
A Fine-grained Performance Model
for GPU Architectures

Abstract—The increasing programmability, performance, and
cost/effectiveness of GPUs have led to a widespread use of such
many-core architectures to accelerate general purpose appli-
cations. Nevertheless, tuning applications to efficiently exploit
the GPU potentiality is a very challenging task, especially for
inexperienced programmers. This is due to the difficulty of
developing a SW application for the specific GPU architectural
configuration, which includes managing the memory hierarchy
and optimizing the execution of thousands of concurrent threads
while maintaining the semantic correctness of the application.
Even though several profiling tools exist, which provide pro-
grammers with a large number of metrics and measurements,
it is often difficult to interpret such information for effectively
tuning the application. This paper presents a performance model
that allows accurately estimating the potential performance of the
application under tuning on a given GPU device and, at the same
time, it provides programmers with interpretable profiling hints.
The paper shows the results obtained by applying the proposed
model for profiling commonly used primitives and real codes.

I. INTRODUCTION

Even though graphics processing units (GPUs) are increas-
ingly adopted to run general purpose applications in several
domains, programming such many-core architectures is a
challenging task [1], [2]. Even more challenging is efficiently
tuning applications to fully take advantage of the GPU archi-
tectural configuration. Bottlenecks of a GPU application such
as high thread divergence or poor memory coalescing have
a different impact on the overall performance depending on
which GPU device the application is run [3].

Different profiling tools (e.g., CUDA nvprof, AMD APP)
have been proposed to help programmers in the application
development and analysis. Nevertheless, interpreting the large
number of metrics and measurements they provide to im-
prove the application performance is often difficult or even
prohibitive for inexperienced programmers.

This paper proposes a comprehensive and accurate perfor-
mance model for GPU architectures, which aims at supporting
programmers in the development and tuning of GPU applica-
tions. The model relies on two concepts, microbenchmarks
and optimization criteria. The microbenchmarks consist of
specialized chunks of GPU code that have been developed to
(i) exercise specific functional components of the device (e.g.,
arithmetic instruction units, shared memory, cache, DRAM,
etc.) and (ii) measure the actual characteristics of such com-
ponents (i.e., throughput, latency, delay). The result of the
measure allows the model to weigh the performance prediction
by considering the GPU architecture configuration.

The optimization criteria aim at quantitatively expressing
the quality of a given application to exploit the potential of
a specific GPU device (e.g., strong coalescence in memory
accesses) as well as identifying causes of performance bottle-
necks (e.g., high thread divergence, workload unbalancing). At
the same time, they aim at guiding the application developer
during the tuning activity through understandable hints, by
selectively pointing out the causes of such bottlenecks.

Figure 1 shows an overview of the proposed model applica-
tion for tuning a GPU application. First, the microbenchmarks
are run on the GPU device to extrapolate the characterization
functions, i.e., dynamic characteristics of the functional com-
ponents of the device. Then, the application under tuning is

FIG. 1: Overview of proposed model components and application.

profiled through a standard profiling tool and the resulting
information is combined with the characterization functions
to measure how much the given application satisfies the
optimization criteria. The resulting information provides the
actual quality level and the potential improvement of each
optimization criterion, the impact of each improvement on
the overall application performance, and the overall potential
performance of the application under tuning. The model allows
the flow (underlined by grey arrows in Figure 1) to be iterated
for incremental tuning of the application.

The paper presents the results obtained by applying the
proposed model for tuning different GPU applications, by
underlining how the advanced profiling results have been
effectively used to focus the tuning effort in specific code
optimizations.

The paper is organized as follows. Section II presents the
related work. Section III presents the microbenchmark concept
and how they have been developed to support the proposed
model. Section IV presents the optimization criteria definition
and evaluation. Section V explains how all the information
are combined to predict the application performance, while
Section VI reports the experimental results. Section VII is
devoted to the concluding remarks.

II. RELATED WORK

Different performance models for GPU architectures have
been proposed in literature. They can be classified into specific
models, which apply on a particular application or pattern
only, and general-purpose models, which are applicable to any
program/kernel for a comprehensive profiling [4].

