
1

Pro++: A Profiling Framework for
Primitive-based GPU Programming

Nicola Bombieri, Member, IEEE, Federico Busato, Member, IEEE, and Franco Fummi, Member, IEEE

Abstract—Parallelizing software applications through the use of existing optimized primitives is a common trend that mediates the
complexity of manual parallelization and the use of less efficient directive-based programming models. Parallel primitive libraries allow
software engineers to map any sequential code to a target many-core architecture by identifying the most computational intensive code
sections and mapping them into one ore more existing primitives. On the other hand, the spreading of such a primitive-based
programming model and the different GPU architectures have led to a large and increasing number of third-party libraries, which often
provide different implementations of the same primitive, each one optimized for a specific architecture. From the developer point of
view, this moves the actual problem of parallelizing the software application to selecting, among the several implementations, the most
efficient primitives for the target platform. This paper presents Pro++, a profiling framework for GPU primitives that allows measuring
the implementation quality of a given primitive by considering the target architecture characteristics. The framework collects the
information provided by a standard GPU profiler and combines them into optimization criteria. The criteria evaluations are weighed to
distinguish the impact of each optimization on the overall quality of the primitive implementation. The paper shows how the tuning of
the different weights has been conducted through the analysis of five of the most widespread existing primitive libraries and how the
framework has been eventually applied to improve the implementation performance of two standard and widespread primitives.

Index Terms—GPUs, Performance model, Parallel applications.

F

1 INTRODUCTION

Computing platforms have evolved dramatically over the
last years. Because of the physical limitations imposed by
thermal and power requirements, frequency scaling has
proven to be no longer the solution to increase the per-
formance of processors. As a consequence, many hardware
manufacturers have turned to scale the number of cores
in a processor in order to boost application performance.
Apart from the significantly improved simultaneous mul-
tithreading capabilities, such heterogeneous multicore plat-
forms also contain general-purpose graphic processing units
(GPUs) to exploit fine-grained parallelism [1]. As a result of
such hardware trends, the heterogeneity of these platforms
and the need to program them efficiently has led to a
spread of parallel programming models, such as CUDA and
OpenCL. In this context, many parallel applications frmo
different context have been developed for GPUs, ranging
from artificial intelligence [2], to electronics design automa-
tion [3], [4], [5].

On the other hand, while many software developers
possess a working knowledge of basic programming con-
cepts, they typically lack of expertise in developing efficient
parallel programs in a short time. As a matter of fact, the
programming process with a CUDA or OpenCL-based en-
vironment is much more complicated and time-consuming
than that with a parallel programming environment for
conventional multiprocessor systems. Programmability of
such parallel platforms is consequently a strategic factor

• N. Bombieri, F. Busato, F. Fummi are with the Department of Computer
Science, University of Verona, Italy.
E-mail: name.surname@univr.it

Fig. 1: Overview of the Pro++ framework

impacting on the approach feasibility as well as costs and
quality of the final product.

In this context, directive-based extensions to existing
high-level languages (OpenACC[6], OpenHMPP[7]) have
been proposed to help software engineers through sets of
directives (annotations) for marking up the code regions
intended for execution on a GPU. Based on this information,
the compiler generates hybrid executable binary. Despite
their user-friendliness and expressiveness, such directive-
based solutions require notable effort from the developers
in organizing correct and efficient computations and, above
all, compilers are often over conservative, thus leading to
poor performance gain by the parallelization process [8].

Domain-specific languages (DSLs) (e.g., Delite[9],
Spiral[10]) have been also proposed to express the appli-

2

cation parallelism for GPUs in specific problem domains.
DSL-based approaches allow the language features and the
specific problem domain features to be brought closer and,
at the same time, the parallel applications to be devel-
oped not strictly customized for any particular hardware
platform. Nevertheless, these solutions require the user to
implement the algorithms by using a proprietary language,
with consequent limitations to SW IP reuse and portability.

A more user-friendly and common trend is to implement
the application algorithm through existing primitives for
GPUs. This generally provides sound trade-off between
parallelization costs and code performance. Such primitive-
based programming model relies on identifying parts of
code computationally intensive and re-implementing their
functionality through one or more basic primitives provided
by an existing library. Due to its efficiency, the primitive-
based programming model has been recently also combined
to both directive-based solutions and DSLs [11] to exploit
the portability of annotations/DSLs as well the performance
provided by the GPU primitives.

An immediate consequence of such a trend has been
the spreading of an extensive list of accelerated, high-
performance libraries of primitives for GPUs ([12] and [13]
are some exampling collections of them). On the one hand,
all these libraries cover a wide spectrum of use cases,
such as basic linear algebra, machine learning, and graph
applications. On the other hand, many libraries provide
different implementations of the same primitives. From the
developer point of view, this moves the actual problem of
parallelizing a software application to selecting the most
efficient primitives for the target platform among several
implementations.

The motivation for our work is precisely the observation
that it would be nice to measure the implementation quality
of a given primitive, with the aim of helping the software
developer (i) to choose the best implementation of a given
primitive among different libraries, and (ii) to understand
whether such a primitive implementation fully exploits the
architecture characteristics and how the implementation
efficiency could be improved. To do that, this paper presents
Pro++ (see Figure 1), an enhanced profiling framework for
the analysis and the optimization of parallel primitives for
GPUs. Pro++ collects the information about a given primi-
tive implementation (i.e., profiling metrics) through a stan-
dard GPU profiler. The framework combines the standard
metrics into optimization criteria, such as, multiprocessor
occupancy, load balancing, minimization of synchronization
overheads, and memory hierarchy use. The criteria are eval-
uated, weighed, and finally merged into an overall measure
of quality metrics. The quality metrics allows the user to
classify and compare the different implementations of a
primitive in terms of performance over the selected GPU
architecture configuration.

The main contributions of this work are the following:

• A classification of optimization criteria that mainly
impact on the primitive performance.

• An analysis of such optimization criteria over five
different primitive libraries for GPUs to weigh the
impact of each single criterion on the overall primi-
tive performance.

• A framework that combines profiling metrics, op-
timization criteria, and weights to provide (i) an
overall quality metrics of a given primitive and (ii)
profiling feedbacks to improve the primitive imple-
mentation.

