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Abstract

Extracellular signal-regulated kinases
(ERK) 1, 2 and 3 are involved in cell prolifera-
tion and differentiation, and apoptosis;
although ERK1/2 have been widely studied,
limited knowledge on ERK3 is available. The
present work aimed at investigating ERK3 dis-
tribution during cell cycle and apoptosis in
human tumor HeLa cells. The analysis per-
formed by double immunofluorescence and
immunoelectron microscopy revealed that dur-
ing interphase ERK3 is mainly resident in the
nucleoplasm in association with ribonuclear
proteins involved in early pre-mRNA splicing,
it undergoes cell cycle-dependent redistribu-
tion and, during apoptosis, it remains in the
nucleus in the form of massive nuclear aggre-
gates, then moves to the cytoplasm and is
finally extruded.

Introduction

Extracellular signal-regulated Ser/Thr
kinases (ERKs), belonging to the MAPKs
(mitogen-activated protein kinases) family,
are evolutionarily conserved enzymes involved
in several biological processes like prolifera-
tion, differentiation, inflammation and
immune response.1 Upon activation by differ-
ent kinases, they are translocated from the
cytoplasm to the nucleus.2 The best character-
ized ERK1 and ERK2 enzymes share the highly
conserved sequence Thr-Xxx-Tyr in the activa-
tion loop, which is the site of the activatory
double phosphorylation.3 ERK3 and ERK4
belong to a distinct subfamily containing the
motif Ser-Glu-Gly required for the stable inter-
action with (and consequent activation of)
other kinases like MK5 (mitogen kinase 5).4

ERK3, first described in 1991,5 was investi-
gated with respect to its localization and prop-
erties, finding that it is differently expressed
in human and rat.6,7 In fact, the C-terminal
sequence of rat ERK3 does not contain the
human KHLN motif5 that controls protein shut-
tling between ER (endoplasmic reticulum),
ERGIC (ER-Golgi intermediate compartment)
and Golgi apparatus.8 The cytoplasmic localiza-
tion of ERK3 is regulated by a CRM1 (chromo-
some region maintenance 1, also known as
exoportin 1 (XPO1) -dependent nuclear export
mechanism, possibly through CRM1 ability to
bind ERK3 in vitro.7 Bind et al.9 observed that
the nuclear entry of ERK3 increases as cells
progress through the S phase, while during the
early phases of the subsequent cell cycle ERK3
localized back to the Golgi. In addition, they
reported that the proteolytic cleavage of ERK3
is required for its release from the Golgi, given
that the nuclear form of the protein was car-
boxy-terminally truncated.9 This evidence sup-
ports the existence of a peculiar mechanism of
ERK3 activation and suggests that ERK3 local-
ization is strictly connected to its regulatory
function of the cell cycle. In this respect, it has
been reported that ERK3 overexpression trig-
gers G1 arrest in different mammalian cell
lines,7,10,1 and that ERK3 interacts directly with
cyclin D3.12 Moreover, it is a substrate for other
cell cycle effectors, such as the phosphatase
Cdc14A, which is able to functionally interplay
with ERK3 interactors (MK5 and cyclin D3),
thereby linking regulation of both cell cycle
progression and differentiation process,13 and
cyclin B-Cdk1 that hyperphosphorylates ERK3
when cells enter mitosis and is dephosphory-
lated at the M/G1 transition.14

The present work aims at depicting ERK3
distribution during interphase and mitosis in
HeLa cells, paying particular attention to the
ultrastructural analysis of ERK3 localization in
interphase nuclear domains. Moreover, since a
role of ERK1/2 in apoptosis activation has been
reported,15 we investigated for the first time
ERK3 localization in cells driven to apoptosis
by drugs with a different mechanism of action,
i.e. etoposide, a DNA topoisomerase II
inhibitor that affects DNA replication, the RNA
polymerase I inhibitor actinomycin D, and
paclitaxel that affects microtubule stability by
binding to a-tubulin. The pro-apoptotic exper-
imental conditions we applied have been previ-
ously defined in our laboratory.16-18

