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Abstract

The problem of ranking a set of elements, namely giving a “rank” to the elements of the
set, may be tackled in many different ways. In particular a mathematically based ranking
scheme can be used and sometimes it may be interesting to see how different can be the
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this working paper some remarks are presented about the importance, in a mathematical
approach to ranking schemes, of a classical result from Linear Algebra, the Perron–Frobenius
theorem. To give a motivation of such an importance two different contexts are taken into
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and the one of ranking webpages in the approach proposed and implemented by Google’s
PageRank algorithm.
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1 Introduction

Many ranking schemes have been proposed in the different situations where a ranking problem

arises. A ranking scheme is a model for getting an order relation on a given finite set. For

example PageRank is an algorithm used by Google Search to rank websites in their search engine

results. It was developed at Stanford University by Larry Page and Sergey Brin, the founders

of Google, in 1996 as part of a research project about a new kind of search engine. In this

working paper we want to focus on the importance of a classical result from linear algebra, the

Perron–Frobenius theorem, in the ranking problem and in particular in the PageRank method

and in a football/soccer teams ranking [1,2,3,4,5].

Actually the reasons why the Perron–Frobenius theorem fits well in the ranking problem are

quite straightforward and do apply more in general in each setting where a linear approach is

taken to get the ranking method.

The linear approach is not the only one possible, of course, and actually situations have been

discovered where an initial linear approach has appeared to be unsatisfactory. For example the

football/soccer ranking belongs to this category: in [1] some reasons why this is true are provided

and a more general non linear approach is preferable. The PageRank approach is linear and this

is why an important step in the Page and Brin iterated algorithm does rely on the application

of Perron–Frobenius theorem.

PageRank is the first algorithm that was used by the company, and it is the best-known.

It has been modified during the years and combined with other methods. It is a link analysis

algorithm and it assigns a numerical weighting to each element of a hyperlinked set of documents,

such as the World Wide Web, with the purpose of “measuring” their relative importance within
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the set. The numerical weight that it assigns to any given element is referred to as the PageRank

of that element.

The idea under PageRank, contained in the Page and Brin’s original paper, is to measure the

importance of website pages depending on how many and how much “important” other pages

are linked to them. According to Google: “PageRank works by counting the number and quality

of links to a page to determine a rough estimate of how important the website is. The underlying

assumption is that more important websites are likely to receive more links from other websites.”

In the football teams ranking things are even more straightforward: we can get the input for

the ranking by taking informations from the matches that teams have played the ones against

the others.

It is easy to understand why the specific scene where the ranking is applied is not so im-

portant, meaning with this for example either the website or the football/soccer teams ranking,

because situations may be different but in any case we have a set of elements interacting one

another with the reasonable property that someone’s rank is high if it interacts with high ranked

elements. Of course this is not enough on its own to get a high rank: what makes it enough

may be in the football/soccer example to defeat high ranked teams in the direct match and to

be pointed by high ranked websites in the web ranking example. It appears evident that the

definition of the interactions and the way we translate interactions in a mathematical formula

is a crucial step in the ranking scheme and this is going to deeply affect the ranking result.

2 Why the Perron–Frobenius theorem?

In [1] an interesting in-depth analysis on possible ranking methods of football teams may be

found, mainly in terms of a possible mathematical background in the ranking procedure. Polls

often are taken to discover what are the best teams, or what people think are the best, and

newspapers publish additional indices that rank the top teams. Sometimes behind these indices

there is some mathematics and the author observes that these are not understood or accepted

by the general public as easily as the polls, just because they are based on mathematics.

It is evident that a good ranking scheme has a large numbers of potential users. As already

noted before, the specific field is not so important: it is enough to adapt or specifically formalize

the relations among the “agents” and the scheme may fit easily. Ranking schemes remove some,

not all in general, subjectivity. Surely different ranking schemes may give totally different

answers about who is the best, depending on the factors and aspects that are inserted and

emphasized by the scheme.
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As the author of [1] says, the topic can have a very important role in motivating students in

the usefulness of non immediate mathematical notions: “I use [these ranking methods] not because

they solve with certainty the problems of which team is number one, but because the mathematics

is fun and well motivated. These methods are excellent vehicles by which to introduce students to

interesting and important mathematical ideas, including the Perron-robenius theorem, the power

and inverse power methods for finding eigenvalues of a matrix, and fixed point theorems for

nonlinear maps.”

