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Abstract

We will introduce a Monte Carlo type inference in the framework of Markov
Switching models to analyse financial time series, namely the Gibbs Sampling.
In particular we generalize the results obtained in [1, 5, 16] to take into account
the switching mean as well as the switching variance case. In particular the
volatility of the relevant time series will be treated as a state variable in order
to describe the abrupt changes in the behaviour of financial time series which
can be implied, e.g., by social, political or economic factors. The accuracy of
the proposed analysis will be tested considering financial data set related to the
U.S. stock market in the period 2007-2014.

Keywords: State-Space system, Bayesian analysis, Kalman filter, Markov
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1. Introduction

Dealing with financial time series is in most cases a non-deterministic task,
since a common assumption is the presence of a stochastic error in the empir-
ical datum, and the phenomenon could depend both from observed and unob-
served variables, the latter usually called state variables. The change of relevant
states during time gives rise to the so called regime switching dynamic which is
governed by specific laws assumed (in literature) to be either deterministic or
stochastic.

In this work we are going to deal only with discrete state-space models
(DSSM) with Markovian switching for a specific financial framework taken into
account. The aim will be to make a complete quantitative analysis from the
rough time series {yt}Tt=1, being T a positive integer representing the expiration
date or the number of available observations. The resulting system will be of
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the following form: 
yt = f(St, θ, ψt−1)

St = g
(
S̃t, ψt−1

)
St ∈ Λ

(1)

where ψt := {yk : k = 1, . . . , t}, θ is the vector of the model’s parameters, Λ
represents the set of the all the possible states, g is the state-switching law,
namely a function of the past states and the observations until the previous
time, while f is the function f : Λ× Rk × Rt−1 → R, where k is the number of
the descriptive parameters, which returns the actual value of the time series at
time t. We would like to underline that this class of models is widely used, e.g.,
in engineering, physics, etc., where they have been implemented to, e.g., study
stochastic resonance phenomena, see [18], to underline the relation between corn
and oil prices through DSSM, see [3], or to optimal control problem for DC-DC
converter systems, see [15]. Concerning our analysis, we are going to embed
system (1) in the case of a serially uncorrelated time series with Markovian
regime switching and a four-dimensional state space. Markov hypothesis is a
standard choice in financial time series analysis, while for the choice of the
dimensionality we refer to [5], where the authors underline the necessity of
distinguishing both the high risk state and the structural break state. Therefore
we obtain the following model:

yt = µSt
+ εt, t = 1, 2, . . . , T

εt = i.i.d. N (0, σ2
St

),

µSt
= µ1S1,t + µ2S2,t + µ3S3,t + µ4S4,t,

σSt
= σ1S1,t + σ2S2,t + σ3S3,t + σ4S4,t,

St ∈ {1, 2, 3, 4}
pij := P (St = j|St−1 = i) i, j = 1, 2, 3, 4.

(2)

where Sj,t is the characteristic function for the event being in state j at time
t. We will refer to (2) as to a serially uncorrelated Markov Switching Model
(MSM).

Our quantitative study is now shifted to an identification problem with
the task of finding the switching probabilities pij and the mean-variance cou-
ples [µm, σm] that describe each state in the DSSM shown in (2). A classical
approach to this identification problem is the well known Maximum Likelihood
approach, which has been exhaustively investigated in [16], to which we refer
also for details about the choice of using the Hamilton filter.

2. Bayesian Inference

Our main problem is to infer on parameters that are subject to stochastic
behaviour. In this framework a smart solution is to exploit the Bayesian Infer-
ence approach, that is a class of methods based on the Bayes’ rule. The core
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of all these methods is the relation between likelihood functions and random
variables, namely in order to explain the posterior distribution of a parameter,
we write:

f (θ|ŷ) =
f (ŷ|θ) f (θ)

f (ŷ)
, (3)

where on the left hand side we have the joint posterior distribution of the param-
eters, while on the right hand side we have the product between the likelihood
of the data and the prior distribution of the parameters divided by the marginal
likelihood of the data (which can be considered constant). The latter suggests
to focus the attention on the proportion

f (θ|ŷ) ∝ f (ŷ|θ) f (θ) . (4)

A good choice for the prior distribution would let us compute posterior distribu-
tions in an easy way, rather analytically. The latter is not a simple task, but we
can exploit the results in [10] to recover that every member of the exponential
family has conjugate priors. In particular, if prior and posterior distributions
belong to the same family, we say that they are conjugate distributions, and the
prior is called conjugate prior for the likelihood.