This article is based and extends the works presented in
[14]. Compared to [14], this work presents:

• An extended and more detailed analysis of the state
of the art, with a new section devoted to the related
work;

• A revision and extension of the model (which is the
core of the whole framework) proposed to measure
the quality of the GPU implementations. In such a
model, different optimization criteria have been op-
timized and several others have been added to better
cover all the crucial properties a GPU application
should satisfy to exploit the full potential of the GPU
device;

• An extended experimental analysis, in which (i) we
applied the new extended performance model to the
existing case study, and (ii) we added a new case
study (matrix transpose) to underline the robustness
and efficacy of the proposed method.

The article is organized as follows. Section 2 presents the
analysis of the state of the art. Section 3 summarizes the key
concepts of CUDA, GPU architectures and GPU profiling.
Section 4 presents the optimization criteria by which the
primitives are evaluated. Section 5 reports the analysis con-
ducted to measure the impact of the optimization criteria on
the overall quality metrics of primitives. Section 6 presents
the case studies of Pro++ application while Section 7 is
devote to the conclusions.

2 RELATED WORK

Different performance models for GPU architectures have
been proposed in literature. They can be classified into
specific models, which apply on a particular application or
pattern only, and general-purpose models, which are applica-
ble to any program/kernel for a comprehensive profiling
[15].

In the class of specific models, [16] proposes an approach
for performance analysis of code regions in CUDA kernels,
while, in [17], the authors focus on profiling divergences in
GPU applications. A different analytical approach is pro-
posed in [18], which aims at predicting the kernel execution
times of sparse matrix-vector multiplications.

General-purpose models allow profiling applications
from more optimization criteria point of view and, thus,
they can give different hints on how to optimize the code. As
an example, [19] proposes a model for NVIDIA GPUs based
on two different metrics: Memory warp parallelism (MWP)
and computation warp parallelism (CWP). Although the
model predicts the execution costs fairly well, the under-
standing of performance bottlenecks from the model is not
so straightforward. This model has been extended in two
different ways [20], [21]. [20] introduces two kernel behav-
iors, MAX and SUM, and shows how they allow generating
predictions close to the real measurements. Nevertheless,
they do not provide clues as how to choose the right one for

3

a given kernel. In contrast, [21] extends the model with ad-
ditional metrics, such as cache effect and SFU instructions.

All these analytical performance models, although accu-
rate in several cases, rely on simulators (e.g., Ocelot [22],
GPGPU-Sim [23], Barra [24], Multi2Sim [25]) to collect nec-
essary information for profiling, which implies a high over-
head in the profiling phase. An attempt has been made in
[26] for collecting more efficiently information on the GPU
characteristics and using simple static analysis methods to
reduce the overhead of runtime profiling.

Besides the often prohibitive overhead introduced in the
profiling phase, especially for complex applications, a big
problem of the simulator-based models is portability. They
can be applied to profile applications on GPU models that
are supported by the simulator, which, often, is not updated
to the last releases of GPU models.

Differently from the analytical models, [27] and [28]
are based on machine-learning techniques, which allow
identifying hardware features and using feature selection,
clustering and regression techniques to estimate the execu-
tion times. In particular, the work in [27] derives relation-
ships between application characteristics and performance
on GPU and CPU devices. The model relies on the Ocelot
PTX simulator and on regression analysis to characterize
benchmarks and to derive relationships to machine and
application parameters. The authors in [28] propose a per-
formance prediction model for OpenCL kernels for auto-
matic selection at run-time of the best-suited accelerator for
a specific computation. The work applies a linear regression
model to identify kernel function parameters with a strong
correlation with the application performance. Nevertheless,
both these models are inaccurate, thus providing approxi-
mate estimations with high variability.

We propose a general-purpose performance model that,
similarly to the machine-learning models, relies on a regres-
sion suite of parallel primitives to characterize the device
and on several application criteria to measure the imple-
mentation quality, gives interpretable hints and accurate
performance prediction.

3 BACKGROUND ON CUDA, GPUS AND PRO-
FILER METRICS

3.1 Computed Unified Device Architecture (CUDA)

CUDA is a parallel computing platform and programming
model proposed by NVIDIA. CUDA comes with a software
environment that allows developers to use C/C++ as a
high-level programming language targeting heterogeneous
computing on CPUs and GPUs. Through API function
calls, called kernels, and language extensions, CUDA allows
enabling and controlling the offload of compute-intensive
routines. A CUDA kernel is executed by a grid of thread
blocks. A thread block is a batch of threads that can cooperate
and synchronize each other via shared memory, atomic
operations and barriers. Blocks can execute in any order
while threads in different blocks cannot directly cooperate.

Groups of 32 threads with consecutive indexes within
a block are called warps. A thread warp executes in SIMD-
like way the same instruction on different data concurrently.
In a warp, the synchronization is implicit since the threads

execute in lockstep. Different warps within a block can syn-
chronize through fast barrier primitives. In contrast, there
is no native thread synchronization among different blocks
as the CUDA execution model requires independent block
computation for scalability reasons. The lack of support for
inter-block synchronization requires explicit synchroniza-
tion with the host, which involves significant overhead.

A warp thread is called active if it successfully executes
a particular instruction issued by the warp scheduling. A
CUDA core achieves the full efficiency if all threads in a
warp are active. Threads in the same warp stay idle (not
active) if they follow different execution paths. In case of
branch divergence, the core serializes the execution of the
warp threads.

3.2 Graphic Processing Unit (GPU)

The GPU consists of an array of Streaming Multiprocessors
(SMs), which, in turn, consist of many cores called Stream
Processors (SPs). Each core is a basic processing element
that executes warp instructions. Each SM has from one
to four warp schedulers that issue the instructions from a
given warp to the corresponding SIMD core. The hardware
scheduler switches between warps with the aim of hiding
the memory latency.

Each GPU core has a dedicated integer (ALU) and a
floating point (FPU) data path that can be used in parallel.
Both ALU and FPU can execute complex arithmetic instruc-
tions (e.g., multiplication, trigonometric functions, etc.) in
one clock cycle. On the other hand, the SM has limited
instruction throughput per clock cycle.

GPUs also feature a sophisticated memory hierarchy,
which involves thread registers, shared memory, DRAM
memory and two-level cache (L1 within a SP, while L2 acces-
sible to all threads). In the last NVIDIA GPU architectures,
Kepler and Maxwell, a small read-only cache per-SM (called
Texture cache) is also available to reduce global memory
data access.
Private variables of threads and local arrays with static
indexing are placed into registers. Large local arrays and
dynamic indexing arrays are stored in L1 and L2 cache.
Thread variables that are not stored in registers are also
called local memory. To fully exploit the memory bandwidth,
multiple memory accesses of warp threads can be combined
into single transactions (i.e., coalesced memory access).

