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Let E be a directed graph, K any field, and let LK(E)
denote the Leavitt path algebra of E with coefficients 
in K. For each rational infinite path c∞ of E we explicitly 
construct a projective resolution of the corresponding Chen 
simple left LK(E)-module V[c∞]. Further, when E is row-
finite, for each irrational infinite path p of E we explicitly 
construct a projective resolution of the corresponding Chen 
simple left LK(E)-module V[p]. For Chen simple modules 
S, T we describe Ext1LK(E)(S, T ) by presenting an explicit 
K-basis. For any graph E containing at least one cycle, this 
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Chen simple module description guarantees the existence of indecomposable left 
LK(E)-modules of any prescribed finite length.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Given any directed graph E and field K, one may construct the Leavitt path alge-
bra of E with coefficients in K (denoted LK(E)), as first described in [2] and [3]. Since 
their introduction, various structural properties of the algebras LK(E) have been dis-
covered, with a significant number of the results in the subject taking on the following 
form: LK(E) has some specified algebraic property if and only if E has some specified 
graph-theoretic property. (The structure of the field K often plays no role in results 
of this type.) A few (of many) examples of such results include a description of those 
Leavitt path algebras which are simple; purely infinite simple; finite dimensional; prime; 
primitive; exchange; etc.

Although there are graphs for which the structure of corresponding Leavitt path 
algebra is relatively pedestrian (e.g., is a direct sum of matrix rings either over K, 
or over the Laurent polynomial algebra K[x, x−1], or some combination thereof), the 
less-mundane examples of Leavitt path algebras exhibit somewhat exotic behavior. For 
instance, the prototypical Leavitt path algebra A = LK(Rn) (n ≥ 2), which arises from 
the graph Rn having one vertex and n loops, has the property that A ∼= An as left 
(or right) A-modules. Analogous “super decomposability” properties are also found in 
other important classes of Leavitt path algebras. These types of structural properties 
lead to a dearth (if not outright absence) of indecomposable one-sided LK(E)-ideals, 
which subsequently makes the search for simple (and, more generally, indecomposable) 
modules over Leavitt path algebras somewhat of a challenge.

For a graph E, an infinite path in E is a sequence of edges e1e2e3 · · ·, for which 
s(ei+1) = r(ei) for all i ∈ N. In [6], Chen produces, for each infinite path p in E, a simple 
left LK(E)-module V[p]. Further, Chen describes, for each sink vertex w of E, a simple 
left LK(E)-module Nw.

In Section 2 we produce explicit projective resolutions for Chen simple modules. As 
a result, we will see in Theorem 2.8 that V[c∞] is finitely presented for any closed path 
c. Further, in Theorem 2.20 we give necessary and sufficient conditions on a row-finite 
graph E which ensure that V[p] is not finitely presented for an irrational infinite path p. In 
Section 3 we describe the extension groups Ext1(S, T ) corresponding to any pair of Chen 
simple modules S, T . Using some general results about uniserial modules over hereditary 
rings, we conclude by showing (Corollary 3.25) how our description of Ext1(S, S) guar-
antees the existence of indecomposable LK(E)-modules of any prescribed finite length.

We set some notation. A (directed) graph E = (E0, E1, s, r) consists of a vertex set E0, 
an edge set E1, and source and range functions s, r : E1 → E0. For v ∈ E0, the set of 
edges {e ∈ E1 | s(e) = v} is denoted s−1(v). E is called finite in case both E0 and E1
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are finite sets. E is called row-finite in case s−1(v) is finite for every v ∈ E0. A path α in 
E is a sequence e1e2 · · · en of edges in E for which r(ei) = s(ei+1) for all 1 ≤ i ≤ n − 1. 
We say that such α has length n, and we write s(α) = s(e1) and r(α) = r(en). We view 
each vertex v ∈ E0 as a path of length 0, and denote v = s(v) = r(v). We denote the set 
of paths in E by Path(E). A path σ = e1e2 · · · en in E is closed in case r(en) = s(e1). 
Following [6] (but not standard in the literature), a closed path σ is called simple in 
case σ �= βm for any closed path β and integer m ≥ 2. A sink in E is a vertex w ∈ E0

for which the set s−1(w) is empty, while an infinite emitter in E is a vertex u ∈ E0 for 
which the set s−1(u) is infinite.

For any field K and graph E the Leavitt path algebra LK(E) has been the focus 
of sustained investigation since 2004. We give here a basic description of LK(E); for 
additional information, see [2] or [1]. Let K be a field, and let E = (E0, E1, s, r) be a 
directed graph with vertex set E0 and edge set E1. The Leavitt path K-algebra LK(E)
of E with coefficients in K is the K-algebra generated by a set {v | v ∈ E0}, together 
with a set of symbols {e, e∗ | e ∈ E1}, which satisfy the following relations:

(V) vu = δv,uv for all v, u ∈ E0,
(E1) s(e)e = er(e) = e for all e ∈ E1,
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,

(CK1) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1, and
(CK2) v =

∑
{e∈E1|s(e)=v} ee

∗ for every v ∈ E0 for which 0 < |s−1(v)| < ∞.

An alternate description of LK(E) may be given as follows. For any graph E let 
Ê denote the “double graph” of E, gotten by adding to E an edge e∗ in a reversed 
direction for each edge e ∈ E1. Then LK(E) is the usual path algebra KÊ, modulo the 
ideal generated by the relations (CK1) and (CK2).

It is easy to show that LK(E) is unital if and only if |E0| is finite; in this case, 
1LK(E) =

∑
v∈E0 v. Every element of LK(E) may be written as 

∑n
i=1 kiαiβ

∗
i , where ki

is a nonzero element of K, and each of the αi and βi are paths in E. If α ∈ Path(E)
then we may view α ∈ LK(E), and will often refer to such α as a real path in LK(E); 
analogously, for β = e1e2 · · · en ∈ Path(E) we often refer to the element β∗ = e∗n · · · e∗2e∗1
of LK(E) as a ghost path in LK(E). The map KE → LK(E) given by the K-linear 
extension of α 	→ α (for α ∈ Path(E)) is an injection of K-algebras by [1, Corollary 
1.5.12].

The ideas presented in the following few paragraphs come from [6]; however, some of 
the notation we use here differs from that used in [6], in order to make our presentation 
more notationally consistent with the general body of literature regarding Leavitt path 
algebras.

Let p be an infinite path in E; that is, p is a sequence e1e2e3 · · ·, where ei ∈ E1 for 
all i ∈ N, and for which s(ei+1) = r(ei) for all i ∈ N. We emphasize that while the 
phrase infinite path in E might seem to suggest otherwise, an infinite path in E is not 
an element of Path(E), nor may it be interpreted as an element of the path algebra KE



G. Abrams et al. / Journal of Algebra 431 (2015) 78–106 81
nor of the Leavitt path algebra LK(E). (Such a path is sometimes called a left-infinite 
path in the literature.) We denote the set of infinite paths in E by E∞.

For p = e1e2e3 · · · ∈ E∞ and n ∈ N we denote by τ≤n(p), or often more efficiently by 
pn, the (finite) path e1e2 · · · en, while we denote by τ>n(p) the infinite path en+1en+2 · · ·. 
We note that τ≤n(p) is an element of Path(E) (and thus may be viewed as an element 
of LK(E)), and that p is the concatenation p = τ≤n(p) · τ>n(p).

Let c be a closed path in E. Then the path ccc · · · is an infinite path in E, which we 
denote by c∞. We call an infinite path of the form c∞ a cyclic infinite path. For c a 
closed path in E let d be the simple closed path in E for which c = dn. Then c∞ = d∞

as elements of E∞.
If p and q are infinite paths in E, we say that p and q are tail equivalent (written 

p ∼ q) in case there exist integers m, n for which τ>m(p) = τ>n(q); intuitively, p ∼ q

in case p and q eventually become the same infinite path. Clearly ∼ is an equivalence 
relation on E∞, and we let [p] denote the ∼ equivalence class of the infinite path p.

The infinite path p is called rational in case p ∼ c∞ for some closed path c. By a 
previous observation, we may assume without loss of generality that such c is a simple 
closed path. In particular, for any closed path c we have that c∞ is rational. If p ∈ E∞

is not rational we say p is irrational.

Example 1.1. Let R2 denote the “rose with two petals” graph

•ve f .

Then q = efeffefffeffffe · · · is an irrational infinite path in R∞
2 . Indeed, it is easy to 

show that there are uncountably many distinct irrational infinite paths in R∞
2 . We note 

additionally that there are infinitely many simple closed paths in Path(R2), for instance, 
any path of the form ef i for i ∈ Z

+.

Let M be a left LK(E)-module. For each m ∈ M we define the LK(E)-homomorphism 
ρ̂m : LK(E) → M , given by ρ̂m(r) = rm. The restriction of the right-multiplication map 
ρ̂m may also be viewed as an LK(E)-homomorphism from any left ideal I of LK(E) into 
M . When I = LK(E)v for some vertex v of E, we will denote ρ̂m simply by ρm.

Following [6], for any infinite path p in E we construct a simple left LK(E)-module 
V[p], as follows.

Definition 1.2. Let p be an infinite path in the graph E, and let K be any field. Let V[p]
denote the K-vector space having basis [p], that is, having basis consisting of distinct 
elements of E∞ which are tail-equivalent to p. For any v ∈ E0, e ∈ E1, and q =
f1f2f3 · · · ∈ [p], define

v · q =
{
q if v = s(f1) e · q =

{
eq if r(e) = s(f1) and
0 otherwise, 0 otherwise,
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e∗ · q =
{
τ>1(q) if e = f1
0 otherwise.

Then the K-linear extension to all of V[p] of this action endows V[p] with the structure 
of a left LK(E)-module.

