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Abstract

This chapter introduces the topic of graph algorithms on GPUs. It starts by
presenting and comparing the main important data structures and techniques
applied for representing and analysing graphs on GPUs at the state of the art.
It then presents the theory and an updated review of the most efficient imple-
mentations of graph algorithms for GPUs. In particular, the chapter focuses
on graph traversal algorithms (breadth-first search), single-source shortest path
(Djikstra, Bellman-Ford, delta stepping, hybrids), and all-pair shortest path
(Floyd-Warshall). By the end of the chapter, load balancing and memory access
techniques are discussed through an overview of their main issues and manage-
ment techniques.

Keywords: Graph algorithms, BFS, SSSP, APSP, Load balancing.

1. Graph Representation for GPUs

The graph representation adopted when implementing a graph algorithm
for GPUs strongly affects the implementation efficiency and performance. The
three most common representations are adjacency matrices, adjacency lists, and
egdes lists [I,[2]. They have different characteristics and each one finds the best
application in different contexts (i.e., graph and algorithm characteristics).

As for the sequential implementations, the quality and efficiency of the graph
representation can be measured over three properties: the involved memory
footprint, the time required to determine whether a given edge is in the graph,
and the time it takes to find the neighbours of a given vertex. For GPU imple-
mentations, such a measure also involves the load balancing and the memory
coalescing.
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Load Mem.

Space (u,v) € B (u, v) € adj(v) Balancing Coalescing
Adj Matrices  O(|V]?) o(1) o(Vv)) Yes Yes
Adj Lists O(V|+|E])  O(dmax) O(dmaz) Difficult Difficult
Edges Lists O(2|E|) O(|E)) O(|E|) Yes Yes

TABLE 1: Main feature of data representations.

Given a graph G = (V, E), where V is the set of vertices, E is the set of

edges, and dy,q, is the largest diameter of the graph, Table [I] summarizes the

15 main features of the data representations, which will be discussed in detail in
the next paragraphs.

1.1. Adjacency Matrices

An adjacency matrix allows representing a graph with a V' x V matrix M =
[f(i,7)] where each element f(i,j) contains the attributes of the edge (i, 7).
2 If the edges do not have any attribute, the graph can be represented with a
boolean matrix to save memory space (see Figure [1)).
Common algorithms that use this representation are all-pair shortest path
and transitive closure [3| 4, [l @, [7, 8, [@]. If the graph is weighted, each value of
f(i,7) is defined as follows:

0 if i = j
Mi,j]{ w(ij) ifi+jand (i,5) € B
00 ifi#jand (i,5) ¢ E

On GPUs, both directed and undirected graphs represented by an adjacency
matrix take O(|V|?) memory space, since the whole matrix is stored in memory
with a large continuous array. In GPU architectures, it is also important, for
performance reasons, to align the matrix with memory to improve coalescence
of memory accesses. In this context, the CUDA language provides the function
cudaMallocPitch [I0] to pad the data allocation, with the aim of meeting the
alignment requirements for memory coalescing. In this case the indexing changes
as follow:
Mli-V +j] = Mli - pitch + j]

The O(|V|?) memory space required is the main limitation of the adjacency
matrices . Even on recent GPUs, they allow handling fairly small graphs. As an
example, considering a GPU device with 4GB of DRAM, the biggest graph that

»s can be represented through an adjacency matrix can have a maximum number
of vertices equals to 32,768 (which, for actual graph datasets, is considered
restrictive). In general, adjacency matrices best apply to represent small and
dense graphs (i.e. |E| ~ |V|?). In some cases, such as for the all-pairs shortest
path problem, graphs larger than the GPU memory are partitioned and each

» part processed independently [9] 8] [7].



35

40

45

pad
Vo Vi Voo Wy —

~
pitch

FIG. 1: Matriz representation of a graph in memory
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FIG. 2: Adjacency list representation of a weighted graph

1.2. Adjacency Lists

The adjacency lists are the most common representation for sparse graphs,
where the number of edges is typically a constant factor larger than |V|. Since
the sequential implementation of the adjacency lists relies on pointers, it is not
suitable for GPUs. they are replaced, in GPU imlementations, by the Com-
pressed Sparse Row (CSR) or Compressed Row Storage (CRS) sparse matrix
format [111 [12].

In general, an adjacency list consists of an array of vertices (ArrayV) and
an array of edges (ArrayE), where each element in the vertex array stores the
starting index (in the edge array) of the edges outgoing from each node. The
edge array stores the destination vertices of each edge (see Figure . This allows
visiting the neighbours of a vertex v by reading the edge array from ArrayV[v]
to ArrayV[v + 1].

The attributes of the edges are in general stored in the edge array through
an array of structures (AoS). For example, in a weighted graph, the destination
and the weight of an edge can be stored in a structure with two integer values
(int2 in CUDA [I3]). Such a data organization allows many scattered memory
accesses to be avoided and, as a consequence, the algorithm performance to be
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FIG. 3: Fdges list representation of a weighted graph

improved.

Undirected graphs represented with the CSR format take O(|V|+2|E|) space
since each edge is stored twice. If the problem requires also the incoming edges,
the same format is used to store the reverse graph where the vertex array stores
the offsets of the incoming edges. The space required with the reverse graph is
O2|V] +2|E|).

The main issues of the CSR format are the load balancing and the mem-
ory coalescing, due to the irregular structure of such a format. If the algorithm
involves visiting each vertex at each iteration, the memory coalescing for the ver-
tex array is simple to achieve but, on the other hand, it is difficult to achieve for
the edge array. Achieving both load balancing and memory coalescing requires
advanced and sophisticated implementation techniques (see Chapter )

For many graph algorithms, the adjacency list representation guarantees
better performance than adjacency matrix and edge lists [14} [15], [16, 17, [18].

1.3. FEdges List

The edge list representation of a graph, also called coordinate list (COO)
sparse matrix [19], consists of two arrays of size |E| that store the source and
the destination of each edge (see Figure[3]). To improve the memory coalescing,
similarly to CSR, the source, the destination and other edge attributes (such as
the edge weight) can be stored in a single structure (AoS) [20].

Storing some vertex attributes in external arrays is also necessary in many
graph algorithms. For this reason, the edge list is sorted by the first vertex
in each ordered pair, such that adjacent threads are assigned to edges with
the same source vertex. This allows improving coalescence of memory accesses
for retrieving the vertex attributes. In some cases, sorting the edge list in
the lexicographic order may also improve coalescence of memory accesses for
retrieving the attributes of the destination vertices [2I]. The edge organization
in a sorted list allows reducing the complexity (from O(|E|) to O(log|E]|)) of
verifying whether an edge is in the graph, by means of a simple binary search
[22].
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For undirected graphs, the edge list should not be replicated for the re-
verse graph. Processing the incoming edges can be done by simply reading the
source-destination pairs in the inverse order, thus halving the number of memory
accesses. With this strategy, the space required for the edge list representation
is O(2|E)).

The edge list representation is suitable in those algorithms that iterate over
all edges. For example, it is used in the GPU implementation of algorithms like
betweenness centrality [21) 23]. In general, this format does not guarantee per-
formance comparable to the adjacency list but it allows achieving both perfect
load balancing and memory coalescing with a simple thread mapping. In graphs
with a non-uniform distribution of vertex degrees, the COO format is generally
more efficient than CSR. [21] [24].