Finally, the host-GPU device communication bus allows
overlapping CPU-GPU data transfers with the kernel com-
putations to minimize the host-device data transfers.

3.3 Profiler Metrics

Developing high performance applications requires adopt-
ing tools for understanding the application behaviour and
for analysing the corresponding performance. At the state of
the art, there exist several profiling tools for GPU applica-
tions that provide advanced profiling information through
the analysis of events, kernel configuration, hardware and
compiler information. Table 1 summarizes a selected list of
such profiling information, which are strongly related to the
application performance.

4

EXTRACTED INFORMATION
INFORMATION

SOURCE
DESCRIPTION

#SM Hardware Info Total number of stream multiprocessors.
#SM threads Hardware Info Total number of threads per stream multiprocessor.
reg granularity Hardware Info Register allocation granularity.
block size Kernel Configuration Number of threads per block associated to a kernel call.
grid size Kernel Configuration Number of thread blocks associated to a kernel call.
#registers Compiler Info Number of used registers per thread associated to a kernel call.
SM registers Hardware Info Total number of registers per Streaming Multiprocessor.
#Blocks per SM Profiler Event Number of resident blocks per Streaming Multiprocessor.

max SM blocks Hardware Info Maximum number of resident blocks per Streaming Multipro-
cessor.

#resident threads Hardware Info Maximum number of threads that can run concurrently on the
device.

Static SMem Compiler Info Bytes of static shared memory per block.
Dynamic SMem Kernel Configuration Bytes of dynamic shared memory per block.
SM SMem Hardware Info Total available shared memory per Streaming Multiprocessor.
active warps Profiler Event Number of active warps per cycle per SM.
threads launched Profiler Event Number of threads run on a multiprocessor.

stall sync Profiler Event Percentage of stalls occurring because the warp is blocked at a
syncthreads() call.

Int instr, SP instr, DP instr Profiler Event
Number of arithmetic instructions (integer, single-precision
floating point, double-precision floatig point) executed by all
threads.

cudacopy size Profiler Event Number of bytes associated to a host-device memory transfer
function.

DRAM transactions Profiler Event Total number of DRAM memory accesses.
#L1 transactions Profiler Event Total number of L1 memory accesses.
#L2 transactions Profiler Event Total number of L2 memory accesses.

#Mem instrT Profiler Event Total number of global memory instructions of size T . Where T
can be 1/2/4/8/16 bytes.

#SharedLoadTrans, #SharedStoreTrans Profiler Event Total number of shared memory load/store transactions.
#SharedLoadAcc, #SharedStoreAcc Profiler Event Total number of shared memory load/store accesses.
alu utilization Profiler Event Utilization level of the GPU arithmetic units (ALU/FPU).
ld st utilization Profiler Event Utilization level of the GPU load/store instruction units.
KernelStart, cudacopy start time, Ker-

nelExeTime, cudacopy time Profiler Info Start time and duration of a kernel call or CUDA memory
transfer function.

TABLE 1: Profiler events, compiler information, hardware (device) information, and kernel configuration
considered in the proposed optimization criteria.

In this work we refer to the NVIDIA nvprof profiler ter-
minology and information. However, the proposed method-
ology is independent from the adopted profiler. Nvprof has
two operating modes that generate two distinct outputs. The
first mode is the trace mode, which provides a timeline of all
activities taking place on the GPU in chronological order.
From this mode, we extract the kernel configuration and
any timing associated to a kernel (e.g., start time, latency,
etc.). The second mode, called summary mode, reports a user-
specified set of events for each kernel, both aggregating
values across the GPU units and showing the individual
counter for each SM.

4 OPTIMIZATION CRITERIA

We define different optimization criteria, which express the
quality of a given primitive to exploit a GPU characteristic.
Examples are the occupancy of all the computing (SP)
resources, the load balancing, and the memory coalescing.

The selection of the most representative and influential
optimization criteria has been guided by the best practices
guide [29], by the main CUDA books [30] [31] and by our
programming experience [32]. The optimization criteria are
defined to cover all the crucial properties a GPU application
should satisfy to exploit the full potential of the GPU device.
We consider the properties adopted in [21], [16], [17], [19],
[20] concerning divergence, memory coalescing, and load
balancing. In addition, we define optimization criteria to
cover synchronization issues. Differently from the literature,
the proposed criteria are more accurate (i.e., fine-grained) to
evaluate such properties. All the criteria are defined in terms
of events and static information, which are all provided by
any standard GPU profiler. Each criterion value is expressed
in the range [0, 1], where 0 represents the worst and 1
represents the best evaluation of such an optimization.

5

4.1 Occupancy (OCC)
In order to take advantage of the computational power of
the GPU, it is important to maximize the SP utilization of
each SM. This criterion gives information on the maximum
theoretical occupancy of the GPU multiprocessors in terms
of active threads over the maximum number of threads that
may concurrently run on the device.

The criterion value, which is calculated statically, de-
pends on the kernel configuration as well as on the kernel
implementation. In particular, it depends on the block size
(i.e., number of threads per block), grid size (i.e., number of
blocks per kernel) as well as amount of used shared memory
for the kernel variables, and number of used registers. In
general, the kernel configuration of the primitives is set
at compile time by exploiting information on the device
compute capability and no tuning is allowed to the user
(to comply with the principle of user-friendliness). The
criterion takes into account how well the limited resources
like registers and shared memory have been exploited
in the kernel implementation and, thus, how and how
many variables have been declared (e.g., automatic and
shared). A low value means underutilization of the GPU
multiprocessors. More in details, the overall occupancy is
calculated as the minimum value between the occupancy
related to block size (taking into account also the maximum
number of blocks per SM), to shared memory utilization
(StaticalSMem + DynamicSMem), to the register utilization
(#registers), and to the grid size with respect to the min-
imum number of blocks required to keep busy all SMs 1:

SMEM OCC =

⌊
SM SMem

StaticSMem+DynamicSMem

⌋

Reg OCC =

⌊
block size
warp size · dwarp size·#registerse[reg granularity]

SM Register

⌋

Block OCC = max

(
max SM blocks,

⌊
SM threads

dblock sizee[warp size]

⌋)

Thread OCC =
grid size · dblock sizee[warp size]

#resident threads

OCC = min (SMEM OCC,Reg OCC,Block OCC,Thread OCC,1)

4.2 Host Synchronization (HSync)
Many complex parallel applications organize the compute-
intensive work into several functions offloaded to GPUs
through host-side kernel calls. Depending on the code com-
plexity and on the workflow scheduling, this mechanism
may involve significant overhead that can compromise the
overall application performance. The host synchronization
criterion aims at evaluating the amount of time spent to
coordinate the kernel calls. It is defined as follows:

HSYNC =

∑N
i=1 KernelExeTimei

KernelStartN + KernelExeTimeN − KernelStart1

1. The notation dAe[B] denotes the nearest multiple of B equal or
greater than A.

where N is the number of kernels in which the appli-
cation has been organized, KernelExeT imei is the real
execution time of kernel i on the device, and KernelStarti
is the clock time in which kernel i starts executing. A frag-
mented computation that involves many kernel invocations
and many small data transfers is represented by a low value
of this criterion.