2.1. Conjugate distribution

Exploiting the fact that the model is subjected to constraints for the pa-
rameters, e.g. we want to have a value for the variance that is not negative,
or we would like to preserve the possibility for the mean to take both positive
and negative values, we first try to obtain the posterior distribution taken such
constraints into account and then we go back to the prior we need to consider.
Let us note that every member of the exponential family is endowed with a
conjugate prior, hence it is reasonable to exploit such a set, in particular if n is
the number of observations with ỹ = {yi}ni=1 being the dataset considered, we
have the conjugation properties stated in the following subsections.

2.1.1. Bernoulli with unknown probability p

One basic feature we would like to deal with is the constraint on the in-
ferred parameter that forces it to be a probability value, i.e. 0 ≤ p ≤ 1. A
probability distribution that ensures this feature is the Beta distribution, that
is self-conjugated, which means that the prior and the posterior distributions are
of the same kind. We can start by considering a random variable X ∼ Bin(1, p),
hence X takes values on the set {0, 1}, P(X = 0) = p and P(X = 1) = 1 − p.
Inferring on p by the Bayesian method means considering p as a random variable
and choosing a prior distribution that fits our constraints. One possible easy
choice, which is the one we will later adopt, is to suppose that

f(p) ∝ Beta(α, β), (5)

that leads to the posterior distribution of p given ỹ:

f(p|ỹ) = Beta

(
α+

n∑
i=1

yi, β + n−
n∑
i=1

yi

)
. (6)
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It is worth to mention that the relevance of the previously sketched framework
will be clear in section 3.1.1.

2.1.2. Normal with known variance

Another classical result in bayesian decision theory is the posterior distri-
bution of a normal random variable with known variance. In this case X ∼
N(µ, σ2) and we consider σ2 as a known constant. Since our aim is to make
inference on µ, we want to find a prior distribution with the following features:

• Values must be finite, i.e. |µ| <∞⇔ limt→∞ f(µ > t) = 0,

• It must be symmetric with respect to its mean value.

Latter constraints lead to choose a Normal prior distribution even if this is not
the only possible choice. In fact the same properties are satisfied, e.g., by the
Cauchy’s distribution, by the Student’s t-distribution or by the logistic distribu-
tion, nevertheless the Normal distribution choice is rather standard because of
the Gaussian nature of the likelihood functional, namely

f(µ) = N(µ0, σ
2
0).

The posterior distribution of µ given ỹ and σ2 is

f(µ|ỹ, σ2) = N

 µ0

σ2
0

+
∑n

i=1 yi
σ2

1
σ2
0

+ n
σ2

,

(
1

σ2
0

+
n

σ2

) . (7)

The further equation plays the key role in the generalization of the pure switch-
ing variance model proposed by Di Persio and Vettori in [5] and we please you
to wait until section 3.1.3 in order to go into the details of the switching mean
MCMC simulation.

2.1.3. Normal with known mean

The complement of the previous result is the inference on σ2 with known
µ in the normal distribution framework. The new property we want to satisfy
is 0 < σ2 < +∞. We reject the guess made in section 2.1.2, since the normal
distribution takes both positive and negative values and, accordingly to such a
a restriction, we suppose

f(σ2) = IG(α, β),

where IG indicates the inverse-Gamma distribution, i.e. 1
σ2 ∼ Γ

(
α, 1

β

)
. Then

the posterior distribution is:

f(σ2|µ, ỹ) ∼ IG

(
α+

n

2
,

∑n
i=1(yi + µ)2

2

)
. (8)

Even in this case we can make different choices, since the same property is
satisfied by the scale-inverse-chi-squared distribution, but it is possible to show
that the inverse-Gamma distribution is a reparametrization of scale-inverse-chi-
square, see, e.g., [19, Example 2.8].
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2.2. Gibbs Sampling

The system we are studying involves a phenomenon subject to a Markov
Chain dynamic, so we would like to take a sampling algorithm from the Markov
Chain Monte Carlo (MCMC) family. As proposed in [1], we exploit the Gibbs
Sampler in order to obtain a suitable sample for the parameters we want to
estimate.