2. Graph Traversal Algorithms: the Breadth First Search (BFS)

Breadth-first search (BFS) is a core primitive for graph traversal and the
basis for many higher-level graph analysis algorithms. It is used in several differ-
ent contexts such as image processing, state space searching, network analysis,
graph partitioning, and automatic theorem proving. Given a graph G(V, E),
where V' is the set of vertices and E is the set of edges, and a source vertex s,
the BFS visit inspects every edge of E to find the minimum number of edges
or the shortest path to reach every vertex of V from source s. Algorithm [I]
summarizes the traditional sequential algorithm [I], where @ is a FIFO queue
data structure that stores not yet visited vertices, Distance[v] represents the
distance of vertex v from the source vertex s (number of edges in the path), and
Parent[v] represents the parent vertex of v. An unvisited vertex v is denoted
with Distance[v] equal to co. The asymptotic time complexity of the sequential
algorithm is O(|V] + |E|).

In the context of GPUs, the BFS algorithm is the only graph traversal
method applied since it exposes a high level of parallelism. In contrast, the
depth first search (DFS) traversal is never applied due to its intrinsic sequen-
tiality.

2.1. The Frontier-based Parallel Implementation of BFS

The most efficient parallel implementations of BFS for GPUs exploit the
concept of frontier [I]. They generate a breadth-first tree that has root s and
contains all reachable vertices. The vertices in each level of the tree compose
a frontier (F). Frontier propagation checks every neighbour of a frontier vertex
to see whether it is visited already. If not, the neighbour is added into a new
frontier.

The frontier propagation relies on two data structures, F' and F’. F rep-
resents the actual frontier, which is read by the parallel threads to start the
propagation step. F” is written by the threads to generate the frontier for the
next BFS step. At each step, F’ is filtered and swapped into F for the next
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Algorithm 1 Sequential BFS Algorithm

for all verticies v € V(G) do
Distance[v] = oo
Parent[v] = —1
end
Distance[vg] = 0
Parent[vg] = vg
Q + {vo}
while @ # () do
u = DEQUEUE(Q)
for all verticies v € adj [u] do
if Distance[v] = oo then
Distance|v] = Distance[u] + 1
Parent[v] = u
ENQUEUE(Q, v)

end
end
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FIG. 4: Exzample of BFS visit starting from vertex ”0”.
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iteration. Figure [4 shows an example, in which starting from vertex 717, the
BF'S visit concludes in three step]

The filtering steps aim at guaranteeing correctness of the BFS visit as well
as avoiding useless thread work and waste of resources. When a thread visits a
neighbour already visited, that neighbour is eliminated from the frontier (e.g.,
vertex 3 visited by a thread from vertex 4 in step two of Figure [4]). When more
threads visit the same neighbour in the same propagation step (e.g., vertex 9
visited by threads 3 and 4 in step two), they generate duplicate vertices in the

2For the sake of clarity, the figure shows F’ firstly written and then filtered. As explained
in the following paragraphs, to reduce the global memory accesses, some implementations
firstly filter the next frontier and, then, they write the F’ data.
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frontier. Duplicate vertices cause redundant work in the subsequent propaga-
tion steps (i.e., more threads visit the same path) and useless occupancy of
shared memory. The most efficient BFS implementations detect and eliminate
duplicates by exploiting hash tables, Kepler 8-byte memory access mode, and
warp shuffle instructions [I6], [15].

Several techniques have been proposed in literature to efficiently parallelize
the BFS algorithm for GPUs. Harish and Narayanan [25] proposed the first
approach, which relies on exploring all the graph vertices at each iteration (i.e.,
at each visiting level) to see whether the vertex belongs to the current fron-
tier. This allows the algorithm to save GPU overhead by not maintaining the
frontier queues. Nevertheless, the proposed approach, that is based on CSR
representation, leads to a sensible workload imbalance whenever the graph is
non homogeneous in terms of vertex degree. In addition, let D be the graph
diameter, the computational complexity of such a solution is O(|V||D| + |E|),
where O(|V'||D|) is spent to check the frontier vertices and O(|E|) is spent to
explore each graph edge. While this approach fits on dense graphs, in the worst
case of sparse graphs (where D = O(|V|)) the algorithm has a complexity of
O(|V|?). This implies that, for large graphs, such an implementation is slower
than the sequential version.

A partial solution to the problem of workload imbalance has been proposed
in [18] by adopting the same graph representation. Instead of assigning a thread
to a vertex, the authors propose thread groups (which they call virtual warps) to
explore the array of vertices. The group size is typically 2, 4, 8, 16, or 32, and
the number of blocks is inversely proportional to the virtual warp size. This
leads to a limited speedup in case of low degree graphs, since many threads
cannot be exploited at the kernel configuration time. Also, the virtual warp size
is static and has to be properly set depending on each graph characteristics.

[26] presents an alternative solution based on matrices for sparse graphs.
Each frontier propagation is transformed into a matrix-vector multiplication.
Given the total number of multiplications D (which corresponds to the number
of levels), the computational complexity of the algorithm is O(|V| + |E||D|),
where O(]V|) is spent to initialize the vector, and O(|E|) is spent for the multi-
plication at each level. In the worst case, that is, with D = O(]V|) the algorithm
complexity is O(|V]?).

[21] and [24] present alternative approaches based on edge parallelism. In-
stead of assigning one or more threads to a vertex, the thread computation is
distributed to edges. As a consequence, the thread divergence is limited and
the workload is balanced even with high-degree graphs. The main drawbacks
is the overhead introduced by the visit of all graph edges at each level. In
many cases, the number of edges is much greater than the number of vertices.
In these cases, the parallel work is not sufficient to improve the performance
against vertex parallelism.

An efficient BF'S implementation with computational complexity O(|V|+|E|)
is proposed in [I7]. The algorithm exploits a single hierarchical queue shared
across all thread blocks and an inter-block synchronization [27] to save queue
accesses in global memory. Nevertheless, the small frontier size requested to
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Algorithm 2 Overview of a prefix-sum procedure implemented with shuffle
instructions
EXCLUSIVEWARPPREFIXSUM

for i=1;i<16;i=1i%2) do
n = __shfl up(v, i, 32)
if lane;q > 1 then
U +=n
end
_shfl up(v, 1, 32)
if lane;q =0 then
v=20

avoid global memory writes and the visit exclusively based on vertex parallelism
limit the overall speedup. In addition, the generally high-degree vertices are
handled through an expensive pre-computation phase rather than at run time.

Merrill, Garland and Grimshaw [16] present an algorithm implementation
that achieves work complexity O(|V |+ |E|). They make use of parallel prefix-
scan and three different approaches to deal with the workload imbalance: vertex
expansion and edge contraction, edge contraction and vertex expansion, and
hybrid. The algorithm also relies on a technique to reduce redundant work due
to duplicate vertices on the frontiers.

Beamer, Asanovié¢ and Patterson propose a CPU multi-core hybrid approach,
which combines the frontier based algorithm along with a bottom-up BF'S algo-
rithm. The bottom-up algorithm can heavily reduce the number of edges exam-
ined compared to common parallel algorithms. The bottom-up BFS traversal
searches vertices of the next iteration (at distance L+ 1) in the reverse direction
by exploring the unvisted vertices of the graph. This approach requires only a
thread per unvisted vertex that explores the neighbour until a previous visited
vertex is found (at distance L). The bottom-up BFS is particularly efficient on
low-diameter graphs where, at the ending iterations, a substantial fraction of
neighbours are valid parents. In the context of GPUs, such a bottom-up ap-
proach for graph traversal has been implemented by Wang et al. in the Gunrock
framework [28] and by Hiragushi et al. [29].