In the class of specific models, [5] proposes an approach
for performance analysis of code regions in CUDA kernels,
while, in [6], the authors focus on profiling divergences in
GPU applications. A different analytical approach is proposed
in [7], which aims at predicting the kernel execution times of
sparse matrix-vector multiplications.

General-purpose models allow profiling applications from
more optimization criteria point of view and, thus, they can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217551397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

give different hints on how to optimize the code. As an
example, [8] proposes a model for NVIDIA GPUs based on
two different metrics: Memory warp parallelism (MWP) and
computation warp parallelism (CWP). Although the model
predicts the execution costs fairly well, the understanding of
performance bottlenecks from the model is not so straightfor-
ward. This model has been extended in two different ways
[9], [3]. [9] introduces two kernel behaviors, MAX and SUM,
and shows how they allow generating predictions close to the
real measurements. Nevertheless, they do not provide clues as
how to choose the right one for a given kernel. In contrast,
[3] extends the model with additional metrics, such as cache
effect and SFU instructions.

All these analytical performance models, although accurate
in several cases, rely on simulators (e.g., Ocelot, GPGPU,
Barra) to collect necessary information for profiling, which
implies a high overhead in the profiling phase. An attempt has
been made in [10] for collecting more efficiently information
on the GPU characteristics and using simple static analysis
methods to reduce the overhead of runtime profiling.

Besides the often prohibitive overhead introduced in the
profiling phase, especially for complex applications, a big
problem of the simulator-based models is portability. They
can be applied to profile applications on GPU models that are
supported by the simulator, which, often, is not updated to the
last releases of GPU models.

Differently from the analytical models, [11] and [12] are
based on machine-learning techniques, which allow identify-
ing hardware features and using feature selection, clustering
and regression techniques to estimate the execution times.
Nevertheless, both these models are inaccurate, thus providing
approximate estimations with high variability.

We propose a general-purpose, fine-grained, performance
model that, similarly to the machine-learning models, relies
on microbenchmarks to characterize the device and on several
application criteria to measure the implementation quality,
gives interpretable hints and accurate performance prediction.

III. MICROBENCHMARKS

Each microbenchmark is developed with the aim of satis-
fying the following properties:
P1: Stressing capability. The microbenchmark applies heavy
and extensive workloads to the selected functional component.
This allows reaching the fully work-loaded steady state of
the component and measuring the real (vs. theoretical) peak
performance, while minimizing any side effect that may incur
during the measurement, as described in Section III-A. This
includes measuring the real latency of memory accesses for
each memory level (i.e., registers, shared, L1 cache, L2 cache,
and global memory).
P2: Intensity variability. The microbenchmark must exercise
the functional component with different intensity. This allows
predicting the effect of improving an optimization criterion on
the application performance (which is generally not linear), as
explained in Section III-B.
P3: Selectivity. The microbenchmark exercises, as much as
possible, only a specific functional component of the GPU
device. This allows us to selectively associate the microbench-
mark to a specific optimization criterion, as described in
Section IV.
P4: Portability. The microbenchmark is developed indepen-
dently from any model or configuration of GPU architecture.

A. Microbenchmark Development
Figure 2 shows the design process of a microbenchmark.

The microbenchmark code is written with the aim of satisfying

FIG. 2: Microbenchmark development. (a) Code writing, (b) Compi-
lation and PTX analysis, (c) Disassembling and GPU ISA Analisys,
(d) Profiling analysis.

the four properties presented above. Since the compiler may
optimize such a code (e.g., dead code elimination, code-block
reordering etc.) and, through the consequent side effects it may
elude the target properties, the code is checked and refined at
different steps along the compilation process.

First, the code is written by combining CUDA C/C++ and
inline PTX [13] languages (Figure 2(a)). The PTX (interme-
diate) assembly statements allow the code to be compilable
for any device model (property P4) and, at the same time,
to prevent high-level compiler optimizations. As an example,
Figure 3 shows the microbenchmark code developed to mea-
sure the peak throughput of an integer arithmetic operation
(i.e., add) through a long sequence of the arithmetic instruc-
tions with no interrupt or intermediate operation. The code
implements dynamic value assignments to registers (see rows
1 and 2 in the upper side of the figure) to avoid the constant
propagation optimization by the compiler1. The code also
adopts recursive and template-based metaprogramming. This
allows generating an arbitrarily long sequence of arithmetic
instructions (8, 191ˆN add instructions in the example2).