Let zt be the set of the parameters we want to estimate through our MCMC
algorithm. In order to start the Gibbs Sampling algorithm we need to know
every conditional density f(zm|zn 6=m), where

zn 6=m = {z1, . . . , zm−1, zm+1, . . . , zk},

is the set of all the parameters except the m-th. The sampler operates through
the following steps:

Step 1 Set an initial value z0m for each parameter to be sampled and a counter
c = 1.

Step 2 Draw every parameter from its conditional distribution through the
following procedure:

1. Draw zc1 from f(z1|zc−12 , . . . , zc−1k ).1

2. Draw zc2 from f(z2|zc−11 , zc−13 , . . . , zc−1k ).

3. . . .

4. Draw zck from f(zK |zc−11 , . . . , zc−1k−1).

Step 3 Update the counter c ⇐ c + 1 and restart from Step 2 until c < J ,
where J is number of iterations we want to compute.

The choice of J is one of the key points in the set-up of the Gibbs Sampler,
since it needs to be big enough to ensure a good approximation of both the
marginal and joint distributions of the sampled values to the marginal and joint
distributions of the data. In [11, Appendix], the authors proved this convergence
(with exponential rate) as J →∞. Usually in Monte Carlo methods we need a
burn-in period to enter in the convergence region, i.e. we have to reject the first
L samples, where L differs from problem to problem, so we will take J = L+M
where M is the dimension of the sample that will be taken into account for
the Monte Carlo estimation of the parameters of interest. We would like to
underline that even if the MSM framework is not endowed with the conditional
distributions, the Bayesian Inference will let us exploit the Gibbs Sampler in a
proper way.

1It should be clear that an initial guess for z1 is not necessary, but it is highly suggested
in order to have a clearer algorithm and code.
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3. Markov Switching Models inference with Gibbs Sampling

The main problem in dealing with Markov Switching Models is that their
behaviour is strongly dependent on the unobserved variable St. Exploiting
previous considerations on Bayesian inference and according to the algorithms
presented in [1, Sec. 3] and in [16, Ch. 9], we can consider St as a random vari-
able by mean of the following considerations. First, in order to set the problem
in a more convenient scheme, we rewrite the standard deviation equation of the
MSM as follows:

σ2
St

=σ2
1S1,t + σ2S2,t + σ3S3,t + σ4S4,t (9)

=σ2
1(1 + h2S2,t) [(1 + h2S3,t)(1 + h3S3,t)]×

[(1 + h2S4,t)(1 + h3S4,t)(1 + h4S4,t)] , (10)

with the aim of inferring on the parameter set

Θ =
{
µ1, µ2, µ3, µ4, σ

2
1 , h2, h3, h4, S̃T , P

}
,

where S̃T = {S1, S2, . . . , ST } and

P =


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

 .

Then, in order to apply the Gibbs Sampling, we consider a slightly more general
version of the procedure described in [5, Section 3.3], namely:

Step 1 Derive the distribution of St, t = 1, . . . , T conditional on the parameters
in one of the following ways:

1. Single-Move Gibbs Sampling : generate each St from

f
(
St|S̃6=t, µ1, µ2, µ3, µ4, σ

2
1 , h2, h3, h4, P, ψT

)
,

for t = 1, . . . , T , where S̃6=t = S̃T \ St.
2. Multi-Move Gibbs Sampling : generate the whole block S̃T from

f
(
S̃T |µ1, µ2, µ3, µ4, σ

2
1 , h2, h3, h4, P, ψT

)
.

