitor. The proangiogenic activity of
the grafted cyclotides was tested in an in vivo chorioallantoic
membrane assay using fertilized quail eggs. Promising results
were obtained when the grafted sequence was a heptapeptide
from osteopontin, demonstrating that the cystine-knot scaf-
fold improves the activity and stability of angiogenic peptide
sequences [68].
Conclusions
One of the most interesting applications of cystine-knot pep-
tides in pharmacology is their use in replacing antibodies for
medical applications, including targeted cancer therapy,
Br J Clin Pharmacol (2017) 83 63–70 67
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regulated drug delivery and in vivo imaging [84]. Their high
enzymatic stability and good permeation behaviour are very
promising for their use in the oral delivery of peptide
agents. Several natural plant cystine-knot proteins, some of
which are present in edible parts of common crops, target
human receptors or enzymes that play key roles in a variety
of diseases. As it has been demonstrated that different
pharmacophoric sequences can be incorporated into the ex-
posed loops of the cystine-knot proteins without changing
their stability and resistance to proteolytic attack [63], it
should be possible to widen and/or optimize their biological
activities in human cells.
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