Materials and Methods
Cell cultures 
HeLa cells (from human uterine cervical

cancer) were cultured in D-MEM supplement-
ed with 10% fetal bovine serum (FCS), 1% glu-

tamine, 100 U/mL penicillin and 0.1 mg/mL
streptomycin. Cells were grown as monolayer
at 37°C in humidified atmosphere containing
5% CO2. For immunofluorescence experi-
ments, 1x105 cells were seeded on glass cover-
slips (22x22 mm); 48 h later, the medium was
replaced with fresh medium containing either
100 µM etoposide (Sigma-Aldrich, Milan, Italy)
or 1 µg/mL actinomycin D (Sigma-Aldrich) or
50 nM paclitaxel (Sigma-Aldrich). After a 20-h
incubation, cells were washed with PBS
(Phosphate Buffered Saline), fixed in 4% for-
malin in PBS for 20 min at room temperature
(r.t.), postfixed in 70% ethanol at -20°C and
kept for 24 h at -20°C. 

Double immunofluorescence
For immunofluorescence, samples were

rehydrated in PBS and incubated with the poly-
clonal antibody against ERK3 (Cell Signaling
Technology, Euroclone, Milan, Italy, diluted
1:200) for 1 h at 37°C in a humidified chamber.
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For double immunofluorescence experiments,
monoclonal antibodies to a-tubulin (Molecular
Probes, Invitrogen, Milan, Italy, diluted 1:50),
Golgin-97 (Molecular Probes, diluted 1:50),
Ki67 (Dako, Milan, Italy, diluted 1:20),
(Sm)snRNP (small nuclear RNP, Y12) core
protein (Abcam, Prodotti Gianni, Milan, Italy,
diluted 1:250) and SC35 (Sigma-Aldrich, dilut-
ed 1:200), were applied for 1 h. BrdU (5-bromo-
2’-deoxyuridine) incorporation was evaluated
as previously described.19 Coverslips were
washed in PBS and incubated with the appro-
priate Alexa-conjugated secondary antibodies
(anti-rabbit Alexa 488 or anti-mouse Alexa
594, Molecular Probes) for 1 h at r. t. Finally,
nuclei were counterstained Hoechst 33258
(0.1 µg/mL) for 15 min and coverslips were
mounted with Mowiol (Calbiochem, Inalco,
Milan, Italy). 

Fluorescence confocal microscopy
For confocal laser scanning microscopy, we

used a Leica TCS-SP system mounted on a
Leica DMIRBE inverted microscope; for fluo-
rescence excitation, an Ar UV laser at 364 nm
was used for Hoechst 33258, Ar visible laser at
488 nm for Alexa 488 and He/Ne laser at 543
for Alexa 594. Spaced (0.5 µm) optical sections
were recorded using a 63x oil immersion
objective. Images were collected in the
1024x1024 pixels format, stored on a magnetic
mass memory and processed by the Leica
Confocal Software.

Immunoelectron microscopy
For transmission electron microscopy, the

cells were fixed with 4% paraformaldehyde in
0.1 M phosphate buffer, pH 7.4, at 4°C for 1h,
washed with PBS, collected by scraping, then
treated with 0.5 M NH4Cl in PBS for 45 min at
4°C, dehydrated with ethanol and embedded in
LR White resin. Ultrathin sections were placed
on Formvar-carbon coated nickel grids and
processed for immunocytochemistry.20 The
anti-ERK3 antibody was used at the 1:10 dilu-
tion and revealed with a 12 nm-gold-conjugat-
ed goat anti-rabbit secondary antibody
(Jackson ImmunoResearch Laboratories Inc.,
LiStarFish, Milan, Italy). To reduce chromatin
contrast and selectively reveal nuclear RNP
constituents, the sections were treated with
the EDTA regressive method21 and observed in
a Philips Morgagni TEM equipped with a
Megaview II camera. 

