-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Catalogo dei prodotti della ricerca

Noname manuscript No.
(will be inserted by the editor)

Simulation-based fault injection with QEMU for
speeding-up dependability analysis of embedded
software

Davide Ferraretto - Graziano Pravadelli

Received: date / Accepted: date

Abstract Simulation-based fault injection (SFI) represents a valuable solu-
tion for early analysis of software dependability and fault tolerance properties
before the physical prototype of the target platform is available. Some SFI
approaches base the fault injection strategy on cycle-accurate models imple-
mented by means of Hardware Description Languages (HDLs). However, cycle-
accurate simulation has revealed to be too time-consuming when the objective
is to emulate the effect of soft errors on complex microprocessors. To overcome
this issue, SFI solutions based on virtual prototypes of the target platform has
started to be proposed. However, current approaches still present some draw-
backs, like, for example, they work only for specific CPU architectures, or they
require code instrumentation, or they have a different target (i.e., design errors
instead of dependability analysis). To address these disadvantages, this paper
presents an efficient fault injection approach based on QEMU, one of the most
efficient and popular instruction-accurate emulator for several microprocessor
architectures. As main goal, the proposed approach represents a non intrusive
technique for simulating hardware faults affecting CPU behaviours. Perma-
nent and transient/intermittent hardware fault models have been abstracted
without losing quality for software dependability analysis. The approach mini-
mizes the impact of the fault injection procedure in the emulator performance
by preserving the original dynamic binary translation mechanism of QEMU.
Experimental results for both x86 and ARM processors proving the efficiency
and effectiveness of the proposed approach are presented.

Keywords Fault injection - Dependability analysis - Dynamic binary
translation

D. Ferraretto, G. Pravadelli

Department of Computer Science, University of Verona, Italy
Tel.: +39 045 8027081

Fax: +30 045 8027068

E-mail: name.surnameQunivr.it

https://core.ac.uk/display/217552540?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Davide Ferraretto, Graziano Pravadelli

1 Introduction

Nowadays, software is more and more adopted to control safety-critical sys-
tems [28]. However, its escalating complexity added to the growing density of
hardware platforms makes practically impossible to release perfect systems,
even when sophisticated verification and validation approaches are adopted to
guarantee their correctness [37]. In this context, the analysis of software de-
pendability and fault tolerance properties are increasingly important aspects,
highly recommended also by safety standards [34,5,21]. This especially ap-
plies to dependability analysis of embedded software (ESW) in the context of
safety-critical applications, like for exampel, medical-surgical [30], e-commerce
transactions [39], and community storage [41], besides well-known avionics, au-
tomotive, and nuclear power.

In order to evaluate the quality of dependability and fault tolerance ap-
proaches, fault injection and fault simulation techniques are widely adopted to
observe how the system reacts in presence of faulty conditions [7]. In particular,
these techniques are intended to test the behaviour of the application running
on a real or virtual plant and to evaluate its tolerance to faults under a realistic
set of input stimuli that mimic the final execution environment. In this con-
text, four main categories of fault injection approaches exist: hardware fault
injection (HFI), emulation-based fault injection (EFT), software fault injection
(SWIFI) and simulation-based fault injection (SFI), with different advantages
and drawbacks.

Hardware fault injection uses external physical sources to introduce faults
into the system’s hardware [14]. This represents the fastest approach, but
also the most costly since it requires special-purpose HW. Moreover, it can
be applied only when the hardware platform is available, and it presents a
high risk of damaging the injected system. Emulation-based fault injection is
based on the use of Field Programmable Gate Arrays (FPGAs) with the aim
of providing performance similar to HFI approaches without their high cost
and risk of damage [11]. However, EFI is classically limited to stuck-at fault
injection and it requires a synthesizable model of the system under test.

Early analysis without the need of special-purpose HW can be performed
by using SWIFT and SFI tools. SWIFI is based on the alteration of the software
executing on the system under analysis [44]. SWIFT experiments can be carried
on in near real time, but the software under test must be instrumented and
faults cannot be injected into locations that are inaccessible to software. A non-
intrusive approach with maximum amount of observability and controllability
is represented by SFI, where a simulation model of the system under analysis,
including the target processor, is implemented [26]. The main drawbacks in
this case are represented by the large development effort required to model the
simulator, and by poor simulation performance which drops proportionally by
increasing the accuracy of the target processor model. Thus, one of the most
challenging aspect of SFI approaches is to identify the most appropriate trade-
off between accuracy and simulation performance.

Title Suppressed Due to Excessive Length 3

- _ Abstraction levels Software Failure
- Registers] ~ A
L 5 CPU Fault Models
: Instruction-accurate
xec simulation
carry in | clk
v
3LUT 5
FA}D | j }> RT Fault Models
F i . .
H— "_>D 3 i Cycli Ltz.ccumz‘e
bt ! simulation ?
i Effect
carry out 4 I .
Fault abstraction
Gate Fault Models
Event-driven
simulation
ll Electric Fault Models Phvsical
C] C] Electronic-circuit ysica
simulation Fault

Fig. 1 CPU fault simulation taxonomy. Fault simulation at different abstraction levels is a
trade-off between accuracy and simulation performance.

For example, Figure 1 depicts the taxonomy of CPU fault simulation at
different abstraction levels. Fabrication errors, fabrication defects, and phys-
ical failures are collectively referred as physical faults [1], whose effect in the
CPU hardware may manifest as a failure of the software executed on top of it.
Fault models represent an abstraction of the physical faults on the behaviour
of the simulated model. They can be defined at different abstraction levels,
thus enabling different SFI approaches. The lowest levels provide more accu-
rate results, but at the cost of a more time-consuming fault simulation, such
that, for example in the case of electronic-circuit simulation, the purpose of
evaluating a complete CPU and a software stack on top of it becomes im-
practical. Also traditional event-driven (gate-level) or cycle accurate (RTL)
simulation is typically several orders of magnitude slower than real hardware.
For example, in [42], and in other similar works, the authors defined a latch-
accurate Verilog model of an ARM-compatible microarchitecture to study the
effects of transient faults on memory cells. Such an environment, although
highly accurate, can not be efficiently used for ESW dependability analysis
due to the poor performance of hardware description language (HDL) sim-
ulators, which are usually far from being acceptable to simulate a complete
CPU. Thus, higher levels of abstraction are preferred for meeting aggressive
time-to-market targets. The fastest solutions are represented by purely func-

4 Davide Ferraretto, Graziano Pravadelli

tional simulators that can almost reach the speed of the simulated hardware.
However, simulating low-level faults could be very misleading when the simu-
lation is only functional. According to these considerations, approaches based
on instruction-accurate simulators, which rely on fast HW virtualization sys-
tems, have been recently proposed [29], with the aim of providing a fast, bust
still quite accurate solution for SFI. Most of them (e.g., [4,31,12,2]) exploit
the QEMU open source machine emulator, an efficient dynamic binary transla-
tion (DBT)-based virtualization system that allows to run a variety of unmod-
ified guest operating systems on several CPU architectures [6]. In this context,
main challenges, not completely addressed by the existing works (whose pros
and cons are summarized in Section 2), are: emulating a wide category of
faults by preserving their representativeness with respect to cycle-accurate
CPU models [35], reducing the performance overhead due to fault injection to
preserve as much as possible the efficiency of the DBT-based simulation, and
being totally transparent form the user point of view.