Step 2 Generate the transition probabilities pi,j from f(P |S̃T ). Notice that

this distribution depends only on S̃T because we assume to deal with
a homogeneous Markov chain. If we choose the Beta distribution as the
prior distribution for P , we have that the posterior distribution f(P |S̃T ) =
f(P )L(P |S̃T ) is again a Beta distribution, hence the Beta distribution is
a conjugate prior of the likelihood of transition probabilities, as seen in
section 2.1.1.
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Step 3 Generate µ1, µ2, µ3, µ4 from

f
(
µ1, µ2, µ3, µ4|S̃T , σ1, h2, h3, h4, P, ψT

)
,

in this case the conjugate prior is the Normal distribution, see section 2.1.2
for details.

Step 4 Generate σ1, h2, h3, h4 from

f
(
σ1, h2, h3, h4|S̃T , µ1, µ2, µ3, µ4, P, ψT

)
.

By (9) we consider, e.g., σ2
3 = σ2

1(1 +h2)(1 +h3): we can first generate σ2
1

from h2 and h3, then we generate both h̄2 = 1+h2 from σ2
1 and h3, and we

conclude obtaining h̄3 = 1 + h3 from σ2
1 and h2. In every case we use the

Inverted Gamma distribution as the conjugate prior for the parameters.

Further results can be obtained turning from the Single-Move Gibbs Sampling
approach, to the Multi-Move Gibbs Sampling, originally motivated in [2] and
in [16]. In particular the following section provides details of the embedded
version of the Gibbs Sampling with respect to our problem.

3.1. Embedded Gibbs Sampling

Let J = L + M be the quantity of samples we want to compute, with L as
the burn-in period and M the dimension of the inferring sample space, then let
c = 1 and compute as described in the following subsection, until c < J .

3.1.1. Multi-Move Gibbs sampling for drawing states

Make inference on the state variables conditional on the parameters and the
data.

1. Perform the Hamilton’s filtering procedure used for the Maximum Likeli-
hood approach, see [4, Sec. 3], in order to obtain

P (ST |ψT ) ,

2. consider the property

pit = P (St = i|St+1, ψt) =
f (St+1|St = i) f (St = i|ψt)∑4
k=1 f (St+1|St = k) f (St = k|ψt)

,

and declare the vector

πt =
[
p1t , p

2
t , p

3
t , p

4
t

]
. (11)

3. Simulate a value for St from πt for all t = 1, . . . , T and save those values
in the vector S̃T .
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3.1.2. Generate transition probabilities

Since we want to obtain a set of values that belong to the interval [0, 1], then
we recall the analysis reported in 2.1.1 and we exploit the properties of the Beta
distribution, which implies that we first need to define the following quantities

P̄ =

{
p̄ij = 1− pii, if i = j,

p̄ij = pij , if i 6= j
, (12)

therefore we have the following bar-shifting property:

pij =P (St = j|St−1 = i)

=P (St = j|St−1 = i, St 6= i)P (St 6= i|St−1 = i)

=p̄ij(1− pii). (13)

Moreover we need to define the transition counter, i.e. a 4-by-4 matrix nij where
each entry counts the number of transitions from state St−1 = i to state St = j.
The last object is the complementary of nij , namely we set n̄ij be the 4-by-4
matrix where each entry counts the number of transition from state St−1 = i
to state St 6= j. Since we choose the Beta distribution as the conjugate prior
distribution, we have

pij ∼ Beta (uij , ūij) ,

and it implies

pii|S̃T ∼Beta (uii + nii, ūii + n̄ii) ,

p̄ij |S̃T ∼Beta (uij + nij , ūij + n̄ij) .

Then we can compute the transition probabilities row by row. The computation
for the first row of the matrix are shown and the others follow the same proce-
dure. We start by obtaining the element from the diagonal p11, then generating
a random value for the other two elements,e.g. p̄12 and p̄13. We transform these
last two values with the bar-shifting property of equation (13) in order to obtain

p12 = p̄12 (1− p11) ,

p13 = p̄13 (1− p11) ,

and the last evaluation for this row is p14 = 1− p11 − p12 − p13.
Repeating previous steps for each row we obtain the full specification of the P
matrix.