2.2. BFS-4K

BFS-4K [15] is a parallel implementation of BFS for GPUs that exploits the
more advanced features of GPU-based platforms (i.e., NVIDIA Kepler, Maxwell
[30, [31]) to improve the execution speedup w.r.t. the sequential CPU implemen-
tations and to achieve an asymptotically optimal work complexity.

BFS-4K implements different techniques to deal with the potential workload
imbalance and thread divergence caused by any actual graph non-homogeneity
(e.g., number of vertices, edges, diameter, and vertex degree):

o FEzxclusive prefix-Sum. To improve data access time and thread concur-
rency during the propagation steps, the frontier data structures are stored
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in shared memory and handled by a prefiz-sum procedure [32], [33]. Such a
procedure is implemented through warp shuffle instructions of the Kepler
architecture. BFS-4K implements a two-level exclusive prefix-sum, that
is, at warp-level and block-level. The first is implemented by using Kepler
warp-shuffle instructions, which guarantee the result computation in logn
steps. Algorithm [2| shows a high-level representation of such a prefix-sum
procedure implemented with a warp shuffle instruction (i.e., __shfl_up()).

Dynamic virtual warps. The virtual warp technique presented in [I§] is ap-
plied to minimize the waste of GPU resources and to reduce the divergence
during the neighbour inspection phase. The idea is to allocate a chunk
of tasks to each warp and to execute different tasks as serial rather than
assigning a different task to each thread. Multiple threads are used in a
warp for explicit SIMD operations only, thus preventing branch-divergence
altogether.

Differently from [I8], BFS-4K implements a strategy to dynamically cali-
brate the warp size at each frontier propagation step. BFS-4K implements
a dynamic virtual warp, whereby the warp size is calibrated at each fron-
tier propagation step ¢, as follows:

# ResThreads

|FZ" > € [K1,32]

WarpSize; = nearest_pow?2 <

where #ResThreads refers to the maximum number of resident threads.

Dynamic parallelism. In case of vertices with degree much greater than the
average, (e.g., scale free networks or graphs with power-law distribution in
general), BFS-4K applies the dynamic parallelism provided by the Kepler
architecture instead of virtual warps. Dynamic parallelism implies an
overhead that, if not properly used, may worse the algorithm performance.
BFS-4K checks, at run time, the characteristics of the frontier to decide
whether and how applying this technique.

Edge-Discover. With the edge-discover technique, threads are assigned
to edges rather than vertices to improve the thread workload balancing
during frontier propagation. The edge-discover technique makes intense
use of warp shuffle instructions. BFS-4K checks, at each propagation step,
the frontier configuration to apply this technique rather than dynamic
virtual warps. BFS-4K implements thread assignment through a binary
search and by making intense use of warp shuffle instructions. Given a
thread warp, and the actual frontier:

1. Each warp thread reads a frontier vertex, saves the degree and the
offset of the first edge.

2. Each warp computes the warp shuffle prefix-sum on the vertices de-
gree.
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Algorithm 3 Main steps of the hash table managing algorithm

HASH64

H_SZ : Hash_Table_Size

h = hash(v) — h € [0,H_87]
HashTable[h] = merge(v, thread;q)
recover = HashTable[h];

(vR, thread;qr) = split(recover)
return thread;q # thread;qp N v = vg

3. Each thread of the warp performs a warp shuffle binary search of the
own warp id (i.e., lane;q € {0, ..,31}) on the prefix-sum results. The
warp shuffle instructions guarantee the efficiency of the search steps
(which are less than logs(WarpSize) per warp).

4. The threads of warp share, at the same time, the offset of the first
edge with an other warp shuffle operation.

5. Finally, the threads inspect the edges and store possible new vertices
on the local queue.

e Single-block vs. Multi-block kernel. BFS-4K relies on a two-kernel imple-

mentation. The two kernels are alternately used and combined with the
features presented above during frontier propagation.

A duplicate detection and correction strategy, which is based on hash ta-
ble and 8-bank access mode to sensibly reduce the memory accesses and
improve the detection capability. BFS-4K implements a hash table in
shared memory (i.e., one per streaming multiprocessor) to detect and cor-
rect duplicates, and takes advantage of the 8-bank shared memory mode
of Kepler to guarantee high performance of the table accesses. At each
propagation step, each frontier thread invokes the hash64 procedure de-
picted in Algorithm [3| to update the hash table with the visited vertex
(v). Given the size of the hash table (Hash_-Table_Size), each thread of
a block calculates the address (h) in the table for v (row 2). The thread
identifier (thread;q) and the visited vertex identifier (v) are merged into
a single 64-bit word, to be then saved in the calculated address (row 3).
The merge operation (as well as the consequent split in row 5) is efficiently
implemented through bitwise instructions. A duplicate vertex causes the
update of the hash table in the same address by more threads. Thus, each
thread recovers the two values in the corresponding address (rows 4, 5)
and checks whether they have been updated (row 6) to notify a duplicate.

Coalesced read/write memory accesses. To reduce the overhead caused by
the many accesses in global memory, BFS-4K implements a technique to
induce coalescence among warp threads through warp shuffle.

10
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Harish[25] Warps|L8] Parallelism[21] Luo[17] Garland[16] BFS-4K[15]

Work complexity O(VD+E) O(VD+E) O(ED) O(V +E) O(V+E) O(V+E)

Space complexity OBV +E) ORV4+E) O(2E) N/A Q(4V + 2E) Q4V + E)
Vertices, Edges,

Type of . . . Vertices, Dynamic Virtual

parallelism Vertices Virtual Warp  Edges Vertices Edges, CTA Warp, Dynamic
Parallelism

High-degree vertex no yes indifferent no yes yes

management

Duplic_ate no no no no yes yes

detection

Type of Host-Device, Host-Device, Host-Device,

synchronization

Host-Device

Host-Device

Host-Device

Inter-block[27],
Thread barriers

Inter-block[27]

Inter-block[27],
Thread barriers

TABLE 2: Comparison of the most representative BFS implementations at the state of the art with BFS-4K.
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FIG. 5: Performance comparison (speedup) of BFS-4K with the most representative
implementations at the state of the art.

BFS-4K exploits the features of the Kepler architecture such as dynamic
parallelism, warp-shuffle, and 8-bank access mode, to guarantee an efficient
implementation of the characteristics listed above. Table [2| summarizes the
differences between the most representative BFS implementations at the state
of the art and BFS-4K, while Figure [5| reports a representative comparison of
speedups among the BFS implementations for GPUs presented in paragraph
BFS-4K, and the sequential counterpart.

The results show how BFS-4K outperforms all the other implementations in
every graph. This is due to the fact that BFS-4K exploits the more advanced
architecture characteristics (in particular, Kepler features) and that it allows
the user to optimize the visiting strategy through different knobs.

11
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3. The Single-Source Shortest Path (SSSP) problem

Given a weighted graph G = (V,E), where V is the set of vertices and
E C (V xV) is the set of edges, the single-source shortest path (SSSP) problem
consists of finding the shortest paths from a single source vertex to all other
vertices [1]. Such a well-known and long-studied problem arises in many different
domains, such as, road networks, routing protocols, artificial intelligence, social
networks, data mining, and VLSI chip layout.

The de-facto reference approaches to SSSP are the Dijkstra’s [34] and Bellman-
Ford’s [35] 86] algorithms. The Dijkstra’s algorithm, by utilizing a priority queue
where one vertex is processed at a time, is the most efficient, with a computa-
tional complexity almost linear to the number of vertices (O(|V|log [V|+ |E|)).
Nevertheless, in several application domains, where the modelled data maps to
very large graphs involving millions of vertices, any Dijkstra’s sequential imple-
mentation becomes impractical. In addition, since the algorithm requires many
iterations and each iteration is based on the ordering of previously computed
results, it is poorly suited for parallelization.