As a second level checking, the code is compiled to generate
both the intermediate file (Figure 2(b)) and the executable
binary file. The intermediate PTX file is analysed to verify
whether the target properties still hold after the higher-level
compilation step. If not, the microbenchmark code undergoes
a refinement iteration. Once verified, the code undergoes a
more accurate check, whereby the executable binary file is
disassembled in the native ISA code, called SASS (Shader
ASSembly), as shown in Figure 2(c). This allows checking
the properties after the lower-level compilation step.

Finally, the microbenchmark is validated through the pro-
filer (Figure 2(d)) to ensure that it exercises only the target
functional component.

B. GPU Device Characterization through Microbenchmarks
Similarly to the example of Figure 3, the developed mi-

crobenchmarks are applied to measure the peak performance
of all arithmetic operations and of the memory at different hi-
erarchy levels. In particular, they measure the maximum arith-
metic instruction throughput of integer operations (add, mul,
comparison, bitwise, etc.), simple single precision floating-
point operations (add, mul, etc.), complex single precision
floating-point operations (sin, rcp, etc.) and double preci-
sion floating-point operations.

1Static value assignments to registers are generally solved and substituted
by the compiler optimizations through inlining operations.

2In the example, 8,191 is the maximum number of unrolling iterations
the pragma unroll supports. After that, the compiler would insert control
statements for the loop. Such a limitation is overcome through recursive calls
(row 5 of the template in Figure 2).

global ADD THROUGHPUT()
1: int R1 = clock(); // assign dynamic values to R1,R2 toê

2: int R2 = clock(); // avoid constant propagation
3: int startTimer = clock();
4: ComputationăNą(R1, R2); // call the function N times
5: int endTimer = clock();

templateăint Ną() // template metaprogramming
device forceinline COMPUTATION(int R1, int R2)

1: #pragma unroll 8191 // maximum allowed unrolling
2: for (int i = 0; i ă 8191; i++) do
3: asm volatile(”add.s32 : ”=r”(R1) : ”r”(R1), ”r”(R2));
4: end // volatile: prevent ptx compiler optimization
5: ComputationăN-1ą(R1, R2); // recursive call

FIG. 3: Example of microbenchmark code. The code aims at measur-
ing the maximum instruction throughput of the add operation.

Microbenchmarks are also applied to exercise the functional
components with different intensity. As an example, the shared
memory throughput is analysed by running a microbenchmark
that generates a different amount of bank conflicts, from
zero to the maximum value, and measures the correspond-
ing access times. The effect of the bank conflicts over the
access time is then represented by a characterization function
through a sampling, quantization, and interpolation process
[14]. The characterization function strongly depends on the
device architecture. Figure 4 shows an example, in which a
microbenchmark has been run to generate the characterization
functions of the shared memory efficiency of two different
GPU devices.

Overall, in the proposed model, microbenchmarks are ap-
plied to extrapolate:
‚ zDivergence as the function that characterizes the effect

of the thread divergence on performance. It is obtained
through a microbenchmark that incrementally increases
the percentage of control statements in the code.

‚ zDRAMThr as the function that characterizes the effect
of the (under)utilization of the global memory bandwidth
on performance. It is obtained through a microbenchmark
that incrementally exercises the memory bus through
different amount of exchanged data.

‚ zARITHThr as the function that characterizes the effect
of the (under)utilization of the arithmetic units on perfor-
mance.

‚ zSHMEM as explained in the example above.
The characterization functions are used as parameters in the

evaluation of the optimization criteria targeting the divergence,
the throughput/occupancy, and the shared memory efficiency,
respectively, as explained in Section IV-G.