3.1.3. Generate means

Concerning the mean values, we start by considering the subsequences of yt
belonging to a specific state. Let us define Y j := {yt : St = j} and Lj = #Y j .
As long as we are in the same framework of section 2.1.2, we choose the Normal
distribution as the conjugate prior distribution for the parameters µ1, . . . , µ4,
i.e. we take

µ ∼ N(µ0, σ
2
0),
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this leads to the posterior distribution

f(µj |Y j , σ2
j ) = N

 µ0

σ2
0

+
∑Lj

i=1 Y
j
i

σ2
j

1
σ2
0

+ Lj

σ2
j

,

(
1

σ2
0

+
Lj

σ2
j

) , (14)

and we only need to compute a value from equation (14) for each state j =
1, 2, 3, 4.

3.1.4. Generate variances

Concerning the computation of variances we have to face a rather compli-
cated problem, since there are four parameters to be drawn from an Inverse
Gamma distribution. Associated computational steps are reported in what fol-
lows:

Infer on σ2
1 conditional to h2, h3, h4. Let us consider the following time series:

Y 1
t :=

yt − µSt√
(1 + h2S2,t)(1 + h2S3,t)(1 + h3S3,t)(1 + h2S4,t)(1 + h3S4,t)(1 + h4S4,t)

,

that is equivalent to considering the original time series yt and performing the
following rescaling:

• if St = 1, yt → yt − µ1;

• if St = 2, yt → yt−µ2√
1+h2

;

• if St = 3, yt → yt−µ3√
(1+h2)(1+h3)

;

• if St = 4, yt → yt−µ4√
(1+h2)(1+h3)(1+h4)

;

notice that we have Y 1
t ∼ N(0, σ2

1), then let L1 = #Y 1
t , hence choosing an

Inverse-Gamma conjugate prior distribution for σ2
1 , i.e.

f
(
σ2
1

)
∼ IG

(
ν1
2
,
δ1
2

)
,

we can exploit the properties seen in section 2.1.3 to compute a value for 1
σ2
1

from the posterior distribution

f

(
1

σ2
1

|h2, h3, h4
)

= Γ

ν1 + L1

2
,

[
δ1 +

∑L1

t=1 Y
1
t

2

]−1 . (15)
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Infer on h2 conditional to σ2
1 , h3, h4. Let us define the time series

y
(2)
t = {yt|St ∈ {2, 3, 4}} , (16)

and let L2 = #y
(2)
t , then we define Y 2

t by the following reparametrization of y
(2)
t :

• if St = 2, yt → yt−µ2√
σ2
1

;

• if St = 3, yt → yt−µ3√
σ2
1(1+h3)

;

• if St = 4, yt → yt−µ4√
σ2
1(1+h3)(1+h4)

.

Let h̄2 := 1 + h2, then, exploiting the prior distribution, we have

f
(
h̄2
)
∼ IG

(
ν2
2
,
δ2
2

)
,

and we obtain the following posterior distribution:

f

(
1

h̄2
|σ2

1 , h3, h4

)
= Γ

ν2 + L2

2
,

[
δ2 +

∑L2

t=1 Y
2
t

2

]−1 . (17)

Then we compute a value for h̄2 from (17) and, if the drawn value is less than
one, simulate (17) until it returns a value h̄2 > 1.

Infer on h3 conditional to σ2
1 , h2, h4. Let us define the time series

y
(3)
t = {yt|St ∈ {3, 4}} , (18)

and L3 = #y
(3)
t , then we define Y 3

t through the following reparametrization of

y
(3)
t :

• if St = 3, yt → yt−µ3√
σ2
1(1+h2)

;

• if St = 4, yt → yt−µ4√
σ2
1(1+h2)(1+h4)

,

Let h̄3 := 1 + h3, from the prior distribution

f
(
h̄3
)
∼ IG

(
ν3
2
,
δ3
2

)
,

we obtain the following posterior distribution:

f

(
1

h̄3
|σ2

1 , h2, h4

)
= Γ

ν3 + L3

2
,

[
δ3 +

∑L3

t=1 Y
3
t

2

]−1 . (19)

Draw a value for h̄3 from (19) and, if it is less than one, simulate (19) until it
returns a value h̄3 > 1.