Thus, the focus of the present work is to define an effective and efficient
SFI approach based on QEMU that provides fast and realistic simulation of
hardware faults for an early dependability analysis of ESW applications. Per-
manent, intermittent and transient faults in CPU registers of both CISC and
RISC architectures are considered.

One key issue in our approach is the fault representativeness, i.e., the plausi-
bility of the adopted fault model with respect to other fault models or physical
faults. In this work, we pragmatically focus on the impact and consequences
of injected faults on ESW, e.g., transient faults may affect running application
by altering the data and execution flows. We have compared the behaviour
of applications running both on our fault simulation environment and a HDL
cycle-accurate simulator for representativeness assessing. In this case, the ex-
periments using different fault simulation techniques have similar behaviours,
thus the techniques can be considered equivalent from the point of view of
ESW dependability analysis. The proposed approach exhibits the most suit-
able characteristics, i.e., simulation speed, and should be preferred.

In summary, the main contribution of the present work is the definition of
a fully automatic fault simulation environment based on DBT for early ESW
dependability analysis, which presents the following characteristics:

— the adaptation of traditional hardware fault models, i.e., stuck-at, transi-
tion, and transient fault models, to CPU instruction-accurate simulation;
such fault models maintain the representativeness with respect to the cor-
responding fault models defined at register transfer level (RTL).

— the fault injection is not intrusive; it is necessary modify neither the CPU
hardware where the application is executed on, nor the ESW that should
be monitored;

— the fault simulation is deterministic, that is, each experiment run can be
repeated for an arbitrary number of times and the executed application
experiences exactly the same conditions;

Title Suppressed Due to Excessive Length 5

— the fault simulation environment has been built on top of QEMU allowing
cross-execution of ESW applications, i.e., engineers can develop on x86 host
machine for a different target platform such as ARM and cross-validate the
application thanks to the retargetable QEMU binary translation technol-

ogy.

The rest of the paper is organized as follows. Related works are first sum-
marized in Section 2. Then, Section 3 and Section 4 present, respectively, how
the original QEMU execution flow has been modified to support fault injec-
tion, and how different kinds of faults are modelled inside QEMU. Section 5
deals with the set up of the simulation environment. Finally, Section 6 is de-
voted to experimental results, while Section 7 concludes the paper by drawing
remarks.

2 Related works

Several works have been proposed in literature for injecting faults into HDL
models of the systems. The adopted fault models range from low-level model
of faults that may affect the physical circuits, e.g., stuck-at [16], transient [18],
and delay faults [19], to faults modelling design errors, e.g., mutation test-
ing [22]. Although an early analysis based on model simulation has its advan-
tages, e.g., injecting faults into HDL descriptions is relatively straightforward,
it provides variously reliable approximations of the systems and fault toler-
ance mechanisms and suffers of scalability problems due to HDL-simulation
speed [17].

Fault injection on prototypes of the systems has proved to be a more real-
istic and fast solution to validate the final implementation. It ranges from HIF
physical approaches that introduce faults into the hardware layer of the tar-
get system to SWIFT that perturbs the software layer for simulating physical
faults.

Different approaches have been developed for injecting faults directly on
the physical components of the systems. They affect the VLSI circuits by
using heavy-ion radiations or electromagnetic interferences for perturbing the
electronic status of the circuits [25,24]; or they work at pin-level by directly bit
flipping the pins of the circuit prototypes [3]. Although physical fault injection
does not provide a perfect imitation of the original phenomena, it demonstrates
to be a feasible solution. On the other side, it results to be expensive for both
the required fault injection equipments and the development of fit-for-purpose
prototypes.

SWIFT overcomes cost, controllability, and repeatability issues of physical
fault injection. Such approaches usually modify the contents of registers and
memory elements to emulate the effect of hardware faults [23,9,27,8]. As a
drawback, SWIFI tends to generate non significant experiments: the random
injection on code and data segments in memory causes faults that remain
latent throughout the experiments. Moreover, SWIFI techniques still require
the target platform for accurately reproducing the faulty behaviours of the

6 Davide Ferraretto, Graziano Pravadelli

actual hardware. Finally, SWIFI approaches are defined for either specific
operating systems or application programming interfaces. For example, in [8]
the authors propose a kernel-level fault injection approach. Such a kernel can
be easily compiled for different hardware architectures, but the fault injection
mechanisms have to be redefined for supporting different operating systems.

For addressing the previous speed, cost, reliability, and portability issues,
SFI approaches have been proposed that rely on the use of virtualization sys-
tems based on Instruction Set Simulators (ISS) and, even preferably, SW em-
ulators exploiting DBT. An ISS mimics the behaviour of a micro-architecture
by executing instruction-by-instruction the target binary code. On the con-
trary, DBT works at basic block level guaranteeing a faster simulation [13]. A
DBT-based emulator translates, at run time, all the instructions included in a
basic block and caches the translated block for future uses. In addition to such
a common feature, different optimizations can be implemented to further keep
execution speed close to native execution, like, for example, dynamic recom-
pilation where some parts of the code are recompiled to exploit information
that are available only at run time (e.g., what portions of code are executed a
large number of times).

One of the first work proposing the use of virtualization for simulation-
based fault injection is UMLinux [38], a framework exploiting virtualization
for testing networked machines running the Linux operating system in the
presence of faults. A more generic approach, independent from the operat-
ing system, is proposed in [36]. This work relies on the FAUmachine, a fast
open source virtual machine that supports fault injection capabilities, where
transient, intermittent and permanent faults can be modelled into memory
cells, disks and network. This approach is intended to simulate hardware as
close to the corresponding physical hardware as possible thus affecting simu-
lation speed. Moreover, fault injection in CPU registers is not permitted and
it concentrates on a unique architecture, i.e., x86.

More recently, a few approaches relying on QEMU have been also pro-
posed [10,4,31,12,2,15,20]. QEMU is a fast, open-source, machine emulator
relying on DBT of the target CPU application code, which implements differ-
ent optimizations to keep execution speed close to native execution. It started
out as an emulator for x86 Linux binaries and, over the years, it has sup-
ported both emulation of most of the major CPU architectures (ARM, SPARC,
etc.) and capabilities of system-emulation and virtualization. Moreover, ex-
tensions have been proposed for implementing timing and power analysis and
co-simulation [33]. QEMU uses a 2-steps DBT: first the target machine code
is translated into a generic intermediate representation. Then, this represen-
tation is in turn translated into the host machine code for execution. At the
intermediate representation level, one can insert additional instrumentation
operations, such as fault models and behavioural perturbations.