Finally, microbenchmarks have been defined to calculate the
percentage of use of each functional components (i.e., shared
memory, L1 and L2 caches, DRAM, arithmetic units) during
an application run. They are used to calculate the application
potential speedups, as explained in Section V.

IV. OPTIMIZATION CRITERIA

The optimization criteria are defined to cover all the crucial
properties a GPU application should satisfy to exploit the
full potential of the GPU device. We consider the properties
adopted in [3], [5], [6], [8], [9] concerning divergence, memory
coalescing, and load balancing. In addition, we define opti-
mization criteria to cover synchronization issues. Differently
from the literature, the proposed criteria are more accurate
(i.e., fine-grained) to evaluate such properties. All the criteria
are defined in terms of events and static information, which are
all provided by any standard GPU profiler. Each criterion value
is expressed in the range [0, 1], where 0 represents the worst
and 1 represents the best evaluation of such an optimization.

FIG. 4: Characterization functions of the shared memory efficiency
of an NVIDIA Fermi GTX570 and an NVIDIA Kepler GTX780.

A. Host Synchronization
Many complex parallel applications organize the compute-

intensive work into several functions offloaded to GPUs
through host-side kernel calls. Depending on the code com-
plexity and on the workflow scheduling, this mechanism may
involve significant overhead that can compromise the overall
application performance. The host synchronization criterion
aims at evaluating the amount of time spent to coordinate the
kernel calls. It is defined as follows:

HOSTSYNC “

řN
i“1 KernelExeTimei

KernelStartN ` KernelExeTimeN ´ KernelStart1

where N is the number of kernels in which the application
has been organized, KernelExeT imei is the real execution
time of kernel i on the device, and KernelStarti is the clock
time in which kernel i starts executing.

This criterion helps programmers to understand if the overall
application speedup is bounded by an excessive host syn-
chronization activity. Merging different kernels, using inter-
block synchronization [15] or reducing small memory transfers
improve the quality value of this criterion.

B. Device Synchronization
In GPU computing, the synchronizations of threads in

blocks are one of the main causes of idle state and, thus,
they strongly impact on the application performance. Beside
introducing overhead in the kernel execution, they also limit
the efficiency of the multiprocessors in the warp scheduling
activity. This criterion gives a quality value of a kernel by
measuring the total time spent by the kernel for synchronizing
thread blocks:

DEVICESYNC “ 1´ StallSync

where StallSync represents the percentage of the GPU
time spent in synchronization stalls over the total number
of stalls. StallSync depends on the load balancing among
threads as well as the number of synchronization points (i.e.
thread barriers) in the kernel.

C. Thread Divergence
Branch conditions that lead threads of the same warp to

execute different paths (i.e., thread divergence) are one of the
main causes of inefficiency of a GPU kernel. This criterion
evaluates the thread divergence of a kernel as follows:

DIVERGENCE “
#ExeInstructions

#PotExeInstructions
ˆzDivergence

where #ExeInstructions represents the total number
of instructions executed by the threads of a warp and
#PotExeInstructions represents the total number of in-
structions potentially executable by the threads of a warp. The

final value is calculated as the average over all warps run
by the kernel. The value is weighted by the characterization
function zDivergence presented in Section III-B.

D. Warp Load Balancing
This criterion expresses how well the workload is uniformly

distributed over the cores of each single SM:

LOADBALANCWARP “

´

TotActiveWarps
TotActiveCycles

¯

`

BLOCKSIZE
32

˘

¨#Blocks per SM

where TotActiveCycles represents the total number of clock
cycles in which the single SMs are not in idle state. The
formula takes into account the number of active warps at
each clock cycle, and it adds them to the total counter
TotActiveWarps. The denominator represents the theoretical
maximum occupancy of the SMs in terms of number of warps.
It is calculated by considering the block size and the number
of blocks mapped to each single SM.

