-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Catalogo dei prodotti della ricerca

“document” — 2018/11/12 — 10:41 — page 1 — #1

Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Original Paper

Systems Biology

APPAGATO: an APproximate PArallel and
stochastic GrAph querying TOol for biological
networks

Vincenzo Bonnici', Federico Busato !, Giovanni Micale 2, Nicola Bombieri?,
Alfredo Pulvirenti3, Rosalba Giugno'3*

! Department of Computer Science, University of Verona, Strada le Grazie 15 - 37134 Verona and
2Department of Math and Computer Science, University of Catania, Viale A. Doria 6 - 95125 Catania and
3Department of Clinical and Experimental Medicine, University of Catania, via Palermo, 636 - 95122 Catania.

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Biological network querying is a problem requiring a considerable computational effort to
be solved. Given a target and a query network, it aims to find occurrences of the query in the target by
considering topological and node similarities (i.e. mismatches between nodes, edges, or node labels).
Querying tools that deal with similarities are crucial in biological network analysis since they provide
meaningful results also in case of noisy data. In addition, since the size of available networks increases
steadlily, existing algorithms and tools are becoming unsuitable. This is rising new challenges for the design
of more efficient and accurate solutions.

Results: This paper presents APPAGATO, a stochastic and parallel algorithm to find approximate
occurrences of a query network in biological networks. APPAGATO handles node, edge, and node label
mismatches. Thanks to its randomic and parallel nature, it applies to large networks and, compared to
existing tools, it provides higher performance as well as statistically significant more accurate results.
Tests have been performed on protein-protein interaction networks annotated with synthetic and real gene
ontology terms. Case studies have been done by querying protein complexes among different species and
tissues.

Availability and implementation: APPAGATO has been developed on top of CUDA-C++ Toolkit 7.0
framework. The software is available at http./profs.sci.univr.it/~bombieri/ APPAGATO.

Contact: rosalba.giugno@univr.it

Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction metabolic networks describing biochemical reactions between chemical
Technological advances have led to the inference and the validation compound of cells; and (iv) signalling networks representing inner/outer
of structured interaction networks involving genes, proteins, drugs, cell communications.
phenotype, and diseases (Kelley et al., 2003; Panni and Rombo, 2015;
Barabasi and Oltvai, 2004). According to the data type, such networks are

referred to as: (i) protein-protein interaction (PPI) networks representing

A typical example that highlights the advantages and possibilities of
analysing interaction relationships is protein function prediction. Although
sequence homology is commonly used to functionally annotate proteins,
a great amount of them remained uncharacterised (Yu et al., 2013). In this

either physical or functional interactions among proteins; (ii) gene) . h :
context, different algorithms and tools that compare biological networks

regulatory networks that express how the activity of genes is regulated; (iii)
have been applied to predict novel protein functions (Jiang et al., 2011;

Wang et al., 2013; Malod-Dognin and Przulj, 2015).

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://core.ac.uk/display/217554238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“document” — 2018/11/12 — 10:41 — page 2 — #2

Bonnici V et al

In disease studies, genes showing similar phenotypes tend to be
neighbours in protein interaction networks and their aggregation in
connected sub-networks is effective to detect biomarkers (Creixell et al.,
2015; Fortney et al., 2010; Ideker et al., 2002). Also, finding similar
functional and topological sub-networks helps analyzing the conservation
among species (Lim et al., 2006). In all these applications, graphs serve as
the underlying structures for representing biological networks' and graph
algorithms solve problems such as network alignment, network querying,
motif extractions and network perturbation (Panni and Rombo, 2015; Ma
and Gao, 2012; Ciriello et al., 2012; Malod-Dognin and Przulj, 2015).

In this paper we address the problem of approximate network querying,
which finds, in a target network, similar occurrences of a so-called
query network. The notion of similarity takes into account both the
similarities between target nodes and query nodes, and a cost measuring
the differences of nodes and their connections. An approximate network
querying algorithm has to find the query occurrences, among all possible,
with the maximum combined similarity.

Querying tools that deal with similarities are effective in biological
network analysis since they provide results also in case of noisy data.
They are also suitable in the case of partial knowledge of users when
formulating queries. Furthermore, they can be used to compare data from
different species where some fundamental and functional structures are
partially preserved.

Solving approximate network querying implies applying instances of
subgraph isomorphism, which is a NP-complete problem (Dost et al.,
2008). In literature, several heuristics have been proposed to solve such
a problem in reasonable running time. Examples include, restricting the
topology of queries to paths or trees (Dost et al., 2008; Kelley et al., 2004;
Shlomi et al., 2006; Pinter et al., 2005), applying network alignment
strategies (Gulsoy and Kahveci, 2011; Yuanyuan and Patel, 2008; Tian
et al., 2007, 2008), dealing with node similarities and ignoring the query
topology (Bruckner et al., 2010; Blin et al., 2010), fixing the topology
and computing differences of node labels (Liang et al., 2015). Other
methods consist of building indexes to reduce the query time (Khan et al.,
2013; Zhang et al., 2009); filtering the set of possible similar target data
(Sahraeian and Yoon, 2012; Hong et al., 2015; Pienta et al., 2014); to
find only exact occurrences of the query in the network (Bonnici et al.,
2013; Cordella et al., 2004; Sun et al., 2012; Bonnici and Giugno, 2016);
finding the largest part of the query exactly contained in the target graph
and replace the query edges not present in the target with paths (Pienta
etal.,2014).