In [2] a QEMU-based soft error injection methodology is presented to ac-
celerate the analysis and debugging of complex systems and facilitate the val-
idation of fault tolerance techniques. However, the approach supports only
x86 architectures and it considers only the bit flip fault models on general

Title Suppressed Due to Excessive Length 7

purpose registers (GPRs). A more flexible approach based on QEMU is pro-
posed in [10], where faults can be injected and triggered with a user defined
probability inside CPU, RAM and peripherals. The target of this approach is
to evaluate operating systems’ susceptibility to faults. Another fault injection
environment based on QEMU is presented in [4], but with a different purpose:
creating a mutation based testing approach for binary code. The testing is
seamlessly integrated at run-time into the binary translation cycle of QEMU.
Thus, a way to inject high-level mutants (e.g., substitution of instructions,
substitution of operands of an instruction, substitution of a condition on a
branch, etc.) rather than faults on bits of registers is proposed, thus, this work
targets SW design errors. Moreover, in [4] the instrumentation of a control
flow graph extracted from the binary code is necessary, while our approach
is not intrusive since it acts directly on the mechanism which emulates reg-
isters of the target CPU, independently from the executed code. QEMU is
the basic environment also for the framework described in [20], which allows a
system-level analysis of software countermeasures by featuring the simulation
of high-level hardware faults targeting, for example, memory cells, register
cells, or the correct execution of instructions. The framework is intended to
support the generation of fault attack scenarios. In [31], the authors present a
QEMU-based fault injection framework that requires a low overhead in com-
parison to a fault-free QEMU execution. However, fault representativeness is
not mentioned in this work. An approach to abstract different kinds of hard-
ware fault models inside QEMU that maintains the fault representativeness
with respect to the corresponding fault models defined at RTL is, then, pro-
posed in [12]. However, the accuracy achieved in this case is paid in terms of
performance, since the approach requires to disable the caching mechanism
implemented by QEMU. An enhancement of this work, which represents the
basis for the methodology described in the next sections, is finally described
in [15]. Our DBT-based approach has been implemented on top of QEMU.
However, it applies to the more general concept of DBT independently from
the specific emulator.

3 Methodology

An effective ESW dependability analysis should be based on an early evalua-
tion of fault tolerance aspects of the applications. Thus dependability assess-
ment should be performed in an efficient fault simulation environment. The
proposed approach exploits instruction-accurate simulation and DBT to speed
up simulation.

An instruction-accurate simulator provides an abstraction of the target
CPU microarchitecture. Figure 2 compares the model diagram of a cycle-
accurate ARM-compatible microarchitecture and the set of variables that store
the CPU status during QEMU simulation. In this work, an ARM processor
has been selected to exemplify the concepts, but our approach is independent
from the specific processor.

8 Davide Ferraretto, Graziano Pravadelli

L1 Insn|

Tii4ill
Align + Rotate I BrPred1 | Fetch
diiiiild
32 Entry Fetch Queue
Ty
Decode

didd

Sgec RATI Seec Free List | Mem Dee Pred 0 I

T Rename
[Intra Bundle Rename J[Mem Dep Pred 1|
11
[32-Entry Scheduler | Schedule
Yidddd

RegRead m
$ £ 13 52 + 15
R1
Excoute
(L1 Data R15
J “ ‘—

Cache
D

: Q000
|_64_Entry ReOrder Buffer] Retire / Current Program Status Register

Hiiiiidl

ArchRATl ArchFreeListl CF VF NF ZF
(a) (b)

Fig. 2 (a) The model diagram of a cycle-accurate ARM-compatible microarchitecture [42].
(b) The eligible fault sites for a instruction-accurate model of an ARM microarchitecture
(i.e., CPUStatus data-structure in QEMU source code).

Fault injection at gate level introduces faults into each gate, line, and
memory element; while, fault injection at RTL introduces faults on more ab-
stract components, e.g., multiplexers, ALU, and registers. In the case of an
instruction-accurate CPU simulator, the faults are injected into the variables
storing the CPU status (Figure 2.b). As a result, the faults at this abstrac-
tion level are a subset of all possible faults at gate level or RTL. But these
faults directly affect the application execution during the dependability anal-
ysis and functionally subsume other faults that cannot be directly injected
into the abstract model of the CPU. In particular, hardware faults whose
effect propagates to CPU registers are covered by faults injected into the vari-
ables storing the CPU status, when an instruction-accurate CPU simulator
is adopted as proposed in this paper. However, for the effect of propagation,
a single hardware fault that cannot be directly modelled in the abstracted
instruction-accurate model of the CPU, could correspond to a set of multiple
faults inside the registers of the CPU.

QEMU works as depicted in Figure 3. When QEMU first encounters a
piece of code, it converts target instructions to an intermediate code and then
to a semantically-equivalent instruction sequence for the host machine, by
calling the gen_intermediate_ code function. In this function, the instruction
corresponding to the program counter of the simulated CPU is fetched from
the target binary code. The fetched instruction is then decoded into several
micro-operations whose identifiers are concatenated into a micro-operations

Title Suppressed Due to Excessive Length 9

|

P Retrieve TB
Execute |4 from cache

[gen_intermediate_code) | Dynamic binary translation

Fetch

PC++

PC already seen?

Decode

h 4

. i
[|
-
Target | Tiny code || Y
application Intermediate :{> j| generator 1|_|:{> T8
binaries code : | cache
| Hostcode |
: generation :

Fig. 3 The QEMU DBT mechanism.

identifier buffer. If the current instruction is not a jump, then the next target
instruction is fetched and decoded. The binary translation stage ends after a
jump instruction is decoded. The sequence of instructions collected between
two jumps forms a Translation Block (TB). Once the block translation is
finished, the tiny code generator of QEMU generates a host function composed
of the concatenation of the micro-operation compiled code corresponding to
the identifiers stored in the buffer. The resulted host function is executed
and stored into an entry of the translation cache for future use. Then, the
program counter is updated and QEMU verifies if the cache contains a TB
corresponding to the new value of the program counter. If this is the case,
such a block is directly executed. On the contrary, a new translation phase
starts for converting the new piece of code.

In the context of modelling inside QEMU the presence of faults affecting
the CPU registers, our main goals were:

1. avoiding instrumentation of the target binary application, such that the
approach is totally transparent from the user point of view;

2. guaranteeing the effect of injected faults is the same we obtain by injecting
them into a cycle-accurate implementation of the target CPU (e.g., an
RTL model described by means of an HW description language like VHDL,
Verilog or SystemC) to preserve fault representativeness;

3. reducing as much as possible the overhead introduced by the fault mod-
elling procedure to preserve the high simulation speed offered by the DBT
mechanism of QEMU.

10 Davide Ferraretto, Graziano Pravadelli

Figure 4 depicts how the original DBT flow of QEMU has been modified to
pursue the previous objectives. Possible locations for faults are GPRs, instruc-
tion register (IR) and program status register (PSR) that can be affected by
permanent, transient and intermittent faults, as described in Section 4.