E. Streaming Multiprocessor (SM) Load Balancing
Besides the load balancing on each single SM, the model

evaluates the load balancing at SM level. The SM load
balancing criterion is defined as follows:

LOADBALANCSM “ 1´
max
SM

pTotActiveCyclesq ´ AvgCycles

max
SM

pTotActiveCyclesq

where AvgCycles “

ř

SM

TotActiveCycles

|SM|

F. L1/L2 Granularity
GPU applications require optimized data access patterns

and properly aligned data structures to achieve high mem-
ory bandwidths. In particular, efficient applications hide the
latency of memory accesses by combining multiple memory
accesses into single transactions that match the granularity
(i.e., the cache line size) of the memory space3. The proposed
performance model includes two complementary criteria to
describe the quality of memory access patterns:

L1 GRANULARITY “
|#L1 transactions| ¨ 128
ř

TPtMem instru

|Mem instrT| ¨ sizeT

L2 GRANULARITY “
|#L2 transactions| ¨ 32
ř

TPtMem instru

|Mem instrT| ¨ sizeT

The criteria take into account the number of actual trans-
actions towards the L1(L2) memory, the cache line size (128
Bytes for L1, 32 Bytes for L2), the total number of memory
instructions (load and store) to access the global memory,
and the size of their accesses sizeT (1/2/4/8/16 Bytes).

G. Shared Memory Efficiency
This criterion measures the kernel efficacy to exploit the

data locality concept through the on-chip shared memory. The
shared memory allows high memory bandwidth for concurrent
accesses, but it requires appropriate access patterns to achieve
the full efficiency. On the other hand, an excessive and
disorganized use of the shared memory leads to bank conflicts,
which involve the memory instructions to be re-executed
thus serializing the thread execution flow. This optimization
criterion is defined as follows:

3This concept applied to the L1 cache is also known as memory coalescing.

SHMEMEFFICIENCY “
#SharedLoadTrans + #SharedStoreTrans

#SharedLoadAcc + #SharedStoreAcc
ˆ

ˆzSHMEM

The formula is defined in terms of total number of transac-
tions towards shared memory for both load and store opera-
tions over the total number of accesses in shared memory for
load and store instructions (which includes the re-executed
memory instructions due to bank conflicts). It is weighted
by the shared memory characterization function (zSHMEM)
presented in Section III-B

H. Throughput/Occupancy
The Throughput/Occupancy criterion is defined as follows:

THROUGHPUT/
OCCUPANCY

“

"

1 if MemThr « 1
1´p1´occq ¨MEMTHR otherwise

where the occupancy value (occ) depends on the kernel
configuration (i.e., block size, grid size, and amount of shared
memory allocated for the kernel variables), and

MEMTHR “
AchivedThroughput

TheoreticalPeakThroughputˆzDRAMThr

The theoretical peak throughput is weighted through the
zDRAMThr characterisation function. If the memory through-
put value is close to 1, the throughput/occupancy criterion can-
not be further improved. Otherwise, the throughput/occupancy
criterion is calculated as the potential improvement of the
memory throughput metric by using all device threads (1 ´
occ). This criterion is particularly useful in such applications
that do not achieve the theoretical occupancy of the device.
As proved in [16], a high theoretical GPU occupancy is
not necessary to reach the peak performance. In contrast, a
high theoretical occupancy and a low value of the through-
put/occupancy criterion suggests optimizing the application
kernel through a re-configuration to increase the occupancy.

V. PERFORMANCE PREDICTION

Improving any of the optimization criteria presented in Sec-
tion IV impacts on the overall application speedup. A speedup
increasing is proportional to the criterion improvement. The
potential speedup of the host synchronization, divergence,
warp and SM load balancing and throughput/occupancy cri-
teria are defined as follows:

HOSTSYNCSP “
1

HOSTSYNC

DIVERGENCESP
“

1

DIVERGENCE

LOADBALANCWARP
SP “

1

LOADBALANCWARP

LOADBALANCSM
SP “

1

LOADBALANCSM

THROUGHPUT/
OCCUPANCYSP “

1

THROUGHPUT/OCCUPANCY

The potential speedup of the device synchronization crite-
rion also depends on the fraction of time spent in stall state
over the total kernel time:

DEVICESYNCSP “

´

1´TotActiveWarps {|Warps|
CLK cycles

¯

¨ StallSync

|Warps| represents the maximum number of thread warps
of the device, while CLK cycles represents the total number
of GPU clock cycles elapsed to execute the kernel. The value

in the round brackets represents the overall percentage of
inactivity of the GPU warps (i.e., warps in stall state).