This criterion helps programmers to understand if the
overall application speedup is bounded by an excessive host
synchronization activity. Merging different kernels, using
inter-block synchronization [33] or reducing small memory
transfers improve the quality value of this criterion.

4.3 Device Synchronization (DSync)

In GPU computing, the synchronizations of threads in
blocks are one of the main causes of idle state and, thus,
they strongly impact on the application performance. Beside
introducing overhead in the kernel execution, they also limit
the efficiency of the multiprocessors in the warp scheduling
activity. This criterion gives a quality value of a kernel by
measuring the total time spent by the kernel for synchroniz-
ing thread blocks:

DSYNC = 1−
(
1− TotActiveWarps/warps size

CLK cycles

)
· StallSync

where TotActiveWarps =
∑CLK cycles

i=1 ActiveWarpsi.

|Warps| represents the maximum number of thread
warps of the device, while CLK cycles represents the total
number of GPU clock cycles elapsed to execute the kernel.
The formula takes into account the number of active warps
at each clock cycle, and it adds them to the total counter
TotActiveWarps. The value in the round bracket represents
the overall percentage of inactivity of the GPU warps (i.e.,
warps in waiting state). StallSync represents the percentage
of the GPU time spent in synchronization stalls over the total
number of stalls. StallSync depends on the load balancing
among threads as well as the number of synchronization
points (i.e. thread barriers) in the kernel.

4.4 Thread Divergence (TDiv)

Branch conditions that lead threads of the same warp to ex-
ecute different paths (i.e., thread divergence) are one of the
main causes of inefficiency of a GPU kernel. This criterion
evaluates the thread divergence of a kernel as follows:

TDIV =
#ExeInstructions

#PotExeInstructions

where #ExeInstructions represents the total number
of instructions executed by the threads of a warp and
#PotExeInstructions represents the total number of in-
structions potentially executable by the threads of a warp.
The final value is calculated as the average over all warps
run by the kernel. The criterion gives a clear evaluation of
the branching factor of a kernel code.

6

4.5 Warp Load Balancing (LBW)
This criterion expresses how well the workload is uniformly
distributed over the cores of each single SM:

LBW =

(
TotActiveWarps
TotActiveCycles

)
(

block size
warp size

)
·#Blocks per SM

where TotActiveCycles represents the total number of
clock cycles in which the single SMs are not in idle state.
The formula takes into account the number of active warps
at each clock cycle, and it adds them to the total counter
TotActiveWarps. The denominator represents the theoret-
ical maximum occupancy of the SMs in terms of number
of warps. It is calculated by considering the block size and
the number of blocks mapped to each single SM. A low
value of this criterion underlines that some warps doing
most of the work while others are in the idle state. This is
a common behavior in irregular problems and suggests to
programmers to choose a different load balancing strategy.

4.6 Streaming Multiprocessor Load Balancing (LBSM)
Besides the load balancing on each single SM, the model
evaluates the load balancing at SM level. The SM load
balancing criterion is defined as follows:

LBSM = 1−
max
SM

(TotActiveCycles)− AvgCycles

max
SM

(TotActiveCycles)

where

AvgCycles =

∑
SM

TotActiveCycles

#SM
The formula expresses the SM Load Balancing as the

difference between the maximum execution cycles required
among all SMs and the best case where all SMs take the
same execution cycles.

4.7 L1/L2 Granularity (GranL1/GranL2)
GPU applications require optimized data access patterns
and properly aligned data structures to achieve high mem-
ory bandwidths. In particular, efficient applications hide the
latency of memory accesses by combining multiple memory
accesses into single transactions that match the granularity
(i.e., the cache line size) of the memory space2. Hides latency
of memory accesses in CUDA is feasible by combining mul-
tiple memory accesses into a single transaction that match
the granularity (cache line size) of the memory space. The
proposed performance model includes two complementary
criteria to describe the quality of memory access patterns:

GranL1 =
#L1 transactions · 128∑

T∈{Mem instr}
#Mem instrT · sizeT

GranL2 =
#L2 transactions · 32∑

T∈{Mem instr}
#Mem instrT · sizeT

2. This concept applied to the L1 cache is also known as memory
coalescing.

The criteria take into account the number of actual transac-
tions towards the L1(L2) memory, the cache line size (128
Bytes for L1, 32 Bytes for L2), the total number of memory
instructions (load and store) to access the global memory,
and the size of their accesses sizeT (1/2/4/8/16 Bytes).
The ratio of useful data accesses to total data accesses is
calculated by comparing the total size of the data required
by threads with the number of transactions multiplied by
the respective memory granularity.

4.8 Shared Memory Efficiency (SMemeff)

This criterion measures the kernel efficacy to exploit the data
locality concept through the on-chip shared memory. The
shared memory allows high memory bandwidth for con-
current accesses, but it requires appropriate access patterns
to achieve the full efficiency. On the other hand, an excessive
and disorganized use of the shared memory leads to bank
conflicts, which involve the memory instructions to be re-
executed thus serializing the thread execution flow. This
optimization criterion is defined as follows:

SMemeff =
#SharedLoadTrans + #SharedStoreTrans

#SharedLoadAcc + #SharedStoreAcc

The formula is defined in terms of total number of
transactions towards shared memory for both load and
store operations over the total number of accesses in shared
memory for load and store instructions (which includes the
re-executed memory instructions due to bank conflicts).

4.9 Computation Intensity (CI)

This criterion takes into account the amount of instructions
that make use of arithmetic units, both integer and float-
ing point, and load-store (instruction) units (LDST) for all
memory spaces.

CI =
alu utilization + ld st utilization

2

The formula expresses the computation intensity as the
average of the utilization level of the ALU/FPU units and
the LDST units. This criterion is strictly related to the
code optimization. A high value of computation intensity
criterion means that the ALU, FPU and LDST units have
not been wasted. Considering also the same functionality
of all tested code for the same primitive, this information
indicates how much the code is optimized. A high value of
the utilization level of an instruction unit indicates that the
unit performs a high number of independent operations of
the same type. As a consequence, all the operations can be
run in parallel and saturate the computational throughput
of the specific unit.