Results and Discussion

We monitored the intracellular localization
of ERK3 in HeLa cells by immunofluorescence
experiments. During interphase, ERK3 was
mainly detectable in the nucleoplasm, and only
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Figure 1. Confocal microscopy. a, b) Immunodetection of ERK3 (green fluorescence) and
a-tubulin (red fluorescence). c) Immunodetection of ERK3 (red fluorescence) and
Golgin-97 (green fluorescence). d) Immunodetection of ERK3 (red fluorescence) and
BrdU (green fluorescence). e) Immunodetection of ERK3 (green fluorescence) and Ki67
(red fluorescence); DNA is counterstained with Hoechst 33258 (blue fluorescence).
*Early apoptotic HeLa cells; **or arrow: late apoptotic HeLa cells. Scale bars: 20 µm.
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in some cells a cytoplasmic localization was
observed, also in the vicinity of the perinuclear
area (Figure 1a). The analysis of the intracel-
lular distribution of ERK3 in the different
phases of mitosis revealed that in interphase
and prophase, it was scattered within the
nucleus, whereas in metaphase it was distrib-
uted in homogeneous spots within the cell,
where it remained until completion of chromo-
some segregation (during anaphase/
telophase); finally, after cytokinesis, ERK3
relocalized at the nuclear compartment
(Figure 1a).
After the treatment with pro-apoptotic drugs

(etoposide, actinomycin D or paclitaxel), in
early apoptotic cells the ERK3 signal was visi-
ble as large nuclear spots, whereas during late
apoptosis the signal was mainly diffused in the
cytoplasm (Figure 1b). Later on, ERK3 was
found to be extruded from the nucleus into the
cytoplasm (Figure 1b). Bind et al.9 reported
that a fraction of ERK3 localizes in the Golgi
apparatus in a cell cycle-dependent manner:
when the cells enter mitosis, ERK3 moves from
the Golgi and returns back therein in the fol-
lowing cell cycle. However, in our experiments,
the double staining for ERK3 and Golgin 97
revealed that, even if a fraction of ERK3 was
distributed in the vicinity of this organelle, the
two signals never overlapped (Figure 1c). This
discrepancy could be due to the different anti-
bodies used to detect the Golgi apparatus; in
fact, the probe used by Bind et al.9 can also be
applied for studying vesicular protein traffick-
ing along the secretory pathway, whereas the
probe used in the present study reacts with
proteins located in the Golgi cisternae only. No
correlation between ERK3 and Golgi apparatus
was evident even in apoptotic cells, where the
Golgi apparatus is morphologically and func-
tionally rearranged (i.e., fragmentation,
swelling and distension of the cisternae).22,23

In fact, during apoptosis ERK3 was detected in
the cytoplasm, initially in the form of coarse
aggregates, then in a more finely dispersed
localization, but never colocating with the
Golgi cisternae.
The distribution of ERK3 in relation to DNA

replication foci was analyzed by immunofluo-
rescence using BrdU incorporation, which
reveals the newly synthesized DNA during the
S phase. As evidenced in Figure 1d, the typical
BrdU dots representative of the DNA synthesis
sites never overlapped with the ERK3 immuno-
labeling, thus suggesting that this kinase does
not colocate with the DNA replication sites. 
The possible presence of ERK3 within nucle-

oli was investigated by a double immunolabel-
ing with antibodies directed against the pro-
tein Ki67, which mostly accumulates in the
nucleolus in interphase cells.24,25 Figure 1e
shows that Ki67 was visible in untreated HeLa
cells as distinct nuclear spots; when cells were

submitted to the treatment with an apopto-
genic drug (etoposide or actinomycin D), Ki67
remained associated to the nuclear compart-
ment in early apoptotic cells, while in late
apoptotic cells it was released as large aggre-
gates within the cytoplasm. Remarkably, the
nuclear signal for ERK3 never overlapped with
the Ki67 staining, thus indicating that the two
proteins do not share the same compartments.
The possible involvement of ERK3 in tran-

scriptional and post-transcriptional processes
was then investigated by both immunofluores-
cence and immunoelectron microscopy. By
double immunofluorescence experiments, the
distribution of ERK3 was evaluated in inter-
phase cells in association with splicing factors
known to localize at specific interchromatin
domains involved in mRNA transcription and
maturation: snRNPs (Y12), involved in early
splicing at the transcriptional sites,26,27 and
SC35, a non-RNP factor required for spliceo-
some assembly28 and mRNA transcription, 3’
end processing and nucleus-to-cytoplasm
export.29,30 SC35 is also considered as a reliable

marker of interchromatin granules which are
involved in the storage, assembly and phospho-
rylation of transcription/splicing factors.31,32