The potential speedup definition of L1,L2 granularity and
shared memory efficiency criteria also depends on the per-
centage of time the application uses the L1, L2, and shared
memory, respectively, over the total execution time:

L1 GRANULARITYSP
“

1

L1 GRANULARITY
¨ L1%

L2 GRANULARITYSP
“

1

L2 GRANULARITY
¨ L2%

SHMEMEFFICIENCYSP
“

1

SHMEMEFFICIENCY
¨ ShMem%

L1%, L2%, and ShMem% are evaluated as follows. The
model classifies the application activity in terms of DRAM
accesses, cache accesses, shared memory accesses, arithmetic
instructions, and idle states. The profiler provides the accurate
evaluation of the idle states, the exact amount of memory
transactions for each memory typology, and the number of
arithmetic instructions. Twelve microbenchmarks (eight for
memory accesses considering both load and store operations
and four for arithmetic instructions) allow estimating the
memory latencies and the arithmetic instruction throughputs.
L1%, L2%, and ShMem% are calculated by comparing the
sum of such latencies spent in a specific memory level with
the total cycles elapsed during the kernel execution.

Finally, the overall potential speedup of the application is
defined as follows:

PotentialSpeedup “

$

’

&

’

%

1

MEMTHR
if memory-bounded

1

ARITHTHR
if compute-bounded

where MemThr has been defined in Section IV-H, while
ArithThr is defined as follows:

ARITHTHR “
AchivedThroughput

TheoreticalPeakThroughputˆzARITHThr

The formula expresses the potential speedup of the appli-
cation under tuning as the inverse of the memory throughput
or the arithmetic throughput depending on whether the ap-
plication is memory-bounded or compute-bounded. Such an
information is provided by the profiler.

VI. EXPERIMENTAL RESULTS

The proposed performance model has been applied for tun-
ing and improving the performance of three different CUDA
applications, reduction, matrix transpose, and BFS for an
NVIDIA (Kepler) GEFORCE GTX 780 device. The experi-
ments have been run on such a device with CUDA Toolkit 7.0,
AMD Phenom II X6 1055T (3GHz) host processor, Debian
3.2.60 operating system, and NVIDIA nvprof profiler.

A. Case study 1: Parallel Reduction
Given a vector of data tx1, x2, . . . , xnu, the reduction

applies an operator ‘ to all elements and returns a single
element R “ x1 ‘ x2 ‘ . . .‘ xn. We analysed the reduction
implementation provided in [17], and we applied two tuning
iterations with the proposed model.

Figure 5 shows the results. In the left-most side, the columns
represent the optimization value [0-1] for each criterion at each
tuning iteration. The dot in a column represents the potential
contribution of an improvement of such a criterion in the
predicted overall speedup. In the right-most side, the figure
reports the overall potential speedup of the application (see
Section V), which is calculated for the original code (Version1)
as well as for the two optimized versions of the code. The L1

FIG. 5: Experimental results of case study 1.

and L2 granularity criteria has the same value and are thus
reported in Figure 5 as a single item.

In the analysis of the original code (Version1), the model
predicted a potential speedup of 5.8x. The criteria values
underline that the application bottlenecks are mainly due to
high thread divergence, inadequate synchronization of GPU
threads, and unbalancing at warp level. We first optimized
the code by focusing on synchronization. We organized the
threads by using the warp-centric method proposed by [18],
which allowed us to reduce the number of barriers from
logpBLOCKSIZEq to one.

The analysis of such a first optimization (Version2) con-
firmed the improvement on the thread synchronization (see
device synchronization criterion), which influenced (positively)
the divergence level of threads. Nevertheless, the results under-
lined a slight improvement of the memory troughput metrics,
which motivates the marginal increasing of the Version2
speedup (1.48x). On the other hand, the model predicted a
further potential improvement of the speedup up to 3.9x, by
suggesting to optimize the divergence aspect.