On the other hand, the Bellman-Ford’s algorithm relies on an iterative pro-
cess over all edge connections, which updates the vertices continuously until final
distances converge. Even though it is less efficient than Dijkstra’s (O(|V||E|)),
it is well suited to parallelization [37].

In the context of parallel implementations for GPUs, where the energy and
power consumption is becoming a constraint in addition to performance [3§],
an ideal solution to SSSP would provide both the performance of the Bellman-
Ford’s and the work efficiency of the Dijkstra’s algorithms. Some work has
been recently done to analyse the spectrum between massive parallelism and
efficiency, and different parallel solutions for GPUs have been proposed to im-
plement parallel-friendly and work-efficient methods to solve SSSP [39]. Exper-
imental results confirmed that these trade-off methods provide a fair speedup
by doing much less work than traditional Bellman-Ford methods while adding
only a modest amount of extra work over serial methods.

On the other hand, all these solutions as well as Dijkstra’s implementations,
do not work in graphs with negative weights [I]. Indeed, the Bellman-Ford algo-
rithm is the only solution that can be also applied in application domains where
the modelled data maps on graphs with negative weights, such as, power alloca-
tion in wireless sensor networks [40] 4T], systems biology [42], and regenerative
braking energy for railway vehicles [43].

3.1. The SSSP Implementations for GPUs

The Dijkstra’s and Bellman-Ford’s algorithms span a parallel vs. efficiency
spectrum. Dijkstra’s allows the most efficient (O(V'logV + E)) sequential im-
plementations [44] [45] but exposes no parallelism across vertices. Indeed, the
solutions proposed to parallelize the Dijkstra’s algorithm for GPUs have shown
to be asymptotically less efficient than the fastest CPU implementations [46], [47].
On the other hand, at the cost of a lower efficiency (O(V E)), the Bellman-Ford’s
algorithm has shown to be more easily parallelizable for GPUs, by providing

12
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speedups up to two orders of magnitude with respect to the sequential counter-
part [14] B37].

Meyer and Sanders [48] proposed the A-stepping algorithm, a trade-off be-
tween the two extremes of Dijkstra and Bellman-Ford. The algorithm involves
a tunable parameter A, whereby setting A = 1 yields a variant of Dijsktra’s
algorithm, while setting A = oo yields the Bellman-Ford algorithm. By varying
A in the range [1, 0], we get a spectrum of algorithms with varying degrees of
processing time and parallelism.

Meyer and Sanders [48] show that a value of A = ©(1/d), where d is the
degree, gives a good tradeoff between work-efficiency and parallelism. In the
context of GPU, Davidson et al. [39] selects a similar heuristic, A = cw/d,
where d is the average degree in the graph, w is the average edge weight, and ¢
is the warp width (32 on our GPUs).

Crobak et al. [49] and Chakaravarthy et al. [50] presented two different
solutions to efficiently expose parallelism of this algorithm on the massively
multi-threaded shared memory system IBM Blue Gene/Q.

Parallel SSSP algorithms for multi-core CPUs have been also proposed by
Kelley and Schardl [51], who presented a parallel implementation of Gabow’s
scaling algorithm [52] that outperforms Dijkstra’s on random graphs. Shun and
Blelloch [53] presented a Bellman-Ford’s scalable parallel implementation for
CPUs on a 40-core machine. Recently, several packages have been developed
for processing large graphs on parallel architectures including the parallel Boost
graph library [54], Pregel [55] and Pegasus [56].

In the context of GPUs, Davidson et al. [39] proposed three different work-
efficient solutions for the SSSP problem. The first two, Near-Far Pile and
Workfront Sweep, are the most representative implementations at state of the
art. Workfront Sweep implements a queue-based Bellman-Ford algorithm that
reduces redundant work due to duplicate vertices during the frontier propaga-
tion. Such a fast graph traversal method relies on the merge path algorithm
[22], which equally assigns the outgoing edges of the frontier to the GPU threads
at each algorithm iteration. Near-Far Pile refines the Workfront Sweep strat-
egy by adopting two queues similarly to the A-Stepping algorithm. Davidson
et al. [39] also propose the bucketing method to implement the A-Stepping
algorithm. A-Stepping algorithm is not well suited for SIMD architectures as
it requires dynamic data structures for buckets. However, the authors provide
an algorithm implementation based on sorting that, at each step, emulates the
bucket structure. The Bucketing and Near-Far Pile strategies heavily reduce
the amount of redundant work with respect to the Workfront Sweep method
but, at the same time, they introduce overhead for handling more complex data
structure (i.e., frontier queue). These strategies are less efficient than the se-
quential implementation on graphs with large diameter since they suffer from
thread under-utilization caused by such unbalanced graphs.
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Algorithm 4 Sequential Bellman-Ford Algorithm

INITIALIZE(G, s)

for all edges (u,v) € E(G) do
RELAX (u,v,w)

end

8.2. H-BF: an Efficient Implementation of the Bellman-Ford’s algorithm

Given a graph G(V, E), a source vertex s and a weight function w : £ — R,
the Bellman-Ford algorithm visits G and finds the shortest path to reach every
vertex of V from source s. Algorithm [] summarizes the original sequential
algorithm, where the Relaz procedure of an edge (u,v) with weight w verifies
whether, starting from wu, it is possible to improve the approximate (tentative)
distance to v (which we call d(v)) found in any previous algorithm iteration.
The relax procedure can be summarized as follows:

EDGE RELAX:

if d(u)+w < d(v) then
d(v) =d(u) +w

The algorithm, whose asymptotic time complexity is O(|V||E|), updates the
distance value of each vertex continuously until final distances converge.

H-BF [57] is a parallel implementation of the Bellman-Ford algorithm based
on frontier propagation. Differently from all the approaches in literature, H-
BF implements several techniques to improve the algorithm performance and,
at the same time, to reduce the useless work done for solving SSSP involved
by the parallelization process. H-BF implements such techniques by exploiting
the features of the most recent GPU architectures such as dynamic parallelism,
warp-shuffle, read-only cache, and 64-bit atomic instructions.

The complexity of a SSSP algorithm is strictly related to the number of re-
lax operations. The Bellman-Ford algorithm performs a higher number of relaz
operations than Dijkstra or A-stepping algorithms while, on the other hand,
it has a simple and lightweight management of the data structures. The relax
operation is the most expensive in the Bellman-Ford algorithm and, in particu-
lar, in a parallel implementation, each relax involves an atomic instruction for
handling race conditions, which takes much more time than a common memory
access.

To optimize the number of relax operations, H-BF implements the graph
visit by exploiting the concept of frontier. For this problem, the frontier, F', is
a FIFO queue that, at each algorithm iteration, contains active vertices, i.e., all
and only vertices whose tentative distance has been modified and, thus, that
must be considered for the relax procedure at the next iteration. Given a graph
G and a source vertex s, the parallel frontier-based algorithm can be summa-
rized reported in Algorithm [5| where adjf/u/ returns the neighbours of vertex w.
Figure[6]shows an example of the basic algorithm iterations starting from vertex
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Algorithm 5 Frontier-based Bellman-Ford Algorithm

INITIALIZE(G, s)
F + {s}
while F' # () do
u < DEQUEUE(F)
for all vertices v € adj [u] do
if d(u)+w <d(v) then
d(v) =d(u) +w
ENQUEUE(F, v)
end
end

Relax operation Direct update
1 oA

3
DIEE : [ 3] P rTs
g o o] B3
F D F D
Iter # 1 2 3 4 5
Relax ops:0 1 0 2 2

FIG. 6: Ezample of the basic algorithm iterations starting from vertex ”0”

70", where F is the active vertex queue and D is the corresponding data struc-
ture containing the tentative distances. The example shows, for each algorithm
iteration, the dequeue of each vertex form the frontier, the corresponding relax
operations, i.e., the distance updating for each vertex (if necessary), and the
vertex enqueues in the new frontier. In the example, the algorithm converges
in a total of 5 relax operations over 5 iterations.

