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Abstract—Boolean models are gaining an increasing interest
for reproducing dynamic behaviours, understanding processes,
and predicting emerging properties of cellular signalling net-
works through in-silico experiments. They are emerging as a
valid alternative to the quantitative approaches (i.e., based on
ordinary differential equations) for exploratory modelling when
little is known about reaction kinetics or equilibrium constants in
the context of gene expression or signalling. Even though several
approaches and software have been recently proposed for logic
modelling of biological systems, they are limited to specific mod-
elling contexts and they lack of automation in analysing biological
properties such as complex attractors, molecule vulnerability,
dose response. This paper presents a design and verification
platform based on SystemC that applies methodologies and tools
well established in the electronic-design automation (EDA) field
such as assertion-based verification (ABV) and mutation analysis,
which allow complex attractors (i.e., protein oscillations) and
robustness/sensitivity of the signalling networks to be simulated
and analysed. The paper reports the results obtained by applying
such verification techniques for the analysis of the intracellu-
lar signalling network controlling integrin activation mediating
leukocyte recruitment from the blood into the tissues.

I. INTRODUCTION

A central goal of Systems Biology is the construction of
models for reproducing dynamic behaviours and predicting
emerging properties of bio-molecular networks. In this context,
modelling approaches can be classified into two categories:
quantitative and qualitative models. Quantitative modelling
allows for a natural representation of molecular and gene net-
works and provides the most precise prediction. Nevertheless,
the lack of kinetic data (and of quantitative data in general)
hampers its use in many situations [1].

In contrast, qualitative models simplifies the biological
reality and are often able to reproduce the system behaviour.
They cannot describe actual concentration levels nor realistic
time scales. As a consequence, they cannot be used to ex-
plain and predict the outcome of biological experiments that
yield quantitative data. However, given a biological network
consisting of input (e.g., receptors), intermediate, and output
(e.g., transcription factors) signals, they allow studying the
input-output relationships through discrete simulations [2].

Even though different qualitative approaches have been
successfully used to extrapolate insights of medium-large
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Fig. 1. Overview of the proposed platform

signalling networks, they have shown having two main limi-
tations: (i) they are limited to specific modelling context, and
(ii) they lack of automation in analysing biological properties
such as complex attractors, molecule vulnerability, and dose
response [1].

This paper presents a platform for modelling and simu-
lating signalling networks (see Figure 1). The platform is
based on SystemC, which is the de-facto reference stan-
dard language for system-level modelling and simulation of
Hardware/Software/Network electronic systems. The platform
provides a front-end parser to import signalling network
models from Systems Biology Markup Language (SBML) [3],
which is the de-facto reference representation format for com-
municating and storing computational models of biological
processes. The platform relies on assertion-based verification
(ABV), by which the biological properties to observe can be
formally defined through the property specification language
(PSL) and, then, automatically synthesized and integrated as
checkers into the simulation system (phase 1 in Figure 1). An
automatic test pattern generator allows exploring the solution



space of the network parameters to identify which network
configurations lead the model to satisfy the properties (i.e.,
parametrization). Such useful configurations are then used in
the second phase, in which mutation analysis is applied to
verify the robustness/sensitivity properties of the network.

The platform has been applied for modelling and analysing
the signalling network controlling LFA-1 beta2 integrin ac-
tivation mediating leukocyte recruitment from the blood into
the tissues [4]. In particular, simulation has been conducted to
understand how the concerted action of the signalling proteins
generate a concurrent modular mechanism of regulation of in-
tegrin activation, which is characterized by dynamic properties
such as oscillations and hysteresis.

The paper is organized as follows. Section II presents the
related work. Section III introduces the case study, which will
be used as a model system in the subsequent sections. Section
IV presents the platform. Section V reports the experimental
results, while Section VI is devoted to the concluding remarks.

II. RELATED WORK

Boolean networks have been successfully applied for model-
ing gene regulatory and signaling networks in several different
biological systems [5], [6], [7]. They have also been used to
analyse human signalling networks associated with deseases
to predict pathogenesis mechanisms and potential therapeutic
targets [8], [9].

Many Software tools are available for Boolean dynamic
modeling of biological systems, such as BooleanNet [10],
Boolnet [11], SimBoolNet [12], and ChemChains [13]. Several
software packages also support multi-valued logical dynamic
modeling, such as GINSim [14], and ADAM [15]. In addition
to logic operation-based Boolean networks, threshold Boolean
networks have been used in modeling biological networks
at both cellular and population levels [16], [17]. Piecewise
linear models are a hybrid of Boolean models and differential
equation-based continuous models, and have been successfully
applied due to their attractive combination of continuous
time, quantitative information and few kinetic parameters [18],
[19]. The methodologies and modeling approaches described
above apply to threshold Boolean models and piecewise linear
models as well. In particular, one can apply the software
packages BooleanNet for qualitative modelling of biological
networks on piecewise linear models.