10



Infer on h4 conditional to σ2
1 , h2, h3. Let us define the time series

y
(4)
t = {yt|St = 4} , (20)

and L4 = #y
(4)
t , then we define Y 4

t through the following reparametrization of

y
(4)
t :

• if St = 4, yt → yt−µ4√
σ2
1(1+h2)(1+h3)

,

Let h̄4 := 1 + h4, using the prior distribution

f
(
h̄4
)
∼ IG

(
ν4
2
,
δ4
2

)
,

we obtain the following posterior distribution:

f

(
1

h̄4
|σ2

1 , h2, h3

)
= Γ

ν4 + L4

2
,

[
δ4 +

∑L4

t=1 Y
4
t

2

]−1 . (21)

Then we compute a value for h̄4 from (21) and, if it is less than one, we simulate
(21) until it returns a value h̄4 > 1.

3.1.5. Update counter

Once the computations stated in subsections from (Step 1) to (Step 4), are
completed, we update the counter c ⇐ c + 1 and restart from section 3.1.1. If
the maximum number of iterations is reached we simply avoid restarting the
cycle and the whole procedure ends.

4. Goodness of fit

After the identification of the system parameters, obtained either through
a Maximum Likelihood or via Gibbs Sampling, we have the transition matrix,
the model parameters

θ = [µ̂1, . . . , µ̂4, σ̂1, . . . , σ̂4] ,

and the filtered probabilities and the smoothed probabilities

P (St = j|ψt) and P (St = j|ψT ) . (22)

In order to estimate the mean and the variance of the process at time t con-
ditional w.r.t. the set ψt, we compute the following weighted averages ∀t =
1, . . . , T :

µ̂t = E [µt|ψt] = µ̂1P (St = 1|ψt) + · · ·+ µ̂4P (St = 4|ψt) (23)

σ̂t = E [σt|ψt] = σ̂1P (St = 1|ψt) + · · ·+ σ̂4P (St = 4|ψt) , (24)
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then we can define the standardized residuals in the following way

ε̂t =
yt − µ̂t
σ̂t

∼ N (0, 1) , t = 1, . . . , T , (25)

hence obtaining a good benchmark for the regression accuracy. In particular,
the goodness of the fit is tested by a normality test, which consists of applying a
statistical hypothesis test under the bilateral null hypothesis H0 that the resid-
uals are distributed like N (µ, σ2) random samples. We would like to underline
that the chosen tests are the ones proposed by Jarque and Bera, see [13], and
the one exploited by Lilliefors in [17]). We underline that, as pointed out by
Thadewald and Bünin in [20], the Jarque-Bera test is sometimes subject to
errors of the second type.

Another informative, though qualitative, test is the Normal Probability Plot,
which compares the percentiles of the standardized residuals with the theoretical
values. In this type of plot most of the values should stay close to a particular
line, otherwise it is reasonable to conjecture non-normality for the analysed
values.

5. Case Study: S&P500

In what follows we apply the previously presented procedure to a concrete
case study of particular financial relevance. In particular, we present a MSM-
inference approach focused on the Standard & Poor’s 500 (S&P 500) equity
index.

5.1. Long term: 2007-2014

We will start by analysing the period between January 1st 2007 and Decem-
ber 31st 2014 in order to include both the great financial crisis and the economic
recovery of the U.S. economy. Figure 1 shows the weekly stock price of S&P500
index in the chosen time interval defined in the following way:

Price(t) =
Close(t)−Open(t)

2
.

Let {Xt} be the price time series, then we can define the return process as

yt = Xt+1−Xt

Xt
. From now on we will work only on yt, whose length is T = 418.

Figure 2 shows the weekly return of S&P500 index in the chosen time interval.
The first step of our analysis consists in trying to check the possibility for the

returns to be autocorrelated, a task which can be accomplished through tests
like Durbin-Watson test, see, e.g., [6, 7, 8], by directly computing the AR(1)
coefficient exploiting the least-square methods in the form

φ1 =

∑T
i=2 yt−1yt∑T−1
i=1 (yt)2

.