We have created APPAGATO, a tool that relies on an iterative sampling
method (Lawrence et al., 1993; Micale et al., 2014) to compute functional
and topological similarities between a query and a target network. Through
a matching probability matrix and a weighted sampling procedure, it
selects a seed from which the query-target matching starts. Then, by
associating a cost to each approximation, it iteratively extends the match by
selecting the approximations with the lowest possible cost. The algorithm
runs K times and returns a set of K approximate matches. APPAGATO
performs approximate network querying by considering the topology
of query, taking into account node and edge deletions together with
differences on node labels.

To speed-up the querying process in large biological networks,
APPAGATO has been implemented to run on graphics processing units
(GPUs). Due to their low cost, high-performance, and easy integration to
any personal computer, GPUs have been increasingly applied to accelerate
bioinformatics problems (Dematté and Prandi, 2010; Zhao and Chu, 2014;
Vouzis and Sahinidis, 2011). Our aim is to handle large biological networks

1 For the sake of clarity, in this article, we use the terms graph and network
indistinctly.

in a reasonable time yielding accurate results. We compare APPAGATO
with RESQUE (Sahraeian and Yoon, 2012) and NeMa (Khan et al., 2013)
since, to the best of our knowledge, they are the most efficient and
stable tools in literature very close to APPAGATO on both the problem
they address and on the approximation concept they assume. We run the
tools with different PPI networks as input and compared nodes by using
similarities of protein sequences and functional gene ontology annotations.
We extensively compare the tools in terms of running time, costs of
returned matches, and accuracy in finding protein complexes among
different species. The results show that APPAGATO outperforms the other
two tools yielding more accurate results on large PPI networks.

2 Materials and methods
2.1 Definitions and notations

A graph G is apair (V, E), where V is the set of nodes and E C (V x V')
is the set of edges. If (u,v) € E, we say that v is a neighbour of u. G
is undirected iff V(u,v) € E, then (v,u) € E, i.e. u is a neighbour of
v and vice-versa. The degree of a node u, Deg(u), is the number of its
neighbours. Given a set of labels A, the function Lab : V' — A assigns a
label to each node of GG. We assume that graphs are undirected and labelled
only on nodes.

2.1.1 Exact Subgraph Isomorphism

Let @ = (V,E) and T = (V',E’) two graphs, named query and
target, respectively. The exact SubGraph Isomorphism problem (SubGI)
aims to find an injective function, M V — V', which maps
each node in @ to a unique node in 7', such that V(u,v) € E: (i)
(M(u), M(v)) € E’; (ii) Lab(u) = Lab(M(u)); (iii) Lab(v) =
Lab(M (v)). A solution of the SubGI problem can be represented as the
setm = {(v1, M(v1)), (v2, M(v2)), ..., (v|v|, M(v)y|))}, called a
match of Q in T'. Q) may have different maps m; in T'.

2.1.2 Inexact Subgraph Isomorphism and matching costs

In this paper, we deal with the Inexact SubGraph Isomorphism problem
(ISubGl)z, which is a variant of the SubGI problem, and in which we admit
node and edge mismatches. A mismatch occurs when (i) two nodes with
different labels are mapped through a similarity function, or (ii) a query
edge or (iii) a query node is missing in the target graph. The absence of a
node implies mismatches for all its edges. A cost c is associated to each
mismatch. For the sake of simplicity, the same cost ¢ = 1 is associated to
each of the three types of mismatch.

We denote with C = 3 c the total cost of mismatches between Q
and T'. The goal of the ISubGI problem is to find an injective function
M :V — V’, such that C' is minimized. In this case, a solution for
the ISubGL, m = {(v1, M (v1)), (v2, M (v2)), ..., (vk, M(vy))} with
k < |V, is called an approximate match with a cost C > 0.

Let Qm = (Vin, Em) be the subgraph of query @ that has been
mapped in the match m, thatis, V,,, = {v € V : (v,M(v)) €
m} and E,, = {(w,v) € E : (u,M(u)) € m(v,M(v)) €
m (M(u), M(v)) € E'}. Wedefine Vi, = V\ Vi and Er, = E\ Epy,
the nodes and the edges in @, respectively, that have not been matched
in m. Let S}y |x|v| be the label similarities between each node ¢ € Q
and t € T. The label similarity values belong to the interval [0, 1]. The
computation of S is application dependent. In the case of PPI networks,
the similarity can be based on sequences, functional, or structural protein
similarity.

2 Here called also approximate subgraph querying

“document” — 2018/11/12 — 10:41 — page 3 — #3

Parallel and Stochastic Search

For example, establishing the conservation of a protein-complex CO
of the species A within the species B, consists of searching the subgraph
Qco,extracted from the PPI of A (named G 4), into the PPI of B (named
G). The two PPIs may have different proteins (i.e., nodes with different
names), but with similar function, detectable by looking at sequence
similarities. An ISubGlI algorithm must search for occurrences of Qo in
G p that minimize sequences and topology differences. We conclude that
CO is conserved in B if we find highly similar occurrences.

The total matching cost C' is obtained by summing all node and edge
costs and by normalizing them over the number of query elements, as
follows:

quVm(l - S(‘LM(Q)) + |an| + ‘Em\)

C=
VI +|E|

1)

2.2 The APPAGATO algorithm

The method consists of the following three main phases.