The ranking problem may be easily formulated as a linear eigenvalue problem and we give

here the reason of this.

The context first: suppose there is a contest, a competition, with a number N of participants

to which we want to assign a score. The score is based on the interactions with other participants

and should depend on both the outcome of the interaction and strength of its rivals. In the

football context the interaction is of course the match, where we have a final result saying who

is the winner. In the webpage ranking there is no final winner, but we have just to find how we

can interpret the interaction. In the football ranking we may state that a strong rival gives me

some score even if I lost the direct match with it. In the webpage ranking it is reasonable that

my page gets some score if important pages have a link to it.

In general we may define a vector of ranking values r, with positive components rj , indicating

the strength of the jth participant. The definition of the score is crucial in the model as, how it

happens in general, it completely influences the model behaviour. By following [1],in the football

case we may define a score for the ith participant as

si =
1

ni

N
∑

j=1

aijrj ,

where N is the total number of participants in the contest, aij is a nonnegative number related

to the outcome of the game between participant i and participant j, and ni is the number of

games played by participant i.

Remarks. The linear structure is evident. The ith score depends on all the other scores by

means of a coefficient that characterizes the interaction between i and j. In the definition a sort

of normalization is taken: the division by ni is not important in the case all the participants play

the same number of games, as in a regular soccer or football championship for example. It takes

importance in case some additional games are possible. But, apart from this more technical
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aspect, the definition takes anyway to a classical linear model

si =

N
∑

j=1

aij

ni
rj =

N
∑

j=1

bijrj . (1)

Some remarks on the coefficients aij : they are related to interactions between participants

and they may take into account the different aspects of the specific field where we have the

ranking problem. In the football case a possibility is to set aij = 1 if team i won the game

against team j, aij = 1
2 if the game ended in a tie and aij = 0 if team i lost the game against

team j.1

For comparison, in the website ranking problem, the score that PageRank gives to sites is

based on the concept of “link popularity”: a certain webpage is important if, in addition to

receive links from other high ranked pages, has a limited number of links to other pages. A

formal representation of the concept is given by the formula

r(P ) =
∑

Q→P

r(Q)

|Q|
, (2)

where P and Q are pages of the web and we indicate with r(P ) and r(Q) the ranks of the pages,

namely their importance, |Q| is the number of external links of the page Q and the “Q → P ”

under the summation means that the summation is extended over the pages Q that have a link

to the page P .

Remark. Clearly the meaning is that for the ranking of P just the pages linked to P have

relevance and the importance of these pages is reduced by the total number of links these pages

have. The fewer external links a page has the better it is for the ranking of P .

We can write (2) in a way similar to (1). Let P1, P2, . . . , Pn are the n pages on the web. We

may define the corresponding preference matrix in the following way: just rewrite (2) as

r(Pi) =
∑

Pj→Pi

r(Pj)

|Pj |
=
∑

Pj→Pi

1

|Pj |
· r(Pj) =

N
∑

j=1

aijr(Pj) (3)

by setting

aij = Prob(Pj → Pi) =

{

1
|Pj |

if Pj → Pi

0 otherwise.
(4)

As indicated here the matrix A can be seen as a transition matrix A, whose elements are

probabilities of a transition from a page to another page. Of course this setting assumes that if

1If we collect the coefficients aij , or
aij

ni
when the ni’s are relevant, we obtain a matrix, that is sometimes

called the preference matrix.
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Pj is linked to Pi, the transition from Pj to Pi is just one of the |Pj | possible transitions, each

one with the same probability.

It is evident that the underlying mathematical structure is the same in the two contexts.

The only difference is in the coefficients, in how they are defined. Of course the fact that in the

web ranking the summation is just over a part of participants is irrelevant: it means that certain

coefficients are zero.

Now let’s come to the reason why eigenvalues are involved and take the football ranking

example first. It is very reasonable to assume that the score of a team is proportional to its

strength (its rank), as defined by (1). By calling λ the proportionality constant, and indicating

for simplicity with aij what was before
aij
ni

, we get

si = λri,

that is
N
∑

j=1

aijrj = λri.