In our case this computation returns the value −0.0489, which is low enough to
discard the assumption of a first-order autoregressive pattern, hence we decide to
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Figure 1: Stock price of S&P500 defined as the weekly average of the opening and closing
prices. The length of the time series is N = 419.
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Figure 2: Return process of S&P500. The length of the time series is N = 419.

focus our analysis on a Gaussian distribution with switching variance considering
the following four-states model:

yt = εt, t = 1, 2, . . . , T (26)

εt ∼ i.i.d. N (0, σ2
St

), (27)

σSt
= σ1S1,t + σ2S2,t + σ3S3,t + σ4S4,t, (28)

pij := P (St = j|St−1 = i) i, j = 1, 2, 3, 4, (29)

where Sj,t is the characteristic function for the event being in state j at time t and
the four states correspond respectively to the low volatility, medium volatility,
high volatility and very high volatility regimes. We underline that the possibility
of a switching mean model has not been taken into account because it is not
informative for the analysed time series which, in fact, does not show evidence
of sensible non-zero-mean state presence.

Exploiting the Hamilton filter for the return process, we obtain the results
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shown in figures 3 and 4 with the following parameters:

P =


0.9779 0.0176 0.0000 0.0045
0.0417 0.9583 0.0000 0.0000
0.0000 0.0377 0.9622 0.0001
0.0004 0.0004 0.2990 0.7002

 ,
σ2
1 = 0.0001, σ2

2 = 0.0004, σ2
3 = 0.0013, σ2

4 = 0.0073.
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(a) State 1.
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(b) State 2.
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(c) State 3.
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(d) State 4.

Figure 3: Filtered probabilities in the four-states case.
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(c) State 3.
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(d) State 4.

Figure 4: Smoothed probabilities in the four-states case.

Considering the standard deviation

σ̂t = E (σt|ψt) = σ̂1P (St = 1|ψt) + · · ·+ σ̂4P (St = 4|ψt) , t ∈ [1, T ],

which we would like to compare with the VIX, namely the Chicago Board Op-
tions Exchange Market Volatility Index (CBOE VIX), which is a widely used
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measure of the implied volatility of the S&P500 index. Let us underline that
speaking of implied volatility, we mean the expectation of future volatility. Fig-
ure 5 shows a graphical comparison between our estimate and the VIX index.
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Figure 5: Graphical comparison between standard deviation estimate and the VIX index. The
estimate have been multiplied by a constant c in order to minimize the mean distance between
the two graphs in the four-states case. Scale factor c = 1322, 4.

Let us state one considerations on this heuristic comparison: first we can
say that the initial period, which approximately, corresponds to the first fifty
observations), is not a reliable estimate for the standard deviation since it is
really far from VIX and has the typical behaviour of a warm-up period. The
second consideration is that it is possible to notice a smoother pattern for the
estimated standard deviation. The latter leads to an underestimate for all the
peaks of volatility even if they are reached at the same time. The only peak that
is overestimated with respect to the VIX is the highest for both the time series,
corresponding to the recession experienced in 2008. Underlining that previous
facts turn to be hold true only in chaotic periods, our estimate is a robust and
efficient substitute for the volatility of S&P500.

Another key feature we want to analyse is the global goodness of the re-
gressed model. In particular we want to perform a goodness of fit analysis like
the one proposed in section 4. First we compute the standardized residuals ε̂t.
If the model is a good fit for our time series, the residuals will be generated by
a Gaussian distribution. In figures 6, 7 and 8 we report the related plots, the
histogram and the normal probability plot (NPP) of the standardized residuals.

Applying two normality tests on {ε̂t}, namely the Jarque-Bera test and the
Lilliefors test, we can see that in both cases the null hypothesis of normality
for the standardized residuals can be rejected at the 5% level. In order to
pass the Jarque-Bera test, with 5% significance and p-value equal to 0.0642,
we need to discard the first ten left outliers, which means 2.39% of the sample.
Excluding those values restores the symmetry of the sample. We focused on
the left tail because from the normal probability plot it is clear that the main
outliers’ contributions come from this side. On the Lilliefors test side we need
to discard the first twenty-one left outliers to pass the test with 5% significance
and p-value 0.0601, which means discarding 5.02% of the sample.
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Figure 6: Plot of the standardized residuals in the four-states case.
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Figure 7: Histogram of the standardized residuals in the four-states case.
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Figure 8: Normal Probability Plot of the standardized residuals in the four-states case.