2.2.1 Phase 1: Computation of matching probability matrix

Before starting the search, APPAGATO computes a matrix P of matching
probabilities between all possible node pairs <q,t> (¢ € Q andt € T),
by combining (i) the label similarity S(q,t), (ii) the degree similarity
D(q,t), and (iii) the breadth-first similarity BF'Sg;m (q,t). The label
similarity has been defined in Section 2.1.2. In APPAGATO the label
similarity matrix, S, may be provided as input by the user. Alternatively,
APPAGATO computes a boolean similarity function to compare node
labels. It assigns 1 if labels are identical, O otherwise. The degree similarity
is a binary function D(q,t) = 1 if Deg(q) < Deg(t), otherwise it is 0.
BFSgim/(g,t) is computed by performing breadth-first visits (BFSs) of
the query and target graphs by starting from ¢ and ¢ and evaluating label
and degree similarities of the visited nodes, level by level. The maximum
depth of the BFS visits is a user-defined parameter Iy, 4., With Iy > 1.
Given a node z, and a level I < l;q2 We denote with BF'S;(z) the set
of nodes at level [in the BFS tree rooted at z. An edge e = (u, v) in the
BFS tree of g is defined matchable iff there exists an edge ¢’ = (u’,v’) in
the BFS tree of ¢ such that S(u,«”) and S(v,v’) are not 0 and D (u, u)
= D(v,v") = 1. We denote with MazMatch(BFS)(q), BFS;(t)) a
maximal set of matchable edges in the BFS tree of g at level [, with respect
to the BFS tree of level [rooted in ¢. The BFS similarity between g and ¢
assumes values in [0, 1] and is defined as follows:

Shmaw | x |MazMateh(BFS)(q), BFS(t))|

BFSsim(q,t) = 7
PSR |[BFS;(q)]

(@)

Matching probability matrix. The three similarity values are linearly
combined in M Score(q,t) = S(q,t) + D(q,t) + BF Ssim/(q,t) and
normalized to get the matching probability:

M Score(q,t)
ZzeT M Score(q, z)

P(g,t) = 3)

Equation 3 ensures that 3, . P(q,t) = 1. In phase 2, the probability
matrix is used as a transition matrix within an iterative sampling to extract
the best possible matches. The upper side of Figure 1 shows an example
of such a matrix computation.

2.2.2 Phase 2: Seed selection

APPAGATO searches the first pair of nodes to be matched by randomly
selecting g and ¢ according to the probabilities defined in Equation 3 (see
the example of Figure 1).

v Ve ve, v Ve,
VTO 017 0.2 024 016 0.26
VT, 0.17 0.39 024 012 0.11
v, 0 02 028 012 011
vl, 045 016 017 024 011

Target T

vi, 021 0 0 024 011

vig 0 005 007 012 03

Matching Probability Py

=8+ D+ BFSg,
Query Q Target T
(random selection (Gibbs sampling
of connections) of connections) Query Q Target T

(random selection) (sampling according to
probabilities in P)

PHASE 3
Iteration
1

PHASE 3
Iteration
2

Query Q Target T
(random se/gctlon (Gibbs sampling
of of i
/ B e B —@ OUTPUT
VT, RESULT
A \\ / "11\ (W citeration
Vo, C D A n)
? f Ve, ? vy VT,
Vo, VO, v, VT

Fig. 1. The APPAGATO approximate matching algorithm.

2.2.3 Phase 3: Extension

Gibbs sampling is used to navigate within a Markov chain, where each state
represents a possible query-target node match. The initial state corresponds
to the seed selected in phase 2. The sampling method iteratively performs a
transition from a state to another, by replacing the query-target nodes pair
with a new one, according to a properly defined transition probability. As
an example, Figure 1 shows the first two iterations of the extension phase.
Transition probabilities are defined by starting from similarity scores, and
by taking into account the connections of candidate nodes with already
matched nodes. Let Q, and 17, be the set of query-target matched nodes
at a certain step of the extension process. We denote with Qo [¢] (T [i])
the ¢-th query (target) node added to the partial match. Let g be a query
node neighbour to at least one node in), and ¢ be a target node neighbour
to at least one node in 77,. We represent the set of connections between
¢ and the nodes in Q, through a bit vector CP(q) of |Qm| elements,
called connection profile of q, where the i-th element is defined as follows:

1 if(¢,Qmli]) € E
0 otherwise

CP(q)li] = { ()
We define C'P(t) in the same way. The connection profile similarity
between g and ¢ is the corresponding number of equal bits in the connection
profiles of ¢ and ¢:

_ {1 <i<|CP(g)]: CP(gli] = CP@B)[}]

CPSim(‘Lt) |CP((])|

5
The overall similarity scores is MScoreExt(q,t) = S(g,t) x
CPsim(q,t). The result value is normalized to obtain the final transition
probability:

M ScoreExt(q,t)
> .er MScoreExt(q, 2)

Pr(qt) = Q)

After a number of iterations, n, which is a user-defined parameter, the
algorithm returns the reached match between the query and the target

3 Notice that M Score is not used in the extension phase. M ScoreExt
strongly influences the convergence of the approach (Lawrence et al., 1993;
Micale et al., 2014).