Writing the last equation in matrix form we get

Ar = λr,

that is the usual equation that takes to the definition of an eigenvalue of the matrix A and the

corresponding eigenvector r. The meaning of this is: if we assume the linear relation among

scores and the proportionality between ranks and scores, then a possible rank vector must be an

eigenvector of the coefficient matrix A, the preference matrix, and the corresponding eigenvalue

is the scalar for the proportion.

Remark. It may sound unexpected to assume that scores are proportional to ranks, and not

just that score are ranks. From a mathematical point of view the only difference is that in the

latter case we “force” the eigenvalue to be one. The former assumption gives in some way some

flexibility to the model. When the matrix A is written, either it has or not the eigenvalue one,

no way for us to do anything. The λ is a way to get a more robust model.

Moving to the website ranking problem and the corresponding formula (2) that states how

scores are defined in PageRank algorithm, the reason why a particular eigenvalue and its cor-

responding eigenvector are important is going to appear now. Suppose we collect the ranks of

all the webpages in a vector r and suppose we want to compute it in an iterative way, starting

from a previous evaluation of r itself. If r(k) is the kth iteration of vector r, at the beginning
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the most reasonable setting, not the only possible one, is to assume that all the pages have the

same rank and, taking into account a sort of normalization, we may start from

r(0) =

(

1

n
,
1

n
, . . . ,

1

n

)T

. 2

In the context of website ranking the concept of probability already came out quite naturally

in the definition of the matrix A. It is clear that we could interpret the rank vector too in a

probabilistic way. High ranks mean high probability one is connected to those pages. The initial

vector r = r(0) may be seen as the “uniform probability distribution vector”: at the beginning

of the ranking process all the webpages have the same probability.

We have already written the general equation (2) in terms of the n pages P1, P2, . . . , Pn of

the web, in particular for the ith page Pi (see equation (3)). After the first transition we have:

r(1)(Pi) =
∑

Pj→Pi

r(0)(Pj)

|Pj |
=
∑

Pj→Pi

1

|Pj |
· r(0)(Pj) =

n
∑

j=1

aij · r
(0)(Pj) i = 1, 2, . . . , n.

In matrix/vector form the previous equation may be written as

r(1) = Ar(0).

Clearly an iterative sequence is then defined, namely

r(k+1) = Ar(k) k = 0, 1, . . . (5)

and this is the general iteration of the so called power method.

Remark. In order to summarize, we have seen that in the football ranking problem the definition

of the scores takes to what in Linear Algebra is the matrix equation where eigenvalues and

eigenvectors come from. In this equation, that involves the vector of ranks and the preference

matrix, the eigenvalue is something like a convenient proportionality constant. In the website

ranking instead the definition of the ranks takes to an iterative procedure involving the rank

vector and again the preference matrix. Both the mathematical problems are related to the

most important among the eigenvalues of a matrix, the so called dominant eigenvalue.

Before going on with the study of convergence of (5) it is necessary to point out what the

dominant eigenvalue is and the reason why the power method converges to it.

2Transposition is required in the next vector/matrix notations.
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2.1 The dominant eigenvalue

Fundamental results hold regarding the dominant (or leading) eigenvalue, that is the eigenvalue

with maximum module (absolute value).3 The most famous among these results is probably the

Perron–Frobenius theorem.

The dominant eigenvalue is important for many reasons, practical and theoretical. A theoret-

ical fundamental aspect, that follows directly from the definition, is that the dominant eigenvalue

gives a bound for all the eigenvalues of the matrix. In the general context of the eigenvalue def-

inition, where they are complex numbers, the dominant eigenvalue gives the radius of the circle

where all the eigenvalues are located. If we are interested in how large eigenvalues can be the

straight answer is in the dominant eigenvalue.

A practical important matter is that we do not need to find all the eigenvalues in order to

select the dominant one. There are methods that take us directly to the dominant eigenvalue.

Moreover, as eigenvectors are important too and maybe more important than eigenvalues, these

methods take us at the same time to find also the eigenvectors corresponding to the dominant

eigenvalue (dominant eigenvectors). The most famous of these methods is the so called power

method, that we are going to recall here in the following.