Theorem 1.3. (See [6, Theorem 3.3].) Let E be any directed graph and K any field. Let 
p ∈ E∞. Then the left LK(E)-module V[p] described in Definition 1.2 is simple. Moreover, 
if p, q ∈ E∞, then V[p] ∼= V[q] as left LK(E)-modules if and only if p ∼ q, which happens 
precisely when V[p] = V[q].

We will refer to a module of the form V[p] as presented in Theorem 1.3 as a Chen 
simple module.

For any sink w in a graph E, Chen in [6] presents a construction, similar in flavor to 
the one given in Definition 1.2, of a simple left LK(E)-module Nw. He then shows that 
Nw is isomorphic as a left LK(E)-module to the left ideal LK(E)w of LK(E) generated 
by w. Observe that, for any sink w, the ideal LK(E)w is spanned by the paths in E
ending in w. Moreover for any i ∈ Z

+, we get that wi = w and thus we can consider 
w = w∞ as an element in E∞. For these reasons, for any sink w of E, we refer to 
Nw = LK(E)w as a Chen simple module and, for consistency, we denote Nw by V[w∞].

Remark 1.4. By invoking a powerful result of Bergman, it was established in [3, The-
orem 3.5] that, when E is row-finite, then LK(E) is hereditary, i.e., every left ideal of 
LK(E) is projective. This presumably could make the search for projective resolutions of 
various LK(E)-modules somewhat easier, in that the projectivity of left ideals is already 
a given. However, much of the strength of our results lies in our explicit description of 
the kernels of germane maps; for instance, it is these explicit descriptions which will 
allow us to analyze the Ext1 groups of the Chen simple modules.

A significant majority of the structural properties of a Leavitt path algebras LK(E)
do not rely on the specific structure of the field K. The results contained in this article 
are no exceptions. So while each of the statements of the results made herein should 
also contain the explicit hypothesis “Let K be any field”, we suppress this statement 
throughout for efficiency. For a field K, K× denotes the nonzero elements of K.

2. Projective resolutions of Chen simple modules over LK(E)

The goal of this section is to present an explicit description of a projective resolution 
of S, where S is a Chen simple module over the Leavitt path algebra LK(E). Such an 
explicit description will provide a strengthening of some previously established results 
(see [4, Proposition 4.1]), as well as provide the necessary foundation for subsequent 
results. As we shall see, the description of projective resolutions, as well as the description 
of the Ext1 groups, of Chen simple modules will proceed based on which of the following 
three types describes the module:
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(1) V[w∞] ∼= LK(E)w where w is a sink,
(2) V[c∞] where c is a simple closed path;
(3) V[q] where q is an irrational infinite path.

Let v be any vertex in E. Since v is an idempotent, the left ideal LK(E)v is a projective 
left LK(E)-module. Therefore projective resolutions of Chen simple modules of type 1 
are easy:

Proposition 2.1 (Type (1)). Let w be a sink in E. Then the Chen simple left module 
V[w∞] is projective.

Proof. We have V[w∞] ∼= LK(E)w as left LK(E)-modules by [6]. �
We now begin the process of describing projective resolutions of Chen simple modules 

of the second type, namely, of the form V[c∞] for c a simple closed path.

Notations. Let c = e1e2 · · · et be a simple closed path in E, with v = s(e1) = r(et).

(1) For 0 ≤ i ≤ t we define ci := e1e2 · · · ei and di := ei+1ei+2 · · · et (where c0 = v = dt
and ct = c = d0). Then clearly c = cidi for each 0 ≤ i ≤ t.

(2) For n ≥ 0 we let c−n denote (c∗)n, and let c0 denote v = s(c).
(3) An element μ of LK(E) is said to be a standard form monomial in case there exist 

α, β ∈ Path(E) for which μ = αβ∗. We denote the set of standard form monomials in 
LK(E) by S. For μ = αβ∗ a standard form monomial we define r(μ) := r(β∗) = s(β); 
that is, r(μ) is the unique element v ∈ E0 for which μv = μ. Define

S1(c) := {μ ∈ S | μ · cN = 0 in LK(E) for some N ∈ N}, and S2(c) := S \ S1(c).

Although S1(c) and S2(c) depend on c, we will often simply write S1 and S2 for 
these sets.

By analyzing the form of monomials in LK(E), we get the following description of 
the elements of S1 and S2.

Lemma 2.2. Let 0 �= μ ∈ S. If c is a sink then μ ∈ S1 if and only if r(μ) �= c. If c is a 
closed path e1e2 · · · et, then μ ∈ S1 if and only if μ is of one of the following two forms:

(1) r(μ) �= s(c) (i.e., μ · s(c) = 0 in LK(E)), or
(2) μ = μ′f∗c∗i (c∗)n for some n, i ∈ Z

+, some μ′ ∈ S, and some f ∈ E1 for which 
s(f) = s(ei+1) but f �= ei+1.

Consequently, 0 �= μ ∈ S2 if and only if μ = αc∗i (c∗)n for some path α in E, and some 
pair of non-negative integers n, i.
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Lemma 2.3. Let c be a closed path in the graph E, and let v = s(c).

(1) For any z ∈ Z we have cz − v ∈ LK(E)(c − v).
(2) Suppose μ ∈ S1(c). Then μ ∈ (

∑
u∈E0\{v} LK(E)u) 

⋃
LK(E)(c − v).

Proof. (1) If z = 0 we have s(c) − v = 0 = 0(c − v). For z > 0 we have cz − v =
(cz−1 + cz−2 + · · · + c + v)(c − v). For z < 0 we have cz − v = −cz(c−z − v), which is in 
LK(E)(c − v) by the previous case.

(2) Suppose μ ∈ S1(c). If r(μ) �= v then μ ∈
∑

u∈E0\{v} LK(E)u. On the other hand, 
suppose r(μ) = v, and that μ ·cN = 0 for some N ∈ N. But r(μ) = v gives μv = μ, so that 
with the hypothesis μ = −μ(cN−v), which gives that μ ∈ LK(E)(cN−v) ⊆ LK(E)(c −v)
by the previous paragraph. �
Remark 2.4. Let p = e1e2 · · · be an infinite path in E. If p = τ>r(p) for some r > 0, 
then p is a rational path of the form p = c∞, where c is the closed path e1e2 · · · er. This 
follows from the observation that p = τ>r(p) implies p = τ>ir(p) for all i ∈ N.

Lemma 2.5. Let c be a simple closed path e1e2 · · · et in E with s(c) = r(c) = v. Suppose 
α and β are paths in E for which 0 �= α · c∞ = β · c∞ in V[c∞]. Then there exists N ∈ Z

+

for which α = βcN or β = αcN .
Consequently, α · c∞ = β · c∞ in V[c∞] implies α− β ∈ LK(E)(c − v).

Proof. Assume α = f1f2 · · · f� and β = g1g2 · · · gm, where the fi and gj are edges in E. 
If � = m, from α · c∞ = β · c∞ we get α = β. So assume m > �; we have

g1 · · · g�g�+1 · · · gm = f1 · · · f�cne1e2 · · · ek

with m − � = k + n × t, k ≤ t. If k < t, from α · c∞ = β · c∞ we get

c∞ = ck+1 · · · ct · c∞ = τ>k(c∞);

then by Remark 2.4 we would have c∞ = (e1 · · · ek)∞, a contradiction since c is simple. 
Therefore k = t and β = αcn+1. The case m < � is identical.

For the second statement, note that 0 �= α · c∞ = β · c∞ gives r(α) = r(β); denote this 
common vertex by v. So if α = βcn then α − β = β(cn − v), which is in LK(E)(c − v)
by Lemma 2.3(1). The case β = αcn is identical. �
Proposition 2.6. Let E be any graph. Let c be a simple closed path in E, and let v denote 
s(c) = r(c). Let ρc∞ : LK(E)v → V[c∞] and ρ̂c∞ : LK(E) → V[c∞] denote the right 
multiplication by c∞. Then

Ker(ρc∞) = LK(E)(c− v) and Ker(ρ̂c∞) =

⎛
⎝ ∑

0

LK(E)u

⎞
⎠⊕ LK(E)(c− v).
u∈E \{v}
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Proof. Since (c − v) · c∞ = c∞ − c∞ = 0 in V[c∞], we get LK(E)(c − v) ⊆ Ker(ρc∞). 
We now proceed to show that Ker(ρc∞) ⊆ LK(E)(c − v). For notational convenience we 
denote the left ideal LK(E)(c − v) of LK(E) by J .

So let λ ∈ Ker(ρc∞), and write

λ =
∑
μ∈M

kμμ

where M ⊆ S is some finite set of distinct standard form monomials in LK(E), and 
kμ ∈ K×. By Lemma 2.3 we may assume that M ⊆ S2; that is, by Lemma 2.2, we may 
assume that, for each μ ∈ M, μ = αμc

∗
iμ

(c∗)nμ for some path αμ, some 0 ≤ iμ ≤ t, and 
some nμ ≥ 0.

So we have λ =
∑

μ∈M kμαμc
∗
iμ

(c∗)nμ . By hypothesis λ · c∞ = 0 in V[c∞], so that

∑
μ∈M

kμαμc
∗
iμ(c∗)nμ · c∞ = 0 in V[c∞].

But (c∗)n · c∞ = c∞ in V[c∞] for any n ∈ Z. So

∑
μ∈M

kμαμc
∗
iμ · c∞ = 0 in V[c∞].

Also, c∗i · c∞ = di · c∞ in V[c∞] for any 0 ≤ i ≤ t. So

∑
μ∈M

kμαμdiμ · c∞ = 0 in V[c∞].

Now define

λ′ =
∑
μ∈M

kμαμdiμ .