4.10 Data Transfer (DT)

It takes gives a quality measure of the primitive to address
the data transfer overhead. As an example, pipelining (over-
lapping) between data transfer and data computation allows
the primitive to rich higher value of this criterion:

7

DT = 0.5 +
Overlapping mem transf

GPU allocated byte +
∑

cudacopy size

−
∑

cudacopy size

GPU allocated byte +
∑

cudacopy size

Overlapping data transfers with kernel computation
may reduce the execution time, but it requires a fine-tuning
of the data size to be transferred. Too large data sizes may
involve no advantage, while too small sizes may involve
heavy synchronization overhead.

It also takes into account the amount of bytes trans-
ferred in the host-device communication during a kernel
computation over the actual I/O bytes required for the
computation. Any extra data transfer between host and
device is considered as overhead.

4.11 Overall Quality Metrics (QM)
All the proposed values of the optimization criteria are
finally combined into an overall quality metric to provide,
through a single value, an evaluation of the profiled code.
We express this value as the weighted average of the values
of the optimization criteria as follows:

QM=

OCC ·WOCC+HSync ·WHSync+

DSync ·WDSync+TDiv ·WTDiv+

GranL1 ·WGranL1
+GranL2 ·WGranL2

+

LBW ·WLBW
+LBSM ·WLBSM

+

SMemeff ·WSMemeff
+ CI ·WCI +DT ·WDT

WOCC +WHSync +WDSync +WTDiv+

WGranL1
+WGranL2

+WLBW
+WLBSM

+

WSMemeff
+WCI+WDT

Wxy express the weight of each single criterion in the
overall quality measure. In this work, we tuned the different
weights through the analysis of different libraries of primi-
tive, as detailed in the following section.

5 WEIGHING OF OPTIMIZATION CRITERIA ON THE
OVERALL QUALITY METRICS

5.1 Parallel Primitives
The impact of the optimization criteria classified in the
previous section on the overall quality metrics has been
measured through the analysis of five primitive libraries for
NVIDIA GPU architectures. The first library, Thrust v1.8.1
[34], is provided by NVIDIA in the CUDA Toolkit and it
is based on the C++ Standard Template Library high-level
interface. This library provides a wide range of parallel
primitives to simplify the parallelization of fundamental
parallel algorithms such as scan, sort, and reduction. The
second library, CUB v1.4.1 [35], provides a set of high per-
formance parallel primitives for generic programming for
both host and device programming layer. The third library,
CUDPP v2.2 [37], focuses on common data-parallel algo-
rithms such as reduction and prefix-scan, and includes also a

set of specific-domain primitives such as compression and
suffix array functions. The fourth library, ModernGPU v1.1
(MGPU) [38], implements basic primitives such as reduction
and prefix-scan but the main goal of ModernGPU is provid-
ing very efficient implementations of parallel binary search al-
gorithm applications such as segmented reduction/prefix-scan,
load balancing algorithm, merge, set operations and matrix-
vector multiplication. Finally, ArrayFire v3 [39] includes
hundreds of high performance parallel computing func-
tions. In particular, it is focused on complex algorithms
across various domains such image processing, computer
vision, signal processing and linear algebra. In ArrayFire,
the common parallel primitives are proposed as vector
algorithms.

These libraries have been selected as they provide dif-
ferent implementations of widely used and common primi-
tives for the parallelization of fundamental algorithms. This
allowed us to compare such implementations by running
them over several datasets and by measuring their actual
speedups w.r.t. a reference sequential implementation. The
comparison results has been finally used to tune the weight
of each optimization criteria in the overall quality metrics.

Table 2 summarizes the parallel primitives that have
been evaluated for such a tuning, by specifying which
libraries provide an implementation of a specific primitive.
The primitives are grouped by similar functionality in seven
main classes. The most basic primitives implementing data
elaboration are grouped in the Independent Linear Transforma-
tion class, which applies concurrent operations on every sin-
gle element of the input data. This class includes primitives
implementing predicate functions for linear transformation
on subsets of the input data as well as on multiple sets
of data concurrently. The second class, Advanced Copying,
includes two classic collective operations, i.e., gathering and
scattering, as well as their version with predicate. The Reduc-
tion class refers to all the primitives that apply an operation
to the input data and that return a single value as result (e.g.,
counting, maximum, reduction). The segmented version of
the reduction applies the operation to a subset of input
data. The fourth class includes all variants (i.e., inclusive,
exclusive, etc.) of the prefix-scan procedure, which represents
the building blocks of many parallel algorithms. The search
class contains primitives for searching elements in sorted
or unsorted sets of data. The load-balancing primitives are a
specialization of the vectorized sorted search. They are largely
used to extrapolate, from a given input data, the indices to
map threads to the corresponding input elements. The prim-
itives in the Reordering class include different procedures to
manipulate the input data or to select a subset of such a
data by using predicates. Finally, the Set class covers the
most common operations on sets represented as continuous
sorted data values.

5.2 Evaluation

For all parallel primitives, we firstly measured the value of
each optimization criterion as proposed in Section 4. The
evaluation of all primitives has been run on two different
systems: a NVIDIA Kepler GeForce GTX 780 device with
CUDA Toolkit 7.5, AMD Phenom II X6 1055T 3GHz host
processor, and Debian 7 OS and a NVIDIA Fermi GeForce

8

Parallel
Primitives

Library
ArrayFire CUB CUPDD MGPU Thrust

Independent
Linear

Transformation

Fill/Generate/Sequence/
Tabulate X X

Modify/Transform/
Replace/Adjacent
Difference

X X

Modify If X
Comparison X
Simple Copy X

Advanced Coping

Gathering X
Gathering If X
Scattering X
Scattering If X

Reduction

Couting X X
Extrema X X X
Reduction X X X X X
Reduce by keys/
Segmented Reduction X X X X

Histogram X X

Prefix-Scan
Inclusive X X X X X
Exclusive X X X X X
Prefixscan By Key/
Segmented Prefixscan X X

Search
Unsorted Search/Find X
Vectorized Binary Search X X
Load-Balancing Search X

Reordering

Partitioning/Partitioning If X X
Compaction/Copy If/Select X X X
Merge X X
Merge Sort X X
Radix Sort X X X

Set (ordered)

Union X X X
Intersection X X X
Set Difference X X
Unique X X X

TABLE 2: Parallel primitives evaluated for the weight tuning. The table reports also the alternative names of primitives.