2.2 The power method

For the purpose of finding the dominant eigenvalue of a matrix together with a corresponding

eigenvector a great variety of methods have been designed. The power method is an iterative

method that takes to compute the dominant eigenvalue and a corresponding eigenvector.4

Let’s consider a square n×n matrix A having n linearly independent eigenvectors associated

3The definition, in its simplicity, can easily be misunderstood. In order the dominant eigenvalue exists we
want it is unique. Then there are matrices that do not have the dominant eigenvalue. If we said “the eigenvalues
with largest absolute value are dominant eigenvalues” then every matrix would have some, but if we want it is
unique things are different. For example a 2× 2 matrix with eigenvalues 1 and −1 does not have the dominant
eigenvalue. The same if a matrix has a double eigenvalue and this happens to be the largest in module.

4We recall that to each eigenvalue of a matrix an infinite number of corresponding eigenvectors are associated.
That’s why we are always forced to say “a corresponding” eigenvector. But often just one eigenvector is enough
because the others are linearly dependent on that one. In particular this is the relevant case in what we are
dealing with, because in the Perron–Frobenius theorem context the linear space associated to the dominant
eigenvalue is one dimensional and then what we need is just one eigenvector. In the (possible) case the linear
space of eigenvalues associated to a given eigenvalue is two-dimensional (or more) we need a pair (or more) of
linearly independent eigenvectors associated to that eigenvalue.
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to the eigenvalues λ1, λ2, . . . , λn
5 and suppose

|λ1| > |λ2| ≥ . . . ≥ |λn|.

This means we are assuming that the dominant eigenvalue λ1 has algebraic multiplicity one.6

Let’s call v1, v2, . . . , vn the corresponding eigenvectors. This means

Avi = λiv
i, i = 1, 2, . . . , n.

The power method, starting from any arbitrarily chosen vector x(0), builds up a sequence of

vectors {x(k)} that converges to the eigenvector associated to the dominant eigenvalue.

Here is a detailed motivation for this convergence result. Suppose x(0) is an arbitrary vector

in R
n. We may write x(0) as a linear combination of v1, v2, . . . , vn that, because of the hypothesis

of linear independence, are a basis of Rn.

x(0) =

n
∑

i=1

civ
i and suppose c1 6= 0.7

Starting from x(0) we may build up the sequence

x(1) = Ax(0) , x(2) = Ax(1) , . . . , x(k) = Ax(k−1) , . . .

The following result holds:

Theorem 1 For the sequence {x(k)}k∈N we have that

lim
k→∞

x
(k+1)
j

x
(k)
j

= λ1 and lim
k→∞

x(k)

x
(k)
j

= cv1. (6)

where j is an index for which x
(k)
j 6= 0, for every value of k.

5This is a crucial hypothesis: from the theoretical point of view it means that the matrix A is similar to a
diagonal matrix or, in an equivalent way, that the linear mapping associated to A is diagonal in a convenient
system of coordinates. As not all matrices have this property, the hypothesis is relevant. From a practical point
of view the aspect is even more crucial: the use of the power method is fundamental in the PageRank algorithm
and this means that if we do not know the hypothesis is true or false we cannot be sure the convergence of the
method gives us a significant result. We could have non convergence at all or we could have convergence to
something that is not reliable as the dominant eigenvalue. The problem is that the “matrix of the web”, the one
that has to be used by PageRank, is an enormous matrix and it is impossible to perform an a priori numerical
control testing the existence of n independent eigenvectors.

6As we shall see shortly this is “part” of the Perron–Frobenius statement, specifically the property is part of
the thesis of the theorem. We can rely on the validity of the assumption if the Perron–Frobenius hypotheses are
true.

7The condition means that we don’t have to start from a point in the subspace spanned by the eigenvectors
v2, v3, . . . , vn. We need x(0) to have a component in the subspace spanned by v1.
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Proof 1 From the definition of the sequence {x(k)} we have that

x(k) = Ax(k−1) = A2x(k−2) = . . . = Akx(0) = Ak
n
∑

i=1

civ
i =

n
∑

i=1

ciA
kvi =

n
∑

i=1

ciλ
k
i v

i.

By collecting λk
1 we get

x(k) = λk
1

(

c1v
1 +

n
∑

i=2

ci

(

λi

λ1

)k

vi

)

and then

x(k+1) = λk+1
1

(

c1v
1 +

n
∑

i=2

ci

(

λi

λ1

)k+1

vi

)

.