The frontier structure is similar to that applied for implementing the parallel
breadth-first search (BFS) presented in paragraph[2.1] The main difference from
BFS is the number of times a vertex can be inserted in the queue. In BFS, a
vertex can be inserted in such a queue only once, while, in the Bellman-Ford
implementation, a vertex can be inserted O(|E|) times in the worst case.

Figure [7] summarizes the speedup of the different implementations with re-
spect to the sequential frontier-based Bellman-Ford implementation. The results
show how H-BF outperforms all the other implementations in every graph. The
speedup on graphs with very high diameter (left-most side of the figure) is quite
low for every parallel implementation. This is due to the very low degree of par-
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FIG. 7: Comparison of speedups

allelism for propagating the frontier in such graph typology. In these graphs,
H-BF is the only parallel implementation that outperforms the Boost Dijkstra
solution in asia.osm, while it preserves comparable performance in USA-road.d-
CAL. On the other hand, the sequential Boost Dijkstra implementation largely
outperforms all the other parallel solutions in literature.

H-BF provides the best performance (time and MTEPS) on the graphs in the
right-most side of Figure[7] H-BF provides high speedup also in rmat.3Mv.20Me
and flickr, which are graphs largely unbalanced. This underlines the effective-
ness of H-BF to deal with such an unbalancing problem in traversing graphs.
The optimization based on the 64-bit atomic instruction strongly impacts on
performance for graphs with small diameters. This is due to the fact that such
graph visits are characterized by a rapid grow of the frontier, which implies
a high number of duplicate vertices. The edge classification technique imple-
mented in H-BF successfully applies to the majority of the graphs. In particular,
asia.osm has a high number of vertices with in-degree equal to one, while in
msdoor and circuitdM_dc each vertex has a self-loop. Scale-free graphs (e.g.,
rmat.3Mv.20Me and flickr) are generally characterized by a high number of
vertices with low out-degree.

4. The All-Pair Shortest Path (APSP) problem

APSP is a fundamental problem in computer science that finds application
in different fields such as transportation, robotics, network routing, and VLSI
design. The problem is to find paths of minimum weight between all pairs of
vertices in graphs with weighted edges. The common approaches to solve the
APSP problem rely on iterating the SSSP algorithm from all vertices (Johnson’s
algorithm), matriz multiplication, and Floyd-Warshall’s algorithm.

The Johnson’s algorithm performs the APSP in two steps. First, it detects
the negative cycles by applying the Bellman-Ford’s algorithm and, than, it runs
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Algorithm 6 Repeated Squaring APSP Algorithm

D'=w
for L =1 tologV do
for i=0to V do
for j=0to V do
DMfi,j] = o
for k=0to V do
Di, j] = min(D*~[i, ], D*~'[i, k] + Wk, j])
end
end
end
end

the Dijsktra’s algorithm from all vertices. This approach has O(|V|?log|V| +
[V||E]) time complexity and it is suitable only for sparse graphs. The second
approach applies the matrix multiplication over min, plus semiring to compute
the APSP in O(]V[*1log|V|). The matrix multiplication method derives from
the following recursive procedure. Let w;; be the weight of edge (¢,7), w;; =0
and dfj be the shortest path from ¢ to j using ¢ or fewer edges, we compute dfj
by using the recursive definition:

0 — ...

i = wij 0 { 0—1 }
¢ —1 . -1 _ —d;j; = min \(dy " + wy;
d;; = min {dij , i d; "~ + wkj} 1<k<n

We note that making the substitutions min — + and + — - the definition
is equivalent to the matrix multiplication procedure. Algorithm [6] reports the
pseudocode.

Finally, the Floyd-Warshall’s algorithm, which is the standard approach for
the all pair shortest path problem in case of edges with negative weights, and
does not suffer from performance degradation for dense graphs. The algorithm
has O(|V]?) time complexity and requires O(|V'|?) memory space.

Let G = (V, E) be a weighted graph with an edge-weight function w : E —
R and W = w(i,j) representing the weighted matrix, the pseudocode of the
algorithm is shown in Algorithm [7]
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FIG. 8: Blocked Floyd-Warshall algorithm. The numbers indicate the computation
order of each tile.

Algorithm 7 Floyd-Warshall

DY =W
for k=0to V do
fori=0to V do
for j =0to V do
D¥[i, ] = min(D*~'[i, ], D¥~[i, k] + D*~'[k, j])
end
end
end

4.1. The APSP Implementations for GPUs

The first GPU solution for the APSP problem has been proposed by Harish
and Narayanan [25], which use their parallel SSSP algorithm from all vertices of
the graph. Also Ortega et al. [58] resolve the APSP problem in the same way,
by proposing a highly tunable GPU implementation of the Dijkstra’s algorithm.

The most important idea, which gave the basis for a subsequent efficient
GPU implementations of the Floyd-Warshall’s algorithm has been proposed by
Venkataraman et al. [3] in the context of multi-core CPUs. The proposed
solution takes advantage of the cache utilization. It first partitions the graph
matrix into multiple tiles that fit in cache and, then, it iterates on each tile
multiple times. In particular, such a blocked Floyd-Warshall’s algorithm is
composed by three main phases (see Figure .

1. The computation in each iteration starts from a tile in the diagonal of the
matrix, from the upper left to the bottom right. Each tile in the diagonal
is independent from the rest of the matrix and can be processed in-place.

2. In the second phase, all tiles that are in the same row and in the same
column of the independent tiles are computed in parallel. All tiles in this
phase are dependent only from itself and from the independent tiles.

3. In the third phase, all remaining tiles are dependent from itself and from
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the main row and the main column that have been computed in the pre-
vious phase.

The blocked Floyd-Warshall’s algorithm has been implemented for GPU ar-
chitetures by Katz and Kider [4], which strongly exploit the shared memory as
local cache. Lund et al. [B] improved such a GPU implementation by optimizing
the use of registers and by taking advantage of memory coalescing. Bulug et al.
[6] presented a recursive formulation of the APSP based on the Gaussian elimi-
nation (LU) and matrix multiplication with O(|V|?) complexity, which exposes
a good memory locality.

Later, Harish et al. [59] revisited the APSP algorithm based on matrix mul-
tiplication, and they presented two improvements: streaming blocks and lazy
minimum evaluation. The streaming block optimization describes a method to
partition the adjacency matrix and to efficiently transfer each partition to the
device through asynchronous read and write operations. The second optimiza-
tion aims at decreasing the arithmetic computation by avoiding the minimum
operation when one operand is set to infinite. The presented algorithm achieves
a speedup from 5 to 10 over the Katz and Kider’s algorithm. Nevertheless, it is
slower than the Gaussian elimination method of Bulug et al. On the other hand,
they showed that their algorithm is more scalable, and that the optimization
of the lazy minimum evaluation is not orthogonal to the Gaussian elimination
method.