Then the previous equation gives that λ′ ∈ Ker(ρc∞).
We claim that λ ∈ J if and only if λ′ ∈ J . To show this, we show that λ = λ′ as 

elements of LK(E)/J . We note first that c∗i = di in LK(E)/J ; this follows immediately 
from the observation that di − c∗i = c∗i (c − v) ∈ J . But then in LK(E)/J we have

λ =
∑
μ∈M

kμαμc∗iμ(c∗)nμ

=
∑
μ∈M

kμαμc
∗
iμ(c∗)nμ

=
∑

kμαμc
∗
iμv by Lemma 2.3(1)
μ∈M
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=
∑
μ∈M

kμαμc∗iμ

=
∑
μ∈M

kμαμdiμ by the above note

=
∑
μ∈M

kμαμdiμ

= λ′.

Thus in order to show that λ ∈ J , it suffices to show that λ′ ∈ J , i.e., that λ′ = 0
in LK(E)/J . But λ′ ∈ Ker(ρc∞), i.e., 

∑
μ∈M kμαμdiμ · c∞ = 0 in V[c∞]. Now partition 

M = ��
t=1Mt in such a way that μ ∼ μ′ ∈ Mt (for some t) if and only if αμdiμ · c∞ =

αμ′diμ′ · c∞ in V[c∞].
By Lemma 2.5, if μ ∼ μ′ then αμdiμ = αμ′diμ′ in LK(E)/J ; we denote this common 

element of LK(E)/J by xt.
Now 

∑
μ∈M kμαμdiμ · c∞ = 0 gives

�∑
t=1

∑
μ∈Mt

kμαμdiμ · c∞ = 0,

which by the linear independence of sets of distinct elements of the form α · c∞ in V[c∞]
gives 

∑
μ∈Mt

kμ = 0 for each 1 ≤ t ≤ �. But then

λ′ =
∑
μ∈M

kμαμdiμ =
�∑

t=1

∑
μ∈Mt

kμαμdiμ

=
�∑

t=1

∑
μ∈Mt

kμαμdiμ =
�∑

t=1

∑
μ∈Mt

kμxt

=
�∑

t=1
(
∑

μ∈Mt

kμ)xt =
�∑

t=1
(0)xt = 0,

which establishes that Ker(ρc∞) ⊆ LK(E)(c −v), as desired. The claim about ρ̂c∞ follows 
easily from LK(E) =

∑
u∈E0\{v} LK(E)u ⊕ LK(E)v. �

Lemma 2.7. Let E be any graph. Let c be a simple closed path in E based at the vertex 
v, and let r ∈ LK(E)v. Then r(c − v) = 0 in LK(E) if and only if r = 0. In particular, 
the map

ρc−v : LK(E)v → LK(E)(c− v)

is an isomorphism of left LK(E)-modules.
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Furthermore, if E is a finite graph, then the map

ρ̂c−1 : LK(E) → LK(E)(c− 1)

is an isomorphism of left LK(E)-modules.

Proof. Let r ∈ LK(E)v. If r(c −v) = 0 then rc = rv = r, which recursively gives rcj = r

for any j ≥ 1. Now write r =
∑n

i=1 kiαiβi
∗, where the αi and βi are in Path(E). We note 

that, for any m ∈ N, if β ∈ Path(E) has length at most m, then β∗ has the property 
that β∗cm is either 0 or an element of Path(E) in LK(E). Now let N be the maximum 
length of the paths in the set {β1, β2, . . . , βn}. Then the above discussion shows that 
rcN is an element of LK(E)v of the form 

∑n
i=1 kiγi, where γi ∈ Path(E) for 1 ≤ i ≤ n; 

that is, rcN ∈ KE. But rcN = r, so that r ∈ KE. However, the equation rc = r (i.e., 
r(c − v) = 0) has only the zero solution in KE by a degree argument. So r = 0.

The second statement is established in an almost identical manner. �
We now have all the tools to describe a projective resolution for the modules V[c∞]

where c is a simple closed path, thus completing the study of the second type of Chen 
simple module.

Theorem 2.8 (Type(2)). Let E be any graph. Let c be a simple closed path in E, with 
v = s(c). Then the Chen simple module V[c∞] is finitely presented. Indeed, a projective 
resolution of V[c∞] is given by

0 LK(E)v
ρc−v

LK(E)v
ρc∞

V[c∞] 0 .

If E is a finite graph, an alternate projective resolution of V[c∞] is given by

0 LK(E)
ρ̂c−1

LK(E)
ρ̂c∞

V[c∞] 0 .

Proof. V[c∞] is a simple left LK(E)-module by Theorem 1.3, and c∞ = vc∞ is a nonzero 
element in V[c∞]. So the map ρc∞ : LK(E)v → V[c∞] is surjective. By Proposition 2.6 we 
have Ker(ρc∞) = LK(E)(c −v). We get the first short exact sequence since by Lemma 2.7
the map

ρc−v : LK(E)v → LK(E)(c− v)

is an isomorphism of left LK(E)-modules. Moreover since v is idempotent, LK(E)v is a 
projective left LK(E)-module.

Assume now that E is a finite graph. Let us see that Ker(ρ̂c∞) = LK(E)(c − 1). 
Since Ker(ρ̂c∞) clearly contains u for any u �= v ∈ E0, we have c − 1 = c −

∑
u∈E0 u =

(c − v) −
∑

u �=v u ∈ Ker(ρ̂c∞). But for any u �= v = s(c) we have uc = 0, so that 
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u = −u(c −1) ∈ LK(E)(c −1). Since c −v = v(c −1) ∈ LK(E)(c −1), using Proposition 2.6
we have shown that each of the generators of Ker(ρ̂c∞) is in LK(E)(c − 1). But by 
Lemma 2.7, ρ̂c−1 : LK(E) → LK(E)(c − 1) is an isomorphism of left LK(E)-modules, 
thus establishing the result. �
Corollary 2.9. Let E be any graph. Let c be a simple closed path in E, with v = s(c). 
Then the Chen simple module V[c∞] has projective dimension 1.

Proof. From Theorem 2.8 we get the exact sequence

0 LK(E)v
ρc−v

LK(E)v
ρc∞

V[c∞] 0 .

Since v is an idempotent in LK(E), the left module LK(E)v is projective and hence 
V[c∞] has projective dimension ≤ 1. The left module V[c∞] is not projective, otherwise the 
above sequence splits and LK(E)v would contain a direct summand isomorphic to V[c∞]; 
in particular LK(E)v would contain a nonzero element α (the element corresponding to 
c∞) such that cα = α and hence cnα = α for each n ∈ N. This is impossible by a degree 
argument. �

Before we present a projective resolution of the third type of Chen simple module, we 
study, in the situation where E is row-finite, right multiplication by any of the monomial 
generators of V[c∞] for c a simple closed path or a sink. We first introduce some notation 
which will be useful throughout the remainder of the section.

Definition 2.10. Let E be any graph. Let β = e1e2 · · · en be a path in E. For each 
1 ≤ i ≤ n let βi denote e1e2 · · · ei. For each 0 ≤ i ≤ n − 1 let

Xi(β) = {f ∈ E1 | s(f) = s(ei+1), and f �= ei+1}.

The elements of Xi(β) are called the exits of β at s(ei+1). Note that, for a given i, it is 
possible that Xi(β) = ∅. For each i ≥ 0 let Ji(β) be the left ideal of LK(E) defined by 
setting

Ji(β) =
∑

f∈Xi(β)

LK(E)f∗β∗
i .

(So possibly Ji(β) = {0}, precisely when Xi(β) = ∅.) When the path β is clear from 
context, we may denote Xi(β) (resp., Ji(β)) by Xi (resp., Ji).

Now let p = e1e2e3 · · · ∈ E∞ be an infinite path in E. Let p0 denote s(e1), and for 
each i ≥ 0 let pi+1 denote τ≤i+1(p) = e1e2 · · · ei+1. For each i ≥ 0 we define

Xi(p) := Xi(pi+1), and Ji(p) := Ji(pi+1).
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Definition 2.11. Let E be any graph. Let β = e1e2 · · · en be a path in E for which no 
vertex of β is an infinite emitter. For 0 ≤ i ≤ n − 1 let

Fi(β) =
∑

f∈Xi(β)

ff∗ ∈ LK(E).

Note that this sum is finite by the hypothesis on β. (We interpret Fi(β) as 0 in case 
Xi(β) = ∅.) In particular, by the (CK2) relation we have

s(ei+1) − Fi(β) = ei+1e
∗
i+1

for 0 ≤ i ≤ n − 1, and by (CK1) that Fi(β)ei+1 = 0.

Lemma 2.12. Let E be any graph. Let α = e1e2 · · · en be a path in E for which no vertex 
of α is an infinite emitter. Let αi denote e1e2 · · · ei for each 1 ≤ i ≤ n (so in particular 
α = αn). Suppose q, x ∈ LK(E) satisfy the equation qα = x in LK(E). Then

q = xα∗ + qαn−1Fn−1(α)α∗
n−1 + · · · + qα1F1(α)α∗

1 + qF0(α).

Proof. Multiply both sides of the equation qα = x by e∗n, to get

xe∗n = qαe∗n = qe1 · · · en−1ene
∗
n = qe1 · · · en−1(s(en) − Fn−1(α)).

Multiplying the final term and switching sides, this gives

qe1 · · · en−1 = xe∗n + qe1 · · · en−1Fn−1(α).

Multiplying now both sides of this displayed equation on the right by e∗n−1, and proceed-
ing in the same way, we easily get

qe1 · · · en−2 = xe∗ne
∗
n−1 + qe1 · · · en−1Fn−1(α)e∗n−1 + qe1 · · · en−2Fn−2(α).