To achieve the first goal, fault injections is performed at fetching time for
the IR, and at execution time for PSR and GPRs. In particular, for IR, we
modified the DBT fetching mechanism of QEMU such that the presence of a
fault in IR alters the way QEMU recognizes the instruction to be converted in
the intermediate code. This causes that a different instruction with respect to
the one stored in the IR is recognized and mapped on the instruction sequence
for the host machine. On the contrary, for GPRs and PSR, we alter their
values by manipulating the CPUState data structure QEMU uses to describe
the status of the target CPU at execution time. In this way, fault injection is
completely not intrusive from the target application point of view.

The second goal has been satisfied by imposing that QEMU operates in
single step mode, i.e., each entry of the TB cache contains only one instruction.
This reduces QEMU performance, but it is necessary to guarantee that the
effect of the desired faults is active during the execution of each instruction of
the target application, as it happens in traditional HDL-based cycle-accurate
models. If a TB cache entry was composed of more than one instruction,
only the first would be guaranteed to be affected by the presence of faults.
In fact, the CPUState data structure, where we perform fault injection on
GPRs and PSR, is atomically referred to each TB, such that no fault injection
can be performed between two consecutive instructions belonging to the same
TB. Thus, if the first instruction of a TB changes the value of the register
where faults are injected, their effect is nullified for all the other instructions
belonging to the same TB.

Finally, to achieve the third goal, the DBT-based approach of QEMU was
almost completely preserved. A part from the adoption of the single step mode,
only one change to the TB-caching mechanism was necessary to correctly
simulate transient and intermittent faults. Since they are not permanent, a
TB including instructions affected by transient faults cannot be stored in the
cache. Otherwise, the same faults are simulated each time the same TB is
executed, disrupting their transient nature (see Section 4.2). For all the other
kinds of simulated faults, the caching mechanism is preserved.

4 Fault emulation

Our modified version of QEMU currently supports simulation of permanent,
transient and intermittent faults. A permanent fault continues to exist until
the faulty component is repaired. A transient fault occurs only once and we
cannot trace it later on. If we repeat the operation, the fault goes away. An
intermittent fault occurs not continuously but at irregular intervals. Several
fault models have been proposed in the past for modelling such kinds of faults.
Among the most popular, we selected the stuck-at [32] and the transition

Title Suppressed Due to Excessive Length 11

Fault injection on GPRs and
program status register
(Permanent, transient, and
No PC Yes intermittent fault activation)

Fault injection on IR
(Permanent, transient, and
intermittent fault activation)

already

Dynamic binar
 translation

.| Retrieve TB
from cache

| AN 3
Tiny code | B
generator :|:> cache

|
I
I

Target
application
binaries

Each TB block is
composed of only
one instruction

Fig. 4 Fault injection inside QEMU DBT mechanism.

TB is saved in the TB cache

If it is affected only by
permanent faults

fault [40] models as representative of permanent faults, and the bit flip fault
model [43] for modelling transient and intermittent faults.

The stuck-at fault model assumes each bit of a register can be altered in two
ways: stuck at the logic value 0 or stuck at the logic value 1. Each of these faults
is called a single stuck-at 0 (SA0) or a single stuck-at 1 (SA1), respectively.
Also in the transition fault model there are two possible faults associated to
each bit of a register, i.e., slow-to-rise (STR) and slow-to-fall (STF). The effect
of a STR (STF) consists of causing a delay in the switching activity of the
affected bit, when it needs to pass from logic value 0 (1) to logic value 1 (0),
such that the transition of the bit cannot be completed in time to guarantee
the next instruction read its updated value. Finally, the bit flip fault model
assumes each bit of a register can be switched to its opposite logic value or
remain unaltered on the basis of a random probabilistic function. When bit
flip is used for modelling transient fault, only a single activation is allowed. In
case of intermittent fault simulation, the switching may happen repetitively
at random intervals.

4.1 Permanent stuck-at fault simulation

Stuck-at faults are modelled by using a couple of bit vector masks per each
CPU register, one for SAO and one for SA1. Every mask reports the locations
where faults must appear in its target register. Elements of a stuck-at 0 mask
are set to 0 in correspondence of the bits to be altered with a SAQ; the other
elements are set to 1. Dually, elements of a stuck-at 1 mask are set to 1 in
correspondence of the bits to be altered with a SA1; the other elements are
set to 0. The length of the masks equals the size of the target registers. An

12 Davide Ferraretto, Graziano Pravadelli

/* Use of a mask to inject stuck-at 0 faults in register number : of the target CPU. */
env->regs [i]&=mask_regerr[i] .stuck_at_0;
/* Use of a mask to inject stuck-at 1 faults in register number : of the target CPU. */

env->regs[i] |=mask_regerr[i] .stuck_at_1;

Fig. 5 Activation of stuck-at 0 and stuck-at 1 faults in GPRs. Variable env is a CPUs-
tate data structure inside QEMU that stores the status of the CPU, including the value
memorized in GPRs.

arbitrary number of faults can be concurrently activated in a mask, thus both
single stuck-at and multiple stuck-at model can be adopted. The way masks
are applied depends on three main aspects: the CPU architecture (i.e., CISC or
RISC), the target register (i.e., GPRs, IR, or PSR), and how QEMU internally
handles the value of registers.

4.1.1 ARM architecture

CPUs of the ARM family are based on a RISC architecture with a fixed-
length instruction set architecture (ISA). Inside QEMU, GPRs of an ARM
CPU are stored in the elements of the regs array included in the CPUState
data structure. Thus, given a stuck-at fault mask, fault injection on general
purpose registers is basically performed by executing at execution time the
operations reported in Fig.5, i.e, bitwise AND and bitwise OR between the
mask and the QEMU variable storing the value of the register, respectively,
for stuck-at 0 and stuck-at 1.

On the contrary, inside QEMU there is not a specific variable devoted to
emulate the instruction register. The instruction to be executed is retrieved
by accessing directly the variable storing the value of the program counter
in the DisasContexrt data structure, which includes information necessary to
convert instructions into the QEMU intermediate code. No fault is injected
in the program counter itself to avoid a probably immediate and irreparable
block at the very beginning of the simulation. The presence of faults inside
IR is then simulated by affecting the current instruction with masks at fetch
time, as shown in Fig. 6.

Finally, after the execution of each instruction it is possible to simulate the
presence of stuck-at faults in the program status register, called CPSR in ARM
terminology. CPSR is read and written inside QEMU by means of cpsr_read
and cpsr_write functions. After the execution of an instruction, CPSR value
is retrieved by calling cpsr_read, affected by using a corresponding fault mask,
and finally set by calling cpsr_write.