“document” — 2018/11/12 — 10:41 — page 4 — #4

Bonnici V et al

SM_0
Warp scheduler
Dispatch unit

GPU device

SM_n
Warp scheduler
Dispatch unit

Approximate
search
ofQonT
results

Query Q
(extension steps based
on random selection

of connections)

Target T
(extension steps based
on Gibbs sampling
of connections)

\ AEEN EEEE L s
DDD|BBBAAAD AN L1 cache / L1 cache / v vay V& v,/ / ot £ .
saalpacscoaA \ | Shared mem. Shared mem. VT, Poo Pot / 8 Gibbs
Source-destination N | e VRV, VT, Vi pro P 8 sampling
~N
array of vTy \J:]D s ‘:“:l vT‘ e . XS 1
AB CoD 2y, T2 S S Poz Pos Po1Pos
- Vis
== K; (rnd=0.15) K, (rnd=1.25)
Alo 1 1 1 VI, / e b
B|1 0 10 VT 20 Por Po2 + Pos Pos
C|l1 1 0 O Q Q Q Q Q) - | T 4 T
5 o7 VR VR VR ViV Matching Probability Py, 0.0 1.0 18
17 FoRFoRFoN - DRAM - Global mem. =S +D +BFSy, 0.1 (too) (tys) 2.0
Source-destination (to1) Prefix-sum array (toa)
matrix of v&,

Fig. 2. The parallel search of APPAGATO on the GPU device.

node. The quality of such a match is evaluated by summing the costs of
node and edge mismatches between @ and T'. APPAGATO does not require
any user-defined threshold for the maximum allowed cost of a match. In
Figure 1, the approximate match has only a label mismatch, v2Q whose
label C is mapped with vOT having label D, and the cost of the match is
C' = 0.1, computed by applying equation 1. APPAGATO iterates K times
phases 2 and 3 and, in each iteration, it starts the sampling procedure
from a different seed. Each run of APPAGATO always returns K solutions
(approximate matches), each one with the corresponding cost.

2.3 The APPAGATO parallel implementation for GPUs

APPAGATO has been implemented to take advantage of massively parallel
GPU architectures. All the processing phases presented in Section 2.2
have been implemented through different CUDA kernels *, which are
invoked by the host CPU. This allows performing the most compute-
intensive tasks of the search algorithm on the GPU device. As for the
parallel implementation paradigm for GPUs, each kernel is executed
in parallel by several blocks of threads. Thread blocks spread and run
concurrently and independently over streaming multiprocessors (SMs).
Threads of the same block efficiently cooperate through fast shared
memory and by synchronizing their execution through extremely fast (i.e.,
HW implemented) barriers. Groups of 32 threads of the same block are
called warps. Each warp executes one kernel instruction at time in parallel
on different data (i.e., single instruction multiple data-SIMD architecture)
over the many stream processors (cores) of the GPU device. A warp
scheduler efficiently switches between warps with the aim of hiding the
latency of thread accesses to the memory.

Given the query and the target graphs, () and T, the three phases have
been implemented as follows (see Figure 2).

2.3.1 Phase 1: Parallel computation of matching probability matrix.
Computing the matching probability matrix is one of the most
computation-intensive part of the whole algorithm. It requires |V'| x |V’|
computations of Equation 3 and, in particular, O(|V'| + |V’|) BFSs over
Q@ and T and the corresponding comparisons between the visited edges
(Equation (2)).

APPAGATO implements such a phase through a customized version of
BFS-4K (Busato and Bombieri, 2015), a parallel implementation of BFS
for GPU architectures. BFS-4K relies on the concept of frontier (Cormen

4 http://www.nvidia.co.uk/object/
cuda-parallel-computing-uk.html

et al.,2009) (i.e., a FIFO queue that contains the nodes to be visited at each
BFS iteration) to implement the graph visit. Through the frontier-based
visiting, BFS-4K allows equation (3) to be performed over two levels of
parallelism: Each parallel warp of a block is mapped to each node of the
frontier, and, each parallel thread of a warp is mapped to each outgoing
edge from a frontier node.

APPAGATO extends the BFS visit over a third level of parallelism,
by running a total number of |V'| + |V’| independent BFSs in parallel,
one for each node of @ and T'. This is done by allocating one block of
threads per BFS. The block allocation is automatically done at runtime.
A total number of V| thread blocks perform, in parallel, |[V'| BFSs (of
depth l,;,42) for the query graph. The result consists of source-destination
matrices, one per node, which are stored in the global memory (the left-
most side of Figure 2 shows an example, assuming ly,q. = 2). Each
matrix contains information on the labels of such edges visited during the
BFS from the node along l,;, ¢z levels. In the example of Figure 2, the VOQ
matrix contains information on the edges of the first level BFS (A — B,
A — C, A — D) as well as the edges of the second level BFS (B — A,
B-C,C—-—AC—-B,D—-A).

Similarly, and concurrently, a total number of |V’| thread blocks
perform the BFSs for the target graph. The result consists of a set of
source-destination arrays, one per node, which are stored in the device
shared memory. This allows an extremely fast memory access for the
following comparisons between the generated node structures. The array
data structure has been chosen as it allows to represent in a more compact
way the source-destination information of 7" in the limited shared memory.
In contrast, the matrix data structure has been chosen as it guarantees a
faster access to the source-destination information of @, to be stored in
the larger global memory.

Finally, |V’ | thread blocks compare, in parallel, their own source-
destination array stored in the local shared memory with all the source-
destination matrices in global memory. Such a data structure organization

over the GPU memory hierarchy allows the complexity of equation (3)
to be reduced from O(|V'| x |V'|) as for the sequential algorithm, to a
parallel complexity of O(1). The result of Phase 1 is the matrix Py ||y /|,
which is stored in the device global memory (see center part of Figure 2).