Recently, some approaches have been proposed to derive
logic-based ordinary differential equations by multivariate
polynomial interpolation. Some implemented examples are
SQUAD [20] and Odefy [21]. They transform Boolean models
into systems of continuous differential equations. The dynamic
descriptions are derived automatically from the Boolean ones
without adding any further knowledge. As a consequence,
the resulting models, although being able to be fitted against
experimental data, must be considered as phenomenological
models in contrast to mechanistic (kinetic) models that require
more detailed information on the kinetics and parameters of
the involved processes.

Differently from all these approaches, the proposed platform
relies on modeling, verification, and fault injection techniques
extensively applied and optimized in the EDA context. In
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Fig. 2. The signalling network of the leukocite integrin activation

particular, it relies on SystemC, which provides an event-
driven simulation and allows handling temporal characteristics
of the network proteins like delay times and lifetimes [22].
The platform also aims at automating most of the modeling
and simulation steps, thanks to EDA methodologies and tools
for ABV and mutation analysis. Finally, differently from all
qualitative or semi-quantitative modelling approaches based
on boolean models in literature, the proposed platform allows
reproducing and observing oscillating behaviours even when
neither negative nor positive feedbacks appear in the network
[23].

III. THE CASE STUDY

In order to better explain how ABV and mutation analysis
are applied for the property analysis of signaling networks,
we first present the case study, which will be used as a model
system in the subsequent sections.

The case study is the signalling network controlling LFA-
1 beta2 integrin activation mediating leukocyte recruitment
from the blood into the tissues. The mechanism of leuko-
cyte recruitment is a fundamental homeostatic process of the
immune response. It is modeled as a concurrent ensemble
of cellular events consisting of a stereotyped sequence of
leukocyte behaviors on the vascular endothelium and including
tethering, rolling, integrin activation, arrest and diapedesis
[24]. In this context, a critical event is integrin activation
since it mediates cell arrest underflow and diapedesis. Integrin
(ITGB2) activation is controlled by a complex signal trans-
duction network (see Fig. 2), mainly generated by chemotactic
factors, and involving different intracellular molecules, with a
particularly important role for JAK protein tyrosine kinases,
RHO and RAP small GTPases, lipid kinases and a number of
cytoskeletal proteins [25].

Notably, cell motility requires an on-off kinetic of integrin
activation, leading to iterative adhesion-de-adhesion events
and, thus, ensuring cell migration. Controlling dynamics of the
cell adhesion is crucial to control cell migration. Such a on-
off, oscillatory, kinetics of integrin triggering likely depends



on on-off kinetics of the signalling transduction machinery
triggered by chemokines and controlling integrin-mediated cell
adhesion.

Although a qualitative characterization of such a complex
mechanisms is, at least partially, available, a quantitative
description is lacking, thus limiting the possibility of applying
any quantitative kinetic modelling approach in literature. In
addition, since neither negative nor positive feedbacks appear
in the network, any qualitative or semi-quantitative modelling
approach based on boolean models in literature do not allow
reproducing and observing oscillating behaviors [23].

IV. THE SYSTEMC-BASED PLATFORM

In Systems Biology, a signalling network consists of a
set of biological elements, such as, proteins or co-factors.
The elements behave as concurrent objects and interact each
other through activation or inhibition actions to form signal
transduction chains. An element can be activated (or inhibited)
by an upstream element, and it can activate (or inhibit) a
downstream element.

A. Modelling and implementation of biological elements

The proposed modelling approach relies on two concepts:
Boolean modelling and finite state machines (FSMs). FSMs
allow us to formally represent the boolean model of each
protein behaviour in terms of states (e.g., inactive, active),
transitions between states, and guard conditions (i.e., boolean
conditions).

Figure 3(a) depicts the proposed FSM template, while Fig-
ure 3(b) shows, as an example, the VAV1 protein model of the
case study in Figure 2. Each protein changes state (i.e., a tran-
sition occurs) when the guard condition is evaluated to be true.
The condition may be set on a particular reaction event (e.g.,
activation via phosphorylation, steric, auto-phosphorylation,
cofactor or inhibition via phosphatase) generated by any
upstream protein or on any environment status. As an example,
VAV1 moves from Inactive to Active (which represents the
activation through phosphorilation) as soon as either JAK3
or JAK2 activates VAV1 (see Figure 2). Such a transition
occurs after a delay time, which represents the time spent
by a JAK protein to encounter the molecules of VAV1 and
to carry out the activation through a phosphorilation process.
Once activated, VAV1 seeks for the steric activation of its own
protein targets (RAC1, RHOA, CDC42). t represents the time
elapsed, which is constantly updated during simulation, while
lifetime represents the maximum time from the activation
instant in which the protein carries out its biological function.
VAV1 continues to seek for steric activation of target proteins
as long as it is bounded with the upstream protein compound
(i.e., CXCR4+JAK) and the lifetime has not expired.