Tran et al. [9] proposed an alternative algorithm based on matrix multipli-
cation and on the repeated squaring technique (Algorithm @ It outperforms
the base Floyd-Warshall’s algorithm when the graph matrix exceeds the GPU
memory.

Matsumoto et al. [7] proposed a hybrid CPU-GPU based on OpenCL, which
combines the blocked Floyd-Warshall’s algorithm for a coarse-grained partition
of the graph matrix and the matrix multiplication as a main procedure.

Finally, Djidjev et al. [8] proposed an efficient implementation of APSP on
multiple GPUs for graphs that have good separators.

5. Load balancing and memory accesses: issues and management
techniques

Load unbalancing and non-coalesced memory accesses are the main prob-
lems to deal with when implementing any graph algorithm for GPUs. They
are caused by the non-homogeneity of real graphs. Different techniques have
been presented in the literatures to decompose and map the graph algorithm
workload to threads [25] 18], 15l [16] [60, [61) 62]. All these techniques differ from
the complexity of their implementation and from the overhead they introduce
in the application execution to address the most irregular graphs. The sim-
plest solutions [25] [I8] best apply to very regular workloads while they cause
strong unbalancing and, as a consequence, lost of performance in case of ir-
regular workloads. More complex solutions [I5], 16} 60 [6T), [62] best apply to
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irregular problems through semi-dynamic or dynamic workload-to-thread map-
pings. Nevertheless, the overhead introduced for such a mapping often worsens
the overall application performance when run on regular problems.

In general, the techniques for decomposing and mapping a workload to GPU
threads for graph applications rely on the prefiz-sum data structur(ﬂ [16]. Given
a workload to be allocated (e.g., a set of graph vertices or edges) over the GPU
threads, prefix-sum calculates the offsets to be used by the threads to access
to the corresponding work-units (fine-grained mapping) or block of work-units,
which we call work-items (coarse-grained mapping). All these decomposition
and mapping techniques can be organized in three classes: Static mapping,
semi-dynamic mapping, and dynamic mapping.

5.1. Static mapping techniques

This class includes all the techniques that statically assign each work-item
(or blocks of work-units) to a corresponding GPU thread. This strategy allows
the overhead for calculating the work-item to thread mapping to be sensibly
reduced during the application execution but, on the other hand, it suffers from
load unbalancing when the work-units are not regularly distributed over the
work-items. The main important techniques are summarized in the following.

5.1.1. Work-items to threads

It represents the simplest and fastest mapping approach by which each work-
item is mapped to a single thread [25]. Fig. [0fa) shows an example, in which
eight items are assigned to a corresponding number of threads. For the sake
of clarity, only four threads per warp have been considered in the example to
underline two levels of possible unbalancing of this technique. First, irregular
(i.e., unbalanced) work-items mapped to threads of the same warp lead the warp
threads to be in idle state (i.e., branch divergence). t1, t3, and tg of warpg in
Fig. |§|(a) are an example. Then, irregular work-items lead to whole warps to be
in idle state (e.g., warpg w.r.t. warp; in @(a)). As a third level of unbalancing,
this technique can lead to whole blocks of threads to be in idle state.

In addition, considering that work-units of different items are generally
stored in non-adjacent addresses in global memory, this mapping strategy leads
to sparse and non-coalesced memory accesses. As an example, threads tg, t1, to,
and t3 of Warpg concurrently access to the non adjacent units Ay, By, C1, and
D1, respectively. For all these reasons, this technique is suitable to applications
running on very regular data structures, in which any more advanced mapping
strategy run at run time (as explained in the following paragraphs) would lead
to unjustified overhead.

3The prefix-sum array is generated, depending on the mapping technique, in a preprocess-
ing phase [63], at run-time if the workload changes at every iteration [16} [T5], or it could be
already part of the problem [64].
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FIG. 9: Ezample of static mapping techniques: (a) Work-items to threads, and (b)
Virtual warps

5.1.2. Virtual Warps

This technique consists of assigning chunks of work-units to groups of threads
called wvirtual warps, where the virtual warps are equally sized and the threads
of a virtual warp belong to the same warp [18]. Fig. |§|(b) shows an example in
which the chunks correspond to the work-items and, for the sake of clarity, the
virtual warps have size equal to two threads. Virtual warps allow the workload
assigned to threads of the same group to be almost equal and, as a consequence,
it allows reducing branch divergence. In addition, this technique improves the
coalescing of memory accesses since more threads of a virtual warp access to
adjacent addresses in global memory (e.g., to,t; of Warps in Fig. @(b)) These
improvements are proportional to the virtual warp size. Increasing the warp
size leads to reducing branch divergence and better coalescing the work-unit
accesses in global memory. Nevertheless, virtual warps have several limitations.
First, the maximum size of virtual warps is limited by the number of available
threads in the device. Given the number of work-items and a virtual warp size,
the required number of threads is expressed as follows:

#RequiredThreads = #workitems - |VirtualW arp|

If such a number is greater than the available threads, the work-item pro-
cessing is serialized with a consequent decrease of performance. Indeed, a wrong
sizing of the the virtual warps can sensibly impact on the application perfor-
mance. In addition, this technique provides good balancing among threads of
the same warp, while it does not guarantee good balancing among different
warps nor among different blocks. Finally, another major limitation of such a
static mapping approach is that the virtual warp size has to be fixed statically.
This represents a major limitation when the number and size of the work-items
change at run time.

The algorithm run by each thread to access the corresponding work-units
is summarized as in Algorithm [8] where VW _INpDEX and LANE_OFFSET are the
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Algorithm 8 Virtual Warp Load Balancing

VW_INDEX = TH_INDEX / |VirtualWarp|
LANE_OFFSET = TH_INDEX % |VirtualWarp|
INIT = prefizsum[VW_INDEX] + LANE_OFFSET
for i = INIT to prefizsum|[VW _INDEX+1] do
Output[i] = VW_INDEX
i =1+ |VirtualWarp|
end

virtual warp index and offset for the thread (e.g., VW, and 0 for ¢y in the
example of Fig. |§|(b))7 INIT represents the starting work-unit id, and the for
cycle represents the accesses of the thread to the assigned work-units (e.g., Aj,
Ajz for tg and As for t)..

5.2. Semi-dynamic mapping techniques

This class includes the techniques by which different mapping configurations
are calculated statically and, at run time, the application switches among them.

5.2.1. Dynamic Virtual Warps + Dynamic Parallelism

This technique has been introduced in [15] and relies on two main strategies.
First, it implements a virtual warp strategy in which the virtual warp size
is calculated and set at run time depending on the workload and work-item
characteristics (i.e., size and number). At each iteration, the right size is chosen
among a set of possible values, which spans from 1 to the maximum warp size
(i.e., 32 threads for NVIDIA GPUs, 64 for AMD GPUs). For performance
reasons, the range is reduced to power of two values only. Considering that
a virtual warp size equal to one has the drawbacks of the work-item to thread
technique and that memory coalescence increases proportionally with the virtual
warp size (see paragraph 7 too small sizes are excluded from the range a
priori. The dynamic virtual warp strategy provides a fair balancing in irregular
workloads. Nevertheless, it is inefficient in case of few and very large work-
items (e.g., in datasets representing scale free networks or graphs with power-law
distribution in general).

On the other hand, dynamic parallelism, which exploits the most advanced
features of the GPU architectures (e.g., from NVIDIA Kepler on) [30] allows
recursion to be implemented in the kernels and, thus, threads and thread blocks
to be dynamically created and properly configured at run time without requiring
kernel returns. This allows fully addressing the work-item irregularity. Never-
theless, the overhead introduced by the dynamic kernel stack may elude this
feature advantages if replicated for all the work-items unconditionally [15].