Continuing in this way, after n steps we reach

q = xe∗ne
∗
n−1 · · · e∗1 + qe1 · · · en−1Fn−1(α)e∗n−1 · · · e∗1 + · · · + qe1F1(α)e∗1 + qF0(α)

as desired. �
Of course, if c is a simple closed path or a sink, any nonzero element of the Chen simple 

module V[c∞] generates V[c∞]; this is in particular true of any “monomial” element αc∞, 
where α is a path in E for which r(α) = s(c). We describe here the projective resolution 
corresponding to such elements, in case E is row-finite.
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Theorem 2.13 (Types (1) & (2)). Let E be any graph. Let c be a simple closed path or a 
sink in E, with v = s(c). Let α = e1e2 · · · en be any path in E for which no vertex of α
is an infinite emitter, and for which r(α) = r(en) = v. Let u denote s(α) = s(e1). Then 
the following is a projective resolution of the Chen simple LK(E)-module V[c∞]:

0 LK(E)(αcα∗ − u) LK(E)u
ραc∞

V[c∞] 0 .

Proof. Since uα = α, we have that ραc∞(u) = αc∞ is a nonzero element of the Chen sim-
ple module V[c∞], so that ραc∞ is surjective. So we need only establish that Ker(ραc∞) =
LK(E)(αcα∗−u). Since ραc∞(αcα∗−u) = (αcα∗−u)αc∞ = αcc∞−αc∞ = 0, it remains 
only to show that Ker(ραc∞) ⊆ LK(E)(αcα∗ − u).

So let q ∈ Ker(ραc∞); specifically, qαc∞ = 0. But then qα ∈ Ker(ρc∞), which, by 
Theorem 2.8, is precisely LK(E)(c − v). So

qα = r(c− v)

for some r ∈ LK(E). By Lemma 2.12, we have

q = r(c− v)α∗ + qαn−1Fn−1(α)α∗
n−1 + · · · + qα1F1(α)α∗

1 + qF0(α).

Using this representation of q, it suffices to show that each of the summands on the 
right hand side is an element of LK(E)(αcα∗ − u). Since easily we get (c − v)α∗ =
α∗(αcα∗−u), we have that r(c −v)α∗ ∈ LK(E)(αcα∗−u). But for each 0 ≤ i ≤ n −1 we 
have Fi(α)α∗

iα = Fi(α)ei+1 · · · en = 0 (using the observation made in Definition 2.11). 
Using this, we see that qαiFi(α)α∗

i = −qαiFi(α)α∗
i (αcα∗ − u), so that qαiFi(α)α∗

i ∈
LK(E)(αcα∗ − u) for each 0 ≤ i ≤ n − 1, thus completing the proof. �

We now describe a projective resolution of the third type of Chen simple module, 
namely, one corresponding to an irrational infinite path. Whereas a Chen simple corre-
sponding to a rational path is always finitely presented, we will see that the determination 
of the finite-presentedness of a Chen simple corresponding to an irrational infinite path 
will depend on the structure of the graph itself.

Lemma 2.14. Let E be any graph. Let p be an irrational infinite path in E with s(p) = v, 
and let ρp : LK(E)v → V[p] be the map r 	→ rp. Let x ∈ Ker(ρp). Then there exists 
nx ∈ N such that xτ≤nx

(p) = 0 in LK(E). In other words, if xp = 0 in V[p], then 
xpnx

= 0 in LK(E) for some finite initial segment pnx
of p.

Proof. Let x =
∑m

i=1 kiαiβ
∗
i ∈ Ker(ρp), where αi, βi ∈ Path(E). Denote by N the 

maximum length of the βi, i = 1, . . . , m. We have

ρp(x) =
m∑

kiαiρp(β∗
i ) =

m∑
kiαiρτ>N (p)(β∗

i τ≤N (p)).

i=1 i=1
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Since the length of each βi is less than or equal to N , ti := β∗
i τ≤N (p) is either zero or a 

real path. Therefore

0 = ρp(x) =
m∑
i=1

kiαiρτ>N (p)(ti) = ρτ>N (p)(
m∑
i=1

kiαiti) = ρτ>N (p)(
m′∑
�=1

h�γ�)

=
m′∑
�=1

h�γ�τ>N (p),

where the γ� (1 ≤ � ≤ m′) are distinct elements of the form αiti in Path(E), and h� ∈ K. 
Since p is irrational and γ� (1 ≤ � ≤ m′) are distinct paths, we claim that the infinite 
paths γ�τ>N (p) (1 ≤ � ≤ m′) are distinct elements of V[p], as follows. Assume to the 
contrary that γiτ>N (p) = γjτ>N (p) for some i �= j; necessarily γi and γj have distinct 
lengths si and sj . Assume si − sj = s > 0; then

γiτ>N (p) = γjκiτ>N (p) = γjτ>N (p),

and hence κiτ>N (p) = τ>N (p), where κi is a suitable element of Path(E) having length s. 
Therefore τ>N (p) = τ>s(τ>N (p)) = τ>s+N (p). But this property implies by Remark 2.4
that p is rational, contrary to hypothesis. Thus the γ�τ>N (p) (1 ≤ � ≤ m′) are distinct 
infinite paths.

Consequently, the set {γ�τ>N (p) | 1 ≤ � ≤ m′} is linearly independent over K, so 
the previously displayed equation 0 =

∑m′

�=1 h�γ�τ>N (p) yields that h� = 0 for each 
1 ≤ � ≤ m′. Therefore

xτ≤N (p) =
m∑
i=1

kiαiβ
∗
i τ≤N (p) =

m∑
i=1

kiαiti =
m′∑
�=1

h�γ� = 0,

as desired. �
Lemma 2.15. Let E be any graph. Suppose β is a path of length n in E for which no 
vertex of β is an infinite emitter, and for which s(β) = v. For each 0 ≤ i ≤ n − 1 let 
Ji(β) be the left ideal of LK(E) given in Definition 2.10. If x ∈ LK(E)v has xβ = 0, 
then x ∈

∑n−1
i=0 Ji(β).

Proof. Write β = e1e2 · · · en. For each 1 ≤ i ≤ n let βi = e1e2 · · · ei. So β = βn, and 
thus by hypothesis we are assuming that xβn = 0. Then using the (CK2) relation at 
the vertices s(e1), s(e2), · · · , s(en) in order (this is possible by the hypothesis on β), and 
interpreting empty sums as 0, we get

x = xv = x(
∑

ff∗ + β1β
∗
1) = x(

∑
ff∗) + xβ1r(β1)β∗

1

f∈X0(β) f∈X0(β)
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= x(
∑

f∈X0(β)

ff∗) + xβ1(
∑

f∈X1(β)

ff∗ + e2e
∗
2)β∗

1

= x(
∑

f∈X0(β)

ff∗) + xβ1(
∑

f∈X1(β)

ff∗)β∗
1 + xβ2r(β2)β∗

2

= · · ·

= x(
∑

f∈X0(β)

ff∗) + xβ1(
∑

f∈X1(β)

ff∗)β∗
1 + · · · + xβn−1(

∑
f∈Xn−1(β)

ff∗)β∗
n−1

+ xβn−1ene
∗
nβ

∗
n−1

= x(
∑

f∈X0(β)

ff∗) + xβ1(
∑

f∈X1(β)

ff∗)β∗
1 + · · · + xβn−1(

∑
f∈Xn−1(β)

ff∗)β∗
n−1 + xβnβ

∗
n

= x(
∑

f∈X0(β)

ff∗) + xβ1(
∑

f∈X1(β)

ff∗)β∗
1 + · · · + xβn−1(

∑
f∈Xn−1(β)

ff∗)β∗
n−1 + 0,

with the final statement following from the hypothesis that xβ = xβn = 0. Thus

x =
∑

f∈X0(β)

(xf)f∗ +
∑

f∈X1(β)

(xβ1f)f∗β∗
1 + · · · +

∑
f∈Xn−1(β)

(xβn−1f)f∗β∗
n−1

∈
n−1∑
i=0

Ji(β). �

Lemma 2.16. Let E be a finite graph, and let p = e1e2 · · · ∈ E∞ be an irrational infinite 
path in E. Then Xi(p) is nonempty for infinitely many i ∈ Z

+. Consequently, in this 
case, Ji(p) is nonzero for infinitely many i ∈ Z

+.

Proof. Suppose to the contrary that there exists N ∈ N for which Xi(p) = ∅ for all i ≥ N . 
Since E0 is finite, there exist t, t′ ≥ N , t < t′, for which s(et) = s(et′). But Xt(p) = ∅
then gives et = et′ , and in a similar manner yields et+� = et′+� for all � ∈ Z

+. If d denotes 
the closed path etet+1 · · · et′−1, then we get p ∼ d∞, the desired contradiction. �

We note that Lemma 2.16 is not necessarily true without the finiteness hypothesis on 
the graph. For instance, let MN be the graph

•
e1 •

e2 •
e3 · · ·

and let p ∈ M∞
N

be the irrational infinite path e1e2 · · ·. Then Xi(p) = ∅ for all i ≥ 0.

Corollary 2.17. Let E be any graph. Let p ∈ E∞ be an irrational infinite path 
in E for which no vertex of p is an infinite emitter, and for which s(p) = v. Let 
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ρp : LK(E)v → V[p] be the map r 	→ rp. For each i ≥ 0 let Ji(p) be the left ideal of 
LK(E) given in Definition 2.10. Then

Ker(ρp) =
⊕∞

i=0
Ji(p).

Proof. Clearly, for every i ≥ 0, each element of Ji(p) is in Ker(ρp). Now suppose x ∈
LK(E) has xp = 0 in V[p]. By Lemma 2.14, xβ = 0 where β = pn = τ≤n(p) for some 
n ∈ N. Then Lemma 2.15, together with the definition of Ji(p) for p ∈ E∞, gives that 
Ker(ρp) =

∑∞
i=0 Ji(p).