We addressed the divergence issue in the second opti-
mization (Version3) by increasing the number of elements
computed by a single thread. We also applied instruction-level
parallelism techniques to increase the arithmetic throughput.
The analysis of Version3 shows that all the optimization
criterion values are close to the maximum and the potential
speedup is close to 1x. These values suggest that any further
optimization on the considered criteria on the adopted GPU
device would not improve the current speedup. We measured
the Version 3 speedup equals to 4.98x, while the potential
speedup predicted by the model was 5.8x.

B. Case study 2: BFS
In parallel computing, BFS is one of the most representative

irregular application that involves thread divergence, workload
imbalance, and poorly coalesced memory accesses. We anal-
ysed the BFS implementation provided in [19].

Figure 6 shows the results obtained by applying the pro-
posed performance model for two optimization steps of the
code. In the original imlementation (Version1), the results
indicate many different causes of performance bottlenecks and
a potential speedup up to 10x. We first focused in the low value
of the host synchronization criterion, which was due to a high
number of kernel calls. We optimized the code by enabling
the inter-block synchronization[15], which allows the device
and the host execution to be completely separated and, thus,
the application to be organized into one single kernel.

The analysis of such a first optimization (Version2) con-
firmed the total elimination of the host synchronization over-
head thanks to the single kernel implementation. This allowed

FIG. 6: Experimental results of case study 2.

reaching a fair speedup (2.44x). On the other hand, the
results show that the optimization didn’t impact on the other
criterion values. The results underline that the code suffers
from L1/L2 granularity, for which the criterion value is the
lowest and the potential contribution (« 2.5x) in the overall
speedup is the highest. Nevertheless, for the best of our
knowledge, we could not removed such a bottleneck, which
is mainly due to the irregular data structures on which the
implemented algorithm works. We focused on the low values
of the warp/SM load balancing criteria, which suggest to better
organize the GPU thread allocations. We optimized the code
(Version3) by re-arranging the threads in groups with the
aim of cooperative visiting single vertices instead of sets of
vertices. Version3 provides a speedup of 4.1x w.r.t. the original
code. The analysis of Version3 underlines that improving the
L1/L2 granularity would be the main important optimization
to double the speedup and to reach the predicted 10x value.

C. Case study 3: Matrix Transpose
We analysed the matrix transpose implementation presented

in [20], which is characterized by data tiling in shared memory
and thread organization in 2D hierarchical grids and blocks.

Figure 7 shows the results. The original code already
provides values close to the maximum for the host and device
synchronizations, divergence, and Warp/SM load balancing
criteria. For all the other criteria, even though they have very
low values (between 0.1 and 0.5), the model predicts marginal
potential speedups. This is due to the fact that the applica-
tion algorithm relies on very regular and independent tasks.
This justifies the limited potential overall speedup («3.3x)
predicted by the model.

In the first optimization (Version2), we focused on im-
proving the shared memory bank conflicts (shared memory
efficiency criterion) by applying the memory padding technique
[20]. As expected, since such a technique has more impact on
the NVIDIA Fermi than on the NVIDIA Kepler architecture
[20] the gained speedup is marginal.

In the second optimization (Version3) we taken into ac-
count the memory access patterns to improve the L1 and L2
granularity criteria. Their low values suggest that the memory
accesses do not match the granularity of the respective caches,
thus involving a waste of the memory bandwidth. We fully
optimized both the criteria by simply re-organizing the thread
block configuration and by resizing the memory tiles (as
shown by the third columns of the three criteria in Figure
7). The Version3 implementation provides a speedup of 3x
against the 3.3x predicted by the model.

VII. REMARKS

This paper presented a fine-grained performance model for
GPU architectures. It relies on microbenchmarks to charac-

FIG. 7: Experimental results of case study 3.

terize the GPU device and on several application criteria to
measure the implementation quality, to give interpretable hints,
and to accurately calculate potential performance. The paper
presented the results obtained by applying the proposed model
for tuning different GPU applications, by underlining how the
advanced profiling results have been effectively used to focus
the tuning effort in specific code optimizations.