The template includes two sets of input data that can affect
the protein behaviour and one set of generated output:

• Upstream inputs (US): They are inputs whose values are
generated during simulation and depend on the topolog-
ical interaction of the modelled protein with upstream
proteins. Some examples are the activation via phospho-
rylation, steric, cofactor, or inhibition.
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Fig. 3. The network protein modelling through Finite State Machines. The
protein template (a), the VAV1 protein example (c), and the proposed mutation
model applied for mutatoin analysis (c)

• Parameters (P ): They are inputs whose values depends
on the environment characteristics and status, which are
unknown at modelling time. Some examples are the delay
time (i.e., time spent by the protein to encounter a protein
target), the protein lifetime, the molecular concentrations
of the downstream proteins (which affect the delay time),
the initial state of the protein, etc. For each parameter,
the simulation platform generates different values with
the aim of observing how such values affect the system
dynamics (i.e., parametrization).

• Downstream outputs (DS): They are outputs whose val-
ues are calculated at simulation time and depend on the
role of the protein towards downstream proteins (e.g., the
ouputs of the VAV1 module are set to true when VAV1
start seeking for RAC1, RHOA, or CDC42 proteins) .

Each protein is implemented through a SystemC module,
with both the topological and parameters inputs and outputs
as SystemC ports. The protein behaviour represented by FSM
in Figure 3 is implemented through a SystemC process,
which is sensitive to any event on the input signals. An
activation/inhibition from an upstream protein is represented
by an input (boolean) signal set to true. Being event-driven,
the process wakes up and updates both the internal state and
the output signals whenever a new event on inputs occurs.
Each network node is implemented as a SystemC module
through processes. The element modules are finally connected
and simulated at system level.

The proposed FSM model, which is shared by each network
element, allows the corresponding SystemC implementation
to be automatically generated from a SBML description
(see Figure 1). SBML is a representation format, based on
XML, for communicating and storing computational models
of biological processes. It is a free and open standard with
widespread software support and a community of users and
developers. SBML can represent many different classes of
biological phenomena, including metabolic networks, cell sig-
naling pathways, regulatory networks, infectious diseases, and
many others. Since SBML is the de-facto a reference standard
for representing computational models in systems biology
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today, the proposed platform includes a front-end parser for
the automatic SBML-SystemC translation.

B. Phase 1: Network Parametrization through Assertion-
based Verification

In EDA, functional verification based on assertions repre-
sents one of the main applied and investigated techniques that
combines dynamic and static verification [26]. Assertions are
a formal descriptions of what behaviour is expected during the
model simulation and allow detecting bugs as well as driving
the test pattern generation [27].

The proposed platform applies simulation-based ABV, by
which assertions are defined in PSL, automatically synthesized
into checkers through the IBM FoCs synthesizer [28], and
plugged to the SystemC model as in [26]. The checkers
monitor observable signals of the model under verification
during simulation and raise a failure signal when a failure
is found. In the context of signalling networks, they aim at
monitoring the protein states, whose temporal activity is a key
to understand crucial biological properties such as steady states
(simple attractors) and oscillations (complex attractors) [2].

Figure 4 shows an example of state dynamics of a protein
to be observed and for which an assertion should be defined.
The assertion that describes a periodic oscillations activity
(positive edge and negative edge are constant in every Active
and Inactive state, respectively, at each oscillation) and that
considers a percentage of natural tolerance (δ) in such a
periodicity is defined as follows:

define pos_edge:=(ta-delta) <= t &
t <= (ta+delta);

define neg_edge:=(ti-delta)<= t &
t <= (ti+delta);

assert (
G((state=ACT)->X((state=INACT)&(pos_edge=true)))
&
G((state=INACT)->X((state=ACT)&(neg_edge=true)))
);