Now suppose 
∑n

i=0 ri = 0 in LK(E), where ri ∈ Ji(p) for 0 ≤ i ≤ n. By construction, 
ripn = 0 for all i < n. On the other hand, for any f ∈ Xn(p), f∗p∗npnp

∗
n = f∗p∗n, so that 

rnpnp
∗
n = rn for all rn ∈ Jn(p). Thus multiplying both sides of the proposed equation ∑n

i=0 ri = 0 on the right by pnp∗n gives rn = 0. Using this same idea iteratively, we get 
ri = 0 for all 0 ≤ i ≤ n, so that the sum is indeed direct. �

We note that Corollary 2.17 is not necessarily true without the finite emitter hypoth-
esis on the vertices of p. For instance, let F be the graph

•w •v∞ e1 •
e2 •

e3 · · ·

where there are infinitely many edges {fi | i ∈ Z
+} from v to w. Let p be the irrational 

infinite path e1e2 · · ·, and let ρp : LK(E)v → V[p] as usual. Then easily x = v − e1e
∗
1 ∈

Ker(ρp). However, x /∈
∑∞

i=0Ji(p), since otherwise this would yield that v is a finite sum 
of e1e

∗
1 plus terms of the form rifif∗

i for ri ∈ LK(E), which cannot happen as v is an 
infinite emitter.

Remark 2.18. Corollary 2.17 shows that if E is row-finite and p is an irrational infinite 
path, then Ker(ρp) is generated by those ghost paths of LK(E) which annihilate some 
(finite) initial path of p. Effectively, this is the main difference between the rational and 
irrational cases; in the rational case, where p = d∞ and s(p) = v, there are additional 
elements in Ker(ρp) which are not of this form, namely, elements of the form r(d − v)
where r ∈ LK(E).

Lemma 2.19. Let p be an irrational infinite path in an arbitrary graph E. For f ∈ E1 let 
vf denote the vertex r(f). Then, for each i ≥ 0,

Ji(p) =
⊕

f∈Xi(p)

LK(E)f∗p∗i
∼=

⊕
f∈Xi(p)

LK(E)vf ,

as left LK(E)-modules. In particular, each Ji(p) is a projective left LK(E)-module.

Proof. By definition Ji(p) =
∑

f∈Xi(p) LK(E)f∗p∗i . We claim the sum is direct. So sup-
pose 0 =

∑
f∈X (p) rff

∗p∗i , with rf ∈ LK(E) for each f ∈ Xi(p). Without loss we may 

i
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assume that each expression rff∗ is nonzero, so that we may further assume without loss 
that rfvf = rf for each f ∈ Xi(p). Take g ∈ Xi(p); by multiplying 0 =

∑
f∈Xi(p) rff

∗p∗i
on the right by pig, and using the (CK1) relation, we get 0 = rgg

∗g = rg · vg = rg. Thus 
the sum is direct, so that Ji(p) = ⊕f∈Xi(p)LK(E)f∗p∗i . But for g ∈ Xi(p) it is easy to 
show that LK(E)g∗p∗i ∼= LK(E)vg, by the map x 	→ xpig. �
Theorem 2.20 (Type (3)). Let E be any graph. Let p ∈ E∞ be an irrational infinite path 
in E for which no vertex of p is an infinite emitter. Then the Chen simple LK(E)-module 
V[p] is finitely presented if and only if Xi(p) is nonempty only for finitely many i ∈ Z

+.
In particular, if E is a finite graph, then V[p] is not finitely presented.

Proof. Let v denote s(p). We consider the exact sequence

0 Ker(ρp) LK(E)v
ρp

V[p] 0 .

By Corollary 2.17 we have that Ker(ρp) = ⊕∞
i=0Ji(p). Furthermore, each Ji(p) is pro-

jective by Lemma 2.19, so the given exact sequence is a projective resolution of V[p]. 
Therefore V[p] is finitely presented if and only if Ji(p) is nonzero only for finitely many 
i ∈ Z

+, i.e. Xi(p) is nonempty only for finitely many i ∈ Z
+.

For the particular case, when E is finite then by Lemma 2.16 Ji(p) is nonzero for 
infinitely many i. �
Corollary 2.21. If E is a finite graph, and p ∈ E∞ is an irrational infinite path in E, 
then the Chen simple LK(E)-module V[p] has projective dimension 1.

Proof. From Corollary 2.17 we get the exact sequence

0
⊕∞

i=0Ji(p) LK(E)v
ρp

V[p] 0 .

Since v is an idempotent in LK(E), the left module LK(E)v is projective; by Lemma 2.19
also 

⊕∞
i=0Ji(p) is projective and hence V[p] has projective dimension ≤ 1. Since E is finite, 

Ji(p) is not zero for infinitely many i and hence 
⊕∞

i=0Ji(p) is not finitely generated. 
Then the left module V[p] is not projective, otherwise 

⊕∞
i=0Ji(p) would be a not finitely 

generated direct summand of a cyclic module: contradiction. �
Remark 2.22. Let MN be the graph

•
e1 •

e2 •
e3 · · ·

considered previously, and let p ∈ M∞
N

be the irrational infinite path e1e2e3 · · ·. Then 
Xi(p) = ∅ for all i ≥ 0. So by Corollary 2.17, the Chen simple module V[p] is isomorphic 
to LK(E)v, and hence it is projective.
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Example 2.23. We reconsider the graph R2 and irrational infinite path q = efeffefffe

· · · ∈ R∞
2 described in Example 1.1. Then, as R2 is finite, Theorem 2.20 yields that the 

Chen simple module V[q] is not finitely presented.

Remark 2.24. We note that Theorems 2.8 and 2.20 strengthen and sharpen [4, Propo-
sition 4.1], most notably because we have been able to explicitly describe a projective 
resolution of each of the Chen simple modules.

In [5, Theorem 4.12] it is shown that for any graph E, for any vertex v ∈ E0, L(E)v is 
a simple left ideal if and only if v is a line point, i.e. in the full subgraph of E generated 
by {u ∈ E0 | there is a path from v to u} there are no cycles, and there are no vertices 
which emit more than one edge. Our results allow us to recover [5, Theorem 4.12], as 
follows.

Corollary 2.25. Let E be any graph. Let u ∈ E0. Then LK(E)u is simple if and only if 
u is a line point.

Proof. There are three possibilities:

(1) there is a path α ∈ Path(E) with s(α) = u and for which r(α) = w is a sink in E;
(2) there is a path α ∈ Path(E) with s(α) = u and for which r(α) = v is the source of 

a simple closed path c;
(3) there is an infinite irrational path q for which s(q) = u.

If in α (cases 1 and 2) or in q (case 3) there is an infinite emitter x, then LK(E)x is 
not a simple submodule of LK(E)v (see [5, Lemma 4.3]). Therefore we can assume that 
α (cases 1 and 2) and q (case 3) have no infinite emitter.

Cases 1 and 2. By Theorem 2.13 LK(E)u is a simple module if and only if αcα∗ = u, 
where c is either a simple closed path or a sink. If c is a simple closed path, by a degree 
argument αcα∗ is not a vertex. If c is a sink and α = e1 · · · e� then αcα∗ = αα∗ =
e1 · · · e�e∗� · · · e∗1 is equal to u if and only if eie∗i = s(ei) for i = 1, . . . , �, i.e. if and only if 
s(ei) is the source of only one edge, i.e. u is a line point.

Case 3. By Corollary 2.17, LK(E)u is simple if and only if 
⊕∞

i=0 Ji(p) = 0 and the 
latter is equivalent to p having no exits, i.e. u is a line point. �
3. Extensions of Chen simple modules

In this section we use the results of Section 2 to describe Ext1LK(E)(S, T ), where S
and T are Chen simple modules over the Leavitt path algebra LK(E) corresponding to 
a finite graph E. As a consequence, this will allow us to (among other things) construct 
classes of indecomposable non-simple LK(E)-modules.

We give here a short review of Ext1; see e.g. [8] for more information. Let R be a ring, 
and let M, N be left R-modules. Suppose
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0 Q
μ

P
f

M 0

is a short exact sequence with P projective. Then there is an exact sequence of abelian 
groups

HomR(P,N)
μ∗ HomR(Q,N)

Δf

Ext1R(M,N) 0,

where μ∗(ϕ) = ϕ ◦ μ for ϕ ∈ HomR(P, N), and Δf is the “connecting morphism”. 
If μ is viewed as an inclusion of submodules, then μ∗(ϕ) = ϕ|Q, the restriction of ϕ
to Q. Exactness yields that Ext1R(M, N) = 0 if and only μ∗ is surjective. Moreover, 
Ext1R(M, N) �= 0 if and only if there exists a non-splitting short exact sequence

0 → N → L → M → 0,

i.e., L is a non-trivial extension of N by M . For instance if M, N are simple left 
R-modules, then Ext1R(M, N) �= 0 if and only if there exist indecomposable left 
R-modules of length 2 which are extensions of N by M . Finally, observe that if R is 
a K-algebra over a field K, then the abelian group Ext1R(M, N) has a natural structure 
of K-vector space for any left R-module M and N .

We outline our approach. There are three types of Chen simple modules: those of the 
form V[w∞] for a sink w; of the form V[c∞] for a simple closed path c; and of the form V[p]
for an irrational infinite path p. Let T denote any Chen simple module. In Lemma 3.1 we 
make the (trivial) observation that Ext1LK(E)(V[w∞], T ) = 0; in Theorem 3.13 we describe 
Ext1LK(E)(V[c∞], T ); and in Theorem 3.21 we describe Ext1LK(E)(V[p], T ). We recall that 
we are assuming w = w∞ ∈ E∞ for any sink w.

Lemma 3.1 (Type (1)). Let E be any graph. Let w be a sink in E, and let T denote 
any left LK(E)-module. Then Ext1LK(E)(V[w∞], T ) = 0, i.e. any extension of V[w∞] by T
splits.

Proof. This follows immediately from the fact that V[w] ∼= LK(E)w is a projective 
LK(E)-module (see Proposition 2.1). �
Definition 3.2. Let T be a Chen simple module. Denote by U(T ) the set

U(T ) := {v ∈ E0 | vT �= {0}} = {v ∈ E0 | there exists t ∈ T with vt �= 0}.