To overcome these limitations, dynamic virtual warps and dynamic paral-
lelism are combined into a single mapping strategy and applied alternatively
at run time. The strategy applies dynamic parallelism to the work-items hav-
ing size greater than a threshold, while it applies dynamic virtual warps to the
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Algorithm 9 Strip-Mined Gathering Algorithm

10:
11:
12:
13:
14:
15:

1
2
3
4
5:
6.
7
8
9

while any(Workloads[Thrp] > CTArk) do
if Workloads[Th;p] > CT Ary then
SharedWinnerID = Thip
sync
if Th;p = SharedWinnerID then
SharedStart = prefizsum[Thrp)
SharedEnd = prefizsum[Thip + 1]
end
sync
INIT = SharedStart + Th[D%|ThSET|
for i = INIT to SharedEnd do
Output[¢] = SharedWinnerID
i =1+ |Thser|
end
end

others. It best applies to applications with few and strongly unbalanced work-
items that may vary at run time (e.g., applications for sparse graph traversal).
This technique guarantees load balancing among threads of the same warps and
among warps. It does not guarantee balancing among blocks.

5.2.2. CTA+Warp+Scan

In the context of graph traversal, Merrill et al. [16] proposed an alternative

approach to the load balancing problem. Their algorithm consists of three steps:

1. All threads of a block access the corresponding work-item (through the

work-item to thread strategy) and calculate the item sizes. The work-items
with size greater than a threshold (CTAry) are non-deterministically
ordered and, one at a time, they are (i) copied in the shared memory, and
(ii) processed by all the threads of the block (called cooperative thread
array - CTA). The algorithm (see Algorithm [9)) of such a first step (which
is called strip-mined gathering) is run by each thread (Thip).

In the pseudo-code, row 3 implements the non-deterministic ordering
(based on iterative match/winning among threads), rows 5-8 calculate
information on the work-item to be copied in shared memory, while rows
10-14 implement the item partitioning for the CTA. This phase introduces
sensible overhead for the two CTA synchronizations and, rows 5-8 are run
by one thread only.

. In the second step, the strip-mined gathering is run with a lower threshold

(WARPr) and at warp level. That is, it targets smaller work-items and
a cooperative thread array consists of threads of the same warp. This
allows avoiding any synchronization among threads (as they are implicitly
synchronized in SIMD-like fashion in the warp) and addressing work-items
with sizes proportional to the warp size.
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3. In the third step the remaining work-items are processed by all block
threads. The algorithm computes a block-wide prefiz-sum on the work-
items and stores the resulting prefix-sum array in the shared memory.
Finally, all threads of the block get use of such an array to access to the
corresponding work-unit. If the array size exceeds the shared memory
space, the algorithm iterates.

This strategy provides a perfect balancing among threads and warps. On the
other hand, the strip-mined gathering procedure run at each iteration introduces
a sensible overhead, which slows down the application performance in case of
quite regular workloads. The strategy well applies only in case of very irregular
workloads.

5.83. Dynamic mapping techniques

Contrary to static mapping, the dynamic mapping approaches achieve per-
fect workload partition and balancing among threads at the cost of additional
computation at run time. The core of such a computation is the binary search
over the prefix-sum array. The binary search aims at mapping work-units to
the corresponding threads.

5.8.1. Direct Search

Given the exclusive prefix-sum array of the work-unit addresses stored in
global memory, each thread performs a binary search over the array to find
the corresponding work-item index. This technique provides perfect balancing
among threads (i.e., one work-unit is mapped to one thread), warps and blocks
of threads. Nevertheless, the large size of the prefix-sum array involves an
arithmetic intensive computation (i.e., #threads X binarysearch()) and all the
accesses performed by the threads to solve the mapping very scattered. This
often eludes the benefit of the provided perfect balancing.

5.8.2. Local Warp Search

To reduce both the binary search computation and the scattered accesses to
the global memory, this technique first loads chunks of the prefix-sum array from
the global to the shared memory. Each chunk consists of 32 elements, which
are loaded by 32 warp threads through a coalesced memory access. Then, each
thread of the warp performs a lightweight binary search (i.e., maximum log,32
steps) over the corresponding chunk in the shared memory.

In the context of graph traversal, this approach has been further improved by
exploiting data locality in registers [15]. Instead of working on shared memory,
each warp thread stores the workload offsets in the own registers and then
performs a binary search by using Kepler warp-shuffle instructions [30].

In general, the local warp search strategy provides a very fast work-units to
threads mapping and guarantees coalesced accesses to both the prefix-sum array
and work-units in global memory. On the other hand, since the sum of work
units included in each chunk of prefix-sum array is greater than the warp size,
the binary search on the shared memory (or registers for the enhanced version
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for Kepler) is repeated until all work-units are processed. This leads to more
work-units to be mapped to the same thread. Indeed, although this technique
guarantees a fair balancing among threads of the same warp, it suffers from
work unbalance between different warps since the sum of work-units for each
warp can be not uniform in general. For the same reason, it does not guarantee
balancing among blocks of threads.

5.3.3. Block Search

To deal with the local warp search limitations, Davidson et al. [60] intro-
duced the block search strategy through cooperative blocks. Instead of warps
performing 32-element loads, in this strategy each block of threads loads a max:
chunk of prefix-sum elements from the global to the shared memory, where the
maxi chunk is as large as the available space in shared memory for the block.
The maxi chunk size is equal for all the blocks. Each maxi chunk is then par-
titioned by considering the amount of work-units included and the number of
threads per block. Finally, each block thread performs only one binary search
to find the corresponding slot. With the block search strategy, all the units
included in a slot are mapped to the same thread. This leads to several ad-
vantages. First, all the threads of a block are perfectly balanced. The binary
searches are performed in shared memory and the overall amount of searches
is sensibly reduced (i.e., they are equal to the block size). Nevertheless, this
strategy does not guarantee balancing among different blocks. This is due to
the fact that the maxi chunk size is equal for all the blocks, but the chunks
can include a different amount of work-units. In addition, this strategy does
not guarantee memory coalescing among threads when they access the assigned
work-units. Finally, this strategy cannot exploit advanced features for intra-
warp communication and synchronization among threads, such as, warp shuffle
instructions etc.

5.8.4. Two-phase Search

Davidson et al. [60], Green et al [61] and Baxter [62] proposed three equiv-
alent methods to deal with the inter-block load unbalancing. All the methods
rely on two phases: partitioning and expansion.

First, the whole prefix-sum array is partitioned into balanced chunks, i.e.,
chunks that point to the same amount of work-units. Such an amount is fixed
as the biggest multiple of the block size that fits in the shared memory. As an
example, considering blocks of 128 threads, two prefix-sum chunks pointing to
128 x K units, and 1300 slots in shared memory, K is set to 10. The chunk
size may differ among blocks. The partition array, which aims at mapping all
the threads of a block into the same chunk, is built as follows. One thread per
block runs a binary search on the whole prefix-sum array in global memory by
using the own global id times the block size (T'H giobal,, % blocksize). This allows
finding the chunk boundaries. The number of binary searches in global memory
for this phase is equal to the number of blocks. The new partition array, which
contains all the chunk boundaries is stored in global memory.
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FIG. 10: FEzample of expansion phase in the two-phase strategy (10 work-units per
thread)

In the expansion phase, all the threads of each block load the corresponding
chunks into the shared memory (similarly to the dynamic techniques presented
in the previous paragraphs). Then, each thread of each block runs a binary
search in such a local partition to get the (first) assigned work-unit. Each
thread sequentially accesses all the assigned work units in global memory. The
number of binary searches for the second step is equal to the block size. Fig.
shows an example of expansion phase, in which three threads (¢g, ¢1, and
to) of the same warp access to the local chunk of prefix-sum array to get the
corresponding starting point of assigned work-unit. Then, they sequentially
access the corresponding K assigned units (4; — Dy for tg, D — F» for tq, etc.)
in global memory.