Then for the indices j for which x
(k)
j 6= 0 and v1j 6= 0 we may write

x
(k+1)
j

x
(k)
j

= λ1

c1v
1
j +

∑n
i=2 ci

(

λi

λ1

)k+1
vij

c1v
1
j +

∑n
i=2 ci

(

λi

λ1

)k

vij

. (7)

As
∣

∣

∣

λi

λ1

∣

∣

∣
< 1 for 2 ≤ i ≤ n, we have

lim
k→∞

x
(k+1)
j

x
(k)
j

= λ1.

Let’s consider now the sequence of vectors

{

x(k)

x
(k)
j

}

, taking again, for each value of k, an x
(k)
j

component that is non zero. Then

x(k+1)

x
(k)
j

= λ1

c1v
1 +

∑n
i=2 ci

(

λi

λ1

)k+1
vi

c1v
1
j +

∑n
i=2 ci

(

λi

λ1

)k

vij

and again, taking the limit for k → ∞, we get

lim
k→∞

x(k+1)

x
(k)
j

=
v1

v1j
,

that is a “normalization” of the eigenvector v1.

Remark. The eigenvalue can be obtained also as the limit of a different sequence, namely as

the

lim
k→∞

x(k)
T

Ax(k)

x(k)
T
x(k)

,

that is the limit of the Rayleigh quotients of the sequence x(k).

Remark. It is worthwhile to specify that in the practical implementations of the method some

numerical problems are likely to arise. The method, if implemented as it has been presented,
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gives overflow/underflow problems. For this reason at each step it is convenient to normalize

the vector x(k). The properties of the convergence are not modified and we prevent the norms

becoming too large.

We have seen that the limit of the sequence is an eigenvector associated to the dominant

eigenvalue. The ranks of the webpages are the components of this limit vector, conveniently

normalized.

Remark. A couple of further immediate remarks. Firstly it appears evident the extreme heav-

iness of the computations in the website ranking problem. The number of webpages exceeds a

couple of billions and this is the length of the rank vector r and the order of the matrix A.

A more theoretical aspect is that the existence and the properties of the dominant eigenvalue

depend on some properties of the matrix A, and for the moment we do not know if the matrix

satisfies those properties. We shall go into these details in a later work.

2.3 The Perron–Frobenius theorem

In a ranking problem the Perron–Frobenius theorem is important because it gives us some

sufficient conditions in order the problem to have a solution. Conditions are on the matrix A

clearly. It is like to have properties that guarantee we can find, given the assumptions on the

relations among participants, a proper ordering, a ranking, in the set.8

The Perron–Frobenius theorem is a classical “articulated” and somehow technical theorem.

It requires some technical definitions about matrices and it can be found stated in many different

equivalent ways. A very simple form may be the following:

Theorem 2 (Perron-Frobenius) If the matrix A has nonnegative entries, then there exists an

eigenvector r with nonnegative entries, corresponding to a positive eigenvalue ρ. Furthermore, if

the matrix A is irreducible, the eigenvector r has strictly positive entries and the corresponding

eigenvalue ρ is unique and simple and is the largest eigenvalue of A in absolute value.

Remarks. A vector or matrix with nonnegative entries may be said a nonnegative vector or

nonnegative matrix (we write v ≥ 0 to say that v is a nonnegative vector) and similarly a vector

or matrix with positive entries may be said a positive vector or positive matrix (we write v > 0

to say that v is a positive vector). We recall that these definitions give the possibility to obtain

8From a mathematical point of view ordering and ranking are actually different. An order in a set does not
mean to give a “value” to each element of the set. It just mean to be able to compare any two elements (total
orders). In the ranking problem our aim is to give a score to teams, having the possibility to appreciate how
they are separated in the ranking. To get a ranking appears to be more difficult than to have an ordering.
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a partial order in the set of nonnegative vectors by saying that, given two vectors v and u, v ≥ u

whenever v − u ≥ 0 and v > u whenever v − u > 0. It is known that the order is not a total

order because there are pairs of vectors that are non comparable, in the sense neither v ≥ u nor

u ≥ v is true.