2.3.2 Phase 2: Parallel seed selection.

APPAGATO emulates the Gibbs sampling to select the K seeds for
the successive extension phase. The emulation relies on two parallel
primitives, prefix-sum (Billeter et al., 2009; Mark Harris, 2008) and

“document” — 2018/11/12 — 10:41 — page 5 — #5

Parallel and Stochastic Search

weighed random number generation >, which are efficiently implemented
in the literature for GPUs. Given the similarity value of each query-target
node pair pgy of Pjy/| x|v/|, APPAGATO performs the parallel prefix-sum
of such values through |V'| x |V’| threads (i.e., one thread per similarity
value). The result is a prefix-sum array, in which each element is associated
to a thread and the corresponding similarity value. As an example,
Figure 2 shows the prefix-sum array of four threads, to1, to2, to3, toa
having similarity value 0.1,0.9,0.8, and 0.2, respectively. The array
elements have been depicted through different sizes to better represent
the corresponding similarity values. Then, all the threads generate a
random sequence of K values in the interval [0, Y poy] (ie., [0,2] in
the example). The parallel primitive for the random number generation
allows the threads to share the generation seed and, as a consequence,
to generate the same sequence of random values. This allows the threads
to concurrently recognize whether the own boundaries in the prefix-sum
array include any randomly generated value. In the example, the sequence
of random values K7 = 1.25 and K2 = 0.15 leads to the pair of nodes
(de, vg) and (v(?, vg) associated to threads ¢o3 and to2, respectively,
to be selected for the extension phase.

2.3.3 Phase 3: Parallel extension.

The extension phase has been implemented through primitives of BFS,
prefix-sum, weighed random number generation over different levels of
parallelism. As a first level, the K query-target nodes selected in phase
2 are mapped to thread blocks (i.e., one pair of query-target nodes per
block). They are concurrently processed as follows. Given a node pair
(e.g., (v(?, vg) in Figure 2) the two nodes are processed in parallel by
two thread warps (second level of parallelism). The two warps perform a
one-step parallel BFS (third level of parallelism) on @ and 7', respectively,
to visit the neighbour nodes (i.e., candidate connections) of v? and v3T.
The result is two frontiers of neighbours ({v?, UQQ, vf} and {vg, vT,
va s vg} in the example). One step of extension over) performs through
arandom selection of a node (connection) from the first frontier (v? in the
example). For such a node, APPAGATO generates the connection profile
through a one-step parallel BFS. Such a connection profile strongly affects
the extension over 7', which is performed as follows. Starting from all the
nodes of the second frontier, APPAGATO (i) runs one step of parallel
BFS (one per node), (ii) generates the connection profiles of the visited
nodes, and (iii) generates the connection profile similarity of each of such
nodes with the connection of (). Through an emulation of the Gibbs
sampling similar to that implemented in phase 2, APPAGATO selects the
new connection for 7". The algorithm iterates over the new pair of nodes
(i.e., connection of @ and connection T") for a total number n = |V/|
iterations.

2.4 Datasets

Physical Interaction Networks We used the PPI networks taken from
the STRING v10.0 databases (Szklarczyk et al., 2011) of three species:
Mus musculus, Homo sapiens, and Danio rerio. These networks differ
significantly in size (number of nodes and edges) and density (i.e, the
average number of neighbours per node). For each network, we used
up to 250 synthetic labels and gene ontologies annotation downloaded
from BioDbNet ©. This yielded 12 different PPIs (i.e., 3 species, each
one labelled in 4 different ways). We constructed the queries by randomly
extracting sets of 100 connected subgraphs, from each network, by varying
the size of the queries up to 128 nodes. In this dataset, the similarities matrix
S\vev|(q,t) = 1if Lab(q) = Lab(t) otherwise is set to 0.

5 https://developer.nvidia.com/curand
% http://biodbnet.abcc.nciferf.gov

Functional Interaction Networks The STRING database reports, among
two proteins and beside the direct physical interactions used above, indirect
functional relations such as structural similarity, similarity between the
transcript sequences encoding them, and functional correlations. It gives
a score, ranging from O (namely no relation is known) to 999, which
combines physical and functional (i.e., co-expression data analysis)
interactions. We constructed a second dataset by taking into account such
a combined score. We extracted 4 PPI networks related to the species
Mus musculus, Homo sapiens, Danio rerio and Saccharomyces cerevisiae.
We fixed the interaction score threshold at 998 to get few but highly
functional related interactions within each network. As queries, we used
10 human protein complexes taken from the CORUM database (Ruepp
et al., 2010). Since CORUM only reports the set of proteins belonging to
a given complex, and not their interactions, we reconstructed the topology
of the complex by taking into account the interactions reported in the full
STRING database with respect to the Homo sapiens species. Finally, we
labeled target and query nodes with the protein sequences. We computed
the query-target node similarities matrix S|y |z|v+|, by making use of
CUDASW 7, which implements a parallel version for GPUs of the Smith-
Waterman algorithm for local alignment of sequences. We normalized
the matrix by row in order to set to 1 the maximum similarity of the
target and query node. We used this dataset to investigate the biological
significance of the results. The approximate subgraph matching algorithms
were capable to identify functional conservation of protein complexes
among different species. We refer the reader to Section 1 and Tables S1-S2
of the Supplementary for more details.

3 Results and discussion

We compared APPAGATO with NeMA (Khan et al., 2013) and RESQUE
(Sahraeian and Yoon, 2012) on both the physical and functional datasets
described in Section 2.4. All the tools solve ISubGI by taking into account
the query topology. Unless differently specified, with the term APPAGATO
we refer to its implementation on top of CUDA. In the Supplementary,
Section 2, we report details on the APPAGATO implementation and tuning
of parameters (Fig. S1-S3), we assess the robustness of APPAGATO over
query construction (Fig. S4-S5) and the efficiency of both sequential and
parallel versions of APPAGATO (Fig. S6-S7).