where ta and ti are temporal counters initialized at the first oscil-
lation, and that hold the time elapsed from the first state transition
(Inactive → Active and Active → Inctive, respectively). They
are used to measure the positive edge and negative edge values,
respectively. t is the counter set, from the second oscillation on,
at each state transition, and it is used to measure the period of
subsequent oscillations to be compared with the first ones.
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In the proposed platform, ABV is applied for the parametrization
phase (see Figure 1), which aims at identifying the parameter settings
(see Section IV-A) that lead the network to satisfy the property
described in the assertions. The protein network is connected to
an automatic test pattern generator (ATPG), which generates the
parameter values of each protein. The set of all parameter values
of every proteins represents a configuration. The ATPG generates a
configuration and runs (i.e., executes) a dynamic simulation of the
network behaviour for such a set of input values for a given simulation
time. Then, the ATPG generates a new different configuration for a
new simulation. The run ends when all the possible configurations
have been simulated and, as a result, it generates a set of useful
configurations, i.e., all and only configurations that lead the network
to satisfy the given properties.

The useful configurations are then applied in the analysis of the
network robustness and sensitivity, as described in the following
section.

C. Robustness/Sensitivity Analysis through ABV and Mutation
Analysis

In Systems Biology, robustness and sensitivity analysis is a sys-
tematic evaluation of the network response if the model is confronted
with failures. Such an analysis goal is twofold: First, it aims at
understanding the network behaviours, complexity, and its reaction to
internal/external failures; Second, it aims at validating the simulation
model against in-vitro/in-vivo experimental results.

In general, robustness represents the persistence of a system char-
acteristic behaviour under perturbations or conditions of uncertainty.
Biological systems robustness (such as stability) encompasses a rel-
ative not an absolute property since no system can maintain stability
for all its functions when encountering any kind of perturbation. In
relatively simple systems, like for instance that studied in this work,
robustness is often equivalent to a dynamical regime. Investigations of
genetic oscillators thus focus on the persistence of a regular periodic
solution, which does not preclude quantitative changes (in period or
amplitude of the oscillations) to occur [29].

In this the proposed platform we specify (i) which characteristic
behaviour or property should remain unchanged under perturbation



Mutated Aperiodic Useful conf. Oscill. Period
protein config. (periodic) (#) ms

Golden model - 2,008,188 2 50(±20%)
CXCR4 0 0 0 0
JAK3 2,008,188 0 2-4 -
JAK2 2,008,188 0 2-4 -
ABG 0 2,008,188 2 50(±20%)
VAV1 0 0 0 0
PLC 0 2,008,188 2 50(±20%)

RAC1 860,652 1,147,536 1-3 50(±20%)
RHOA 860,652 1,147,536 1-3 50(±20%)
CDC42 2,008,188 0 2-4 -

IP3 0 2,008,188 2 50(±20%)
DAG 17,640 1,990,548 1-2 50(±20%)
PLD1 0 0 0 0

PIP5K1C 0 0 0 0
CA 0 2,008,188 2 50(±20%)

RASGRP1 0 2,008,188 2 50(±20%)
PA 0 0 0 0

RAP1A 0 2,008,188 2 50(±20%)
PIP2 0 0 0 0

RIAM 0 2,008,188 2 50(±20%)
RASSF5 0 2,008,188 2 50(±20%)

TLN1 792,036 1,216,152 2-3 50(±20%)
FERMT3 952,140 1,056,048 2-4 50(±20%)

TABLE I
EXPERIMENTAL RESULTS

through ABV, and ii) for which type of perturbations this invariance
property holds through a mutation model.

Figure 5(a) shows an overview of the proposed mutation model,
which relies on fault injection in the FSM model [30] of the network
proteins. Each fault represents the real effects (mutations) of the
protein behaviour due to natural diseases, such as gene transcription
alterations, cellular environmental disturbs, etc. For the sake of clarity,
the figure shows how the mutation model implements only some
well known protein alterations (i.e., total inactivity, alternation in
the transcription function, variations in delay time and lifetime).
The extension of such a model and a complete matching of natural
diseases, protein mutations, and FSM mutations is part of our current
and future work.

Figure 5(b) shows an overview of the robustness/sensitivity anal-
ysis flow implemented in the proposed platform. Given the useful
configurations generated in phase 1 and the properties to observe, the
platform simulates such stimuli on the network golden model (muta-
tion free) and on the mutated model, in which one mutation is acti-
vated at a time. The ABV results are then matched to classify which
mutation has generated the highest result divergence with respect to
the golden model. The divergence is measured by comparing the
number of configurations that still lead to oscillations and how much
the number of such oscillations is preserved. Such a ranking (mutation
sensitivity results in Figure 5(b)) is analysed to select, among the
most sensitive mutation, which one to reproduce experimentally (in-
vitro/in-vivo). If such a sensitivity is experimentally confirmed, the
flow iterates to confirm any other mutation, while a non confirmation
means that the starting model does not fully represent the signalling
network and has to be refined.