The definition of when a matrix is irreducible is quite technical and in the literature there

is a great number of equivalent characterizations. We are giving some remarks in the next

subsection.

Traditionally, and historically, the theorem may be given in two statements, one (the first)

for positive matrices and the other for nonnegative matrices. Actually the first form is due to

Perron. Frobenius, while trying to extend the theorem in the more general case of nonnegative

matrices, obtained the second form, where the thesis is again true but with the need of the

further assumption that the matrix is irreducible.

A possible statement of the Perron’s theorem is the following. In addition to the main result,

many other properties may be proved in the assumption. We give here some of the most known.

Theorem 3 (Perron’s theorem for positive matrices) Let A be an n× n positive matrix.

Then the following statements hold.

(i) There is an eigenvalue ρ (the so called Perron-Frobenius eigenvalue), that is real and

positive, and for any other eigenvalue λ we have |λ| < ρ.

(ii) ρ is a simple eigenvalue, that is a simple root of the characteristic polynomial. In other

words its algebraic multiplicity is one. As a consequence the eigenspace Vρ associated with

ρ is one-dimensional.

(iii) There exists a positive eigenvector r associated with ρ. Respectively, there exists a positive

left eigenvector s.

(iv) There are no other positive eigenvectors of A, except (positive) multiples of r (respectively,

left eigenvectors except (positive) multiples of s).

(v) lim
k→+∞

(

A

ρ

)k

= rsT , where the right and left eigenvectors are normalized, so that sT r = 1.

Moreover, the matrix rsT is the projection onto the eigenspace Vρ, the so called Perron

projection.

(vi) The Perron-Frobenius eigenvalue ρ satisfies the inequalities

min
i

∑

j

aij ≤ ρ ≤ max
i

∑

j

aij .

12



Remark. We recall that a positive (real) matrix is not guaranteed to have just real eigenvalues

and these may be complex numbers in general. The absolute value is then intended in the

complex field.

Here is a possible statement of the Frobenius theorem. It is usual to define as the spectral

radius of a matrix A the maximum of the absolute values of its eigenvalues. In addition to the

main result, here again we recall some other properties that can be proved in the assumptions.

Theorem 4 (Frobenius theorem for nonnegative irreducible matrices) Let A be a non-

negative irreducible n× n matrix with period p and spectral radius ρ. Then the following state-

ments hold.

(i) ρ is positive and it is an eigenvalue of the matrix A, called the Perron-Frobenius eigenvalue.

(ii) ρ is simple. Both right and left eigenspaces associated with ρ are one-dimensional.

(iii) A has an eigenvector r and a left eigenvector s associated with ρ, whose components are

positive for both and the only eigenvectors with all positive components are the ones asso-

ciated with ρ.

(iv) The matrix A has exactly p (the period) complex eigenvalues with module ρ. Each of them

is a simple root of the characteristic polynomial and is the product of ρ with a pth complex

root of the unity.

(v) lim
k→+∞

(

A

ρ

)k

= rsT , where the right and left eigenvectors are normalized, so that sT r = 1.

Moreover, the matrix rsT is the projection onto the eigenspace Vρ, the so called Perron

projection.

(vi) The Perron-Frobenius eigenvalue ρ satisfies the inequalities

min
i

∑

j

aij ≤ ρ ≤ max
i

∑

j

aij .

Remarks. The thesis cannot be obtained without the hypothesis that A is irreducible. The

thesis is quite similar to the one we had before in the positive case. The only important difference

is in (iv): there is just one real dominant eigenvalue, but there are complex eigenvalues with the

same absolute value, and the theorem states a complete description of those.

We have seen before why eigenvalues and eigenvectors are important in a ranking scheme.

Now we have to state why in particular the Perron–Frobenius theorem is involved.
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For the solution of the ranking problem eigenvalues are actually not so important. Inside

the problem formulation the eigenvalue is just a proportionality constant that relates the score

and the rank. The important part in the solution is the existence of the ranking vector, and of

course ranks must be positive (nonnegative) numbers. Then the importance relies on having a

positive (nonnegative) solution and this is the crucial step. The theorem, as we have seen here

above, is about a positive eigenvalue and a corresponding positive eigenvector.

Clearly the uniqueness aspect is important too: it could be meaningless to end up with two

possible rankings, maybe in contrast the one with the another.