4.1.2 x86 architecture

CPUs of the x86 family are based on a CISC architecture with a variable-
length ISA. Fault injection for GPRs is the same as for ARM architecture,

Title Suppressed Due to Excessive Length 13

/* Use of a mask to inject stuck-at 0 faults in the fetched instruction. */

insn = arm_l1dl_code(env, s->pc,

s->bswap_code) ;
insn &= mask_inserr_arm_stuck_at_0;
s->pc += 4;

/* Use of a mask to inject stuck-at 1 faults in the fetched instruction. */

insn = arm_ldl_code(env, s->pc,

s->bswap_code) ;
insn |= mask_inserr_arm_stuck_at_1;
s->pc += 4;

Fig. 6 Simulation of stuck-at 0 and stuck-at 1 faults in the ARM instruction register. The
arm_ldl_code function fetches the instruction to be executed by accessing the program
counter variable pc of the data structure s, which is of kind DisasContext.

while things are different to simulate faults inside the instruction register. The
problem with CISC architectures derives from the fact that instructions can
have different length. To address this issue, QEMU fetches an instruction one
byte at time, by opportunely incrementing the program counter variable and
by traversing a nested set of conditional statements, till the target instruction
is finally recognized. At that point, the current instruction is converted into
the QEMU intermediate code and the program counter points to the next
instruction. Thus, there is not a variable inside QEMU storing the value of
the IR where the stuck-at mask can be applied. This requires to solve two main
issues: (i) injecting faults concurrently with the recognition of each byte of the
target instruction; (ii) updating the value of the program counter variable to
guarantee it correctly points to the next instruction independently from the
effect of the faults injected in the current instruction.

The first issue is addressed by splitting a fault mask for the IR in a set
of 8-bit sub-masks (for example, 4 sub-masks for a 32-bit i386 CPU). These
are applied one by one to the result of the ldub_code function, which returns
one by one the sequence of bytes of the target instruction, during the QEMU
fetching steps. As a result, at the end of the fetching procedure, if the opcode of
the target instruction is altered, QEMU will recognize and execute a different
instruction with respect to the fault-free one.

The second issue required to recompute the program counter at the end of
the fetching phase to correct a possible misalignment caused by the fault. A
misalignment happens when the opcode of the original instruction is affected
by a fault that causes QEMU recognizes an instruction of a different size. For
example, opcode 46 (00101110 in binary), corresponding to the INC instruc-
tion, becomes opcode 62 (00111110 in binary), corresponding to the BOUND
instruction, when a stuck-at 1 is activated in the fourth bit of the opcode.
Since BOUND is a 2-byte long instruction, if QEMU recognizes BOUND in-
stead of INC, due to the presence of the fault, the program counter variable
is incremented by two bytes instead of one as required by INC, which is only
one-byte long. Since we want that only the IR is affected by the fault, such a

14 Davide Ferraretto, Graziano Pravadelli

/* Fetch of the instruction and fault injection is performed inside disas insn. The
value of the program counter before fetching is stored in orig_pc. */

orig_pc = pc_ptr;
pc_ptr = disas_insn(dc, pc_ptr);

/* Now pc_ ptr points to the next instruction according with the effect of faults. If
the executed instruction is not a jump alignment of the program counter could be
necessary. */

if (cnt_ins && !'dc->is_jmp) {

/* target disas is called to retrieve the size of the original instruction, which is then
stored in the global variable ret bytes. */

flag_disas = 1;
target_disas(0, orig_pc, 1, 0);
flag_disas = 0;

/* pc_ ptr is realigned according to the value computed by target disas. */

pc_ptr = orig_pc + ret_bytes;
b

Fig. 7 Alignment of the x86 program counter after the simulation of faults in the IR.

misalignment of the program counter must be fixed. The solution we imple-
mented extends the functionality of the target disas function of QEMU such
that it returns the size of the original instruction before it is changed by the
injected fault(s). Then, after the execution of the faulty instruction the pro-
gram counter can be realigned according to the value returned by target disas
as shown in Fig. 7. The re-alignment is not performed only in the case a fault
causes the original instruction to become a jump. In this case, the program
counter computed by QEMU is consistent with the location pointed by the
jump without the need of a re-alignment.

Also the simulation of stuck-at faults in the x86 program status register,
called EFLAGS in x86 terminology, is performed differently from ARM archi-
tecture. While in RISC architecture condition codes are updated only when
explicitly requested, x86 sets them at the end of each instruction. Thus, for
optimization purposes, QEMU adopts a lazy evaluation of x86 EFLAGS such
that condition codes are computed only when needed. Instead of computing
the condition codes after each x86 instruction, QEMU just stores one operand
(CC_SRC), the result (CC_DST) and the type of operation (CC_OP).
When the condition codes are needed, they can be calculated using this in-
formation. In such a context, fault simulation inside EFLAGS is computed
by passing pointers to flag variables to a specific function (flags_ error) which
changes their values according to the selected fault mask.

Title Suppressed Due to Excessive Length 15

4.2 Permanent transition fault simulation

Transition faults delay the switching of one or more bits in the affected reg-
isters. Inside QEMU, we simulate them by configuring the following set of
parameters:

— mask _delayerr, a vector of unsigned integers whose elements memorize
the transition fault mask for each CPU register. For every register i,
mask _delayerr[i] indicates which bits of i are affected by the delay (1
at position j indicates bit number j of register i is affected by a transition
fault, while 0 means no fault is affecting such a bit);

— delay _type, a variable to annotate the kind of delay (i.e., STR or STF);

— delay _length, another variable to store the total duration of the delay
affecting register bits;

— delay _counter, a matrix of integers to count the current duration of the
active delay on every bit of every register. Element delay counter]i][j]
reports the number of instructions to be executed before bit number j of
register ¢ is correctly switched, if a switching is caused by the currently-
executed instruction.

Given the previous data structures, at the end of the execution of the
current instruction, mask _delayerr is consulted and each bit j of each register
1 affected by a transition fault is updated as follows:

— if delay _counter|i][j] = —1 then the value of bit j of register i remains
unchanged, even if it should be switched according to the effect of the
current instruction, and delay _counter(i][j] is reset to the delay length.
In this way, the update of bit j is delayed for delay length instructions.

— if delay_counter[i][j] > 0, then delay counter[i][j] is decremented by 1
and the value of bit j of register 7 remains unchanged;

— if delay _counter = 0, then, finally, bit j of register i is set to 1 or 0 when
delay type is, respectively, STR or STF.

The strategy proposed for simulating transition faults applies in the same
way for GPRs, IR and program status register, in both ARM and x86 ar-
chitectures. However, in the case of IR and program status register the same
arrangements described for stuck-at faults apply to avoid PC misalignment
and to preserve lazy evaluation of condition codes.

4.3 Intermittent and transient bit flip fault simulation

To reflect the non permanent and non deterministic nature of intermittent and
transient faults, bit flip activation depends on probabilistic values stored in the
p_reg_err vector. Element p_reg err[i] memorizes the probability that, at
run time, bit flips may affect register ¢ in the CPU. Values in p_reg err
are decided by the user. Fault activation is then performed according to the
following steps:

16 Davide Ferraretto, Graziano Pravadelli

1. For each register 4, a random number n; € [0, 1] is generated, before the
execution of each instruction;

2. n; is compared with p_reg errfi]. If n; is lower than p_ reg err[i], then bit
flip faults are activated in register ¢ by adopting the following procedure:
(a) a second random number m; € [0, 1] is extracted;

(b) for each bit j of register i if m; < 0.5 then j is set to 0, otherwise it is
set to 1 independently from its original value.