5.1.1. Comparison with three-states analysis

Further tests on three-state models highlighted the necessity of a four-state
analysis for highly chaotic financial periods, which is exactly the case for the
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period we have taken into account. The regressed parameters are

P =

0.9783 0.0169 0.0048
0.0408 0.9592 0.0000
0.0000 0.0404 0.9596

 ,
σ2
1 = 0.0001, σ2

2 = 0.0004, σ2
3 = 0.0021 .

We would like to underline the relevant performance realized by the Markov
Switching approach proposed in the previous chapters, where the high-volatility
state have been included without influencing the measures on the low end the
medium volatility regimes. Comparing the estimates for σ2

1 and σ2
2 in the three-

states and in the four-states case we can see that the estimated values are the
same, while the high-volatility state was split in an a-bit-less-high-volatility state
and a very high-volatility state. The latter is a relevant result since, taking into
consideration the estimated values, we see that the three-state model does not
recognise the hidden risky nature of the financial asset that is crucial in the
portfolio selection.

5.2. Short term: 2009-2014

In what follows we show the analysis performed focusing on the period be-
tween January 1st 2009 and December 31st 2014. Latter choice, namely to do
not consider the fist two years of the previously analysed time series, allows us
to skip the great financial instability caused by the world financial crisis origi-
nated by the sub-prime bubble of the 2007-2008 biennium. The studied model
is the same as the one of the long term period, and the associated four-state
regression gives us the following results:

P =


0.9999 0.0000 0.0000 0.0000
0.0011 0.0010 0.0044 0.9934
0.0000 0.0109 0.9890 0.0000
0.0189 0.0002 0.0204 0.9605

 ,
σ2
1 = 0.000113, σ2

2 = 0.000001, σ2
3 = 0.000219, σ2

4 = 0.000887. (30)

Observing the values for σ2
S we can check that they are not ordered, and this is

an evidence factor for the hypothesis of fake regression. We reject the four-state
MSM approach for the analysed time series.

Using a three-state approach we obtain the following results:

P =

0.9938 0.0000 0.0062
0.0205 0.9795 0.0000
0.0157 0.0265 0.9578

 ,
σ2
1 = 0.000117, σ2

2 = 0.000283, σ2
3 = 0.000878. (31)

Observing the graphical comparison between the estimated implied volatility
and the VIX index (figure 9) we can notice, as we did in the long-term case, a
smoother behaviour of the computed values with respect to the reference index
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Figure 9: Visual comparison between estimated volatility and VIX in the three-states case.
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Figure 10: Three-states case analysis of the standardized residuals.

and the same tendency to underestimate the peaks, but we can globally consider
the estimated implied volatility a valid substitute for the VIX index.

In figure 10(c) it is possible to notice the presence of a very long left tail
in the standardized residuals, we then expect the Jarque-Bera test and the
Lilliefors test to fail at the 5% significance level, as is the case. In order to let
the time series pass the normality tests, at the 5% significance level, we need to
discard the three lower values, that means cutting 0.96% of the data, which is
statistically irrelevant, for the Jarque-Bera test. Cutting the first nine values is
necessary for the Lilliefors test to be passed.

6. Conclusion and future developments

We prove how Markov Switching Models can be successfully used to analyse
financial time series, particularly when chaotic behaviours characterize their.
The number of states that an operator should consider depends on his invest-
ment strategy: if he wants to maintain a low -volatility profile he can base his
decisions on a three-states model, otherwise he needs to implement a four-states
model, as we have shown in the present work. A further problem that should be
faced is the one highlighted in the comparisons between the estimated implied
volatility and the VIX, namely even if the changes of state and the peaks are
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correctly estimated, there is the necessity to improve the model in order to get a
less smooth behaviour. In fact the latter result would allow for a more coherent
analysis of breaks and peaks in relation with more complex volatility measures,
as in the case of the VIX index. Another intriguing problem concerns the fact
that the Gibbs Sampling approach needs an a-priori knowledge of the priors’
hyperparameters, certainly a non trivial task, since such a knowledge requires
extensive econometric studies which are rather expensive in term of time as well
as from a computational point of view.
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