The distribution of ERK3 in association with
snRNPs and SC35 was investigated also during
apoptosis, when many RNP and non-RNP
nuclear factors are organized in aggregates
defined HERDS (Heterogeneous Ectopic RNP-
Derived Structures).33-35 As shown in Figure 2,
in untreated cells as well as in actinomycin D
and etoposide treated cells, ERK3 appeared to
colocalize with snRNPs: in untreated cells the
colocalization occurred inside the nucleus,
while in apoptotic cells the colocalization was
found in cytoplasmic fragments (presumably
the HERDS) at the cell surface, suggesting
that ERK3 proteolytic degradation by apoptotic
proteases (if any) is incomplete. On the other
hand, ERK3 was never found to colocalize with
SC35, neither in untreated nor apoptotic cells.
Immunoelectron microscopy confirmed the

presence of ERK3 in some (Sm)snRNP-con-
taining structural constituents. In particular,
ERK3 was found in perichromatin fibrils (rep-
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Figure 2. Confocal microscopy. Left: immunodetection of ERK3 (red fluorescence) and
Y12 (green fluorescence). Right: immunodetection of ERK3 (red fluorescence) and SC35
(green fluorescence). DNA is counterstained with Hoechst 33258 (blue fluorescence).
Each HeLa cell treatment condition is coupled with the respective graph of blue (a,a’,a’’,
d,d’,d’’), green (b, b’,b’’,e, e’, e’’) and red fluorescence (c,c’,c’’, f, f ’, f ’’) intensity for the
colocalization analysis. Lines in the images represent the region where fusion of green/red
fluorescence was measured. Scale bars: 20 m. 
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resenting the sites where transcription and co-
transcriptional splicing of mRNAs occur), even
when they were connected to perichromatin
granules (vectors and storage site of already
spliced pre-mRNA),27 but was absent from the
interchromatin granules and from the inter-
chromatin granule-associated zones, involved
in the storage/assembly of U1snRNPs36 (Figure
3). ERK3 was also observed inside coiled
(Cajal) bodies, i.e. the nuclear domains
involved in multiple functions among which
the intranuclear traffic of several splicing fac-
tors, including (Sm)snRNPs.37 Consistent with
the immunofluorescence results, ERK3 was
never detected inside nucleoli. Taken together,
these data strongly suggest that, in interphase
cells, ERK3 plays a role in pre-mRNA transcrip-
tion and/or splicing, maybe in association with
(Sm)snRNPs, but it is not stored together with
other splicing factors. Further experiments are
required to define the functional role of ERK3
in these domains.
On the whole, our study on ERK3 in HeLa

cells provides novel information about the
intracellular location and dynamics of this
kinase which has been attributed multiple
roles in several cellular processes, such as
spindle stability and metaphase-anaphase
transition,38 dendrite morphogenesis,39 T cell
activation,40 endotelial cell functions,41 and
tumorigenesis.42,43 We observed that during
interphase, ERK3 is present mainly in the
nucleoplasm, in association with RNP factors
involved in early pre-mRNA splicing, and it
undergoes extranuclear redistribution during
mitosis, with no colocalization with Golgi cis-
ternae. In addition, our study provides original
data on the fate of ERK3 during apoptosis,
when it initially remains in the nucleus in the
form of massive nuclear aggregates, then mov-
ing to the cytoplasm and finally being extruded
in association with other nuclear factors as it
occurs for many other nuclear proteins that
are involved in HERDS formation.
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