GTX 570 device with CUDA Toolkit 7.0, AMD FX-4100 1.4
GHz host processor, and Debian 7 OS. The dataset applied
for the evaluation consists of a large set of random generated
input data.

Figure 2 reports, as an example, the values of the opti-
mization criteria of the reduction and prefix-scan primitives.
The figure shows that the Host Synchronization criterion
reaches the maximum value for all the implementations of
the five libraries of both the primitives. This is due to the
fact that both the reduction and the prefix-scan execute few
kernel calls to compute the respective algorithms involving
negligible host-device synchronization overhead. The dif-
ferent implementations of the reduction also show a high
value in almost all criteria except Computation Intensity and
Data Transfer. This is due to two main reasons. First, the re-
duction primitive implements a highly regular computation
on the input data, which does not cause work unbalance
and, second, involves a simple memory access pattern that
allows to achieve memory coalescing. In contrast, the prefix-
scan primitive has been implemented, in all the evaluated
libraries, through a two-phase algorithm that presents a
more complex memory access pattern. This involves lower
values of L1 granularity and L2 granularity. The algorithm
requires also a sophisticated control flow that affects the de-
vice synchronization and the thread divergence criteria. Finally,
all implementations of both algorithms shows a low value
of computation intensity criterion because such primitives

are clearly memory-bounded. This characteristic limits the
opportunity to take advantage of the huge processing power
of the GPU.

The impact of each criteria on the overall quality metric
value has been weighed by considering the criteria val-
ues and the actual CPU vs. GPU speedup of each single
primitive obtained during simulation. The tuning has been
performed with the aim of obtaining the quality metric
value of each primitive implementation linearly propor-
tional to the actual CPU vs. GPU speedup of such an im-
plementation. The weight values of the optimization criteria
are calculated through a multi-variable regression analysis
between all information returned by the different criteria
and the execution time. Since the weights depend on the
actual architecture, our future work aims at automating
such a weight computation. The idea is to define a software
framework based on a collection of primitives to be run on
the target architecture and that automatically extrapolates
the weight values.

Table 3 reports some of the most meaningful obtained
results. The table reports the weights of the optimization
criterion extrapolated during simulation, the corresponding
quality metrics values and the actual CPU vs. GPU simu-
lation speedup of each parallel primitive. The results show
how, given the weights reported in the table caption, the
values of the overall quality metrics reflect the actual simu-
lation speedup. The performance accuracy of our model is

9

(a) Reduction (b) Prefix-Scan

Fig. 2: Optimization criteria evaluation of the reduction and prefix-scan primitives

GPU vs. CPU Simulation speedup Quality metrics value ([0, 1])
Parallel Primitives

ArrayFire CUB CUDPP MGPU Thrust ArrayFire CUB CUDPP MGPU Thrust

Compaction 67 24 14 0.87 0.75 0.59
Merge 32 21 0.93 0.78
Partition 44 6 0.83 0.58
PrefixScan 63 223 114 135 68 0.82 0.81 0.78 0.89 0.87
Reduction 1009 961 865 1074 1069 0.66 0.89 0.74 0.76 0.69
Segmented PrefixScan 26 4 0.93 0.85 0.62
Segmented Reduction err 28 28 8 err 0.86 0.46
SetUnion 3 13 3 0.68 0.90 0.73
Sort 80 85 39 48 80 0.68 0.69 0.51 0.58 0.69
Unique err 73 17 err 0.70 0.56
Vect. Binary Search 527 167 0.48 0.32

TABLE 3: Quality metrics values obtained with WOCC = 30; WGranL1
= 100; WGranL2

= 100; WHSync = 40;
WDSync = 15; WTDiv = 40; WLBW

= 50; WLBSM
= 30; WSMemeff

= 30; WCI = 100; WDT = 50 and the
corresponding actual GPU vs. CPU simulation speedup. Blank cells indicate that the corresponding libraries
do not support the parallel primitive, while the err notation means that the primitive execution returns a
run-time error.

with 10%-15%, as shown in the experimental results. All the
other results, which have not been reported in the table for
the sake of brevity, show the same correlation.

From the results reported in Figure 2, it is possible to
compare different implementations of a given primitive in
terms of performance and to understand which character-
istics of such implementations lead to the corresponding
speedup. As an example, the Thrust library provides the best
implementation of the reduction primitive even though such
an implementation presents a value lower than one for load
balancing warp criterion. On the other hand, the code has
been implemented by fully exploiting L1/L2 Granularity and
by showing a good value of computation intensity, whose
criteria values have more impact in the overall quality
metrics. The reduction primitive implemented in CUDPP
shows low values of load balancing warp, thread divergence
and computation intensity that on average are worse than
the other library implementations. This underlines that the
threads organization and coordination presents many issues
in the primitive. Another example is the very low value

of thread divergence criterion obtained with the prefix-scan
primitive of ArrayFire. The divergence issue indicates a high
number of different execution paths among warp threads
that, combined with a low value of L1 Granularity, represent
the main performance bottlenecks.

This analysis allows us to understand whether, given a
primitive implementation, there is room to improve such an
implementation and how. We applied the proposed profiling
framework to analyze and improve the implementations of
a load balancing search and a matrix transpose, as explained in
the following section.

6 CASE STUDIES

6.1 The Load Balancing Search Primitive
The load balancing search is a special case of vectorized sorted
search (i.e., binary search). It is commonly applied as an
auxiliary function to uniformly partition irregular problems.
Given a set of input values that represent the problem work-
load, the primitive generates a set of indices for mapping
threads to the corresponding input elements.

10

(a) Optimization criteria values ([0 ,1]) (b) CPU vs. GPU sim. speedup (c) Quality metrics values ([0 ,1])

Fig. 3: Load balancing search primitive evaluation

Among the libraries evaluated in this work, only Mod-
ernGPU provides an implementation of the load balancing
search primitive. We applied Pro++ to such a primitive to
calculate the optimization criteria values, the CPU/GPU
simulation speedup, and the overall quality metric value
by considering the weights proposed in Section 5 (Table 3).
Figure 3 reports the results (MGPU columns). Then, starting
from the ModernGPU implementation, we optimized the
code by exploiting the profiling information with the aim
of improving the CPU vs. GPU simulation speedup.