According to the previous steps, in the current implementation, in aver-
age 50% of bits composing register i are altered when 7 is selected as location
of transient faults. Thus, the probability an alteration happens on register 4
is P(i) = p_reg_err[i] x 0.5 x register _size. By default, the effect of such
alterations lasts for one instruction; however, a different duration can be set
in the command line. If intermittent faults are simulated, the activation pro-
cedure is repeated for each instruction. On the contrary, a single instruction
is affected by bit flip faults in a register, when the objective is to simulate a
single occurrence of a transient fault.

The strategy proposed for simulating intermittent and transient faults ap-
plies in the same way for GPRs, IR and program status register, in both ARM
and x86 architectures. However, in the case of IR and program status reg-
ister the same arrangements described for stuck-at faults apply to avoid PC
misalignment and to preserve lazy evaluation of condition codes.

It is also possible to configure the simulator such that a transient/intermit-
tent fault becomes permanent once activated for the first time. In this case,
TBs including affected instructions start to be saved in the cache as soon as
the fault becomes permanent. To support this feature we extended the TB
data structure such that it now includes also the register fault masks. This is
necessary to avoid two different faults affecting the same instruction at differ-
ent time instants are mapped, inconsistently, to the same entry in the cache
when they become permanent. In this way, during QEMU execution, if a TB
corresponding to the current program counter is present in the cache, but the
related fault mask is different from the current one, the TB is discarded and
regenerated.

5 Set up of the simulation

The fault injection approach presented in the previous section has been imple-
mented into a fully automatic fault simulation environment based on DBT. It
is intended for an early dependability analysis of embedded SW. The current
implementation of the fault injector runs on the Linux operating system and
it works for ARM and x86 architectures.

The set up of the simulation environment relies on a shell script that is in
charge of making automatic the fault injection campaign and collecting the
final results.

The user needs to define the target registers (GPRs, IR or PSR), the fault
typology (stuck-at, transitions and bit flip), the corresponding fault masks (de-

Title Suppressed Due to Excessive Length 17

fault masks can be used to inject all possible faults for all possible categories),
and basic information required by the selected fault topology as reported in
Sections 4.1, 4.2 and 4.3 (e.g., duration of the delay of transition faults, prob-
ability of activation for intermittent and transient faults) in a configuration
file. Multiple faults can also be injected by configuring the fault masks with
the desired number of fault locations.

Once configured, the tool runs the simulation by executing the target em-
bedded SW upon QEMU. Results are collected in a set of log files, one per
each execution run. Each log file reports the kind and location of the simulated
fault(s), the result of the simulation, and the simulation time. The result of
the simulation can be: safe when the benchmark responds as expected; error
if an erroneous result is obtained; loop in case of a non-termination of the ap-
plication; crash when a memory access violation causes to abort the execution.
In case of crash, the log reports the last instruction that has been executed
before the crash.

6 Experimental results

Experimental results have been conducted on three benchmarks (C code) gen-
erally used for testing the performance of CPUs: btrees that allocates and
deallocates many binary trees thus stressing memory allocation, mandelbrot
that exercises floating point operations to generate a Mandelbrot set, and
dhrystone that is a synthetic program intended to be representative of integer
programming.

Table 1 reports the number of injected faults per each category (stuck-at,
transition and bit flip) on the different kinds of registers, i.e., general purpose
register (GPRs), instruction register (IR) and program status register (PSR),
for both x86 and ARM architectures. The numbers represent the possible way
of altering registers by considering where stuck-at, transition and bit flip faults
can be injected. Concerning stuck-at and transition faults, we injected one fault
on a different bit of a different register per each run of the benchmarks. Thus,
the number of injected faults, corresponds to the following expression:

register size * kind of faults * number of registers. (1)

where, register size and number of registers is reported in Table 2!, while the
kind of faults are 2 for both stuck-at (SA0 and S01) and transition (STR and
STF) faults. For bit flip, instead, it is not possible to know before execution the
total number of injected faults, since it statistically depends on a probabilistic
value (see Section 4.3). Thus, the numbers reported in Table 1 for the bit flip
column correspond to the number of different probabilistic values we use for
deciding when activating bit flipping on the whole register multiplied for the
number of registers of each category. This means that, for bit flip faults, a

1 For the program status register, we considered 4 flags in case of ARM (CF, VF, NF,
ZF) and 6 flags in case of x86 (CF, PF, AF, ZF, SF, OF).

18 Davide Ferraretto, Graziano Pravadelli

CcPU # stuck-at # transition # bit flip
GPRs [IR PSR || GPRs | IR [PSR || GPRs [IR | PSR

x86 512 64 12 512 64 12 80 10 10

ARM 1024 64 8 1024 64 8 160 10 10

Table 1 Number of faults injected in CPU registers.

GPRs IR # PSR
CPU - o -
size | number || size | number || size | number
x86 32 8 32 1 6 1
ARM 32 16 32 1 4 1

Table 2 Characteristics of CPU registers.

Benchmark || CPU || # Stuck-at | # Transition | # Bit flip || # Total
btrees x86 4,517,470 2,722,814 7,298 7,247,582
ARM 26,741,522 18,065,640 | 2,827,437 || 47,634,599
mandelbrot x86 4,852,735 56,213 588,104 5,497,052
ARM 59,587,175 19,555,500 | 2,876,513 || 82,019,188
dhrystone x86 14,340,698 3,780,511 9,830 || 18,131,039
ARM 14,397,994 23,138,774 | 2,486,585 || 40,023,353

Table 3 Number of activated faults during execution.

Bench Kk x86 ARM
enchmar Fault-free | Faulty || Fault-free | Faulty
btrees 71.1 169.5 20.0 339.4
mandelbrot 61.6 189.0 108.6 | 923.36
dhrystone 318.1 825.9 66.86 | 986.15

Table 4 Simulation time (seconds).

random number of bits of a single register has been altered per each run of
the benchmarks. The actual number of fault activations occurred during the
execution of the benchmarks, according to the injected faults, is reported in
Table 3. These values depend on the number of times each register has been
used by the benchmark instructions during benchmark execution.