Finally, the non uniqueness of the solution in the nonnegative case (see the Remarks following

the theorem) is quite theoretical, because it is due to complex solutions. In a practical need of

preparing a ranking scheme complex solutions are not interesting.

It is worthwhile to give some more details on the concept of irreducible matrices, given the

importance it has in the matter: just think that in order to apply the positive version of Perron–

Frobenius theorem, the one that does not need further assumptions, we must have a preference

matrix A with just positive elements. In the examples we presented so far we do not have this,

because in the football example both a victory or a defeat in a match take to a zero element in

the matrix and the same happens in the website ranking example, where zero elements easily

appear because webpages are not linked to all the webpages of the WWW for sure.

2.4 Irreducible matrices

There are many equivalent ways to characterize irreducible matrices. Some ways are algebraic

ones and some are geometric. In [6] we report a set of characterizations and we briefly outline

also the interesting relation between irreducible matrices and the graph theory. Sometimes it is

easier to decide if the matrix is irreducible by giving a look at the corresponding graph.

This property, unlike the property of being nonnegative, that is evident, may not be evident

at all. It is often related to the existence of something having some property in turn. Here are

two possible conditions that have a simple meaning in ranking problems.

(i) A matrix A is irreducible if there is no permutation that transforms A into a block matrix

of the form
(

A11 A12

0 A22

)

where A11 and A22 are square matrices.

(ii) A nonnegative matrix A is irreducible if for any vector r ≥ 0 we have Ar > 0.
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Remarks. Both conditions have both an algebraic and a geometrical meaning. Clearly the

conditions are far to be easy to use conditions, mainly if the matrix is a big one, as it is

in practical problems. The two conditions can be seen in the ranking problem context. For

example, in the case of football ranking, having defined the matrix as we did before (aij is 1 or

0 in case of loss or win) with condition (i) the matrix A is irreducible if we cannot partition the

set of teams in two subsets S1 and S2 such that no team in S1 plays any team in S2 or every

game between one team from S1 and one team from S2 resulted in a victory for the team in S1.

It is also interesting to observe that for this preference matrix to be irreducible there can be no

winless teams.

With reference to the connections between the matrix and the associated graph (see [6]) it

is easy to notice that condition (i) is equivalent to have a connected graph. In order to see the

graph–matrix relation it is maybe more natural to take the website example, where connections

among pages on the web correspond to non null elements in the matrix. Then a block of null

elements means non connection between subsets of sites, in other words it means a disconnected

graph. And of course the first thought one can have is that the web matrix is far to be associated

to a connected graph. This in fact has been a problem for the designers of the PageRank method,

who arranged strategies to modify the web matrix in order to obtain an irreducible matrix.

Condition (ii) may again be analysed with reference to the website example. If we interpret

the elements aij of the preference matrix A as probabilities of transition from page j to page i

(see (4)), and in the same way we give the rj ’s the meaning of probability to be in the webpage

Pj , then the ith component of vector Ar is

N
∑

j=1

aijrj

that, starting from a probability distribution r, gives the probability of being in webpage Pi after

considering all the interrelations. Then (ii) says that for every possible non trivial probability

distribution, after considering the interrelations every page has a strictly positive probability. A

similar interpretation holds if we take the ri’s in terms of rankings: every page gets a positive

ranking after considering the links it receives from other pages whatever its initial score is. It is

clear that condition (ii) has something to do with connection in the graph.

3 Conclusions and further studies

We gave an outline on how the Perron–Frobenius theorem is involved in the solution of a ranking

scheme problem, taking a couple of examples from the football teams ranking and the websites
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Google’s PageRank method. There are many aspects behind the scene, some of them quite

technical from the mathematical point of view.

For a future work it may be interesting to go on the details of these aspects. First of all how

the choice of the preferences can affect the solution of the ranking problem and in particular the

property of the matrix A of being irreducible. Probably this is a hard task if faced in general

terms, and possibly an initial approach by means of some numerical simulation can be interesting

in itself and can give some hints about what are the important properties.

Secondly, as far as it is possible to get the crucial informations from the web, how PageRank

designers tackled the problem of a non irreducible matrix.

And finally, after a look at the literature, what are the possible results one can find by

applying the power method in the case of a non irreducible matrix.
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