3.1 Performance

For the physical interaction networks, we report the comparison results
only between APPAGATO and NeMA, since RESQUE does not support
such a large dataset. Fig. 3 shows the average running times of the two
tools on the Danio rerio network. In the total running time of NeMa,
we distinguish the target preprocessing and the querying time. Note that
APPAGATO does not perform any prepocessing step. The results show that
APPAGATO is at least three times faster than NeMA in case of very small
queries (i.e., 4, 8, 16 nodes). The performance difference sensibly increases
with larger queries. The plots clearly show that the APPAGATO running
time is almost constant when increasing the query size and the number
of labels. We do not report the comparison results on Mus musculus and
Homo sapiens since, in those networks, the running time difference is
even more evident (i.e., NeMa requires more than 10,000 seconds for the
preprocessing phase and more than 6,000 seconds for the execution phase,
while APPAGATO always requires around two seconds). Fig. S8 in Section
3 of Supplementary reports the details on the APPAGATO running time
in all the physical interaction networks, by showing its efficiency varying
the number of labels, query size, and network size. Fig. 4 reports the

7 http://cudasw.sourceforge.net

“document” — 2018/11/12 — 10:41 — page 6 — #6

6 Bonnici V et al
M APPAGATO NeMa preprocessing [l NeMa top-k B APPAGATO ® NeMa
10 18 78 4 1 - -
9 1 0.9 =
8 0.8
7 0.7
—~ 6 % 0.6
i S o5 -]
¢ 5 - I g -
o g
£ " I g 04 7]]
E 4 I = 5 1 "B B | 2
s 1 03 N
3
0.2
2
— - N0zl _ N _ ‘ 0.1
1 0
0 g 83 g g8 d R DT T S
Te g3y YOG HITY YOG HIY - - h
= - - 32 64 250

32 64 250

Fig. 3. The running time comparison between APPAGATO and NeMa on the Danio rerio
PPI network, randomly labelled with 32, 64 and 250 labels. Chart values report the average
time on 100 queries. Queries are grouped with respect to the number of nodes, namely 4,
8, 16, 32, 64, 128. For each query, the tools have been run to find 10, 50 and 100 matches.
B APPAGATO ® RESQUE
1,000
100
10

. _ ‘ J
0
1% 5% 10%

Fig. 4. Running times of APPAGATO and RESQUE on the functional interaction networks.
Results are grouped by the similarity thresholds. The running time of RESQUE highly
depends on the number of target nodes that can be matched with a query node (i.e., on the

Time (sec.) - log. scale

100%

similarity threshold ¢).

comparison of APPAGATO with RESQUE on the functional interaction
networks. For the sake of clarity, we do not include the NeMa results
in the comparison since in this kind of networks, RESQUE outperforms
NeMa. The performance of RESQUE mainly depends on the size of query
and target and on the number of possible candidates for each query node.
RESQUE requires, as an input, a similarity matrix between query and target
nodes. Such a matrix can be partially defined and this affects the quality
of the results. If the similarity matrix is fully defined, then the algorithm
execution becomes infeasible (i.e., RESQUE takes hours for a single query
run). Therefore, we run several tests by changing the percentage of target
nodes that can match to a specific query node. Given a threshold ¢, we set
all entries in the similarity matrix with values less than ¢ to O (i.e., making
them not possible candidates). We then normalized each row by the row
maximum value. We chose the percentages 10%, 5% and 1% to obtain
reasonable RESQUE running times (i.e., 14, 5, 1 seconds, respectively.
APPAGATO always requires around 0.69 seconds). The RESQUE running
time rapidly rises as the ¢ threshold increases. In contrast, the APPAGATO
running times are always below 1 second.

3.2 Quality measurements of matches

Fig. 5 shows a comparison of the average response costs of APPAGATO
and NeMA on the Danio rerio physical PPI network. We removed the
duplicated matches from the results of APPAGATO to avoid the bias
coming from low cost matches. Both algorithms are executed to return
the best 10, 50, 100 matches. As expected, both algorithms are highly
dependent on the query size. However there is a clear difference in their
output quality. The cost of NeMa results are often close to 1, which means
they involve a high number of mismatches. In contrast, the averages of
the APPAGATO costs range from 0.1 to 0.55. Fig. S9-S10 in Section
3 of Supplementary confirm the accuracy of APPAGATO also on Homo
sapiens and Mus musculus. We measured the statistical significance of
the differences between the APPAGATO and NeMa performance. We
computed the p-values with a Wilcoxon rank-sum test together with a FDR-
correction (false discovery rate) for multiple testing. Fig. S11 in Section

Fig. 5. Average costs (and their standard deviations) by taking into account the set of
distinct output matches. Analysis have been performed on the physical interaction PPI of
Danio rerio. Results are grouped with respect to the number of target labels and query size.

W APPAGATO 4 RESQUE

S. cerevisiae H. sapiens
1 1
08 08 ¢ o ¢ e e .
S 06, o ¢ * e e e g *
— 04 0.4
0.2 m 02 L]
-)
LTI FEFLETTY
© f=J s+ N ¥ @ (=)
ARS8 HEHE AR8 858§ 8
1 1
* *
o 08 + o 08 .
S 06 o 06
S o04e 0.4 .
0.2 0.2
oW W g g g guma® Ca o, g, aa"
© W o £ N~ ¥ © 2] f=J s N~ D
8888355888 83888385 EE 8
- N N W1 ! - &N N O v

Fig. 6. A chart showing the costs of the 10 protein complexes over the S. cerevisiae and H.
Sapiens networks. The CORUM ID of the protein complexes is reported on the x-axis. In
the top charts, the similarity threshold is equal to 1%. For those reported in the bottom side
the similarity matrix has not been filtered.