Remark 3.3. Let T be a Chen simple module and let q = e1e2 · · · ∈ E∞ such that 
T = V[q]. Then U(T ) consists of those vertices v for which there is a path α ∈ Path(E)
having s(α) = v and r(α) = s(ei) for some i ≥ 1. Equivalently, a vertex v ∈ U(T ) if 
and only if there is an infinite path tail-equivalent to q starting from v. Hence U(T ) is a 
feature of the Chen simple module T that can be read directly from the graph E.
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Definitions 3.4. Let E be any graph and let d be a simple closed path in E.
For any p ∈ E∞ we say that p is divisible by d if p = dp′ for some p′ ∈ E∞.
For any q ∈ E∞, we define the set

L(d,q) := {p ∈ E∞ | p ∼ q, s(p) = s(d), and p is not divisible by d} ⊆ V[q],

where V[q] is the Chen simple LK(E)-module generated by q.

An infinite path p is divisible by a simple closed path d ∈ E if and only if d = t≤�(p), 
where � is the length of d. The set L(d,q) consists of those infinite paths which start at 
s(d), and which eventually equal some tail of q, but do not start out by traversing the 
closed path d. Observe that the subset L(d,q) of V[q] does not depend on q but only on 
the equivalence class [q]. Let T = V[q]; if q is not tail equivalent to d∞, then there exists 
q′ ∼ q such that d � |q′ and hence T has a generator not divisible by d.

Remark 3.5. Let d be a simple closed path in E and q ∈ E∞.
(1) Suppose q is not tail equivalent to d∞ and consider the Chen simple module V[q]; 

we can assume without loss of generality that q is not divisible by d. The set L(d,q) is 
not empty if and only if s(d) belongs to U(V[q]); in such a case any 0 �= t ∈ V[q] for which 
s(d)t = t is a linear combination of infinite paths tail equivalent to q whose sources 
coincide with s(d). In particular, taking in account the divisibility by d of these infinite 
paths, t can be written in a unique way as

t = t0 + dt1 + d2t2 + · · · + dsts,

where the ti are K-linear combinations of elements in L(d,q) and ts �= 0. We call s ≥ 0
the d-degree of t and we denote it by degd(t).

(2) Suppose q = d∞. Then L(d,d∞) �= ∅ if and only if there exists a cycle c �= d with 
s(c) = s(d). Any 0 �= t ∈ V[d∞] for which s(d)t = t can be written in a unique way as

t = kd∞ + t0 + dt1 + d2t2 + · · · + dsts,

where the ti ∈ V[d∞] are K-linear combinations of elements in L(d,d∞) and ts �= 0. We 
call s ≥ 0 the d-degree of t and we denote it by degd(t).

In particular, any 0 �= t ∈ L(d,q) has d-degree equal to 0. We emphasize that, in case 
q = d∞, the d-degree of the element d∞ of V[d∞] is zero too: degd(d∞) = 0. The d-degree 
is not defined on 0.

Example 3.6. We revisit the graph R2 given by

•ve f .

Consider the simple closed path e and the rational infinite path f∞. Then L(e,f∞) =
{p ∈ R∞

2 | p ∼ f∞ and p is not divisible by e} ⊆ V[f∞] contains, for instance, the infinite 
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paths {f iejf∞ | i ≥ 1, j ≥ 0}. (There are additional elements of L(e,f∞), for instance, 
fefef∞.) Moreover, consider an element of the form ejf ief∞ ∈ V[f∞], with i ≥ 1 and 
j ≥ 0. Then dege(ejf ief∞) = j.

On the other hand, L(f,f∞) = {p ∈ R∞
2 | p ∼ f∞ and p is not divisible by f} contains 

the infinite paths {eif∞ | i ≥ 1}. Note that the element f∞ of Vf∞ is defined to have 
degf (f∞) = 0.

Recall that LK(E) is a ring wit unity if and only if E is finite.

Lemma 3.7. Let E be a finite graph. Let d be a simple closed path and q ∈ E∞. Let 
t ∈ V[q], and consider the equation in the variable X

(d− 1)X = t.

The equation admits a solution in V[q] if one of the following holds:

(1) s(d)t = 0;
(2) t = dnp − p for some p ∈ L(d,q) and n ≥ 0.

Proof. (1) is easy, since if s(d)t = 0 then dt = 0, and hence X = −t is a solution. (2) is 
nearly as easy, since we have (d − 1) 

∑n−1
i=0 dip = dnp − p = t, and hence X =

∑n−1
i=0 dip

is a solution. �
Lemma 3.8. Let E be a finite graph. Let d be a simple closed path and let q ∈ E∞. 
Assume either q = d∞ or q is a generator of V[q] not divisible by d. Let 0 �= t ∈ V[q], and 
consider the equation

(d− 1)X = t.

Assume t = dnt′ for some n ≥ 0 and some 0 �= t′ ∈ V[q] for which s(d)t′ = t′ and 
degd(t′) = 0. Then the equation has no solution in V[q]. In particular:

(1) the equation (d − 1)X = t has no solution in V[q] whenever t ∈ L(d,q), and
(2) the equation (d − 1)X = d∞ has no solution in V[d∞].

Proof. Let v = s(d). Since vd = d and t = dnt′, we get vt = t. So if x is a solution of 
(d − 1)X = t, then we would have v(d − 1)x = t, so that (d − 1)vx = t; thus we may 
assume without loss that vx = x. Hence the equation yields

x = dx− t,

and, since t �= 0, necessarily then x �= 0. Let degd(x) = s and write
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x = kd∞ + x0 + dx1 + · · · + dsxs,

where the xis are linear combination of elements in L(d,q), and k = 0 in case q �= d∞. 
Then, using d · d∞ = d∞, we get

t = dnt′ = (d− 1)x = dx− x

= kd∞ − kd∞ − x0 + d(x0 − x1) + · · · + ds(xs−1 − xs) + ds+1xs

= −x0 + d(x0 − x1) + · · · + ds(xs−1 − xs) + ds+1xs.

We claim that this is impossible. Set x−1 = 0 = xs+1. By the uniqueness of the decom-
position in Remark 3.5, since degd(t′) = 0, one gets t′ = xn−1 − xn and xi−1 − xi = 0
for any i �= n, −1 ≤ n ≤ s + 1. Then we have 0 = x0 = x1 = · · · = xn−1 and 
t′ = −xn = · · · − xs+1 = 0, contradiction. �

Assume E is a finite graph and d a simple closed path in E. In order to compute the 
groups Ext1LK(E)(V[d∞], T ) for any Chen simple module T , we can consider the projective 
resolution of V[d∞]

0 → LK(E)
ρ̂(d−1)−→ LK(E) ρ̂d∞−→ V[d∞] → 0

ensured by Theorem 2.8.

Lemma 3.9. Let E be a finite graph. Let d be a simple closed path in E and let T be a 
Chen simple module. Consider the exact sequence

HomLK(E)(LK(E), T )
ρ̂(d−1)∗ HomLK(E)(LK(E), T ) π Ext1LK(E)(V[d∞], T ) 0

where ρ̂(d−1)∗(φ) = φ ◦ ρ̂d−1, and π is the connecting homomorphism. Then

π(ρ̂t) = 0 if and only if the equation (d− 1)X = t has a solution in T.

Consequently, Ext1LK(E)(V[d∞], T ) = 0 if and only if (d − 1)X = t has a solution in T
for every t ∈ T .

Proof. By exactness it follows that π(ρ̂t) = 0 if and only if there exists x ∈ T such that

ρ̂t = ρ̂(d−1)∗(ρ̂x) = ρ̂x ◦ ρ̂(d−1) = ρ̂(d−1)x

i.e. if and only if the equation (d − 1)X = t has a solution in T .
The final statement follows directly from the exactness of the displayed sequence. �
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Theorem 3.10 (Type (2)). Let E be a finite graph. Let d be a simple closed path in E
and let T be a Chen simple module. Then the following are equivalent:

(1) Ext1LK(E)(V[d∞], T ) �= 0.
(2) s(d) ∈ U(T ).

Proof. (1) ⇒ (2) If s(d)T = 0, then for any t ∈ T we have s(d)t = 0, so by Lemma 3.7(1) 
the equation (d − 1)X = t admits a solution for any t ∈ T . Applying Lemma 3.9(2), we 
get that Ext1LK(E)(V[d∞], T ) = 0.

(2) ⇒ (1) First assume T �= V[d∞]. As observed in Remark 3.5, T admits a generator 
q not divisible by d and L(d,q) is not empty. Let p ∈ L(d,q). By Lemma 3.8, the equation 
(d − 1)X = p has no solution in V[q] and so, by Lemma 3.9, π(ρ̂p) �= 0.

On the other hand, suppose T = V[d∞]. By Lemma 3.8, the equation (d − 1)X = d∞

has no solution in V[d∞], and so, again invoking Lemma 3.9, π(ρ̂d∞) �= 0.
In either case we have established the existence of a nonzero element in

Ext1LK(E)(V[d∞], T ). �
Corollary 3.11. Let E be a finite graph. For any simple closed path d,
Ext1LK(E)(V[d∞], V[d∞]) �= 0.

Example 3.12. We again revisit the graph R2:

•ve f .

Let q be any element of R∞
2 . Let d be any (of the infinitely many) simple closed paths 

in R2. Since clearly Condition (2) of Theorem 3.10 is satisfied for V[q], we get that 
Ext1LK(R2)(V[d∞], V[q]) �= 0. �

Having now established conditions which ensure that there exist nontrivial extensions 
of the Chen simple module T by the simple module V[d∞], we now give a more explicit 
description of the number of such extensions.

Proposition 3.13. Let E be any finite graph. Let d be a simple closed path in E and let 
T be a Chen simple module. Assume q ∈ E∞ such that T = V[q].

(1) Suppose T �= V[d∞]. Then dimK Ext1LK(E)(V[d∞], T ) = |L(d,q)|.
(2) On the other hand, dimK Ext1LK(E)(V[d∞], V[d∞]) = |L(d,d∞)| + 1.