Simulation times are shown in Table 4, where columns faulty report the
time required to fault simulate the benchmarks, while columns fault-free show
the time required to simulate them without faults (i.e., by using the original
version of QEMU). For a fair comparison, the fault-free time has been ob-
tained by executing the original version of QEMU as many times as required
to simulate all the faults, as reported in Table 1. We can observe that the
overhead induced by the fault injection mechanism with respect to the fault-
free simulation is substantially acceptable considered the huge number of fault
activations reported in Table 3. Fault simulation for x86 resulted to be faster,
even if for fault-free simulation the opposite is true. This depends on the fact
that the emulated x86 architecture has only 8 GPRs while ARM architecture

Title Suppressed Due to Excessive Length 19

Benchmark || RTL | ISS | DBT w/o cache | DBT with cache

btrees 20.51 2.16 0.72 0.14
mandelbrot 432.64 | 51.79 0.69 0.39
dhrystone 108.42 | 16.54 0.46 0.42

Table 5 Comparison of fault simulation time (seconds) for ARM architecture by considering
RTL cycle-accurate fault simulation, ISS-based fault simulation, DBT-based simulation with
disabled cache and DBT-based simulation with the cache enabled.

has 16 of them, thus the total number of fault activations is much higher for
ARM than x86 (see Column Total of Table 3).

A further comparison concerning simulation time is reported in Table 5
for the specific case of the ARM CPU. It shows the average time required for
simulating the benchmarks in presence of one of the possible injected fault by
comparing four different approaches:

1. cycle-accurate fault simulation performed on an RTL Verilog model of an
Amber ARM? (corresponding to the version emulated in QEMU) by using
Modelsim (column RTL);

2. fault simulation on QEMU acting as a traditional ISS without applying
DBT (column ISS);

3. fault simulation on QEMU exploiting DBT with the cache disabled as
proposed in [12] (column DBT w/o cache);

4. fault simulation on QEMU exploiting DBT and without disabling the cache
mechanism as proposed in this paper (column DBT with cache).

As a result, preserving the use of the cache in the DBT mechanism, as
proposed in this paper, provides a significant speed-up with respect to the
approach proposed in [12], respectively 5.04x, 1.77x and 1.11x for btrees, man-
delbrot and dhrystone.

A comparison on simulation time with the other state-of-the art tools re-
ferred in Section 2 would be also interesting. Unfortunately, this was not pos-
sible, either because the tool is not freely available, or because it targets dif-
ferent fault types/locations with respect to our approach. However, we think
all approaches based on DBT have comparable execution times. We are not
expecting differences of orders of magnitudes among different DBT-based ap-
proaches. The real improvement is with respect to more detailed models and
accurate simulation (e.g., at RTL), as confirmed in Table 5, where we com-
pared the speed of our approach (last column) with the speed of RTL fault
simulation (second column).

Table 6 and Table 7 report the effect of injected faults on the execution
of benchmarks, respectively, for x86 and ARM. As expected, crashes are the
most common result for all kinds of faults, and, in particular, for bit flips since
they alter several bits of a register simultaneously.

2 RTL model of x86 was not available in our laboratory, thus this kind of comparison has
not been conducted for x86.

20 Davide Ferraretto, Graziano Pravadelli

Effect btrees mandelbrot dhrystone
ec stuck-at | transition | bit flip || stuck-at | transition | bit flip || stuck-at | transition | bit flip
loop 2% 1% 0% 1% 1% 0% 5% 3% 0%
safe 10% 31% 0% 15% 48% 0% 11% 34% 0%
error 7% 8% 0% 9% 11% 0% 12% 9% 0%
crash 81% 58% 100% 2% 40% 100% 2% 54% 100%

Table 6 Effect of faults on x86.

Effect btrees mandelbrot dhrystone
stuck-at | transition | bit flip || stuck-at | transition | bit flip || stuck-at | transition | bit flip
loop 5% 2% 1% 8% 7% 1% 5% 3% 1%
safe 16% 36% 0% 23% 53% 0% 19% 39% 0%
error 12% 16% 0% 8% 9% 2% 14% 16% 0%
crash 67% 46% 99% 60% 32% 98% 62% 42% 96%

Table 7 Effect of faults on ARM.

As a final experiment, Figure 8 reports the fault simulation results for the
proposed approach (QEMU) with respect to the cycle-accurate RTL simula-
tion of the Amber ARM (RTL). For each benchmark and for each fault site
the responses of the ESW to fault injections are reported. The fault sites are
grouped in general purpose registers (GPRs), program status register (PSR),
and instruction register (IR). Numbers in the bars refer to the percentage of
faults that cause safe, error, loop and crash responses. In general, we can no-
tice that the trends between our approach and the RTL cycle-accurate one are
similar. The difference between them is at most 3%.

Note that the proposed approach does not correlate the software failures
with the physical faults, as well it does not provide the designer with timing
and topological information that may characterize the faults at a lower ab-
straction level. But, on the basis of the experimental results, we can affirm
that dependability analysis of ESW can be carried out at an earlier phase of
the design cycle, when the application and the proposed instruction-accurate
fault simulator are available. In fact, the dependability analysis gains signifi-
cant speed up, but maintains the accuracy of the cycle-accurate simulation.

7 Conclusions

In this paper we presented an automatic non-intrusive simulation-based fault
injection framework based on QEMU. Three different kinds of fault can be
simulated according with widely adopted fault models. The efficiency of the
approach is confirmed by experimental results for both x86 and ARM archi-
tectures. Future works will be devoted to extend the approach with further
fault models and to compare its performance and accuracy with respect to
fault injection approaches working on FPGA.

Title Suppressed Due to Excessive Length 21

btrees

100 87 87 93 93

80

60

40

20

Msafe Merror Hloop Mcrash
mandelbrot

100 88 88 89 89

Hsafe Merror Mloop Mcrash

dhrystone
100 91 91 89 89

80 72 72
60 —— —
40 3z 24
20

0

RTL QEMU RTL QEMU RTL QEMU
GPRs PSR IR

Hsafe Merror Wloop Mcrash

Fig. 8 Comparison of fault simulation results for the ARM architecture.

References

1. Abramovici, M., Breuer, M., Friedman, A., of Electrical, I., Engineers, E.: Digital sys-
tems testing and testable design, vol. 2. Computer Science Press, New York (1990)

2. de Aguiar Geissler, F., Lima Kastensmidt, F., Pereira Souza, J.: Soft error injection
methodology based on gemu software platform. In: Proc. of IEEE LATW, pp. 1-5
(2014)

3. Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J., Laprie, J., Martins, E., Powell,
D.: Fault injection for dependability validation: A methodology and some applications.
IEEE Transactions on Software Engineering 16(2), 166-182 (1990)

4. Becker, M., Baldin, D., Kuznik, C., Joy, M.M., Xie, T., Mueller, W.: Xemu: An efficient
gemu based binary mutation testing framework for embedded software. In: Proc. of
ACM EMSOFT, pp. 33-42 (2012)

5. Bell, R.: Introduction to iec 61508. In: Proc. of SCS, SCS ’05, pp. 3-12 (2006)

22

Davide Ferraretto, Graziano Pravadelli

=]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proc. of USENIX ATEC

(2005)

Benso, A., Prinetto, P. (eds.): Fault Injection Techniques and Tools for Embedded Sys-
tems Reliability Evaluation. Springer (2003)

Cabodi, G., Murciano, M., Violante, M.: Boosting software fault injection for depend-
ability analysis of real-time embedded applications. ACM Transactions on Embedded
Computing Systems 10(2), 24 (2010)