Considering the different optimization criteria weights,
we started from the analysis of the criteria related to the
memory coalescing. To improve these values, we modified
the code to better organize the data in shared memory,
registers and texture memory. Such a modification led to
a better organization of the data in local memory, which
also simplified the management of the memory accesses
and allowed us to improve the memory coalescing among
threads. These first modifications of the code increased
both the L1 Granularity and L2 Granularity criteria values
from 0.44 to 0.83 and from 0.85 to 1, respectively. Further
improving memory coalescing has been evaluated as a hard
task, due to the many sparse global memory accesses that
are closely related to the algorithm. Thus, it has not been
further investigated.

On the other hand, improving the two memory criteria
required the introduction of many extra control flow state-
ments, which decreased the value of the thread divergence
criterion with respect to the original ModernGPU implemen-
tation. Nevertheless, considering such a decrease and the
weight of the instruction optimization criterion, we didn’t
invest effort to limit such a side-effect.

Then, the analysis results underline the low value of the
Occupancy criterion. To improve this criterion, we modified
the code by improving the kernel configuration, the use of
automatic variables (and thus the use of SM registers), and
the allocation of shared memory. Beside an improvement on
occupancy, these modifications had an impact on the value
of the load balancing criteria. This is due to the fact that the
execution flows of all threads during the primitive execution
take similar paths and, as a consequence, improving the oc-
cupancy criterion leads also to an improvement of the load

balancing criteria. The modifications also slightly reduced
the thread divergence and Load Balancing Warp values, which,
on the other hand, still remains high. As a consequence, any
further investigation or modification of the code, targeting
thread divergence would not be worth to improve the
overall quality of the primitive implementation. The device
and host synchronization criteria had the highest values, both
in the original and the modified version of the code. Thus,
no modifications on barriers or synchronization have been
considered.

In conclusion, the use of Pro++ allowed us to improve
the loading balancing search primitives by better concen-
trating the effort in those code optimizations with more
room for improvement and, as a consequence, to save time.
The case of study has shown how Pro++ framework has
been applied to significantly improve step-by-step, in the
optimization cycle, the performance of the load balancing
search exploring the suggested guideline on the optimization
criteria.

6.2 The Matrix Transpose

Transpose of a matrix is a basic linear algebra operation that
has a deep impact in many computational science applica-
tions. The performance of matrix transpose is often com-
pared with matrix copy due to the memory bottleneck. We
analyzed the matrix transpose implementation presented in
[40], which is characterized by data tiling in shared memory
and thread organization in 2D hierarchical grids and blocks.

Figure 4 shows the results. The original code already
provides values close to the maximum for the host and device
synchronizations, thread divergence, Warp/SM load balancing
and occupancy criteria. This is due to the fact that the ap-
plication algorithm relies on very regular and independent
tasks.

All the other criteria have very low values (between
0.1 and 0.5), thus we investigated to improve the code by
considering memory related criteria both for global and
shared memory spaces.

In the first optimization (Version1), we focused on im-
proving the shared memory bank conflicts (shared memory
efficiency criterion) by applying the memory padding technique.

11

(a) Optimization criteria values ([0 ,1]) (b) CPU vs. GPU sim. speedup (c) Quality metrics values ([0 ,1])

Fig. 4: Matrix Transpose evaluation

The optimization has been designed mainly for the NVIDIA
Fermi architecture that as a low number of independent
memory banks. The memory padding has less impact on
NVIDIA Kepler architecture and the gained speedup is
marginal. We also improved the device synchronization cri-
terion by removing barriers and by re-organizing the exe-
cution flow in order to assign an independent task to each
warp .

In the second optimization (Version3) we have taken
into account the memory access patterns to improve the L1
and L2 granularity criteria. Their low values suggest that
the memory accesses do not match the granularity of the
respective caches, thus involving a waste of the memory
bandwidth. We fully optimized both the criteria by simply
re-organizing the thread block configuration and by resizing
the memory tiles.

7 CONCLUSION

This paper presented Pro++, a profiling framework for
GPU primitives that allows measuring the implementation
quality of a given primitive. The paper showed how the
framework collects the information provided by a standard
GPU profiler and combines them into optimization criteria.
The criteria evaluations are weighed to distinguish the
impact of each optimization on the overall quality of the
primitive implementation. The paper reported the analysis
conducted on five among the most widespread existing
primitive libraries to tune the different weights. Finally, the
paper presented how the framework has been applied to
improve the implementation performance of two standard
GPU primitives, i.e., the load balancing search and the
matrix transpose.

REFERENCES

[1] “Hybrid System Architecture - HSA Foundation,”
http://www.hsafoundation.com.

[2] F. Bistaffa, A. Farinelli, and N. Bombieri, “Optimising memory
management for belief propagation in junction trees using gpg-
pus,” in Proceedings of the International Conference on Parallel and
Distributed Systems - ICPADS, vol. 2015-April, 2014, pp. 526–533.

[3] N. Bombieri, F. Fummi, and S. Vinco, “On the automatic genera-
tion of gpu-oriented software applications from rtl ips,” in 2013
International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2013, 2013.

[4] V. Bertacco, D. Chatterjee, N. Bombieri, F. Fummi, S. Vinco,
A. Kaushik, and H. Patel, “On the use of gp-gpus for accelerat-
ing compute-intensive eda applications,” in Proceedings -Design,
Automation and Test in Europe, DATE, 2013, pp. 1357–1366.

[5] S. Vinco, D. Chatterjee, V. Bertacco, and F. Fummi, “Saga: Systemc
acceleration on gpu architectures,” in Proceedings - Design Automa-
tion Conference, 2012, pp. 115–120.

[6] “OpenACC - Directives for Accelerators,” http://www.openacc-
standard.org/.

[7] D. R., B. S., and B. F., “Hmpp: A hybrid multicore parallel pro-
gramming environment,” 2007.

[8] M. Sugawara, S. Hirasawa, K. Komatsu, H. Takizawa, and
H. Kobayashi, “A comparison of performance tunabilities between
opencl and openacc,” in Proc. of the 2013 IEEE 7th International
Symposium on Embedded Multicore/Manycore System-on-Chip (MC-
SOC’13), 2013, pp. 147–152.

[9] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun, “Delite: A compiler architecture
for performance-oriented embedded domain-specific languages,”
ACM Trans. Embed. Comput. Syst., vol. 13, no. 4s, pp. 134:1–134:25,
2014.

[10] “Spiral - Software/Hardware Generation for DSP Algorithms,”
http://www.spiral.net/bench.html.