3 of Supplementary shows that APPAGATO significantly outperforms
NeMa. The number of tested queries having lower p-values increases as
the output size becomes larger, particularly when the number of required
output matches increases.

3.3 Querying protein complexes among different
species.

We compared APPAGATO and RESQUE using 10 human protein
complexes taken from CORUM and queried on the functional interaction
dataset composed by Mus musculus, Homo sapiens, Drosophila
melanogaster and Saccharomyces cerevisiae networks (see Fig. 6 and Fig.
S12 Supplementary). We test RESQUE using two similarity threshold
values, 1% and 100%. RESQUE shows the main performance limitation
with a similarity threshold equal to 1% on every target network, while
it provides better performance by increasing the cut-off. In all cases,
APPAGATO outperforms RESQUE even on the quality of the results.
To confirm this, we run the Wilcoxons rank-sum tests (see Fig. S13
in Supplementary). For low similarity thresholds (from 1% to 10%),
APPAGATO provides p-values close to 1 x 10712, Better p-values
(between 1 x 1075 and 1 x 10~ %) are shown when we defined the whole
similarity matrix. Nevertheless, this turned out to be unfeasible from the
running time point of view. Fig. S14 in Section 4 of Supplementary shows
the functional coherence of results with respect to gene ontology. We
computed the average p-value for both algorithms obtained by querying the
10 protein complexes for each of the four species. APPAGATO outperforms
RESQUE on every type of target networks and similarity threshold. We
refer the reader to Sections 4-5 (Fig. S15-S16-S17) of the Supplementary
for details and further application of APPAGATO to compare disease
modules over tissue specific protein interaction networks.

“document” — 2018/11/12 — 10:41 — page 7 — #7

Parallel and Stochastic Search

4 Conclusions

We have developed APPAGATO, a stochastic and parallel algorithm to find
approximate occurrences of a query in biological networks. APPAGATO
deals with node, edge, and node label mismatches. It is implemented for
GPUs. The choice of such devices is motivated by their accessible costs,
high-performance, and widespread availability on any personal computer.
All above features allow APPAGATO to compute efficiently functional
and topological node similarity together with fast searching of a large
number of query matching within the target graph. The results show that
APPAGATO outperforms the existing tools in terms of running time and
result accuracy and, unlike competitors, it scales also on very large PPI
networks.

Acknowledgement

We thank S Mohammad E Sahraeian and Byung-Jun Yoon for all their
help to use and test their software RESQUE. We thank the authors of
NeMA, Arijit Khan, Yinghui Wu, Charu C. Aggarwal and Xifeng Yan, for
distributing their software and their prompt support to evaluate it. We thank
Dr Anna Privitera for her helpful discussion on APPAGATO application.

References

Barabasi, A.-L. and Oltvai, Z. N. (2004). Network biology: understanding the cell’s
functional organization. Nature Reviews Genetics, 5(2), 101-113.

Billeter, M., Olsson, O., and Assarsson, U. (2009). Efficient stream compaction on
wide SIMD many-core architectures. In Proceedings of the Conference on High
Performance Graphics 2009, pages 159-166.

Blin, G., Sikora, F., and Vialette, S. (2010). Querying graphs in protein-protein
interactions networks using feedback vertex set. Computational Biology and
Bioinformatics, IEEE/ACM Transactions on, 7(4), 628—635.

Bonnici, V. and Giugno, R. (2016). On the variable ordering in subgraph isomorphism
algorithms. Computational Biology and Bioinformatics, IEEE/ACM Transactions
on, (99).

Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., and Ferro, A. (2013). A
subgraph isomorphism algorithm and its application to biochemical data. BMC
bioinformatics, 14(Suppl 7), S13.

Bruckner, S., HigYaffner, F., Karp, R., Shamir, R., and Sharan, R. (2010). Topology-
free querying of protein interaction networks. J Comput Biol, 17(3), 237-52.

Busato, F. and Bombieri, N. (2015). BFS-4K: an efficient implementation of BFS
for kepler GPU architectures. IEEE Transactions on Parallel Distributed Systems,
26(7), 1826-1838.

Ciriello, G., Cerami, E., Sander, C., and Schultz, N. (2012). Mutual exclusivity
analysis identifies oncogenic network modules. Genome Res., 22(2), 398-406.
Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2004). A (sub) graph
isomorphism algorithm for matching large graphs. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 26(10), 1367-1372.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2009). Introduction to
Algorithms. MIT press.

Creixell, P,, Reimand, J., Haider, S., Wu, G., Shibata, T., Vazquez, M., Mustonen, V.,
Gonzalez-Perez, A., Pearson, J., Sander, C., Raphael, B., Marks, D., Ouellette, B.,
Valencia, A., Bader, G., Boutros, P., Stuart, J., Linding, R., Lopez-Bigas, N., and
Stein, L. (2015). Pathway and network analysis of cancer genomes. Nat Methods,
12(7), 615-621.

Dematté, L. and Prandi, D. (2010). Gpu computing for systems biology. Briefings
in Bioinformatics, 11(3), 323-333. cited By 56.

Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., and Sharan, R. (2008). Qnet:
a tool for querying protein interaction networks. J Comput Biol., 15(7), 913-25.
Fortney, K., Kotlyar, M., and Jurisica, I. (2010). Method inferring the functions of
longevity genes with modular subnetwork biomarkers of caenorhabditis elegans

aging.

Gulsoy, G. and Kahveci, T. (2011). RINQ: Reference-based indexing for network
queries. Bioinformatics, 27(13), i1149-i158.