Proof. We consider the exact sequence

HomLK(E)(LK(E), V[q])
ρ̂(d−1)∗HomLK(E)(LK(E), V[q])

π Ext1LK(E)(V[d∞], V[q]) 0 .
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(1) Without loss of generality we can assume q is not divisible by d. By Remark 3.5(1) 
and Theorem 3.10, if L(d,q) = ∅ then Ext1LK(E)(V[d∞], T ) = 0. Otherwise, by Lemmas 3.8
and 3.9, π(ρ̂p) �= 0 for any path p ∈ L(d,q). We claim that the set {π(ρ̂p) | p ∈ L(d,q)} is a 
basis for the vector space Ext1LK(E)(V[d∞], T ). In order to show that {π(ρ̂p) | p ∈ L(d,q)}
is K-linearly independent, suppose there is a K-linear combination 0 = k1π(ρ̂p1) + · · ·+
knπ(ρ̂pn

) in Ext1LK(E)(V[d∞], V[q]), with pi ∈ L(d,q). Let t = k1p1 + · · · + knpn in V[q]
so that π(ρ̂t) = 0 in Ext1LK(E)(V[d∞], V[q]). Thus, applying Lemma 3.9, we get that the 
equation (d − 1)X = t has a solution in V[q]. If t �= 0, since s(d)t = t and pi ∈ L(d,q) we 
get degd(t) = 0, which is a contradiction by Lemma 3.8. Hence t = 0 and by the linear 
independence of {p1, . . . , pn} in V[q] we get that k1 = · · · = kn = 0. So {π(ρ̂p) | p ∈ L(d,q)}
is K-linearly independent.

We now show that {π(ρ̂p) | p ∈ L(d,q)} spans Ext1LK(E)(V[d∞], T ). As π is surjective, 
by Lemma 3.9(1) it suffices to show that any π(ρ̂t) ∈ Ext1LK(E)(V[d∞], T ) is a K-linear 
combination of elements from this set. Write t = t′+t′′ where t′ =

∑mt′
i=1 kip

′
i with s(p′i) =

s(d) and t′′ =
∑mt′′

j=1 kjp
′′
j with s(p′′j ) �= s(d). By Lemma 3.7(1), the equation (d −1)X = t

has solution in T = V[q] if and only if (d −1)X = t′ has solution in V[q], so we can assume 
without loss of generality that s(d)t = t. Hence t = t0+dt1+d2t2+· · ·+dsts, and so ρ̂t =
ρ̂t0 + ρ̂dt1 + ρ̂d2t2 +· · ·+ ρ̂dsts , where each ti is of the form ti =

∑mi

j=1 kijuij , for some uij ∈
L(d, q). Thus π(ρ̂t) =

∑m0
j=1 k0jπ(ρ̂u0j ) +

∑m1
j=1 k1jπ(ρ̂du1j ) + · · ·+

∑
j=1 msksjπ(ρ̂dsusj

). 
Observe that, by Lemmas 3.7(2) and 3.9, we get π(ρ̂dnu − ρ̂u) = 0 for any u ∈ L(d,q)
and any n ∈ N, so π(ρ̂dnu) = π(ρ̂u) for any n ∈ N. Hence {π(ρ̂u) | u ∈ L(d,q)} is a set of 
generators for Ext1LK(E)(V[d∞], T ).

(2) Let us show that {π(ρ̂p) | p ∈ L(d,d∞)} ∪ {π(ρ̂d∞)} is a basis for
Ext1LK(E)(V[d∞], V[d∞]). First observe that, by Lemmas 3.8 and 3.9(2), π(ρ̂d∞) �= 0 and 
π(ρ̂p) �= 0 for any p ∈ L(d,d∞). Arguing as in part (1) we claim that {π(ρ̂p) | p ∈ L(d,d∞)} ∪
{π(ρ̂d∞)} is a linearly independent set in Ext1LK(E)(V[d∞], V[d∞]). Indeed, consider a 
K-linear combination 0 = k0π(ρ̂d∞) +k1π(ρ̂p1) +· · ·+knπ(ρ̂pn

) in Ext1LK(E)(V[d∞], V[d∞]). 
Define y = k0d

∞ + k1p1 + · · · + knpn ∈ V[d∞] so that π(ρ̂y) = 0 and hence, by 
Lemma 3.9(2), the equation (d −1)X = y has a solution in V[d∞]. Note that if y �= 0 then 
degd(y) = 0 (whether or not k0 = 0) since each pi ∈ L(d,d∞), which is a contradiction by 
Lemma 3.8. So y = 0, which yields that each ki (0 ≤ i ≤ n) is 0.

Since any t in V[d∞] with s(d)t = t is of the form t = kd∞ + t0 +dt1 +d2t2 + · · ·+dsts, 
using the same arguments as in part (1) it can be easily be shown that the set {π(ρ̂p) | p ∈
L(d,d∞)} ∪ {π(ρ̂d∞)} spans Ext1LK(E)(V[d∞], V[d∞]). �
Lemma 3.14. Let d be a simple closed path in the finite graph E.

(1) If q ∈ E∞ is irrational and L(d,q) �= ∅, then |L(d,q)| is infinite.
(2) If L(d,d∞) �= ∅, then |L(d,d∞)| is infinite.

Proof. (1) Let q = e1e2 · · · for ei ∈ E1. First notice that, for any w ∈ E0, if w = r(ei) for 
some i > 0, then we can assume without loss of generality that w = r(ej) for infinitely 
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many j > 0 (as otherwise, since E1 is finite, we can replace q with q′ ∈ E∞ for which 
q ∼ q′ and w /∈ (q′)0).

Consider now an element p ∈ L(d,q). Then p = βq0 and q = γq0 for some q0 ∈ [q]
and β, γ ∈ Path(E) and β not divisible by d. Consider w = r(β) = s(q0). Then, by the 
previous assumption, there exists a set of infinite and distinct truncations {τ>nk

(q) |
k ∈ N} such that, for each k ∈ N, q = γkwτ>nk

(q) for some γk ∈ Path(E). Since q is 
irrational, by Remark 2.4 the infinite paths in the set {τ>nk

(q) | k ∈ N} are distinct. 
Hence there are infinitely many distinct elements βτ>nk

(q) in L(d,q), which establishes 
(1).

(2) If L(d,d∞) �= ∅, then there is at least one simple closed path c for which s(c) = s(d)
and c �= d. Then we easily get that each of the distinct paths {cid∞ | i ∈ N} is tail 
equivalent to d∞, which gives that L(d,d∞) is infinite. �
Corollary 3.15. Let d be a simple closed path in E and T a Chen simple module. If 
dimK Ext1LK(E)(V[d∞], T ) is finite, then T = V[c∞] for a simple closed path c.

Proof. It follows directly from Lemma 3.14 and Proposition 3.13. �
Example 3.16. For each n ∈ N, consider the graph

En = •vd
(n)

•w f ,

where the symbol (n) indicates that there are n edges {e1, . . . , en} for which s(ei) = v

and r(ei) = w. Then in En we have L(d,f∞) = {e1f
∞, . . . , enf∞}, so that |L(d,f∞)| = n. 

By Proposition 3.13(1) we conclude that dimK Ext1LK(En)(V[d∞], V[f∞]) = n.

Example 3.17. Consider the graph

R1 = •v d ,

for which LK(R1) ∼= K[x, x−1]. Then L(d,d∞) is empty, hence by Proposition 3.13(2) we 
conclude that dimK Ext1LK(R1)(V[d∞], V[d∞]) = 1.

Having given a complete analysis of Ext1LK(E)(V[d∞], T ) for any simple closed path d
of E and any Chen simple module T , we now analyze Ext1LK(E)(V[p], T ) for any irrational 
infinite path p and any Chen simple module T . The projective resolution of V[p] we are 
going to use is the one introduced in the proof of Theorem 2.20:

0 Ker(ρp) LK(E)v
ρp

V[p] 0 ,

where Ker(ρp) = ⊕∞
i=0Ji(p) as in Corollary 2.17 and v = s(p).
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Remark 3.18. Let E be a finite graph and u ∈ LK(E). For each left LK(E)-module M , 
any morphism φ ∈ HomLK(E)(LK(E)u, M) is the right product by the element φ(u) of 
M . If u is an idempotent, then it is HomLK(E)(LK(E)u, M) ∼= uM as abelian groups, 
by means of the isomorphism φ 	→ φ(u) = uφ(u).

In order to state the analog of Theorem 3.10 for the irrational case we need the 
following notation. Let p = e1e2 · · · ∈ E∞ be an irrational infinite path in E. For each 
i ≥ 0 let Xi(p) denote the set {f ∈ E1 | s(f) = s(ei+1) and f �= ei+1} as presented in 
Definition 2.10, and define

r(Xi(p)) := {w ∈ E0 | w = r(f) for some f ∈ Xi(p)}.

Finally, for any p ∈ E∞ and any i ≥ 0 recall from Definitions 2.10 that the left 
LK(E)-ideal Ji(p) is

Ji(p) =
∑

f∈Xi(p)

LK(E)f∗p∗i ,

where pi denotes the truncation τ≤i(p). As proved in Lemma 2.19, if p is irrational, then

Ji(p) =
⊕

f∈Xi(p)

LK(E)f∗p∗i
∼=

⊕
f∈Xi(p)

LK(E)r(f).

Lemma 3.19. Let p be an irrational infinite path in the finite graph E. Let T denote a 
Chen simple module and let t ∈ T . Then there exists a positive integer N = N(t) for 
which (Ji(p))t = 0 for all i ≥ N .