REFERENCES

[1] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing
experiences with cuda,” IEEE Micro, vol. 28, no. 4, pp. 13–27, 2008.

[2] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE Micro,
vol. 30, no. 2, pp. 56–69, Mar. 2010.

[3] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis
framework for identifying potential benefits in gpgpu applications,” in
Proc. of ACM SIGPLAN PPoPP, 2012, pp. 11–22.

[4] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso, “A survey of
performance modeling and simulation techniques for accelerator-based
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 1, pp. 272–281, 2015.

[5] R. Dietrich, F. Schmitt, R. Widera, and M. Bussmann, “Phase-based
profiling in gpgpu kernels,” in Proc. IEEE ICPPW, 2012, pp. 414–423.

[6] B. Coutinho, D. Sampaio, F. Pereira, and W. Meira Jr., “Profiling
divergences in gpu applications,” Concurrency Computation Practice
and Experience, vol. 25, no. 6, pp. 775–789, 2013.

[7] P. Guo and L. Wang, “Accurate cross-architecture performance modeling
for sparse matrix-vector multiplication (spmv) on gpus,” Concurrency
Computation, vol. 27, no. 13, pp. 3281–3294, 2015.

[8] S. Hong and H. Kim, “An analytical model for a gpu architecture
with memory-level and thread-level parallelism awareness,” SIGARCH
Comput. Archit. News, vol. 37, no. 3, pp. 152–163, Jun. 2009.

[9] K. Kothapalli, R. Mukherjee, M. Suhail Rehman, S. Patidar,
P. Narayanan, and K. Srinathan, “A performance prediction model for
the cuda gpgpu platform,” in Proc. of IEEE HiPC, 2009, pp. 463–472.

[10] M. Zheng, V. Ravi, W. Ma, F. Qin, and G. Agrawal, “Gmprof: A low-
overhead, fine-grained profiling approach for gpu programs,” in Proc. of
IEEE HiPC, 2012.

[11] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling gpu-cpu workloads
and systems,” in Proc. of GPGPU, 2010, pp. 31–42.

[12] K. Sato, K. Komatsu, H. Takizawa, and H. Kobayashi, “A history-
based performance prediction model with profile data classification for
automatic task allocation in heterogeneous computing systems,” in Proc.
of IEEE ISPA, 2011, pp. 135–142.

[13] “Nvidia, nvidia compute ptx: Parallel thread execution.”
[14] S. Bochkanov and V. Bystritsky, “Alglib-a cross-platform numerical

analysis and data processing library,” ALGLIB Project. Novgorod, Rus-
sia, 2011.

[15] S. Xiao and W. chun Feng, “Inter-block gpu communication via fast
barrier synchronization,” Dept. of Computer Science Virginia Tech,
Tech. Rep., 2009.

[16] V. Volkov, “Better performance at lower occupancy,” in Proceedings of
the GPU Technology Conference, GTC, vol. 10. San Jose, CA, 2010.

[17] M. Harris et al., “Optimizing parallel reduction in cuda,” NVIDIA
Developer Technology, vol. 2, no. 4, 2007.

[18] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda
graph algorithms at maximum warp,” in Proc. of ACM PPoPP, 2011,
pp. 267–276.

[19] F. Busato and N. Bombieri, “Bfs-4k: An efficient implementation of
bfs for kepler gpu architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 7, pp. 1826–1838, 2015.

[20] G. Ruetsch and P. Micikevicius, “Optimizing matrix transpose in cuda,”
Nvidia CUDA SDK Application Note, vol. 18, 2009.

	Introduction
	Related work
	Microbenchmarks
	Microbenchmark Development
	GPU Device Characterization through Microbenchmarks

	Optimization Criteria
	Host Synchronization
	Device Synchronization
	Thread Divergence
	Warp Load Balancing
	Streaming Multiprocessor (SM) Load Balancing
	L1/L2 Granularity
	Shared Memory Efficiency
	Throughput/Occupancy

	Performance Prediction
	Experimental Results
	Case study 1: Parallel Reduction
	Case study 2: BFS
	Case study 3: Matrix Transpose

	Remarks
	References