Hong, L., Zou, L., Lian, X., and Yu, P. (2015). Subgraph matching with set similarity
in a large graph database. Knowledge and Data Engineering, IEEE Transactions
on, 27(9), 2507-2521.

Ideker, T., Ozier, O., Schwikowski, B., and Siegel, A. F. (2002).
Discovering regulatory and signalling circuits in molecular interaction networks.

Bioinformatics, 18(suppl 1), S233-S240.

Jiang, X., Gold, D., and Kolaczyk, E. D. (2011). Network-based Auto-probit
Modeling for Protein Function Prediction. Biometrics, 67(3), 958-966.

Kelley, B., Sharan, R., Karp, R., Sittler, T., Root, D., Stockwell, B., and Ideker,
T. (2003). Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. PNAS, 100(20), 11394-11399.

Kelley, B., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B., and Ideker, T. (2004).
PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids
Res., 1(32), W83-8.

Khan, A., Wu, Y., Aggarwal, C. C., and Yan, X. (2013). NeMa: fast graph search
with label similarity. In Proceedings of the 39th international conference on Very
Large Data Bases, PVLDB’13, pages 181-192. VLDB Endowment.

Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A., and Wootton, J.
(1993). Detecting subtle sequence signals: a gibbs sampling strategy for multiple
alignment. Science, 262(5131), 208-214.

Liang, H., Lei, Z., Xiang, L., and Philip S., Y. (2015). Subgraph matching with set
similarity in a large graph database. IEEE Transactions on Knowledge and Data
Engineering, 27(9), 2507-2521.

Lim, J. et al. (2006). A protein—protein interaction network for human inherited
ataxias and disorders of purkinje cell degeneration. Cell, 125(4), 801-814.

Ma, X. and Gao, L. (2012). Biological network analysis: insights into structure and
functions. Briefings in Functional Genomics, 11(6), 434-442.

Malod-Dognin, N. and Przulj, N. (2015). L-GRAAL: Lagrangian graphlet-based
network aligner. Bioinformatics, 31.

Mark Harris, Shubhabrata Sengupta, J. D. O. (2008). GPU Gems 3: Parallel Prefix
Sum (Scan) with CUDA, chapter 3. Addison Wesley Professional.

Micale, G., Pulvirenti, A., Giugno, R., and Ferro, A. (2014). GASOLINE: a
greedy and stochastic algorithm for optimal local multiple alignment of interaction
networks. PLoS ONE, 9(6), €98750.

Panni, S. and Rombo, S. E. (2015). Searching for repetitions in biological networks:
methods, resources and tools. Briefings in Bioinformatics, 16(1), 118-136.

Pienta, R., Tamersoy, A., Tong, H., and Chau, D. H. (2014). MAGE: matching
approximate patterns in richly-attributed graphs. In 2014 IEEE International
Conference on Big Data, Big Data 2014, Washington, DC, USA, October 27-30,
2014, pages 585-590.

Pinter, R. Y., Rokhlenko, O., Yeger-Lotem, E., and Ziv-Ukelson, M. (2005).
Alignment of metabolic pathways. Bioinformatics, 21(16), 3401-3408.

Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach, I.,
Fobo, G., Frishman, G., Montrone, C., and Mewes, H.-W. (2010). CORUM:
the comprehensive resource of mammalian protein complexes. Nucleic Acids
Research, 38(suppl 1), D497-D501.

Sahraeian, S. M. E. and Yoon, B.-J. (2012). RESQUE: Network reduction using
semi-markov random walk scores for efficient querying of biological networks.
Bioinformatics, 28(16), 2129-2136.

Shlomi, T., Segal, D., Ruppin, E., and Sharan, R. (2006). QPath: a method for
querying pathways in a protein-protein interaction network. BMC Bioinformatics,
10(7), 199.

Sun, Z., Wang, H., Wang, H., Shao, B., and Li, J. (2012). Efficient subgraph matching
on billion node graphs. Proc. VLDB Endow., 5(9), 788-799.

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez,
P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L., and von Mering, C.
(2011). The STRING database in 2011: functional interaction networks of proteins,
globally integrated and scored. Nucleic Acids Res., 39(Database issue), D561-8.

Tian, Y., McEachin, R., Santos, C., States, D., and JM, P. (2007). SAGA: a subgraph
matching tool for biological graphs. Bioinformatics, 15(23), 232-9.

Tian, Y., Patel, J. M., Nair, V., Martini, S., and Kretzler, M. (2008). Periscope/gq: A
graph querying toolkit. Proc. VLDB Endow., 1(2), 1404-1407.

Vouzis, P. D. and Sahinidis, N. V. (2011). GPU-BLAST: using graphics processors
to accelerate protein sequence alignment. Bioinformatics, 27(2), 182-188.

Wang, H., Huang, H., and Ding, C. (2013). Function—function correlated multi-label
protein function prediction over interaction networks. Journal of Computational
Biology, 20(4), 322-343.

Yu, D., Kim, M., Xiao, G., and Hwang, T. H. (2013). Review of Biological Network
Data and Its Applications. Genomics & informatics, 11(4), 200-210.

Yuanyuan, T. and Patel, J. (2008). Tale: A tool for approximate large graph matching.
In Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on,
pages 963-972.

Zhang, S., Li, S., and Yang, J. (2009). Gaddi: Distance index based
subgraph matching in biological networks. In Proceedings of the 12th
International Conference on Extending Database Technology: Advances in
Database Technology, EDBT 09, pages 192-203, New York, NY, USA. ACM.

Zhao, K. and Chu, X. (2014). G-BLASTN: accelerating nucleotide alignment by
graphics processors. Bioinformatics, 30(10), 1384—1391.