Proof. Assume q ∈ E∞ (q can be rational, irrational or a sink) and let α ∈ Path(E) with 
length(α) = n. Observe that, for any i ≥ n, one has p∗iαq = 0 unless pi = ατ≤i−n(q). 
So if p∗iαq �= 0 for all i ∈ N, we can conclude p = αq. Finally notice that, if there exists 
N ∈ N such that p∗Nαq = 0, then p∗iαq = 0 for any i ≥ N .

(Case 1.) Let T �= V[p] and let q ∈ E∞, necessarily not tail-equivalent to p, such that 
T = V[q]. Consider an element t ∈ T . Then t can be written as t =

∑s
u=1 kuαuτ>iu(q), 

where the αus are in Path(E) and the ius are in N, and hence αuτ>iu(q) �= p for any 
u = 1, . . . , s. Since any element in (Ji(p))t is a finite sum of expressions of the form 
kuf

∗p∗iαuτ>iu(q), and since αuτ>iu(q) �= p, by the previous observations we can choose 
an N = N(t) sufficiently large such that (Ji(p))t = 0 for any i ≥ N .

(Case 2.) On the other hand, let T = V[p] and consider an element t ∈ T . Then t
can be written as t =

∑s
u=1 kuqu, where the qus are tail equivalent to p. Let f ∈ Xi(p), 

i ≥ 0; if qu = p then f∗p∗i p = f∗τ>i(p) = 0, by construction of f∗. If qu �= p, there exists 
an integer iu > 0 such that τ≤iu(q) �= piu and hence p∗iuτ≤iu(q) = 0. Then, by the initial 
observation, if N = Nt = max{iu : u = 1, . . . , s}, we conclude that (Ji(p))t = 0 for any 
i ≥ N . �
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Lemma 3.20. Let E be a finite graph, and let p be an infinite irrational path in E. Let T be 
a Chen simple LK(E)-module. Then HomLK(E)(Ji(p), T ) �= 0 if and only if r(f) ∈ U(T )
for some f ∈ Xi(p).

Proof. By standard ring theory, we have the following isomorphisms of abelian groups

HomLK(E)(Ji(p), T ) ∼= HomLK(E)(⊕f∈Xi(p)LK(E)r(f), T )
∼= ⊕f∈Xi(p)HomLK(E)(LK(E)r(f), T ) ∼= ⊕f∈Xi(p)r(f)T,

where the second isomorphism holds because |Xi(p)| is finite, and the final one by Re-
mark 3.18 because each r(f) is idempotent. �
Theorem 3.21 (Type (3)). Let p be an irrational infinite path in the finite graph 
E and let T be any Chen simple LK(E)-module. Then Ext1LK(E)(V[p], T ) �= 0 if 
and only if r(Xi(p)) ∩ U(T ) �= ∅ for infinitely many i ≥ 0. In such a situation, 
dimK(Ext1LK(E)(V[p], T )) is infinite.

Proof. (⇒) Suppose r(Xi(p)) ∩ U(T ) �= ∅ for at most finitely many i ≥ 0. We seek 
to show that every element of HomLK(E)(Ker(ρp), T ) arises as right multiplication 
by an element of T . We have HomLK(E)(Ker(ρp), T ) = HomLK(E)(⊕i≥0Ji(p), T ) ∼=∏

i≥0 HomLK(E)(Ji(p), T ), which by Lemma 3.20 and hypothesis equals∏N
i=0 HomLK(E)(Ji(p), T ) for some N ∈ N. For each i ≥ 0 and f ∈ Xi(p), the 

element piff∗p∗i is an idempotent generator of LK(E)f∗p∗i ; moreover {piff∗p∗i :
f ∈ Xi(p), i ≥ 0} is a set of orthogonal idempotents in LK(E). Every ele-
ment ϕ of HomLK(E)(LK(E)piff∗p∗i , T ) is the right multiplication by ϕ(piff∗p∗i ); 
then every element ψ of HomLK(E)(⊕N

i=0Ji(p), T ) is the right multiplication by 
ψ(

∑N
i=0

∑
f∈Xi(p) piff

∗p∗i ). So Ext1LK(E)(V[p], T ) = 0.
(⇐) Conversely, let us see that r(Xi(p)) ∩ U(T ) �= ∅ for infinitely many i ≥ 0 im-

plies that there is an element of HomLK(E)(Ker(ρp), T ) which does not arise as a right 
multiplication by an element of T . By Lemma 3.20 there exists an increasing sequence 
(in)n∈N of natural numbers such that HomLK(E)(Ji(p), T ) �= 0 if and only if i = in for a 
suitable n ∈ N. Let {φi ∈ HomLK(E)(Ji(p), T ) : i ∈ N} be a family of morphisms such 
that φin �= 0 for each n ∈ N. Then

ϕ =
∏
i∈N

φi ∈ HomLK(E)(⊕i∈NJi(p), T )

is a morphism which is not, by Lemma 3.19, right multiplication by element of T .
To establish the final statement, consider an increasing sequence (in)n∈N of natural 

numbers and a family {φin ∈ HomLK(E)(Jin(p), T ) : n ∈ N} of nonzero morphisms. 
Define for each prime z ∈ N the morphism Ψz ∈ HomLK(E)(Ker(ρp), T ) as follows: for 
each j ≥ 0,

Ψz(Jij (p)) = ψij (Jij (p)) if z divides j, while Ψz(J�(p)) = 0 otherwise.
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Observe that π(Ψz) �= 0, since Ψz has infinitely many nonzero components. Finally, 
{π(Ψz) | z ∈ N, z prime} is a set of linearly independent elements of Ext1LK(E)(V[p], T )), 
as follows. Let F be a finite subset of primes in N, and assume 

∑
z∈F kzπ(Ψz) = 0; then 

π(
∑

z∈F kzΨz) = 0 and therefore 
∑

z∈F kzΨz is a right multiplication by an element t
of T . By Lemma 3.19 there exists a positive integer N = N(t) for which (Ji(p))t = 0 for 
all i ≥ N . For each prime ẑ ∈ F , let mẑ a natural number greater than N ; then

0 = (Jẑmẑ (p))t =
∑
z∈F

kzΨz(Jẑmẑ (p)) = kẑΨẑ(Jẑmẑ (p))

and hence kẑ = 0. Hence dimK(Ext1LK(E)(V[p], T )) is infinite. �
We emphasize the fact that Theorems 3.10 and 3.21 allow us to compute the dimension 

of the Ext1-groups between two Chen simple modules completely and solely in terms of 
properties of the graph E.

Example 3.22. We again revisit the graph R2 and irrational infinite path q =
efeffefffe · · · of Example 1.1. Let T = V[q]. Since clearly U(T ) = {v} and r(Xi) = {v}
for all i ∈ N as well, Theorem 3.21 yields that dimK(Ext1LK(E)(V[q], V[q])) is infinite.

Example 3.23. With the statement of Theorem 3.21 as motivation, we give examples 
of graphs En, an irrational infinite path p in En, and Chen simple LK(En)-modules T
having r(Xi(p)) ∩U(T ) �= ∅ for only finitely many i ∈ Z

+. For n ∈ N consider the graph 
En given by

•v1
e1 •v2

e2 · · · •vn
en •vn+1

en+1 •v
e

f

•w

gh

Let p denote the irrational infinite path e1e2 · · · enen+1efeffefffe · · ·. Let T1 be the 
Chen simple LK(E)-module V[g∞], and let T2 denote the Chen simple LK(E)-module 
V[q] corresponding to the irrational infinite path q = ghghhghhhg · · ·. Then for j = 1, 2, 
r(Xi(p)) ∩ U(Tj) is nonempty (indeed, equals {w}) precisely when 0 ≤ i ≤ n.

Consequently, by Theorem 3.21, Ext1LK(E)(V[p], Tj) = {0} for j = 1, 2.

We conclude the article by demonstrating the existence of indecomposable
LK(E)-modules of prescribed finite length, in case E is a finite graph which contains 
cycles. Recall that a module M is called uniserial in case the lattice of submodules of 
M is totally ordered. In particular, any uniserial module is indecomposable. Moreover, 
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the radical Rad(M) of a uniserial module M is the unique maximal submodule of M , 
hence M/ RadM is simple.

Lemma 3.24. (See [7, Lemma 16.1 with Proposition 16.2].) Let R be any unital ring. Let 
U be a uniserial left R-module of finite length, and X a simple left R-module. Consider 
the morphism ψ : Ext1R(X, U) → Ext1R(X, U/ RadU). An extension in Ext1R(X, U) is 
uniserial if and only if it does not belong to Kerψ.

In particular, if R is hereditary, there exists a uniserial extension of U by X if and 
only if Ext1R(X, U/ RadU) �= 0.

As observed in Remark 1.4, LK(E) is hereditary for any row-finite graph E. So 
Lemma 3.24 gives the following:

Corollary 3.25. Let E be a finite graph. If S is a Chen simple LK(E)-module such that 
Ext1LK(E)(S, S) �= 0 and L is a uniserial LK(E)-module such that L/ Rad(L) ∼= S, then 
there exists a uniserial LK(E)-module M which is an extension of L by S.

In particular, for any n ∈ N there exists a uniserial LK(E)-module of length n, all of 
whose composition factors are isomorphic to S.

Proof. The first statement follows directly from Lemma 3.24 and the hereditariness of 
LK(E). In order to show the existence of uniserial modules of arbitrary length, first 
observe that any non-zero element of the abelian group Ext1LK(E)(S, S) �= 0 corre-
sponds to an indecomposable uniserial module L2 of length 2, with Rad(L2) ∼= S and 
L2/Rad(L2) ∼= S. Then, by applying the first statement, there exists a uniserial mod-
ule L3 of length 3 which is an extension of L2 by S. Since Rad(L3) ∼= L2 and hence 
L3/ Rad(L3) ∼= S, we can proceed by induction. �

Observe that if E contains a simple closed path d, by Corollary 3.11 the module 
S = V[d∞] satisfies Ext1LK(E)(S, S) �= 0 and hence Corollary 3.25 applies.
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