The first part of the flow (left-most side of Figure 5(b)) is automatic
(an extended version of [31] allows for automatic mutation injection
in the SystemC code, while an adapted version of [32] allows for
automatic ABV and generation of mutation sensitivity ranking). The
second part of the flow (right-most side of Figure 5(b)) consist of
in-vitro/in-vivo experiments.

V. EXPERIMENTAL RESULTS

We applied the proposed platform to analyse the case study
presented in Section V, and, in particular, to analyse the on-off
kinetics of integrin triggering, which is represented by the oscillatory
state of ITGB2 between inactive and activate affinity state. ABV has

been applied through the parametrization phase (see Section IV-B) by
considering, as variables, the delay time of each protein in the range
2-8 ms and the lifetime set to 50 ms. This range of values has been
chosen as a reasonable approximation of the available experimental
data in literature. The automatic test pattern generator (ATPG) has
been set to exhaustively explore the protein delay time solution space
through 3 ms steps (i.e., 2, 5, 8 ms). Overall, the ATPG generated
' 2.14 · 109 different configurations.

An assertion has been defined to identify all and only the con-
figurations that lead to at least one periodic oscillation of ITGB2
within a total simulated time of 200 ms, where the periodicity has
been set with a tolerance of ±20% (δ/2 in Figure 4). Such a period
represents the average stopping time of a cell when it interacts with
the blood vessel epithelium. Notably, although accurate experimental
measurement of on-off dynamics of integrin triggering is, at the
present, unavailable, the extremely rapid kinetics of leukocyte arrest
under flow conditions, occurring in the experimentally-determined
range of few milliseconds clearly suggest that it is reasonable to
consider this rapid time-frame as a correct reference time to simulate
on-off dynamics of integrin triggering. Furthermore, since directional
leukocyte motility (chemotaixs) appears to maintain constant speed,
at least in the context of a chemotactic gradient, it is reasonable
to observe regular oscillatory dynamics of signaling mechanisms
controlling integrin triggering.

Table I (first row - Golden model1) reports the parametrization
results, which required 150 runtime hours. The table reports the
number of configurations, among all the generated ones, that led to
periodic oscillations (column Useful conf. (periodic)), the number
of oscillations, and the approximate oscillation period. In this phase,
we didn’t consider the configurations that led to aperiodic behaviours
since, from a biological point of view, they are not of interest.

The same assertion has been then applied in the second phase,
in which, we analysed the network robustness/sensitivity through
mutation analysis. For the sake of clarity and for the lack of space
(without loss of meaningfulness), we report and analyse only the
mutation effects over the Inactive-Active state transition, for each
network protein (see Table I and Figure 6). Each injected mutation
represents either a disease as well as a drug effect that selectively
prevents a specific protein to carry out its biological function. Each
row of the table reports the effects of a mutation on the specific
protein, which allows us to classify the proteins into three categories.
Robust (as for proteins ABG, PLC, etc.), for which the number
of useful configurations does not change after mutation and that
underlines that the network is robust for any failure on those proteins.
Sensitive (as for proteins CXCR4, VAV1, PLD1, etc) in which the
mutation leads ITGB2 to an inactive steady state (no oscillations) for
the whole simulation time. The third category, Modifying, includes
the proteins for which the ITGB2 oscillation still exists even though
the periodiciy is totally or partially lost (e.g., proteins JAK, RAC1,
RHOA, etc.)

In general, the mutation analysis underlines that the network,
considering the periodic oscillation property, is extremely sensitive
to the pathway involving PIP5K1C, while it is robust to the pathway
involving RASGRP1. The results also show that proteins JAK2/3 and
CDC42 are essential to guarantee the oscillation periodicity. All the
proteins classified as Sensitive and Modifying are more interesting to
verify and further investigate experimentally in-vitro such a signalling
network.

VI. CONCLUSIONS

This paper presented a design and verification platform based
on SystemC that applies methodologies and tools widely used and
consolidated in the EDA field such as ABV and mutation analysis
for modelling and simulation of biological signalling networks. The
paper showed how the platform has been successfully applied for
parametrizing and studying important properties (i.e., robustness and
sensitivity) of the signalling network controlling LFA-1 beta2 integrin

1The golden model represents the network with no mutation injected.
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Fig. 6. Experimental results

activation mediating leukocyte recruitment from the blood into the
tissues. In particular, the paper showed how, through ABV and
mutation analysis, the platform allowed us to classify each network
protein depending on their influence in such an on-off kinetics of
integrin triggering.
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