In conclusion, the two-phase search strategy allows the workload among
threads, warps, and blocks to be perfectly balanced at the cost of two series of
binary searches. The first is run in global memory for the partitioning phase,
while the second, which most affects the overall performance, is run in shared
memory for the expansion phase.

The number of binary searches for partitioning is proportional to the K
parameter. High values of K involves less and bigger chunks to be partitioned
and, as a consequence, less steps for each binary search. Nevertheless, the main
problem of such a dynamic mapping technique is that the partitioning phase
leads to very scattered memory accesses of the threads to the corresponding
work-units (see lower side of Fig. . Such a problem worsens by increasing
the K value.

5.4. The multi-phase search technique

As an improvement of the dynamic load balancing techniques presented
above, [65] proposes the multi-phase mapping strategy, which aims at exploit-
ing the balancing advantages of the two-phase algorithms while overcoming the
limitations concerning the scattered memory accesses. It consists of two main
contributions: Coalesced expansion and Iterated search.

5.5. Coalesced Expansion

The expansion phase consists of three sub-phases, by which the scattered
accesses of threads to the global memory are reorganized into coalesced transac-
tions. This is done in shared memory and by taking advantage of local registers.
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FIG. 11: Querview of the coalesced expansion optimization (10 work-units per thread)

The technique applies for both reading and writing accesses to the global mem-
ory as for the two-phase approach. For the sake of clarity, we consider writing
accesses in the following.

1. Instead of sequentially writing on the work-units in global memory, each
thread sequentially writes a small amount of work-units in the local reg-
isters. Fig. [[1] shows an example. The amount of units is limited by the
available number of free registers.

2. After a thread block synchronization, the local shared memory is flushed
and the threads move and reorder the work-unit array from the registers
to the shared memory.

3. Finally, the whole warp of threads cooperates for a coalesced transaction
of the reordered data into the global memory. It is important to note that
this step does not require any synchronization since each warp executes
independently on the own slot of shared memory.

Steps two and three are iterated until all the work-units assigned to the threads
are processed. Even though these steps involve some extra computations with
respect to the direct writings, the achieved coalesced accesses in global memory
significantly improve the overall performance.

5.6. Iterated Searches

The shared memory size and the size of thread blocks play an important
role in the coalesced expansion phase. The bigger the block size, the shorter the
partition array stored in shared memory. On the other hand, the bigger the block
size, the more the synchronization overhead among the block warps, and the
more the binary search steps performed by each thread (see final considerations
of the Two-phase search in paragraph .

In particular, the overhead introduced to synchronize the threads after the
writing on registers (see step 1 of coalesced expansion) is the bottleneck of the
expansion phase (each register writing step requires two barriers of thread). The
iterated search optimization aims at reducing such an overhead as follows:
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1. In the partition phase, the prefix sum array is partitioned into balanced
chunks. Differently from the two-phase search strategy, the size of such
chunks is fixed as a multiple of the available space in shared memory:

Chunkg;ye = Blockgije X K x IS

where Blockg;,. X K represents the biggest number of work-units (i.e.,
a multiple of the block size) that fits in shared memory (as in the two-
phase algorithm), while IS represents the iteration factor. The number of
threads required in this step decreases linearly with IS.

2. Each block of threads loads from global to shared memory a chunk
of prefix-sum, performs the function initialization, and synchronizes all
threads.

3. Each thread of a block performs I.S binary searches on such an extended
chunk;

4. Each thread starts with the first step of the coalesced expansion, i.e., it
sequentially writes an amount of work-units in the local registers. Such an
amount is equal IS times larger than in the standard two-phase strategy.

5. The local shared memory is flushed and each thread moves a portion of the
extended work-unit array from the registers to the shared memory. The
portion size is equal to Blocks;,. X K. Then, the whole warp of threads
cooperates for a coalesced transaction of the reordered data into the global
memory, as in the coalesced expansion phase. This step iterates 1.5 times,
until all the data stored in the registers has been processed.

With respect to the standard partitioning and expansion strategy, the it-
erated search optimization reduces the number of synchronization points by a
factor of 2 x I.S | avoids many block initializations, decreases the number of re-
quired threads, and maximizes the shared memory utilization during the loading
of the prefix-sum values with more large consecutive intervals. Nevertheless, the
required number of registers grows proportionally to the I.S parameter. Con-
sidering that the maximum number of registers per thread is a fixed constraints
for any GPU device (e.g., 32 for NVIDIA Kepler devices) and that exceeding
such a constraint involves data to be spilled in L1 cache and then in L2 cache or
global memory, too high values of IS may compromise the overall performance
of the proposed approach.

Figures summarize and compare the performance of each technique
over different graphs, each one having very different characteristics and struc-
ture. The results obtained with the Direct Search and Block Search techniques
are much worse than the other techniques and, for the sake of clarity, have not
been reported in the figures.

In the first benchmark (Fig. , as expected, Work-items to threads is the
most efficient balancing technique. This is due to the very regular workload
and the small average work-item size. In this benchmark, any overhead for the
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dynamic item-to-thread mapping may compromise the overall algorithm per-
formance. However, Multi-Phase Search is the second most efficient technique.
This underlines the reduced amount of overhead introduced by such a dynamic
technique, which well applies also in case of very regular workloads.

In the web-NotreDame benchmark (Fig. , Multi-Phase Search is the most
efficient technique and provides almost twice the performance with respect to
the second best techniques ( Virtual Warps and Two-Phase). On the other hand,
Virtual Warps provides good performance if the virtual warp size is properly set,
while it may sensibly worsen with wrongly-sized sizes. The virtual warp size has
to be set statically. For the obtained results in these two benchmarks, we noticed
that the optimal virtual warp size is proportional and follows approximately the
average of work-item sizes.

In these first two benchmarks, CTA+ Warp+Scan, which is one of the most
advanced and sophisticated balancing technique at the state of the art, provides
low performance. This is due to the fact that the CTA and the Warp phases are
never or rarely activated, while the activation controls involve strong overhead.

Multi-Phase Search provides the best results also in the circuitbM bench-
mark (Fig. . In such a benchmark, the CTA+Warp+Scan, Two-Phase
Search, and Multi- Phase Search dynamic techniques are one order of magnitude
faster than the static-mapping techniques. In web-Notredame and in circuitdM,
Multi-Phase Search shows the best results due to the low average (less than
warp size) and high standard. deviation.

In the last benchmark, kron_g500-logn20 (Fig. , CTA+Warp+Scan pro-
vides the best results, since the CTA and Warp phases are frequently activated
and exploited. However the performance of Multi-Phase are comparable. Dy-
namic Virtual Warps and Virtual Warps provide similar performance. Indeed,
these two techniques are very efficient on high-average datasets, since, with a
thread group size of 32, they completely avoid the warp divergence. Finally,
the Dynamic Parallelism feature provided by Kepler, implemented in the cor-
responding semi-dynamic technique, finds the best application only when the
work-item sizes and their average are very large. In any case, all the dynamic
load balancing techniques, and in particular the Multi-Phase Search, perform
better without such a feature in all the analysed datasets.
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