[11] W. Tan, W. Tang, R. Goh, S. Turner, and W. Wong, “A code
generation framework for targeting optimized library calls for
multiple platforms,” IEEE Transactions on Parallel and Distributed
Systems, vol. PP, no. 99, pp. 1–12, 2014.

[12] “NVIDIA CUDA ZONE - GPU-accelerated libraries,”
https://developer.nvidia.com/gpu-accelerated-libraries.

[13] “CLPP - OpenCL Parallel Primitives Library,”
http://gpgpu.org/2011/06/03/opencl-parallel-primitives-
library.

[14] N. Bombieri, F. Busato, and F. Fummi, “An enhanced profiling
framework for the analysis and development of parallel primi-
tives for gpus,” in Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), 2015 IEEE 9th International Symposium on, Sept 2015, pp.
1–8.

[15] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso, “A sur-
vey of performance modeling and simulation techniques for
accelerator-based computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 1, pp. 272–281, 2015.

[16] R. Dietrich, F. Schmitt, R. Widera, and M. Bussmann, “Phase-based
profiling in gpgpu kernels,” in Proc. IEEE ICPPW, 2012, pp. 414–
423.

[17] B. Coutinho, D. Sampaio, F. Pereira, and W. Meira Jr., “Profiling
divergences in gpu applications,” Concurrency Computation Practice
and Experience, vol. 25, no. 6, pp. 775–789, 2013.

[18] P. Guo and L. Wang, “Accurate cross-architecture performance
modeling for sparse matrix-vector multiplication (spmv) on

12

gpus,” Concurrency Computation, vol. 27, no. 13, pp. 3281–3294,
2015.

[19] S. Hong and H. Kim, “An analytical model for a gpu architec-
ture with memory-level and thread-level parallelism awareness,”
SIGARCH Comput. Archit. News, vol. 37, no. 3, pp. 152–163, Jun.
2009.

[20] K. Kothapalli, R. Mukherjee, M. Suhail Rehman, S. Patidar,
P. Narayanan, and K. Srinathan, “A performance prediction model
for the cuda gpgpu platform,” in Proc. of IEEE HiPC, 2009, pp. 463–
472.

[21] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance
analysis framework for identifying potential benefits in gpgpu
applications,” in Proc. of ACM SIGPLAN PPoPP, 2012, pp. 11–22.

[22] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: a
dynamic optimization framework for bulk-synchronous applica-
tions in heterogeneous systems,” in Proceedings of the 19th interna-
tional conference on Parallel architectures and compilation techniques.
ACM, 2010, pp. 353–364.

[23] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on. IEEE, 2009, pp. 163–174.

[24] S. Collange, M. Daumas, D. Defour, and D. Parello, “Barra: A
parallel functional simulator for gpgpu,” in Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS),
2010 IEEE International Symposium on. IEEE, 2010, pp. 351–360.

[25] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: a
simulation framework for cpu-gpu computing,” in Proceedings of
the 21st international conference on Parallel architectures and compila-
tion techniques. ACM, 2012, pp. 335–344.

[26] M. Zheng, V. Ravi, W. Ma, F. Qin, and G. Agrawal, “Gmprof: A
low-overhead, fine-grained profiling approach for gpu programs,”
in Proc. of IEEE HiPC, 2012.

[27] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling gpu-cpu
workloads and systems,” in Proc. of GPGPU, 2010, pp. 31–42.

[28] K. Sato, K. Komatsu, H. Takizawa, and H. Kobayashi, “A history-
based performance prediction model with profile data classifi-
cation for automatic task allocation in heterogeneous computing
systems,” in Proc. of IEEE ISPA, 2011, pp. 135–142.

[29] C. NVidia, “C best practices guide,” NVIDIA, Santa Clara, CA,
2012.

[30] D. B. Kirk and W. H. Wen-mei, Programming massively parallel
processors: a hands-on approach. Newnes, 2012.

[31] J. Cheng, M. Grossman, and T. McKercher, Professional Cuda C
Programming. John Wiley & Sons, 2014.

[32] F. Busato and N. Bombieri, “BFS-4K: an efficient implementation
of BFS for kepler GPU architectures,” IEEE Transactions on Parallel
Distributed Systems, vol. 26, no. 7, pp. 1826 – 1838, 2015.

[33] S. Xiao and W. chun Feng, “Inter-block gpu communication via
fast barrier synchronization,” Dept. of Computer Science Virginia
Tech, Tech. Rep., 2009.

[34] J. Hoberock and N. Bell, “Thrust: A parallel template library,”
2014. [Online]. Available: http://thrust.github.io/

[35] D. Merrill, “Cub,” 2015. [Online]. Available:
http://nvlabs.github.io/cub/

[36] M. Billeter, O. Olsson, and U. Assarsson, “Efficient stream com-
paction on wide simd many-core architectures,” in Proceedings of
the HPG 2009: Conference on High-Performance Graphics 2009, 2009,
pp. 159–166.

[37] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson,
“Cudpp: Cuda data parallel primitives library,” 2014. [Online].
Available: http://cudpp.github.io/

[38] S. Baxter, “Modern gpu,” 2014. [Online]. Available:
http://nvlabs.github.io/moderngpu/

[39] J. Malcolm, P. Yalamanchili, C. McClanahan, V. Venugopalakrish-
nan, K. Patel, and J. Melonakos, “Arrayfire: a gpu acceleration
platform,” 2014. [Online]. Available: http://arrayfire.com/

[40] G. Ruetsch and P. Micikevicius, “Optimizing matrix transpose in
cuda,” Nvidia CUDA SDK Application Note, vol. 18, 2009.

Nicola Bombieri received the PhD in Computer
Science from the University of Verona in 2008.
He is Professor Assistant at the Dept. of Com-
puter Science of the University of Verona. His
research activity focuses on high performance
computing, design and verification of embed-
ded systems, and automatic generation and op-
timization of embedded SW. He has been in-
volved in several national and international re-
search projects and has published more than 70
papers on conference proceedings and journals.

Federico Busato received the Master degree in
Computer Science from the University of Verona
in 2014. Currently he is a Ph.D. student at the
University of Verona, Department of Computer
Science. His research activity focuses on high
performance computing and graph theory.

Franco Fummi is Full Professor and the Head
of the Department of Computer Science of the
University of Verona. His main research includes
electronic design automation methodologies for
modeling, verification, testing and optimization
of embedded systems. He received the PhD in
Electronic Engineering from Politecnico di Mi-
lano in 1995. He is an IEEE member and a mem-
ber of the IEEE test technology technical com-
mittee. He is also co-founder and active project
leader of EDALab srl.