. Carreira, J., Madeira, H., Silva, J.: Xception: A technique for the experimental evalua-

tion of dependability in modern computers. IEEE Transactions on Software Engineering
24(2), 125-136 (1998)

Chylek, S., Goliszewski, M.: Qemu-based fault injection framework. Studia Informatica
33(4), 25-42 (2012)

Civera, P., Macchiarulo, L., Rebaudengo, M., Sonza Reorda, M., Violante, M.: Exploit-
ing fpga for accelerating fault injection experiments. In: Proc. of IEEE IOLTS, pp. 9-13
(2001)

Di Guglielmo, G., Ferraretto, D., Fummi, F., Pravadelli, G.: Efficient fault simulation
through dynamic binary translation for dependability analysis of embedded software.
In: Proc. of IEEE ETS, pp. 1-6 (2013)

Ebcioglu, K., Altman, E., Gschwind, M., Member, S., Member, S., Sathaye, S.: Dynamic
binary translation and optimization. IEEE Transactions on Computers 50, 529-548
(2001)

Entrena, L., Lopez-Ongil, C., Garcia-Valderas, M., Portela-Garcia, M., Nicolaidis, M.:
Hardware fault injection. In: M. Nicolaidis (ed.) Soft Errors in Modern Electronic
Systems, Frontiers in Electronic Testing, vol. 41, pp. 141-166. Springer (2011)
Ferraretto, D., Pravadelli, G.: Efficient fault injection in QEMU. In: Proc. of IEEE
Latin American Test Symposium (LATS) (2015)

Fin, A., Fummi, F., Pravadelli, G.: Amleto: A multi-language environment for functional
test generation. In: Proc. of IEEE International Test Conference (ITC), pp. 821-829
(2001)

Gil, D., Baraza, J., Gracia, J., Gil, P.: Vhdl simulation-based fault injection techniques.
In: Fault injection techniques and tools for embedded systems reliability evaluation, pp.
159-176. Springer (2004)

Gil, D., Gracia, J., Baraza, J.C., Gil, P.J.: A study of the effects of transient fault
injection into the vhdl model of a fault-tolerant microcomputer system. In: Proc. of
IEEE International On-Line Testing Workshop (IOLTW), pp. 73-79 (2000)

Guarnieri, V., Fummi, F., Chakrabarty, K.: Reduced-complexity transition-fault test
generation for non-scan circuits through high-level mutant injection. In: IEEE Asian
Test Symposium (ATS) (2012)

Holler, A., Krieg, A., Rauter, T., Iber, J., Kreiner, C.: QEMU-based fault injection for
a system-level analysis of software countermeasures against fault attacks. In: Proc. of
Euromicro Conference on Digital Systems Design (DSD) (2015)

International Organization for Standardization: Product development: Software level.
ISO 26262-6 (2011)

Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering 37(5), 649-678 (2011)

Kanawati, G., Kanawati, N., Abraham, J.: Ferrari: A flexible software-based fault and
error injection system. IEEE Transactions on Computers 44(2), 248-260 (1995)
Karlsson, J., Folkesson, P., Arlat, J., Crouzet, Y., Leber, G., Reisinger, J.: Application
of three physical fault injection techniques to the experimental assessment of the mars
architecture. In: Proc. of IFIP Working Conference on Dependable Computing for
Critical Applications, pp. 267-287 (1995)

Karlsson, J., Liden, P., Dahlgren, P., Johansson, R., Gunneflo, U.: Using heavy-ion
radiation to validate fault-handling mechanisms. IEEE Micro 14(1), 8-23 (1994)
Kooli, M., Di Natale, G.: A survey on simulation-based fault injection tools for complex
systems. In: Proc. of IEEE DTIS, pp. 1-6 (2014)

Krishnamurthy, N., Jhaveri, V., Abraham, J.: A design methodology for software fault
injection in embedded systems. In: Proc. of IFIP International Workshop on Dependable
Computing and its Applications, pp. 12-14 (1998)

Title Suppressed Due to Excessive Length 23

28.

29.

30.
31.
32.
33.
. NASA: NASA software safety guidebook. NASA-GB-8719.13 (2004)
35.
36.
37.
38.
39.
40.

41.

42.

43.

44.

Larrucea, X., Combelles, A., Favaro, J.: Safety-critical software [guest editors’ introduc-
tion|. IEEE Software 30(3), 25-27 (2013)

Le, M., Tamir, Y.: Fault injection in virtualized systems - challenges and applica-
tions. IEEE Trans. on Dependable and Secure Computing PrePrints (2014). DOI
10.1109/TDSC.2014.2334300

Leveson, N., Turner, C.: An investigation of the Therac-25 accidents. Computer 26(7),
1841 (1993)

Li, Y., Xu, P., Wan, H.: A fault injection system based on QEMU simulator and designed
for BIT software testing. In: Proc. of ISCCCA (2013)

McCluskey, E., Tseng, C.W.: Stuck-fault tests vs. actual defects. In: Proc. of IEEE ITC,
pp. 336-342 (2000)

Mueller, W., Pétrot, F.: 1st International QEMU Users’ Forum. Grenoble (2011)

Natella, R., Cotroneo, D., Duraes, J., Madeira, H.: On fault representativeness of soft-
ware fault injection. IEEE Trans. on SW Eng. 39(1), 80-96 (2013)

Potyra, S., Sieh, V., Cin, M.D.: Evaluating fault-tolerant system designs using fauma-
chine. In: Proc. of ACM EFTS (2007)

Seong, P.H. (ed.): Reliability and Risk Issues in Large Scale Safety-critical Digital Con-
trol Systems. Springer (2009)

Sieh, V., Buchacker, K.: Umlinux - a versatile swifi tool. In: Proc. of EDCC, pp. 159-171
(2002)

Team, A.S.: Amazon S3 availability event: July 20, 2008 (2008). URL
http://status.aws.amazon.com /s3-20080720.html

Waicukauski, J., Lindbloom, E., Rosen, B.K., Iyengar, V.: Transition fault simulation.
IEEE Design Test of Computers 4(2), 32-38 (1987)

Wang, F., Agrawal, V.: Soft error considerations for computer web servers. In: In the
Proc. of Southeastern Symposium on System Theory, pp. 269-274. IEEE (2010)
Wang, N., Quek, J., Rafacz, T., Patel, S.: Characterizing the effects of transient faults
on a high-performance processor pipeline. In: Proc. of IEEE International Conference
on Dependable Systems and Networks, pp. 61-70 (2004)

Yount, C., Siewiorek, D.: A methodology for the rapid injection of transient hardware
errors. IEEE Trans. on Computers 45(8), 881-891 (1996)

Yuste, P., Ruiz, J., Lemus, L., Gil, P.: Non-intrusive software-implemented fault in-
jection in embedded systems. In: R. de Lemos, T. Weber, J. Camargo JoaoBatista
(eds.) Dependable Computing, Lecture Notes in Computer Science, vol. 2847, pp. 23—
38. Springer (2003)

